Spring, 2008 CIS 610. Advanced Geometric Methods in Computer Science Jean Gallier Homework 1, Corrected Version

Size: px
Start display at page:

Download "Spring, 2008 CIS 610. Advanced Geometric Methods in Computer Science Jean Gallier Homework 1, Corrected Version"

Transcription

1 Spring, 008 CIS 610 Adanced Geometric Methods in Compter Science Jean Gallier Homework 1, Corrected Version Febrary 18, 008; De March 5, 008 A problems are for practice only, and shold not be trned in. Problem A1. a Find two symmetric matrices, A and B, sch that AB is not symmetric. b Find two matrices, A and B, sch that e A e B e A+B. Try A = π and B = π Problem A. a If K = R or K = C, recall that the projectie space, PK n+1, is the set of eqialence classes of the eqialence relation,, onk n+1 {0}, defined so that, for all, K n+1 {0}, iff = λ, for some λ K {0}. The map, p:k n+1 {0} PK n+1, is the projection mapping any nonzero ector in K n+1 to its eqialence class modlo. WeletRP n = PR n+1 andcp n = PC n+1. Proe that for any n 0, there is a bijection between PK n+1 andk n PK n which allows s to identify them. b Proe that RP n and CP n are connected and compact. Hint. If S n = {x 1,...,x n+1 K n+1 x x n+1 =1}, proe that ps n =PK n+1, and recall that S n is compact for all n 0 and connected for n 1. For n =0,PK consists of a single point. Problem A3. Recall that R and C can be identified sing the bijection x, y x+iy. Also recall that the sbset U1 C consisting of all complex nmbers of the form cos θ + i sin θ is homeomorphic to the circle S 1 = {x, y R x + y =1}. If c: U1 U1 is the map defined sch that cz =z, 1

2 proe that cz 1 =cz iffeitherz = z 1 or z = z 1, and ths that c indces a bijectie map ĉ: RP 1 S 1. Proe that ĉ is a homeomorphism remember that RP 1 is compact. B problems mst be trned in. Problem B1 0 pts. Let A =a ij be a real or complex n n matrix. 1 If λ is an eigenale of A, proe that there is some eigenector = 1,..., n ofa for λ sch that max i =1. 1 i n If = 1,..., n is an eigenector of A for λ as in 1, assming that i, 1 i n, is an index sch that i = 1, proe that λ a ii i = n a ij j, j=1 j i and ths that λ a ii n a ij. Conclde that the eigenales of A are inside the nion of the closed disks D i defined sch that { n } D i = z C z a ii a ij. j=1 j i j=1 j i Remark: This reslt is known as Gershgorin s theorem. Problem B 10. Recall that a real n n symmetric matrix, A, ispositie semi-definite iff its eigenales, λ 1,...,λ n are non-negatie i.e., λ i 0 for i =1,...,nandpositie definite iff its eigenales are positie i.e., λ i > 0 for i =1,...,n. a Proe that a symmetric matrix, A, is positie semi-definite iff X AX 0, for all X 0X R n and positie definite iff X AX > 0, for all X 0X R n. b Proe that for any two positie definite matrices, A, B, for all λ, µ R, withλ, µ 0 and λ + µ>0, the matrix λa + µb is still symmetric, positie definite. Dedce that the set of n n symmetric positie definite matrices is conex in fact, a cone. Problem B3 40 pts. a Gien a rotation matrix cos θ sin θ R = sin θ cos θ,

3 where 0 <θ<π, proe that there is a skew symmetric matrix B sch that R =I BI + B 1. b If B is a skew symmetric n n matrix, proe that λi n B and λi n + B are inertible for all λ 0, and that they commte. c Proe that R =λi n BλI n + B 1 is a rotation matrix that does not admit 1 as an eigenale. Recall, a rotation is an orthogonal matrix R with positie determinant, i.e., detr = 1. d Gien any rotation matrix R that does not admit 1 as an eigenale, proe that there is a skew symmetric matrix B sch that R =I n BI n + B 1 =I n + B 1 I n B. This is known as the Cayley representation of rotations Cayley, e Gien any rotation matrix R, proe that there is a skew symmetric matrix B sch that R = I n BI n + B 1. Problem B4 60. a Consider the map H: R 3 R 4 defined sch that x, y, z xy, yz, xz, x y. Proe that when it is restricted to the sphere S in R 3, we hae Hx, y, z =Hx,y,z iff x,y,z =x, y, z orx,y,z = x, y, z. In other words, the inerse image of eery point in HS consists of two antipodal points. Proe that the map H indces an injectie map from the projectie plane onto HS, and that it is a homeomorphism. b The map H allows s to realize concretely the projectie plane in R 4 as an embedded manifold. Consider the three maps from R to R 4 gien by ψ 1, = ψ, = ψ 3, = + +1, + +1, + +1, + +1, + +1, + +1, + +1,, , 1, , Obsere that ψ 1 is the composition H α 1,whereα 1 : R S is gien by, + +1, + +1, 1,

4 that ψ is the composition H α,whereα : R S is gien by, + +1, , + +1 and ψ 3 is the composition H α 3,whereα 3 : R S is gien by 1, + +1, + +1, + +1 Proe that each ψ i is injectie, continos and nonsinglar i.e., the Jacobian is neer zero. Proe that if ψ 1, =x, y, z, t, then., y + z 1 4 and y + z = 1 4 iff + =1. Proe that and are soltions of the qadratic eqations y + z z + z = 0 y + z y + y = 0. Proe that if y + z 0,then = z1 1 4y + z y + z if + 1, else = z y + z if + 1, y + z and there are similar formlae for. Proe that the expression giing in terms of y and z is continos eerywhere in {y, z y + z 1 } and similarly for the expression giing 4 in terms of y and z. Conclde that ψ 1 : R ψ 1 R is a homeomorphism onto its image. Therefore, U 1 = ψ 1 R is an open sbset of HS. Remark: From the eqations aboe, yo can proe that + +1 is a root of the eqation y + z D D +1=0. Then, else D = 1 1 4y + z y + z D = y + z y + z 4 if + 1, if + 1.

5 Proe that if ψ, =x, y, z, t, then and are soltions of qadratic eqations with coefficients inoling x and y; find explicit formlae as for ψ1 1 and conclde that ψ : R ψ 3 R is a homeomorphism onto its image. The set U = ψ R isanopen sbset of HS. Proe that if ψ 3, =x, y, z, t, then and are soltions of qadratic eqations with coefficients inoling x and z. As for ψ 1, conclde that ψ 3 : R ψ 3 R is a homeomorphism onto its image. The set U 3 = ψ 3 R is an open sbset of HS. Proe that the nion of the U i s coers HS. Conclde that ψ 1,ψ,ψ 3 are parametrizations of RP as a manifold in R 4. Proe that if x, y, z, t HS, then x y + x z + y z = xyz xz y = yzt. The zero locs of these eqations strictly contains HS, proe it. This is a famos mistake of Hilbert and Cohn-Vossen in Geometry and the Immagination! In an attempt to fix this bg, proe that when yo express x in terms of y and z sing ψ 1, yo get the eqation x y + x z + y z = xyz. When yo express t in terms of y and z sing ψ 1, yo get the eqation y + z z y + t =tz y. When yo express t in terms of x and y sing ψ, yo get the eqation 4x + y x + y t +x + y =x + y. When yo express t in terms of x and z sing ψ 3, yo get an eqation similar to the preios one. Do these for eqations define exactly HS? I sspect they do! c Inestigate the srfaces in R 3 obtained by dropping one of the for coordinates. Show that there are only two of them the Steiner Roman srface and the crosscap, p to a rigid motion. Problem B5 40. a Consider the map, f: GL + n Sn, gien by fa =A A I. Check that df AH =A H + H A, for any matrix, H. b Consider the map, f: GLn R, gienby fa =deta. 5

6 Proe that df IB = trb, the trace of B, for any matrix B here, I is the identity matrix. Then, proe that df AB =detatra 1 B, where A GLn. c Use the map A deta 1toproethatSLn is a manifold of dimension n 1. d Let J be the n +1 n + 1 diagonal matrix In 0 J =. 0 1 We denote by SOn, 1 the grop of real n +1 n + 1 matrices SOn, 1 = {A GLn +1 A JA = J and deta =1}. Check that SOn, 1 is indeed a grop with the inerse of A gien by A 1 = JA J this is the special Lorentz grop. Consider the fnction f: GL + n +1 Sn +1,gienby fa =A JA J, where Sn + 1 denotes the space of n +1 n + 1 symmetric matrices. Proe that df AH =A JH + H JA for any matrix, H. Proe that df A is srjectie for all A SOn, 1 and that SOn, 1 is a manifold of dimension nn+1. Problem B6 0 pts. a Gien any matrix a b B = sl, C, c a if ω = a + bc and ω is any of the two complex roots of a + bc, proe that if ω 0,then e B =coshωi+ sinh ω ω and e B = I + B, ifa + bc = 0. Obsere that tre B =coshω. Proe that the exponential map, exp: sl, C SL, C, is not srjectie. For instance, proe that is not the exponential of any matrix in sl, C. B, 6

7 Problem B7 50 pts. Recall that for any matrix A = 0 c b c 0 a, b a 0 if we let θ = a + b + c and B = a ab ac ab b bc, ac bc c then the exponential map, exp: so3 SO3, is gien by exp A = e A =cosθi 3 + sin θ 1 cos θ A + B, θ θ or, eqialently, by e A = I 3 + sin θ 1 cos θ A + A, θ θ if θ kπ k Z, with exp0 3 =I 3 Rodriges s formla a Let R SO3 and assme that R I and trr 1. Then, proe that a log of R i.e., a skew symmetric matrix, S, sothate S = R isgienby logr = θ sinθ R RT, where 1 + cos θ = trr and0<θ<π. b Now, assme that trr = 1. In this case, show that R is a rotation of angle π, that R is symmetric and has eigenales, 1, 1, 1. Assming that e A = R, Rodriges formla becomes R = I + π A, so A = π R I. If we let S = A/π, we see that we need to find a skew-symmetric matrix, S, sothat S = 1 R I =C. Obsere that C is also symmetric and has eigenales, 1, 1, 0. Ths, we can diagonalize C, as C = P P,

8 and if we let S = P P, check that S = C. c From a and b, we know that we can compte explicity a log of a rotation matrix, althogh when θ 0, we hae to be carefl in compting sin θ ; in this case, we may want to θ se sin θ =1 θ θ 3! + θ4 5! +. Gien two rotations, R 1,R SO3, there are three natral interpolation formlae: e 1 tlogr 1+t log R ; R 1 e t logr 1 R ; e t logr R 1 R 1, with 0 t 1. Write a compter program to inestigate the difference between these interpolation formlae. The position of a rigid body spinning arond its center of graity is determined by a rotation matrix, R SO3. If R 1 denotes the initial position and R the final position of this rigid body, by compting interpolants of R 1 and R,wegetamotionoftherigidbody and we can create an animation of this motion by displaying seeral interpolants. The rigid body can be a fnny object, for example a banana, a bottle, etc. TOTAL: 40 points. 8

The Brauer Manin obstruction

The Brauer Manin obstruction The Braer Manin obstrction Martin Bright 17 April 2008 1 Definitions Let X be a smooth, geometrically irredcible ariety oer a field k. Recall that the defining property of an Azmaya algebra A is that,

More information

1 The space of linear transformations from R n to R m :

1 The space of linear transformations from R n to R m : Math 540 Spring 20 Notes #4 Higher deriaties, Taylor s theorem The space of linear transformations from R n to R m We hae discssed linear transformations mapping R n to R m We can add sch linear transformations

More information

Spring, 2012 CIS 515. Fundamentals of Linear Algebra and Optimization Jean Gallier

Spring, 2012 CIS 515. Fundamentals of Linear Algebra and Optimization Jean Gallier Spring 0 CIS 55 Fundamentals of Linear Algebra and Optimization Jean Gallier Homework 5 & 6 + Project 3 & 4 Note: Problems B and B6 are for extra credit April 7 0; Due May 7 0 Problem B (0 pts) Let A be

More information

Math 4A03: Practice problems on Multivariable Calculus

Math 4A03: Practice problems on Multivariable Calculus Mat 4A0: Practice problems on Mltiariable Calcls Problem Consider te mapping f, ) : R R defined by fx, y) e y + x, e x y) x, y) R a) Is it possible to express x, y) as a differentiable fnction of, ) near

More information

Vectors in Rn un. This definition of norm is an extension of the Pythagorean Theorem. Consider the vector u = (5, 8) in R 2

Vectors in Rn un. This definition of norm is an extension of the Pythagorean Theorem. Consider the vector u = (5, 8) in R 2 MATH 307 Vectors in Rn Dr. Neal, WKU Matrices of dimension 1 n can be thoght of as coordinates, or ectors, in n- dimensional space R n. We can perform special calclations on these ectors. In particlar,

More information

MAT389 Fall 2016, Problem Set 6

MAT389 Fall 2016, Problem Set 6 MAT389 Fall 016, Problem Set 6 Trigonometric and hperbolic fnctions 6.1 Show that e iz = cos z + i sin z for eer comple nmber z. Hint: start from the right-hand side and work or wa towards the left-hand

More information

Graphs and Networks Lecture 5. PageRank. Lecturer: Daniel A. Spielman September 20, 2007

Graphs and Networks Lecture 5. PageRank. Lecturer: Daniel A. Spielman September 20, 2007 Graphs and Networks Lectre 5 PageRank Lectrer: Daniel A. Spielman September 20, 2007 5.1 Intro to PageRank PageRank, the algorithm reportedly sed by Google, assigns a nmerical rank to eery web page. More

More information

Lecture 3. (2) Last time: 3D space. The dot product. Dan Nichols January 30, 2018

Lecture 3. (2) Last time: 3D space. The dot product. Dan Nichols January 30, 2018 Lectre 3 The dot prodct Dan Nichols nichols@math.mass.ed MATH 33, Spring 018 Uniersity of Massachsetts Janary 30, 018 () Last time: 3D space Right-hand rle, the three coordinate planes 3D coordinate system:

More information

Spring 2018 CIS 610. Advanced Geometric Methods in Computer Science Jean Gallier Homework 3

Spring 2018 CIS 610. Advanced Geometric Methods in Computer Science Jean Gallier Homework 3 Spring 2018 CIS 610 Advanced Geometric Methods in Computer Science Jean Gallier Homework 3 March 20; Due April 5, 2018 Problem B1 (80). This problem is from Knapp, Lie Groups Beyond an Introduction, Introduction,

More information

Math 263 Assignment #3 Solutions. 1. A function z = f(x, y) is called harmonic if it satisfies Laplace s equation:

Math 263 Assignment #3 Solutions. 1. A function z = f(x, y) is called harmonic if it satisfies Laplace s equation: Math 263 Assignment #3 Soltions 1. A fnction z f(x, ) is called harmonic if it satisfies Laplace s eqation: 2 + 2 z 2 0 Determine whether or not the following are harmonic. (a) z x 2 + 2. We se the one-variable

More information

Fall, 2003 CIS 610. Advanced geometric methods. Homework 3. November 11, 2003; Due November 25, beginning of class

Fall, 2003 CIS 610. Advanced geometric methods. Homework 3. November 11, 2003; Due November 25, beginning of class Fall, 2003 CIS 610 Advanced geometric methods Homework 3 November 11, 2003; Due November 25, beginning of class You may work in groups of 2 or 3 Please, write up your solutions as clearly and concisely

More information

PHASE PLANE DIAGRAMS OF DIFFERENCE EQUATIONS. 1. Introduction

PHASE PLANE DIAGRAMS OF DIFFERENCE EQUATIONS. 1. Introduction PHASE PLANE DIAGRAMS OF DIFFERENCE EQUATIONS TANYA DEWLAND, JEROME WESTON, AND RACHEL WEYRENS Abstract. We will be determining qalitatie featres of a discrete dynamical system of homogeneos difference

More information

Math 147, Homework 1 Solutions Due: April 10, 2012

Math 147, Homework 1 Solutions Due: April 10, 2012 1. For what values of a is the set: Math 147, Homework 1 Solutions Due: April 10, 2012 M a = { (x, y, z) : x 2 + y 2 z 2 = a } a smooth manifold? Give explicit parametrizations for open sets covering M

More information

Change of Variables. (f T) JT. f = U

Change of Variables. (f T) JT. f = U Change of Variables 4-5-8 The change of ariables formla for mltiple integrals is like -sbstittion for single-ariable integrals. I ll gie the general change of ariables formla first, and consider specific

More information

Introduction to Computational Manifolds and Applications

Introduction to Computational Manifolds and Applications IMPA - Instituto de Matemática Pura e Aplicada, Rio de Janeiro, RJ, Brazil Introduction to Computational Manifolds and Applications Part 1 - Foundations Prof. Jean Gallier jean@cis.upenn.edu Department

More information

3.3 Operations With Vectors, Linear Combinations

3.3 Operations With Vectors, Linear Combinations Operations With Vectors, Linear Combinations Performance Criteria: (d) Mltiply ectors by scalars and add ectors, algebraically Find linear combinations of ectors algebraically (e) Illstrate the parallelogram

More information

Exercise 4. An optional time which is not a stopping time

Exercise 4. An optional time which is not a stopping time M5MF6, EXERCICE SET 1 We shall here consider a gien filtered probability space Ω, F, P, spporting a standard rownian motion W t t, with natral filtration F t t. Exercise 1 Proe Proposition 1.1.3, Theorem

More information

u P(t) = P(x,y) r v t=0 4/4/2006 Motion ( F.Robilliard) 1

u P(t) = P(x,y) r v t=0 4/4/2006 Motion ( F.Robilliard) 1 y g j P(t) P(,y) r t0 i 4/4/006 Motion ( F.Robilliard) 1 Motion: We stdy in detail three cases of motion: 1. Motion in one dimension with constant acceleration niform linear motion.. Motion in two dimensions

More information

THE CATEGORY OF CGWH SPACES

THE CATEGORY OF CGWH SPACES THE CATEGORY OF CGWH SPACES N. P. STRICKLAND It is ell-knon that the category U of compactly generated eak Hasdorff spaces is a conenient setting for homotopy theory and algebraic topology. In this paper

More information

1 :: Mathematical notation

1 :: Mathematical notation 1 :: Mathematical notation x A means x is a member of the set A. A B means the set A is contained in the set B. {a 1,..., a n } means the set hose elements are a 1,..., a n. {x A : P } means the set of

More information

2 Lie Groups. Contents

2 Lie Groups. Contents 2 Lie Groups Contents 2.1 Algebraic Properties 25 2.2 Topological Properties 27 2.3 Unification of Algebra and Topology 29 2.4 Unexpected Simplification 31 2.5 Conclusion 31 2.6 Problems 32 Lie groups

More information

6.4 VECTORS AND DOT PRODUCTS

6.4 VECTORS AND DOT PRODUCTS 458 Chapter 6 Additional Topics in Trigonometry 6.4 VECTORS AND DOT PRODUCTS What yo shold learn ind the dot prodct of two ectors and se the properties of the dot prodct. ind the angle between two ectors

More information

Differential Geometry. Peter Petersen

Differential Geometry. Peter Petersen Differential Geometry Peter Petersen CHAPTER Preliminaries.. Vectors-Matrices Gien a basis e, f for a two dimensional ector space we expand ectors sing matrix mltiplication e e + f f e f apple e f and

More information

be ye transformed by the renewing of your mind Romans 12:2

be ye transformed by the renewing of your mind Romans 12:2 Lecture 12: Coordinate Free Formulas for Affine and rojectie Transformations be ye transformed by the reing of your mind Romans 12:2 1. Transformations for 3-Dimensional Computer Graphics Computer Graphics

More information

EE2 Mathematics : Functions of Multiple Variables

EE2 Mathematics : Functions of Multiple Variables EE2 Mathematics : Fnctions of Mltiple Variables http://www2.imperial.ac.k/ nsjones These notes are not identical word-for-word with m lectres which will be gien on the blackboard. Some of these notes ma

More information

Linear System Theory (Fall 2011): Homework 1. Solutions

Linear System Theory (Fall 2011): Homework 1. Solutions Linear System Theory (Fall 20): Homework Soltions De Sep. 29, 20 Exercise (C.T. Chen: Ex.3-8). Consider a linear system with inpt and otpt y. Three experiments are performed on this system sing the inpts

More information

Differential Geometry and Lie Groups with Applications to Medical Imaging, Computer Vision and Geometric Modeling CIS610, Spring 2008

Differential Geometry and Lie Groups with Applications to Medical Imaging, Computer Vision and Geometric Modeling CIS610, Spring 2008 Differential Geometry and Lie Groups with Applications to Medical Imaging, Computer Vision and Geometric Modeling CIS610, Spring 2008 Jean Gallier Department of Computer and Information Science University

More information

Manifolds, Lie Groups, Lie Algebras, with Applications. Kurt W.A.J.H.Y. Reillag (alias Jean Gallier) CIS610, Spring 2005

Manifolds, Lie Groups, Lie Algebras, with Applications. Kurt W.A.J.H.Y. Reillag (alias Jean Gallier) CIS610, Spring 2005 Manifolds, Lie Groups, Lie Algebras, with Applications Kurt W.A.J.H.Y. Reillag (alias Jean Gallier) CIS610, Spring 2005 1 Motivations and Goals 1. Motivations Observation: Often, the set of all objects

More information

Axiomatizing the Cyclic Interval Calculus

Axiomatizing the Cyclic Interval Calculus Axiomatizing the Cyclic Interal Calcls Jean-François Condotta CRIL-CNRS Uniersité d Artois 62300 Lens (France) condotta@cril.ni-artois.fr Gérard Ligozat LIMSI-CNRS Uniersité de Paris-Sd 91403 Orsay (France)

More information

Differential Topology Solution Set #2

Differential Topology Solution Set #2 Differential Topology Solution Set #2 Select Solutions 1. Show that X compact implies that any smooth map f : X Y is proper. Recall that a space is called compact if, for every cover {U } by open sets

More information

Lesson 81: The Cross Product of Vectors

Lesson 81: The Cross Product of Vectors Lesson 8: The Cross Prodct of Vectors IBHL - SANTOWSKI In this lesson yo will learn how to find the cross prodct of two ectors how to find an orthogonal ector to a plane defined by two ectors how to find

More information

Review of Matrices and Vectors 1/45

Review of Matrices and Vectors 1/45 Reiew of Matrices and Vectors /45 /45 Definition of Vector: A collection of comple or real numbers, generally put in a column [ ] T "! Transpose + + + b a b a b b a a " " " b a b a Definition of Vector

More information

Lecture 9: 3.4 The Geometry of Linear Systems

Lecture 9: 3.4 The Geometry of Linear Systems Lectre 9: 3.4 The Geometry of Linear Systems Wei-Ta Ch 200/0/5 Dot Prodct Form of a Linear System Recall that a linear eqation has the form a x +a 2 x 2 + +a n x n = b (a,a 2,, a n not all zero) The corresponding

More information

MATH2715: Statistical Methods

MATH2715: Statistical Methods MATH275: Statistical Methods Exercises III (based on lectres 5-6, work week 4, hand in lectre Mon 23 Oct) ALL qestions cont towards the continos assessment for this modle. Q. If X has a niform distribtion

More information

Chapter 2. Introduction to Manifolds and Classical Lie Groups

Chapter 2. Introduction to Manifolds and Classical Lie Groups Chapter 2 Introduction to Manifolds and Classical Lie Groups Le rôle prépondérant de la théorie des groupes en mathématiques a été longtemps insoupçonné; il y a quatre-vingts ans, le nom même de groupe

More information

Jean Gallier Department of Computer and Information Science University of Pennsylvania Philadelphia, PA 19104, USA

Jean Gallier Department of Computer and Information Science University of Pennsylvania Philadelphia, PA 19104, USA Linear Algebra, Manifolds, Riemannian Metrics, Lie Groups and Lie algebra, with Applications to Robotics, Vision and Machine Learning CIS610, Fall 2015 Jean Gallier Department of Computer and Information

More information

Changing coordinates to adapt to a map of constant rank

Changing coordinates to adapt to a map of constant rank Introduction to Submanifolds Most manifolds of interest appear as submanifolds of others e.g. of R n. For instance S 2 is a submanifold of R 3. It can be obtained in two ways: 1 as the image of a map into

More information

Properties of Linear Transformations from R n to R m

Properties of Linear Transformations from R n to R m Properties of Linear Transformations from R n to R m MATH 322, Linear Algebra I J. Robert Buchanan Department of Mathematics Spring 2015 Topic Overview Relationship between the properties of a matrix transformation

More information

Math 147, Homework 5 Solutions Due: May 15, 2012

Math 147, Homework 5 Solutions Due: May 15, 2012 Math 147, Homework 5 Solutions Due: May 15, 2012 1 Let f : R 3 R 6 and φ : R 3 R 3 be the smooth maps defined by: f(x, y, z) = (x 2, y 2, z 2, xy, xz, yz) and φ(x, y, z) = ( x, y, z) (a) Show that f is

More information

Elements of Coordinate System Transformations

Elements of Coordinate System Transformations B Elements of Coordinate System Transformations Coordinate system transformation is a powerfl tool for solving many geometrical and kinematic problems that pertain to the design of gear ctting tools and

More information

EXERCISES ON DETERMINANTS, EIGENVALUES AND EIGENVECTORS. 1. Determinants

EXERCISES ON DETERMINANTS, EIGENVALUES AND EIGENVECTORS. 1. Determinants EXERCISES ON DETERMINANTS, EIGENVALUES AND EIGENVECTORS. Determinants Ex... Let A = 0 4 4 2 0 and B = 0 3 0. (a) Compute 0 0 0 0 A. (b) Compute det(2a 2 B), det(4a + B), det(2(a 3 B 2 )). 0 t Ex..2. For

More information

Department of Industrial Engineering Statistical Quality Control presented by Dr. Eng. Abed Schokry

Department of Industrial Engineering Statistical Quality Control presented by Dr. Eng. Abed Schokry Department of Indstrial Engineering Statistical Qality Control presented by Dr. Eng. Abed Schokry Department of Indstrial Engineering Statistical Qality Control C and U Chart presented by Dr. Eng. Abed

More information

A Geometric Review of Linear Algebra

A Geometric Review of Linear Algebra A Geometric Reiew of Linear Algebra The following is a compact reiew of the primary concepts of linear algebra. The order of presentation is unconentional, with emphasis on geometric intuition rather than

More information

Math 425 Lecture 1: Vectors in R 3, R n

Math 425 Lecture 1: Vectors in R 3, R n Math 425 Lecture 1: Vectors in R 3, R n Motiating Questions, Problems 1. Find the coordinates of a regular tetrahedron with center at the origin and sides of length 1. 2. What is the angle between the

More information

GEOMETRICAL DESCRIPTION OF ONE SURFACE IN ECONOMY

GEOMETRICAL DESCRIPTION OF ONE SURFACE IN ECONOMY GOMTRICAL DSCRIPTION OF ON SURFAC IN CONOMY a Kaňkoá Abstract The principal object of this paper is the reglar parametric srface M in R defined by the formla The geometrical description methods we are

More information

STEP Support Programme. STEP III Hyperbolic Functions: Solutions

STEP Support Programme. STEP III Hyperbolic Functions: Solutions STEP Spport Programme STEP III Hyperbolic Fnctions: Soltions Start by sing the sbstittion t cosh x. This gives: sinh x cosh a cosh x cosh a sinh x t sinh x dt t dt t + ln t ln t + ln cosh a ln ln cosh

More information

11.1 Three-Dimensional Coordinate System

11.1 Three-Dimensional Coordinate System 11.1 Three-Dimensional Coordinate System In three dimensions, a point has three coordinates: (x,y,z). The normal orientation of the x, y, and z-axes is shown below. The three axes divide the region into

More information

Lecture 1 Complex Numbers. 1 The field of complex numbers. 1.1 Arithmetic operations. 1.2 Field structure of C. MATH-GA Complex Variables

Lecture 1 Complex Numbers. 1 The field of complex numbers. 1.1 Arithmetic operations. 1.2 Field structure of C. MATH-GA Complex Variables Lecture Complex Numbers MATH-GA 245.00 Complex Variables The field of complex numbers. Arithmetic operations The field C of complex numbers is obtained by adjoining the imaginary unit i to the field R

More information

Control Systems

Control Systems 6.5 Control Systems Last Time: Introdction Motivation Corse Overview Project Math. Descriptions of Systems ~ Review Classification of Systems Linear Systems LTI Systems The notion of state and state variables

More information

Problem 1: (3 points) Recall that the dot product of two vectors in R 3 is

Problem 1: (3 points) Recall that the dot product of two vectors in R 3 is Linear Algebra, Spring 206 Homework 3 Name: Problem : (3 points) Recall that the dot product of two vectors in R 3 is a x b y = ax + by + cz, c z and this is essentially the same as the matrix multiplication

More information

We automate the bivariate change-of-variables technique for bivariate continuous random variables with

We automate the bivariate change-of-variables technique for bivariate continuous random variables with INFORMS Jornal on Compting Vol. 4, No., Winter 0, pp. 9 ISSN 09-9856 (print) ISSN 56-558 (online) http://dx.doi.org/0.87/ijoc.046 0 INFORMS Atomating Biariate Transformations Jeff X. Yang, John H. Drew,

More information

arxiv: v1 [math.co] 10 Nov 2010

arxiv: v1 [math.co] 10 Nov 2010 arxi:1011.5001 [math.co] 10 No 010 The Fractional Chromatic Nmber of Triangle-free Graphs with 3 Linyan L Xing Peng Noember 1, 010 Abstract Let G be any triangle-free graph with maximm degree 3. Staton

More information

What you will learn today

What you will learn today What you will learn today The Dot Product Equations of Vectors and the Geometry of Space 1/29 Direction angles and Direction cosines Projections Definitions: 1. a : a 1, a 2, a 3, b : b 1, b 2, b 3, a

More information

Restricted cycle factors and arc-decompositions of digraphs. J. Bang-Jensen and C. J. Casselgren

Restricted cycle factors and arc-decompositions of digraphs. J. Bang-Jensen and C. J. Casselgren Restricted cycle factors and arc-decompositions of digraphs J. Bang-Jensen and C. J. Casselgren REPORT No. 0, 0/04, spring ISSN 0-467X ISRN IML-R- -0-/4- -SE+spring Restricted cycle factors and arc-decompositions

More information

Matrix Lie groups. and their Lie algebras. Mahmood Alaghmandan. A project in fulfillment of the requirement for the Lie algebra course

Matrix Lie groups. and their Lie algebras. Mahmood Alaghmandan. A project in fulfillment of the requirement for the Lie algebra course Matrix Lie groups and their Lie algebras Mahmood Alaghmandan A project in fulfillment of the requirement for the Lie algebra course Department of Mathematics and Statistics University of Saskatchewan March

More information

Differential Topology Final Exam With Solutions

Differential Topology Final Exam With Solutions Differential Topology Final Exam With Solutions Instructor: W. D. Gillam Date: Friday, May 20, 2016, 13:00 (1) Let X be a subset of R n, Y a subset of R m. Give the definitions of... (a) smooth function

More information

Reaction-Diusion Systems with. 1-Homogeneous Non-linearity. Matthias Buger. Mathematisches Institut der Justus-Liebig-Universitat Gieen

Reaction-Diusion Systems with. 1-Homogeneous Non-linearity. Matthias Buger. Mathematisches Institut der Justus-Liebig-Universitat Gieen Reaction-Dision Systems ith 1-Homogeneos Non-linearity Matthias Bger Mathematisches Institt der Jsts-Liebig-Uniersitat Gieen Arndtstrae 2, D-35392 Gieen, Germany Abstract We describe the dynamics of a

More information

Chapter 6. Inverse Circular Functions and Trigonometric Equations. Section 6.1 Inverse Circular Functions y = 0

Chapter 6. Inverse Circular Functions and Trigonometric Equations. Section 6.1 Inverse Circular Functions y = 0 Chapter Inverse Circlar Fnctions and Trigonometric Eqations Section. Inverse Circlar Fnctions. onetoone. range. cos... = tan.. Sketch the reflection of the graph of f across the line =. 7. (a) [, ] é ù

More information

Chords in Graphs. Department of Mathematics Texas State University-San Marcos San Marcos, TX Haidong Wu

Chords in Graphs. Department of Mathematics Texas State University-San Marcos San Marcos, TX Haidong Wu AUSTRALASIAN JOURNAL OF COMBINATORICS Volme 32 (2005), Pages 117 124 Chords in Graphs Weizhen G Xingde Jia Department of Mathematics Texas State Uniersity-San Marcos San Marcos, TX 78666 Haidong W Department

More information

ON THE PERFORMANCE OF LOW

ON THE PERFORMANCE OF LOW Monografías Matemáticas García de Galdeano, 77 86 (6) ON THE PERFORMANCE OF LOW STORAGE ADDITIVE RUNGE-KUTTA METHODS Inmaclada Higeras and Teo Roldán Abstract. Gien a differential system that inoles terms

More information

arxiv: v1 [math.co] 25 Sep 2016

arxiv: v1 [math.co] 25 Sep 2016 arxi:1609.077891 [math.co] 25 Sep 2016 Total domination polynomial of graphs from primary sbgraphs Saeid Alikhani and Nasrin Jafari September 27, 2016 Department of Mathematics, Yazd Uniersity, 89195-741,

More information

Xihe Li, Ligong Wang and Shangyuan Zhang

Xihe Li, Ligong Wang and Shangyuan Zhang Indian J. Pre Appl. Math., 49(1): 113-127, March 2018 c Indian National Science Academy DOI: 10.1007/s13226-018-0257-8 THE SIGNLESS LAPLACIAN SPECTRAL RADIUS OF SOME STRONGLY CONNECTED DIGRAPHS 1 Xihe

More information

1 Differentiable manifolds and smooth maps. (Solutions)

1 Differentiable manifolds and smooth maps. (Solutions) 1 Differentiable manifolds and smooth maps Solutions Last updated: March 17 2011 Problem 1 The state of the planar pendulum is entirely defined by the position of its moving end in the plane R 2 Since

More information

Reduction of over-determined systems of differential equations

Reduction of over-determined systems of differential equations Redction of oer-determined systems of differential eqations Maim Zaytse 1) 1, ) and Vyachesla Akkerman 1) Nclear Safety Institte, Rssian Academy of Sciences, Moscow, 115191 Rssia ) Department of Mechanical

More information

Visualisations of Gussian and Mean Curvatures by Using Mathematica and webmathematica

Visualisations of Gussian and Mean Curvatures by Using Mathematica and webmathematica Visalisations of Gssian and Mean Cratres by Using Mathematica and webmathematica Vladimir Benić, B. sc., (benic@grad.hr), Sonja Gorjanc, Ph. D., (sgorjanc@grad.hr) Faclty of Ciil Engineering, Kačićea 6,

More information

Linear Strain Triangle and other types of 2D elements. By S. Ziaei Rad

Linear Strain Triangle and other types of 2D elements. By S. Ziaei Rad Linear Strain Triangle and other tpes o D elements B S. Ziaei Rad Linear Strain Triangle (LST or T6 This element is also called qadratic trianglar element. Qadratic Trianglar Element Linear Strain Triangle

More information

The Minimal Estrada Index of Trees with Two Maximum Degree Vertices

The Minimal Estrada Index of Trees with Two Maximum Degree Vertices MATCH Commnications in Mathematical and in Compter Chemistry MATCH Commn. Math. Compt. Chem. 64 (2010) 799-810 ISSN 0340-6253 The Minimal Estrada Index of Trees with Two Maximm Degree Vertices Jing Li

More information

ALGEBRAIC TOPOLOGY IV. Definition 1.1. Let A, B be abelian groups. The set of homomorphisms ϕ: A B is denoted by

ALGEBRAIC TOPOLOGY IV. Definition 1.1. Let A, B be abelian groups. The set of homomorphisms ϕ: A B is denoted by ALGEBRAIC TOPOLOGY IV DIRK SCHÜTZ 1. Cochain complexes and singular cohomology Definition 1.1. Let A, B be abelian groups. The set of homomorphisms ϕ: A B is denoted by Hom(A, B) = {ϕ: A B ϕ homomorphism}

More information

CS 450: COMPUTER GRAPHICS VECTORS SPRING 2016 DR. MICHAEL J. REALE

CS 450: COMPUTER GRAPHICS VECTORS SPRING 2016 DR. MICHAEL J. REALE CS 45: COMPUTER GRPHICS VECTORS SPRING 216 DR. MICHEL J. RELE INTRODUCTION In graphics, we are going to represent objects and shapes in some form or other. First, thogh, we need to figre ot how to represent

More information

Math 215B: Solutions 1

Math 215B: Solutions 1 Math 15B: Solutions 1 Due Thursday, January 18, 018 (1) Let π : X X be a covering space. Let Φ be a smooth structure on X. Prove that there is a smooth structure Φ on X so that π : ( X, Φ) (X, Φ) is an

More information

A Geometric Review of Linear Algebra

A Geometric Review of Linear Algebra A Geometric Reiew of Linear Algebra The following is a compact reiew of the primary concepts of linear algebra. I assume the reader is familiar with basic (i.e., high school) algebra and trigonometry.

More information

MATH 434 Fall 2016 Homework 1, due on Wednesday August 31

MATH 434 Fall 2016 Homework 1, due on Wednesday August 31 Homework 1, due on Wednesday August 31 Problem 1. Let z = 2 i and z = 3 + 4i. Write the product zz and the quotient z z in the form a + ib, with a, b R. Problem 2. Let z C be a complex number, and let

More information

The Real Stabilizability Radius of the Multi-Link Inverted Pendulum

The Real Stabilizability Radius of the Multi-Link Inverted Pendulum Proceedings of the 26 American Control Conference Minneapolis, Minnesota, USA, Jne 14-16, 26 WeC123 The Real Stabilizability Radis of the Mlti-Link Inerted Pendlm Simon Lam and Edward J Daison Abstract

More information

LECTURE 16: LIE GROUPS AND THEIR LIE ALGEBRAS. 1. Lie groups

LECTURE 16: LIE GROUPS AND THEIR LIE ALGEBRAS. 1. Lie groups LECTURE 16: LIE GROUPS AND THEIR LIE ALGEBRAS 1. Lie groups A Lie group is a special smooth manifold on which there is a group structure, and moreover, the two structures are compatible. Lie groups are

More information

Curves - Foundation of Free-form Surfaces

Curves - Foundation of Free-form Surfaces Crves - Fondation of Free-form Srfaces Why Not Simply Use a Point Matrix to Represent a Crve? Storage isse and limited resoltion Comptation and transformation Difficlties in calclating the intersections

More information

II. DIFFERENTIABLE MANIFOLDS. Washington Mio CENTER FOR APPLIED VISION AND IMAGING SCIENCES

II. DIFFERENTIABLE MANIFOLDS. Washington Mio CENTER FOR APPLIED VISION AND IMAGING SCIENCES II. DIFFERENTIABLE MANIFOLDS Washington Mio Anuj Srivastava and Xiuwen Liu (Illustrations by D. Badlyans) CENTER FOR APPLIED VISION AND IMAGING SCIENCES Florida State University WHY MANIFOLDS? Non-linearity

More information

Spring, 2006 CIS 610. Advanced Geometric Methods in Computer Science Jean Gallier Homework 1

Spring, 2006 CIS 610. Advanced Geometric Methods in Computer Science Jean Gallier Homework 1 Spring, 2006 CIS 610 Advanced Geometric Methods in Computer Science Jean Gallier Homework 1 January 23, 2006; Due February 8, 2006 A problems are for practice only, and should not be turned in. Problem

More information

Basic Concepts of Group Theory

Basic Concepts of Group Theory Chapter 1 Basic Concepts of Group Theory The theory of groups and vector spaces has many important applications in a number of branches of modern theoretical physics. These include the formal theory of

More information

ECE Notes 4 Functions of a Complex Variable as Mappings. Fall 2017 David R. Jackson. Notes are adapted from D. R. Wilton, Dept.

ECE Notes 4 Functions of a Complex Variable as Mappings. Fall 2017 David R. Jackson. Notes are adapted from D. R. Wilton, Dept. ECE 638 Fall 017 Daid R. Jackson Notes 4 Fnctions of a Comple Variable as Mappings Notes are adapted from D. R. Wilton, Dept. of ECE 1 A Fnction of a Comple Variable as a Mapping A fnction of a comple

More information

1. Solve Problem 1.3-3(c) 2. Solve Problem 2.2-2(b)

1. Solve Problem 1.3-3(c) 2. Solve Problem 2.2-2(b) . Sole Problem.-(c). Sole Problem.-(b). A two dimensional trss shown in the figre is made of alminm with Yong s modls E = 8 GPa and failre stress Y = 5 MPa. Determine the minimm cross-sectional area of

More information

Feature extraction: Corners and blobs

Feature extraction: Corners and blobs Featre etraction: Corners and blobs Wh etract featres? Motiation: panorama stitching We hae two images how do we combine them? Wh etract featres? Motiation: panorama stitching We hae two images how do

More information

Chapter 13: Vectors and the Geometry of Space

Chapter 13: Vectors and the Geometry of Space Chapter 13: Vectors and the Geometry of Space 13.1 3-Dimensional Coordinate System 13.2 Vectors 13.3 The Dot Product 13.4 The Cross Product 13.5 Equations of Lines and Planes 13.6 Cylinders and Quadratic

More information

Chapter 13: Vectors and the Geometry of Space

Chapter 13: Vectors and the Geometry of Space Chapter 13: Vectors and the Geometry of Space 13.1 3-Dimensional Coordinate System 13.2 Vectors 13.3 The Dot Product 13.4 The Cross Product 13.5 Equations of Lines and Planes 13.6 Cylinders and Quadratic

More information

1. State-Space Linear Systems 2. Block Diagrams 3. Exercises

1. State-Space Linear Systems 2. Block Diagrams 3. Exercises LECTURE 1 State-Space Linear Sstems This lectre introdces state-space linear sstems, which are the main focs of this book. Contents 1. State-Space Linear Sstems 2. Block Diagrams 3. Exercises 1.1 State-Space

More information

z, w = z 1 w 1 + z 2 w 2 z, w 2 z 2 w 2. d([z], [w]) = 2 φ : P(C 2 ) \ [1 : 0] C ; [z 1 : z 2 ] z 1 z 2 ψ : P(C 2 ) \ [0 : 1] C ; [z 1 : z 2 ] z 2 z 1

z, w = z 1 w 1 + z 2 w 2 z, w 2 z 2 w 2. d([z], [w]) = 2 φ : P(C 2 ) \ [1 : 0] C ; [z 1 : z 2 ] z 1 z 2 ψ : P(C 2 ) \ [0 : 1] C ; [z 1 : z 2 ] z 2 z 1 3 3 THE RIEMANN SPHERE 31 Models for the Riemann Sphere One dimensional projective complex space P(C ) is the set of all one-dimensional subspaces of C If z = (z 1, z ) C \ 0 then we will denote by [z]

More information

1 Differentiable manifolds and smooth maps. (Solutions)

1 Differentiable manifolds and smooth maps. (Solutions) 1 Differentiable manifolds and smooth maps Solutions Last updated: February 16 2012 Problem 1 a The projection maps a point P x y S 1 to the point P u 0 R 2 the intersection of the line NP with the x-axis

More information

Lecture 5 November 6, 2012

Lecture 5 November 6, 2012 Hypercbe problems Lectre 5 Noember 6, 2012 Lectrer: Petr Gregor Scribe by: Kryštof Měkta Updated: Noember 22, 2012 1 Partial cbes A sbgraph H of G is isometric if d H (, ) = d G (, ) for eery, V (H); that

More information

arxiv: v2 [cs.si] 27 Apr 2017

arxiv: v2 [cs.si] 27 Apr 2017 Opinion Dynamics in Networks: Conergence, Stability and Lack of Explosion arxi:1607.038812 [cs.si] 27 Apr 2017 Tng Mai Georgia Institte of Technology maitng89@gatech.ed Vijay V. Vazirani Georgia Institte

More information

EIGENVALUES AND EIGENVECTORS

EIGENVALUES AND EIGENVECTORS CHAPTER 6 EIGENVALUES AND EIGENVECTORS SECTION 6. INTRODUCTION TO EIGENVALUES In each of Problems we first list the characteristic polynomial p( λ) A λi of the gien matrix A and then the roots of p( λ

More information

Computerized tomography. CT Reconstruction. Physics of beam attenuation. Physics of beam attenuation

Computerized tomography. CT Reconstruction. Physics of beam attenuation. Physics of beam attenuation Compterize tomograph Compterize tomograph (CT) is a metho for sing x-ra images to reconstrct a spatiall aring ensit fnction. CT Reconstrction First generation CT scanner 1 2 Phsics of beam attenation CT

More information

Differential Geometry of Surfaces

Differential Geometry of Surfaces Differential Geometry of urfaces Jordan mith and Carlo équin C Diision, UC Berkeley Introduction These are notes on differential geometry of surfaces ased on reading Greiner et al. n. d.. Differential

More information

Geometric Image Manipulation. Lecture #4 Wednesday, January 24, 2018

Geometric Image Manipulation. Lecture #4 Wednesday, January 24, 2018 Geometric Image Maniplation Lectre 4 Wednesda, Janar 4, 08 Programming Assignment Image Maniplation: Contet To start with the obvios, an image is a D arra of piels Piel locations represent points on the

More information

Remarks on the Cayley Representation of Orthogonal Matrices and on Perturbing the Diagonal of a Matrix to Make it Invertible

Remarks on the Cayley Representation of Orthogonal Matrices and on Perturbing the Diagonal of a Matrix to Make it Invertible Remarks on the Cayley Representation of Orthogonal Matrices and on Perturbing the Diagonal of a Matrix to Make it Invertible Jean Gallier Department of Computer and Information Science University of Pennsylvania

More information

MATH Topics in Applied Mathematics Lecture 12: Evaluation of determinants. Cross product.

MATH Topics in Applied Mathematics Lecture 12: Evaluation of determinants. Cross product. MATH 311-504 Topics in Applied Mathematics Lecture 12: Evaluation of determinants. Cross product. Determinant is a scalar assigned to each square matrix. Notation. The determinant of a matrix A = (a ij

More information

Complexity of the Cover Polynomial

Complexity of the Cover Polynomial Complexity of the Coer Polynomial Marks Bläser and Holger Dell Comptational Complexity Grop Saarland Uniersity, Germany {mblaeser,hdell}@cs.ni-sb.de Abstract. The coer polynomial introdced by Chng and

More information

2 Faculty of Mechanics and Mathematics, Moscow State University.

2 Faculty of Mechanics and Mathematics, Moscow State University. th World IMACS / MODSIM Congress, Cairns, Astralia 3-7 Jl 9 http://mssanz.org.a/modsim9 Nmerical eamination of competitie and predator behaior for the Lotka-Volterra eqations with diffsion based on the

More information

7.2 Conformal mappings

7.2 Conformal mappings 7.2 Conformal mappings Let f be an analytic function. At points where f (z) 0 such a map has the remarkable property that it is conformal. This means that angle is preserved (in the sense that any 2 smooth

More information

Homogeneous Liner Systems with Constant Coefficients

Homogeneous Liner Systems with Constant Coefficients Homogeneos Liner Systems with Constant Coefficients Jly, 06 The object of stdy in this section is where A is a d d constant matrix whose entries are real nmbers. As before, we will look to the exponential

More information

8.0 Definition and the concept of a vector:

8.0 Definition and the concept of a vector: Chapter 8: Vectors In this chapter, we will study: 80 Definition and the concept of a ector 81 Representation of ectors in two dimensions (2D) 82 Representation of ectors in three dimensions (3D) 83 Operations

More information

12.5 Equations of Lines and Planes

12.5 Equations of Lines and Planes 12.5 Equations of Lines and Planes Equation of Lines Vector Equation of Lines Parametric Equation of Lines Symmetric Equation of Lines Relation Between Two Lines Equations of Planes Vector Equation of

More information