Incremental Quasi-Newton methods with local superlinear convergence rate

Size: px
Start display at page:

Download "Incremental Quasi-Newton methods with local superlinear convergence rate"

Transcription

1 Incremental Quasi-Newton methods wh local superlinear convergence rate Aryan Mokhtari, Mark Eisen, and Alejandro Ribeiro Department of Electrical and Systems Engineering Universy of Pennsylvania Int. Conference on Acoustics, Speech, and Signal Processing (ICASSP) March 8th, 2017 Aryan Mokhtari Incremental Quasi-Newton Methods wh Local Superlinear Convergence Rate 1

2 Large-scale empirical risk minimization We aim to solve expected risk minimization problem min w R p E θ [f (w, θ)] The distribution is unknown We have access to N independent realizations of θ We settle for solving the Empirical Risk Minimization (ERM) problem 1 min F (w) := min w Rp w R p N N f (w, θ i ) Large-scale optimization or machine learning: large N, large p N: number of observations (inputs) p: number of parameters in the model Many (most) machine learning algorhms reduce to ERM problems Aryan Mokhtari Incremental Quasi-Newton Methods wh Local Superlinear Convergence Rate 2

3 Incremental Gradient Descent Objective function gradients s(w) := F (w) = 1 N N f (w, θ i ) (Deterministic) gradient descent eration w t+1 = w t ɛ t s(w t) Evaluation of (deterministic) gradients is not computationally affordable Incremental/Stochastic gradient Sample average in lieu of expectations ŝ(w, θ) = 1 L f (w, θ l ) θ = [θ 1;...; θ L ] L l=1 Functions are chosen cyclically or at random wh or whout replacement Incremental gradient descent eration w t+1 = w t ɛ t ŝ(w t, θ t) (Incremental) gradient descent is (very) slow. Newton is impractical Aryan Mokhtari Incremental Quasi-Newton Methods wh Local Superlinear Convergence Rate 3

4 BFGS quasi-newton method Approximate function s curvature wh Hessian approximation matrix B 1 t w t+1 = w t ɛ t B 1 t s(w t) Make B t close to H(w t) := 2 F (w t). Broyden, DFP, BFGS Variable variation: v t = w t+1 w t. Gradient variation: r t = s(w t+1) s(w t) Matrix B t+1 satisfies secant condion B t+1v t = r t. Underdetermined Resolve indeterminacy making B t+1 closest to previous approximation B t Using Gaussian relative entropy as proximy condion yields update B t+1 = B t + rtrt t v T Btvtvt T B t t r t v T t B tv t Superlinear convergence Close enough to quadratic rate of Newton BFGS requires gradients Use stochastic/incremental gradients Aryan Mokhtari Incremental Quasi-Newton Methods wh Local Superlinear Convergence Rate 4

5 Stochastic/Incremental quasi-newton methods Online (o)bfgs & Online Limed-Memory (ol)bfgs [Schraudolph et al 07] obfgs may diverge because Hessian approximation gets close to singular Regularized Stochastic BFGS (RES) [Mokhtari-Ribeiro 14] olbfgs does (surprisingly) converge [Mokhtari-Ribeiro 15] Problem solved? Alas. RES and olbfgs have sublinear convergence Same as stochastic gradient descent. Asymptotically not better Variance reduced stochastic L-BFGS (SVRG+oLBFGS) [Mortiz et al 16] Linear convergence rate. But this is not better than SAG, SAGA, SVRG Computationally feasible quasi Newton method wh superlinear convergence Aryan Mokhtari Incremental Quasi-Newton Methods wh Local Superlinear Convergence Rate 5

6 Incremental aggregated gradient method Utilize memory to reduce variance of stochastic gradient approximation f t 1 f t f t N f i t (wt+1 ) f t+1 1 f t+1 f t+1 N Descend along incremental gradient w t+1 = w t α N Select update index i t cyclically. Uniformly at random is similar N f t i Update gradient corresponding to function f f t+1 i t = f (w t+1 ) = w t α N gt Sum easy to compute g t+1 = g t fi t t + f t+1 i t. Converges linearly Stochastic (SAG) [Schmidt et al 13], Cyclic (IAG) [Gurbuzbalaban et al 15] Aryan Mokhtari Incremental Quasi-Newton Methods wh Local Superlinear Convergence Rate 6

7 Incremental BFGS method Keep memory of variables z t i, Hessian approximations B t i, and gradients fi t Functions indexed by i. Time indexed by t. Select function f at time t z t 1 z t z t N B t 1 B t B t N f t 1 f t f t N w t+1 All gradients, matrices, and variables used to update w t+1 Aryan Mokhtari Incremental Quasi-Newton Methods wh Local Superlinear Convergence Rate 7

8 Incremental BFGS method Keep memory of variables z t i, Hessian approximations B t i, and gradients fi t Functions indexed by i. Time indexed by t. Select function f at time t z t 1 z t z t N B t 1 B t B t N f t 1 f t f t N w t+1 f i t (wt+1 ) Updated variable w t+1 used to update gradient f t+1 i t = f (w t+1 ) Aryan Mokhtari Incremental Quasi-Newton Methods wh Local Superlinear Convergence Rate 8

9 Incremental BFGS method Keep memory of variables z t i, Hessian approximations B t i, and gradients fi t Functions indexed by i. Time indexed by t. Select function f at time t z t 1 z t z t N B t 1 B t B t N f t 1 f t f t N w t+1 B t+1 f i t (wt+1 ) Update Bi t t to satisfy secant condion for function f for variable variation z t i t w t+1 and gradient variation f t+1 i t fi t t (more later) Aryan Mokhtari Incremental Quasi-Newton Methods wh Local Superlinear Convergence Rate 9

10 Incremental BFGS method Keep memory of variables z t i, Hessian approximations B t i, and gradients fi t Functions indexed by i. Time indexed by t. Select function f at time t z t 1 z t z t N B t 1 B t B t N f t 1 f t f t N w t+1 B t+1 f i t (wt+1 ) z t+1 1 z t+1 z t+1 N B t+1 1 B t+1 B t+1 N f t+1 1 f t+1 f t+1 N Update variable, Hessian approximation, and gradient memory for function f Aryan Mokhtari Incremental Quasi-Newton Methods wh Local Superlinear Convergence Rate 10

11 Update of Hessian approximation matrices Variable variation at time t for function f i = f vi t := z t+1 i Gradient variation at time t for function f i = f ri t := f t+1 i t z t i Update B t i = B t i t to satisfy secant condion for variations v t i and r t i B t+1 i = B t i + rt i r t i T r t i T v t i Bt i v t i v t i T B t i v t i T B t i vt i f t i t We want B t i to approximate the Hessian of the function f i = f Aryan Mokhtari Incremental Quasi-Newton Methods wh Local Superlinear Convergence Rate 11

12 A naive (in hindsight) incremental BFGS method The key is in the update of w t. Use memory in stochastic quanties ( w t+1 = w t 1 N N B t i ) 1 ( 1 N N f t i It doesn t work Better than incremental gradient but not superlinear ) Optimization updates are solutions of function approximations In this particular update we are minimizing the quadratic form f (w) 1 n [ f i (z t i ) + f i (z t i ) T (w z t i ) + 1 ] n 2 (w wt ) T B t i (w w t ) Gradients evaluated at z t i. Secant condion verified at z t i The quadratic form is centered at w t. Not a reasonable Taylor series Aryan Mokhtari Incremental Quasi-Newton Methods wh Local Superlinear Convergence Rate 12

13 A proper Taylor series expansion Each individual function f i is being approximated by the quadratic f i (w) f i (z t i ) + f i (z t i ) T (w z t i ) (w wt ) T B t i (w w t ) To have a proper expansion we have to recenter the quadratic form at z t i f i (w) f i (z t i ) + f i (z t i ) T (w z t i ) (w zt i ) T B t i (w z t i ) I.e., we approximate f (w) wh the aggregate quadratic function f (w) 1 N N [ f i (z t i ) + f i (z t i ) T (w z t i ) + 1 ] 2 (w zt i ) T B t i (w z t i ) This is now a reasonable Taylor series that we use to derive an update Aryan Mokhtari Incremental Quasi-Newton Methods wh Local Superlinear Convergence Rate 13

14 Incremental BFGS Solving this quadratic program yields the update for the IQN method ( w t+1 1 N = N B t i ) 1 [ 1 N B t i z t i 1 N N ] N f i (z t i ) Looks difficult to implement but is more similar to BFGS than apparent As in BFGS, can be implemented wh O(p 2 ) operations Wre as rank-2 update, use matrix inversion lemma Independently of N. True incremental method. Aryan Mokhtari Incremental Quasi-Newton Methods wh Local Superlinear Convergence Rate 14

15 Superlinear convergence rate The functions f i are m-strongly convex. The gradients f i are M-Lipschz continuous. The Hessians 2 f i are L-Lipschz continuous Theorem The sequence of residuals w t w in the IQN method converges to zero at a superlinear rate, lim t w t w (1/N)( w t 1 w + + w t N w ) = 0. Incremental method wh small cost per eration converging at superlinear rate Resulting from the use of memory to reduce stochastic variances Aryan Mokhtari Incremental Quasi-Newton Methods wh Local Superlinear Convergence Rate 15

16 Numerical results Quadratic programming f (w) := (1/N) N wt A i w/2 + b T i w A i R p p is a diagonal posive define matrix b i R p is a random vector from the box [0, 10 3 ] p N = 1000, p = 100, and condion number (10 2, 10 4 ) Relative error w t w / w 0 w of SAG, SAGA, IAG, and IQN Normalized Error SAG SAGA IAG IQN Normalized Error SAG SAGA IAG IQN Number of Effective Passes (a) small condion number Number of Effective Passes (b) large condion number Aryan Mokhtari Incremental Quasi-Newton Methods wh Local Superlinear Convergence Rate 16

17 Conclusions We considered large-scale ERM problems Fine sum minimization An incremental quasi-newton BFGS method (IQN) was presented IQN only computes the information of a single function at each step Low computation cost IQN aggregates variable, gradient, and BFGS approximation Reduce the noise Superlinear convergence Aryan Mokhtari Incremental Quasi-Newton Methods wh Local Superlinear Convergence Rate 17

18 References N. N. Schraudolph, J. Yu, and S. Gunter, A Stochastic Quasi-Newton Method for Online Convex Optimization, In AISTATS, vol. 7, pp , A. Mokhtari and A. Ribeiro, RES: Regularized Stochastic BFGS Algorhm, IEEE Trans. on Signal Processing, vol. 62, no. 23, pp , December A. Mokhtari and A. Ribeiro, Global Convergence of Online Limed Memory BFGS, Journal of Machine Learning Research, vol. 16, pp , P. Morz, R. Nishihara, and M. I. Jordan, A Linearly-Convergent Stochastic L-BFGS Algorhm, Proceedings of the Nineteenth International Conference on Artificial Intelligence and Statistics (AISTATS), pp , M. Schmidt, N. Le Roux, and F. Bach. Minimizing Fine Sums wh the Stochastic Average Gradient. Mathematical Programming (2013): M. Gurbuzbalaban, A. Ozdaglar, and P. Parrilo. On the Convergence Rate of Incremental Aggregated Gradient Algorhms. arxiv preprint arxiv: A. Mokhtari, M. Eisen, and A. Ribeiro, IQN: An Incremental Quasi-Newton Method wh Local Superlinear Convergence Rate. arxiv preprint arxiv: Aryan Mokhtari Incremental Quasi-Newton Methods wh Local Superlinear Convergence Rate 18

High Order Methods for Empirical Risk Minimization

High Order Methods for Empirical Risk Minimization High Order Methods for Empirical Risk Minimization Alejandro Ribeiro Department of Electrical and Systems Engineering University of Pennsylvania aribeiro@seas.upenn.edu IPAM Workshop of Emerging Wireless

More information

High Order Methods for Empirical Risk Minimization

High Order Methods for Empirical Risk Minimization High Order Methods for Empirical Risk Minimization Alejandro Ribeiro Department of Electrical and Systems Engineering University of Pennsylvania aribeiro@seas.upenn.edu Thanks to: Aryan Mokhtari, Mark

More information

High Order Methods for Empirical Risk Minimization

High Order Methods for Empirical Risk Minimization High Order Methods for Empirical Risk Minimization Alejandro Ribeiro Department of Electrical and Systems Engineering University of Pennsylvania aribeiro@seas.upenn.edu IPAM Workshop of Emerging Wireless

More information

Efficient Methods for Large-Scale Optimization

Efficient Methods for Large-Scale Optimization Efficient Methods for Large-Scale Optimization Aryan Mokhtari Department of Electrical and Systems Engineering University of Pennsylvania aryanm@seas.upenn.edu Ph.D. Proposal Advisor: Alejandro Ribeiro

More information

Stochastic Quasi-Newton Methods

Stochastic Quasi-Newton Methods Stochastic Quasi-Newton Methods Donald Goldfarb Department of IEOR Columbia University UCLA Distinguished Lecture Series May 17-19, 2016 1 / 35 Outline Stochastic Approximation Stochastic Gradient Descent

More information

IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 62, NO. 23, DECEMBER 1, Aryan Mokhtari and Alejandro Ribeiro, Member, IEEE

IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 62, NO. 23, DECEMBER 1, Aryan Mokhtari and Alejandro Ribeiro, Member, IEEE IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 62, NO. 23, DECEMBER 1, 2014 6089 RES: Regularized Stochastic BFGS Algorithm Aryan Mokhtari and Alejandro Ribeiro, Member, IEEE Abstract RES, a regularized

More information

Stochastic Optimization Algorithms Beyond SG

Stochastic Optimization Algorithms Beyond SG Stochastic Optimization Algorithms Beyond SG Frank E. Curtis 1, Lehigh University involving joint work with Léon Bottou, Facebook AI Research Jorge Nocedal, Northwestern University Optimization Methods

More information

Accelerating SVRG via second-order information

Accelerating SVRG via second-order information Accelerating via second-order information Ritesh Kolte Department of Electrical Engineering rkolte@stanford.edu Murat Erdogdu Department of Statistics erdogdu@stanford.edu Ayfer Özgür Department of Electrical

More information

Quasi-Newton Methods. Javier Peña Convex Optimization /36-725

Quasi-Newton Methods. Javier Peña Convex Optimization /36-725 Quasi-Newton Methods Javier Peña Convex Optimization 10-725/36-725 Last time: primal-dual interior-point methods Consider the problem min x subject to f(x) Ax = b h(x) 0 Assume f, h 1,..., h m are convex

More information

Quasi-Newton methods: Symmetric rank 1 (SR1) Broyden Fletcher Goldfarb Shanno February 6, / 25 (BFG. Limited memory BFGS (L-BFGS)

Quasi-Newton methods: Symmetric rank 1 (SR1) Broyden Fletcher Goldfarb Shanno February 6, / 25 (BFG. Limited memory BFGS (L-BFGS) Quasi-Newton methods: Symmetric rank 1 (SR1) Broyden Fletcher Goldfarb Shanno (BFGS) Limited memory BFGS (L-BFGS) February 6, 2014 Quasi-Newton methods: Symmetric rank 1 (SR1) Broyden Fletcher Goldfarb

More information

Improving L-BFGS Initialization for Trust-Region Methods in Deep Learning

Improving L-BFGS Initialization for Trust-Region Methods in Deep Learning Improving L-BFGS Initialization for Trust-Region Methods in Deep Learning Jacob Rafati http://rafati.net jrafatiheravi@ucmerced.edu Ph.D. Candidate, Electrical Engineering and Computer Science University

More information

Network Newton. Aryan Mokhtari, Qing Ling and Alejandro Ribeiro. University of Pennsylvania, University of Science and Technology (China)

Network Newton. Aryan Mokhtari, Qing Ling and Alejandro Ribeiro. University of Pennsylvania, University of Science and Technology (China) Network Newton Aryan Mokhtari, Qing Ling and Alejandro Ribeiro University of Pennsylvania, University of Science and Technology (China) aryanm@seas.upenn.edu, qingling@mail.ustc.edu.cn, aribeiro@seas.upenn.edu

More information

LARGE-SCALE NONCONVEX STOCHASTIC OPTIMIZATION BY DOUBLY STOCHASTIC SUCCESSIVE CONVEX APPROXIMATION

LARGE-SCALE NONCONVEX STOCHASTIC OPTIMIZATION BY DOUBLY STOCHASTIC SUCCESSIVE CONVEX APPROXIMATION LARGE-SCALE NONCONVEX STOCHASTIC OPTIMIZATION BY DOUBLY STOCHASTIC SUCCESSIVE CONVEX APPROXIMATION Aryan Mokhtari, Alec Koppel, Gesualdo Scutari, and Alejandro Ribeiro Department of Electrical and Systems

More information

5 Quasi-Newton Methods

5 Quasi-Newton Methods Unconstrained Convex Optimization 26 5 Quasi-Newton Methods If the Hessian is unavailable... Notation: H = Hessian matrix. B is the approximation of H. C is the approximation of H 1. Problem: Solve min

More information

Comparison of Modern Stochastic Optimization Algorithms

Comparison of Modern Stochastic Optimization Algorithms Comparison of Modern Stochastic Optimization Algorithms George Papamakarios December 214 Abstract Gradient-based optimization methods are popular in machine learning applications. In large-scale problems,

More information

Improving the Convergence of Back-Propogation Learning with Second Order Methods

Improving the Convergence of Back-Propogation Learning with Second Order Methods the of Back-Propogation Learning with Second Order Methods Sue Becker and Yann le Cun, Sept 1988 Kasey Bray, October 2017 Table of Contents 1 with Back-Propagation 2 the of BP 3 A Computationally Feasible

More information

Online Limited-Memory BFGS for Click-Through Rate Prediction

Online Limited-Memory BFGS for Click-Through Rate Prediction Online Limited-Memory BFGS for Click-Through Rate Prediction Mitchell Stern Department of Computer and Information Science University of Pennsylvania Philadelphia, PA 19104, USA Aryan Mokhtari Department

More information

Variable Metric Stochastic Approximation Theory

Variable Metric Stochastic Approximation Theory Variable Metric Stochastic Approximation Theory Abstract We provide a variable metric stochastic approximation theory. In doing so, we provide a convergence theory for a large class of online variable

More information

Trade-Offs in Distributed Learning and Optimization

Trade-Offs in Distributed Learning and Optimization Trade-Offs in Distributed Learning and Optimization Ohad Shamir Weizmann Institute of Science Includes joint works with Yossi Arjevani, Nathan Srebro and Tong Zhang IHES Workshop March 2016 Distributed

More information

An Evolving Gradient Resampling Method for Machine Learning. Jorge Nocedal

An Evolving Gradient Resampling Method for Machine Learning. Jorge Nocedal An Evolving Gradient Resampling Method for Machine Learning Jorge Nocedal Northwestern University NIPS, Montreal 2015 1 Collaborators Figen Oztoprak Stefan Solntsev Richard Byrd 2 Outline 1. How to improve

More information

Linearly-Convergent Stochastic-Gradient Methods

Linearly-Convergent Stochastic-Gradient Methods Linearly-Convergent Stochastic-Gradient Methods Joint work with Francis Bach, Michael Friedlander, Nicolas Le Roux INRIA - SIERRA Project - Team Laboratoire d Informatique de l École Normale Supérieure

More information

ABSTRACT 1. INTRODUCTION

ABSTRACT 1. INTRODUCTION A DIAGONAL-AUGMENTED QUASI-NEWTON METHOD WITH APPLICATION TO FACTORIZATION MACHINES Aryan Mohtari and Amir Ingber Department of Electrical and Systems Engineering, University of Pennsylvania, PA, USA Big-data

More information

Barzilai-Borwein Step Size for Stochastic Gradient Descent

Barzilai-Borwein Step Size for Stochastic Gradient Descent Barzilai-Borwein Step Size for Stochastic Gradient Descent Conghui Tan The Chinese University of Hong Kong chtan@se.cuhk.edu.hk Shiqian Ma The Chinese University of Hong Kong sqma@se.cuhk.edu.hk Yu-Hong

More information

Convex Optimization CMU-10725

Convex Optimization CMU-10725 Convex Optimization CMU-10725 Quasi Newton Methods Barnabás Póczos & Ryan Tibshirani Quasi Newton Methods 2 Outline Modified Newton Method Rank one correction of the inverse Rank two correction of the

More information

Programming, numerics and optimization

Programming, numerics and optimization Programming, numerics and optimization Lecture C-3: Unconstrained optimization II Łukasz Jankowski ljank@ippt.pan.pl Institute of Fundamental Technological Research Room 4.32, Phone +22.8261281 ext. 428

More information

Decentralized Quasi-Newton Methods

Decentralized Quasi-Newton Methods 1 Decentralized Quasi-Newton Methods Mark Eisen, Aryan Mokhtari, and Alejandro Ribeiro Abstract We introduce the decentralized Broyden-Fletcher- Goldfarb-Shanno (D-BFGS) method as a variation of the BFGS

More information

Shiqian Ma, MAT-258A: Numerical Optimization 1. Chapter 3. Gradient Method

Shiqian Ma, MAT-258A: Numerical Optimization 1. Chapter 3. Gradient Method Shiqian Ma, MAT-258A: Numerical Optimization 1 Chapter 3 Gradient Method Shiqian Ma, MAT-258A: Numerical Optimization 2 3.1. Gradient method Classical gradient method: to minimize a differentiable convex

More information

Quasi-Newton Methods. Zico Kolter (notes by Ryan Tibshirani, Javier Peña, Zico Kolter) Convex Optimization

Quasi-Newton Methods. Zico Kolter (notes by Ryan Tibshirani, Javier Peña, Zico Kolter) Convex Optimization Quasi-Newton Methods Zico Kolter (notes by Ryan Tibshirani, Javier Peña, Zico Kolter) Convex Optimization 10-725 Last time: primal-dual interior-point methods Given the problem min x f(x) subject to h(x)

More information

On the Convergence Rate of Incremental Aggregated Gradient Algorithms

On the Convergence Rate of Incremental Aggregated Gradient Algorithms On the Convergence Rate of Incremental Aggregated Gradient Algorithms M. Gürbüzbalaban, A. Ozdaglar, P. Parrilo June 5, 2015 Abstract Motivated by applications to distributed optimization over networks

More information

Proximal Newton Method. Zico Kolter (notes by Ryan Tibshirani) Convex Optimization

Proximal Newton Method. Zico Kolter (notes by Ryan Tibshirani) Convex Optimization Proximal Newton Method Zico Kolter (notes by Ryan Tibshirani) Convex Optimization 10-725 Consider the problem Last time: quasi-newton methods min x f(x) with f convex, twice differentiable, dom(f) = R

More information

Stochastic Analogues to Deterministic Optimizers

Stochastic Analogues to Deterministic Optimizers Stochastic Analogues to Deterministic Optimizers ISMP 2018 Bordeaux, France Vivak Patel Presented by: Mihai Anitescu July 6, 2018 1 Apology I apologize for not being here to give this talk myself. I injured

More information

Why should you care about the solution strategies?

Why should you care about the solution strategies? Optimization Why should you care about the solution strategies? Understanding the optimization approaches behind the algorithms makes you more effectively choose which algorithm to run Understanding the

More information

Regression with Numerical Optimization. Logistic

Regression with Numerical Optimization. Logistic CSG220 Machine Learning Fall 2008 Regression with Numerical Optimization. Logistic regression Regression with Numerical Optimization. Logistic regression based on a document by Andrew Ng October 3, 204

More information

Sub-Sampled Newton Methods

Sub-Sampled Newton Methods Sub-Sampled Newton Methods F. Roosta-Khorasani and M. W. Mahoney ICSI and Dept of Statistics, UC Berkeley February 2016 F. Roosta-Khorasani and M. W. Mahoney (UCB) Sub-Sampled Newton Methods Feb 2016 1

More information

Beyond stochastic gradient descent for large-scale machine learning

Beyond stochastic gradient descent for large-scale machine learning Beyond stochastic gradient descent for large-scale machine learning Francis Bach INRIA - Ecole Normale Supérieure, Paris, France Joint work with Eric Moulines, Nicolas Le Roux and Mark Schmidt - CAP, July

More information

Chapter 4. Unconstrained optimization

Chapter 4. Unconstrained optimization Chapter 4. Unconstrained optimization Version: 28-10-2012 Material: (for details see) Chapter 11 in [FKS] (pp.251-276) A reference e.g. L.11.2 refers to the corresponding Lemma in the book [FKS] PDF-file

More information

Fast Stochastic Optimization Algorithms for ML

Fast Stochastic Optimization Algorithms for ML Fast Stochastic Optimization Algorithms for ML Aaditya Ramdas April 20, 205 This lecture is about efficient algorithms for minimizing finite sums min w R d n i= f i (w) or min w R d n f i (w) + λ 2 w 2

More information

Optimizing Nonconvex Finite Sums by a Proximal Primal-Dual Method

Optimizing Nonconvex Finite Sums by a Proximal Primal-Dual Method Optimizing Nonconvex Finite Sums by a Proximal Primal-Dual Method Davood Hajinezhad Iowa State University Davood Hajinezhad Optimizing Nonconvex Finite Sums by a Proximal Primal-Dual Method 1 / 35 Co-Authors

More information

Selected Topics in Optimization. Some slides borrowed from

Selected Topics in Optimization. Some slides borrowed from Selected Topics in Optimization Some slides borrowed from http://www.stat.cmu.edu/~ryantibs/convexopt/ Overview Optimization problems are almost everywhere in statistics and machine learning. Input Model

More information

LBFGS. John Langford, Large Scale Machine Learning Class, February 5. (post presentation version)

LBFGS. John Langford, Large Scale Machine Learning Class, February 5. (post presentation version) LBFGS John Langford, Large Scale Machine Learning Class, February 5 (post presentation version) We are still doing Linear Learning Features: a vector x R n Label: y R Goal: Learn w R n such that ŷ w (x)

More information

Accelerated Gradient Temporal Difference Learning

Accelerated Gradient Temporal Difference Learning Accelerated Gradient Temporal Difference Learning Yangchen Pan, Adam White, and Martha White {YANGPAN,ADAMW,MARTHA}@INDIANA.EDU Department of Computer Science, Indiana University Abstract The family of

More information

Barzilai-Borwein Step Size for Stochastic Gradient Descent

Barzilai-Borwein Step Size for Stochastic Gradient Descent Barzilai-Borwein Step Size for Stochastic Gradient Descent Conghui Tan Shiqian Ma Yu-Hong Dai Yuqiu Qian May 16, 2016 Abstract One of the major issues in stochastic gradient descent (SGD) methods is how

More information

Optimization 2. CS5240 Theoretical Foundations in Multimedia. Leow Wee Kheng

Optimization 2. CS5240 Theoretical Foundations in Multimedia. Leow Wee Kheng Optimization 2 CS5240 Theoretical Foundations in Multimedia Leow Wee Kheng Department of Computer Science School of Computing National University of Singapore Leow Wee Kheng (NUS) Optimization 2 1 / 38

More information

Lecture 14: October 17

Lecture 14: October 17 1-725/36-725: Convex Optimization Fall 218 Lecture 14: October 17 Lecturer: Lecturer: Ryan Tibshirani Scribes: Pengsheng Guo, Xian Zhou Note: LaTeX template courtesy of UC Berkeley EECS dept. Disclaimer:

More information

Nonlinear Optimization Methods for Machine Learning

Nonlinear Optimization Methods for Machine Learning Nonlinear Optimization Methods for Machine Learning Jorge Nocedal Northwestern University University of California, Davis, Sept 2018 1 Introduction We don t really know, do we? a) Deep neural networks

More information

Adaptive Newton Method for Empirical Risk Minimization to Statistical Accuracy

Adaptive Newton Method for Empirical Risk Minimization to Statistical Accuracy Adaptive Neton Method for Empirical Risk Minimization to Statistical Accuracy Aryan Mokhtari? University of Pennsylvania aryanm@seas.upenn.edu Hadi Daneshmand? ETH Zurich, Sitzerland hadi.daneshmand@inf.ethz.ch

More information

MATH 4211/6211 Optimization Quasi-Newton Method

MATH 4211/6211 Optimization Quasi-Newton Method MATH 4211/6211 Optimization Quasi-Newton Method Xiaojing Ye Department of Mathematics & Statistics Georgia State University Xiaojing Ye, Math & Stat, Georgia State University 0 Quasi-Newton Method Motivation:

More information

Minimizing Finite Sums with the Stochastic Average Gradient Algorithm

Minimizing Finite Sums with the Stochastic Average Gradient Algorithm Minimizing Finite Sums with the Stochastic Average Gradient Algorithm Joint work with Nicolas Le Roux and Francis Bach University of British Columbia Context: Machine Learning for Big Data Large-scale

More information

Lecture 1: Supervised Learning

Lecture 1: Supervised Learning Lecture 1: Supervised Learning Tuo Zhao Schools of ISYE and CSE, Georgia Tech ISYE6740/CSE6740/CS7641: Computational Data Analysis/Machine from Portland, Learning Oregon: pervised learning (Supervised)

More information

Stochastic gradient descent and robustness to ill-conditioning

Stochastic gradient descent and robustness to ill-conditioning Stochastic gradient descent and robustness to ill-conditioning Francis Bach INRIA - Ecole Normale Supérieure, Paris, France ÉCOLE NORMALE SUPÉRIEURE Joint work with Aymeric Dieuleveut, Nicolas Flammarion,

More information

Contents. 1 Introduction. 1.1 History of Optimization ALG-ML SEMINAR LISSA: LINEAR TIME SECOND-ORDER STOCHASTIC ALGORITHM FEBRUARY 23, 2016

Contents. 1 Introduction. 1.1 History of Optimization ALG-ML SEMINAR LISSA: LINEAR TIME SECOND-ORDER STOCHASTIC ALGORITHM FEBRUARY 23, 2016 ALG-ML SEMINAR LISSA: LINEAR TIME SECOND-ORDER STOCHASTIC ALGORITHM FEBRUARY 23, 2016 LECTURERS: NAMAN AGARWAL AND BRIAN BULLINS SCRIBE: KIRAN VODRAHALLI Contents 1 Introduction 1 1.1 History of Optimization.....................................

More information

Higher-Order Methods

Higher-Order Methods Higher-Order Methods Stephen J. Wright 1 2 Computer Sciences Department, University of Wisconsin-Madison. PCMI, July 2016 Stephen Wright (UW-Madison) Higher-Order Methods PCMI, July 2016 1 / 25 Smooth

More information

Lecture 7 Unconstrained nonlinear programming

Lecture 7 Unconstrained nonlinear programming Lecture 7 Unconstrained nonlinear programming Weinan E 1,2 and Tiejun Li 2 1 Department of Mathematics, Princeton University, weinan@princeton.edu 2 School of Mathematical Sciences, Peking University,

More information

Distributed Inexact Newton-type Pursuit for Non-convex Sparse Learning

Distributed Inexact Newton-type Pursuit for Non-convex Sparse Learning Distributed Inexact Newton-type Pursuit for Non-convex Sparse Learning Bo Liu Department of Computer Science, Rutgers Univeristy Xiao-Tong Yuan BDAT Lab, Nanjing University of Information Science and Technology

More information

SVRG++ with Non-uniform Sampling

SVRG++ with Non-uniform Sampling SVRG++ with Non-uniform Sampling Tamás Kern András György Department of Electrical and Electronic Engineering Imperial College London, London, UK, SW7 2BT {tamas.kern15,a.gyorgy}@imperial.ac.uk Abstract

More information

Stochastic Optimization with Variance Reduction for Infinite Datasets with Finite Sum Structure

Stochastic Optimization with Variance Reduction for Infinite Datasets with Finite Sum Structure Stochastic Optimization with Variance Reduction for Infinite Datasets with Finite Sum Structure Alberto Bietti Julien Mairal Inria Grenoble (Thoth) March 21, 2017 Alberto Bietti Stochastic MISO March 21,

More information

Newton s Method. Ryan Tibshirani Convex Optimization /36-725

Newton s Method. Ryan Tibshirani Convex Optimization /36-725 Newton s Method Ryan Tibshirani Convex Optimization 10-725/36-725 1 Last time: dual correspondences Given a function f : R n R, we define its conjugate f : R n R, Properties and examples: f (y) = max x

More information

Machine Learning CS 4900/5900. Lecture 03. Razvan C. Bunescu School of Electrical Engineering and Computer Science

Machine Learning CS 4900/5900. Lecture 03. Razvan C. Bunescu School of Electrical Engineering and Computer Science Machine Learning CS 4900/5900 Razvan C. Bunescu School of Electrical Engineering and Computer Science bunescu@ohio.edu Machine Learning is Optimization Parametric ML involves minimizing an objective function

More information

Math 273a: Optimization Netwon s methods

Math 273a: Optimization Netwon s methods Math 273a: Optimization Netwon s methods Instructor: Wotao Yin Department of Mathematics, UCLA Fall 2015 some material taken from Chong-Zak, 4th Ed. Main features of Newton s method Uses both first derivatives

More information

OPER 627: Nonlinear Optimization Lecture 14: Mid-term Review

OPER 627: Nonlinear Optimization Lecture 14: Mid-term Review OPER 627: Nonlinear Optimization Lecture 14: Mid-term Review Department of Statistical Sciences and Operations Research Virginia Commonwealth University Oct 16, 2013 (Lecture 14) Nonlinear Optimization

More information

2. Quasi-Newton methods

2. Quasi-Newton methods L. Vandenberghe EE236C (Spring 2016) 2. Quasi-Newton methods variable metric methods quasi-newton methods BFGS update limited-memory quasi-newton methods 2-1 Newton method for unconstrained minimization

More information

Stable Adaptive Momentum for Rapid Online Learning in Nonlinear Systems

Stable Adaptive Momentum for Rapid Online Learning in Nonlinear Systems Stable Adaptive Momentum for Rapid Online Learning in Nonlinear Systems Thore Graepel and Nicol N. Schraudolph Institute of Computational Science ETH Zürich, Switzerland {graepel,schraudo}@inf.ethz.ch

More information

Improved Optimization of Finite Sums with Minibatch Stochastic Variance Reduced Proximal Iterations

Improved Optimization of Finite Sums with Minibatch Stochastic Variance Reduced Proximal Iterations Improved Optimization of Finite Sums with Miniatch Stochastic Variance Reduced Proximal Iterations Jialei Wang University of Chicago Tong Zhang Tencent AI La Astract jialei@uchicago.edu tongzhang@tongzhang-ml.org

More information

Second-Order Methods for Stochastic Optimization

Second-Order Methods for Stochastic Optimization Second-Order Methods for Stochastic Optimization Frank E. Curtis, Lehigh University involving joint work with Léon Bottou, Facebook AI Research Jorge Nocedal, Northwestern University Optimization Methods

More information

Stochastic optimization: Beyond stochastic gradients and convexity Part I

Stochastic optimization: Beyond stochastic gradients and convexity Part I Stochastic optimization: Beyond stochastic gradients and convexity Part I Francis Bach INRIA - Ecole Normale Supérieure, Paris, France ÉCOLE NORMALE SUPÉRIEURE Joint tutorial with Suvrit Sra, MIT - NIPS

More information

MATHEMATICS FOR COMPUTER VISION WEEK 8 OPTIMISATION PART 2. Dr Fabio Cuzzolin MSc in Computer Vision Oxford Brookes University Year

MATHEMATICS FOR COMPUTER VISION WEEK 8 OPTIMISATION PART 2. Dr Fabio Cuzzolin MSc in Computer Vision Oxford Brookes University Year MATHEMATICS FOR COMPUTER VISION WEEK 8 OPTIMISATION PART 2 1 Dr Fabio Cuzzolin MSc in Computer Vision Oxford Brookes University Year 2013-14 OUTLINE OF WEEK 8 topics: quadratic optimisation, least squares,

More information

8 Numerical methods for unconstrained problems

8 Numerical methods for unconstrained problems 8 Numerical methods for unconstrained problems Optimization is one of the important fields in numerical computation, beside solving differential equations and linear systems. We can see that these fields

More information

STA141C: Big Data & High Performance Statistical Computing

STA141C: Big Data & High Performance Statistical Computing STA141C: Big Data & High Performance Statistical Computing Lecture 8: Optimization Cho-Jui Hsieh UC Davis May 9, 2017 Optimization Numerical Optimization Numerical Optimization: min X f (X ) Can be applied

More information

1 Newton s Method. Suppose we want to solve: x R. At x = x, f (x) can be approximated by:

1 Newton s Method. Suppose we want to solve: x R. At x = x, f (x) can be approximated by: Newton s Method Suppose we want to solve: (P:) min f (x) At x = x, f (x) can be approximated by: n x R. f (x) h(x) := f ( x)+ f ( x) T (x x)+ (x x) t H ( x)(x x), 2 which is the quadratic Taylor expansion

More information

Stochastic and online algorithms

Stochastic and online algorithms Stochastic and online algorithms stochastic gradient method online optimization and dual averaging method minimizing finite average Stochastic and online optimization 6 1 Stochastic optimization problem

More information

Nonlinear Optimization: What s important?

Nonlinear Optimization: What s important? Nonlinear Optimization: What s important? Julian Hall 10th May 2012 Convexity: convex problems A local minimizer is a global minimizer A solution of f (x) = 0 (stationary point) is a minimizer A global

More information

Large-scale Stochastic Optimization

Large-scale Stochastic Optimization Large-scale Stochastic Optimization 11-741/641/441 (Spring 2016) Hanxiao Liu hanxiaol@cs.cmu.edu March 24, 2016 1 / 22 Outline 1. Gradient Descent (GD) 2. Stochastic Gradient Descent (SGD) Formulation

More information

Beyond stochastic gradient descent for large-scale machine learning

Beyond stochastic gradient descent for large-scale machine learning Beyond stochastic gradient descent for large-scale machine learning Francis Bach INRIA - Ecole Normale Supérieure, Paris, France ÉCOLE NORMALE SUPÉRIEURE Joint work with Aymeric Dieuleveut, Nicolas Flammarion,

More information

ECS289: Scalable Machine Learning

ECS289: Scalable Machine Learning ECS289: Scalable Machine Learning Cho-Jui Hsieh UC Davis Sept 29, 2016 Outline Convex vs Nonconvex Functions Coordinate Descent Gradient Descent Newton s method Stochastic Gradient Descent Numerical Optimization

More information

Lecture 18: November Review on Primal-dual interior-poit methods

Lecture 18: November Review on Primal-dual interior-poit methods 10-725/36-725: Convex Optimization Fall 2016 Lecturer: Lecturer: Javier Pena Lecture 18: November 2 Scribes: Scribes: Yizhu Lin, Pan Liu Note: LaTeX template courtesy of UC Berkeley EECS dept. Disclaimer:

More information

Non-linear least squares

Non-linear least squares Non-linear least squares Concept of non-linear least squares We have extensively studied linear least squares or linear regression. We see that there is a unique regression line that can be determined

More information

ORIE 6326: Convex Optimization. Quasi-Newton Methods

ORIE 6326: Convex Optimization. Quasi-Newton Methods ORIE 6326: Convex Optimization Quasi-Newton Methods Professor Udell Operations Research and Information Engineering Cornell April 10, 2017 Slides on steepest descent and analysis of Newton s method adapted

More information

ONLINE VARIANCE-REDUCING OPTIMIZATION

ONLINE VARIANCE-REDUCING OPTIMIZATION ONLINE VARIANCE-REDUCING OPTIMIZATION Nicolas Le Roux Google Brain nlr@google.com Reza Babanezhad University of British Columbia rezababa@cs.ubc.ca Pierre-Antoine Manzagol Google Brain manzagop@google.com

More information

Numerical Optimization Professor Horst Cerjak, Horst Bischof, Thomas Pock Mat Vis-Gra SS09

Numerical Optimization Professor Horst Cerjak, Horst Bischof, Thomas Pock Mat Vis-Gra SS09 Numerical Optimization 1 Working Horse in Computer Vision Variational Methods Shape Analysis Machine Learning Markov Random Fields Geometry Common denominator: optimization problems 2 Overview of Methods

More information

Convergence Rate of Expectation-Maximization

Convergence Rate of Expectation-Maximization Convergence Rate of Expectation-Maximiation Raunak Kumar University of British Columbia Mark Schmidt University of British Columbia Abstract raunakkumar17@outlookcom schmidtm@csubcca Expectation-maximiation

More information

A Stochastic Quasi-Newton Method for Online Convex Optimization

A Stochastic Quasi-Newton Method for Online Convex Optimization A Stochastic Quasi-Newton Method for Online Convex Optimization Nicol N. Schraudolph nic.schraudolph@nicta.com.au Jin Yu jin.yu@rsise.anu.edu.au Statistical Machine Learning, National ICT Australia Locked

More information

Algorithms for Constrained Optimization

Algorithms for Constrained Optimization 1 / 42 Algorithms for Constrained Optimization ME598/494 Lecture Max Yi Ren Department of Mechanical Engineering, Arizona State University April 19, 2015 2 / 42 Outline 1. Convergence 2. Sequential quadratic

More information

Math 411 Preliminaries

Math 411 Preliminaries Math 411 Preliminaries Provide a list of preliminary vocabulary and concepts Preliminary Basic Netwon s method, Taylor series expansion (for single and multiple variables), Eigenvalue, Eigenvector, Vector

More information

Optimization II: Unconstrained Multivariable

Optimization II: Unconstrained Multivariable Optimization II: Unconstrained Multivariable CS 205A: Mathematical Methods for Robotics, Vision, and Graphics Justin Solomon CS 205A: Mathematical Methods Optimization II: Unconstrained Multivariable 1

More information

Beyond stochastic gradient descent for large-scale machine learning

Beyond stochastic gradient descent for large-scale machine learning Beyond stochastic gradient descent for large-scale machine learning Francis Bach INRIA - Ecole Normale Supérieure, Paris, France Joint work with Eric Moulines - October 2014 Big data revolution? A new

More information

Machine Learning. Support Vector Machines. Fabio Vandin November 20, 2017

Machine Learning. Support Vector Machines. Fabio Vandin November 20, 2017 Machine Learning Support Vector Machines Fabio Vandin November 20, 2017 1 Classification and Margin Consider a classification problem with two classes: instance set X = R d label set Y = { 1, 1}. Training

More information

Optimization II: Unconstrained Multivariable

Optimization II: Unconstrained Multivariable Optimization II: Unconstrained Multivariable CS 205A: Mathematical Methods for Robotics, Vision, and Graphics Doug James (and Justin Solomon) CS 205A: Mathematical Methods Optimization II: Unconstrained

More information

Data Mining (Mineria de Dades)

Data Mining (Mineria de Dades) Data Mining (Mineria de Dades) Lluís A. Belanche belanche@lsi.upc.edu Soft Computing Research Group Dept. de Llenguatges i Sistemes Informàtics (Software department) Universitat Politècnica de Catalunya

More information

Unconstrained optimization

Unconstrained optimization Chapter 4 Unconstrained optimization An unconstrained optimization problem takes the form min x Rnf(x) (4.1) for a target functional (also called objective function) f : R n R. In this chapter and throughout

More information

Optimization for neural networks

Optimization for neural networks 0 - : Optimization for neural networks Prof. J.C. Kao, UCLA Optimization for neural networks We previously introduced the principle of gradient descent. Now we will discuss specific modifications we make

More information

Online Convex Optimization. Gautam Goel, Milan Cvitkovic, and Ellen Feldman CS 159 4/5/2016

Online Convex Optimization. Gautam Goel, Milan Cvitkovic, and Ellen Feldman CS 159 4/5/2016 Online Convex Optimization Gautam Goel, Milan Cvitkovic, and Ellen Feldman CS 159 4/5/2016 The General Setting The General Setting (Cover) Given only the above, learning isn't always possible Some Natural

More information

IPAM Summer School Optimization methods for machine learning. Jorge Nocedal

IPAM Summer School Optimization methods for machine learning. Jorge Nocedal IPAM Summer School 2012 Tutorial on Optimization methods for machine learning Jorge Nocedal Northwestern University Overview 1. We discuss some characteristics of optimization problems arising in deep

More information

Day 3 Lecture 3. Optimizing deep networks

Day 3 Lecture 3. Optimizing deep networks Day 3 Lecture 3 Optimizing deep networks Convex optimization A function is convex if for all α [0,1]: f(x) Tangent line Examples Quadratics 2-norms Properties Local minimum is global minimum x Gradient

More information

Stochastic Gradient Descent with Variance Reduction

Stochastic Gradient Descent with Variance Reduction Stochastic Gradient Descent with Variance Reduction Rie Johnson, Tong Zhang Presenter: Jiawen Yao March 17, 2015 Rie Johnson, Tong Zhang Presenter: JiawenStochastic Yao Gradient Descent with Variance Reduction

More information

Decentralized Quadratically Approximated Alternating Direction Method of Multipliers

Decentralized Quadratically Approximated Alternating Direction Method of Multipliers Decentralized Quadratically Approimated Alternating Direction Method of Multipliers Aryan Mokhtari Wei Shi Qing Ling Alejandro Ribeiro Department of Electrical and Systems Engineering, University of Pennsylvania

More information

Optimization Methods for Machine Learning

Optimization Methods for Machine Learning Optimization Methods for Machine Learning Sathiya Keerthi Microsoft Talks given at UC Santa Cruz February 21-23, 2017 The slides for the talks will be made available at: http://www.keerthis.com/ Introduction

More information

Incremental Reshaped Wirtinger Flow and Its Connection to Kaczmarz Method

Incremental Reshaped Wirtinger Flow and Its Connection to Kaczmarz Method Incremental Reshaped Wirtinger Flow and Its Connection to Kaczmarz Method Huishuai Zhang Department of EECS Syracuse University Syracuse, NY 3244 hzhan23@syr.edu Yingbin Liang Department of EECS Syracuse

More information

Stochastic Gradient Descent. Ryan Tibshirani Convex Optimization

Stochastic Gradient Descent. Ryan Tibshirani Convex Optimization Stochastic Gradient Descent Ryan Tibshirani Convex Optimization 10-725 Last time: proximal gradient descent Consider the problem min x g(x) + h(x) with g, h convex, g differentiable, and h simple in so

More information

Approximate Newton Methods and Their Local Convergence

Approximate Newton Methods and Their Local Convergence Haishan Ye Luo Luo Zhihua Zhang 2 Abstract Many machine learning models are reformulated as optimization problems. Thus, it is important to solve a large-scale optimization problem in big data applications.

More information

LECTURE 22: SWARM INTELLIGENCE 3 / CLASSICAL OPTIMIZATION

LECTURE 22: SWARM INTELLIGENCE 3 / CLASSICAL OPTIMIZATION 15-382 COLLECTIVE INTELLIGENCE - S19 LECTURE 22: SWARM INTELLIGENCE 3 / CLASSICAL OPTIMIZATION TEACHER: GIANNI A. DI CARO WHAT IF WE HAVE ONE SINGLE AGENT PSO leverages the presence of a swarm: the outcome

More information