Improving L-BFGS Initialization for Trust-Region Methods in Deep Learning

Size: px
Start display at page:

Download "Improving L-BFGS Initialization for Trust-Region Methods in Deep Learning"

Transcription

1 Improving L-BFGS Initialization for Trust-Region Methods in Deep Learning Jacob Rafati Ph.D. Candidate, Electrical Engineering and Computer Science University of California, Merced

2 Agenda Introduction, Problem Statement and Motivations Overview on Quasi-Newton Optimization Methods L-BFGS Trust Region Optimization Method Proposed Methods for Initialization of L-BFGS Application in Deep Learning (Image Classification Task)

3 Introduction, Problem Statement and Motivations

4 Unconstrained Optimization Problem NX min w2r n L(w), 1 N `i(w) i=1 L : R n! R

5 Optimization Algorithms Bottou et al., (2016) Optimization methods for large-scale machine learning, print arxiv:

6 Optimization Algorithms 1. Start from a random point w 0 2. Repeat each iteration, k =0, 1, 2,..., 3. Choose a search direction p k 4. Choose a step size k 5. Update parameters w k+1 w k + k p k 6. Until krlk <

7 Properties of Objective Function NX min w2r n L(w), 1 N `i(w) i=1 n and N are both large in modern applications. L(w) is a non-convex and nonlinear function. r 2 L(w) is ill-conditioned. Computing full gradient, rl is expensive. Computing Hessian, r 2 L is not practical.

8 Stochastic Gradient Decent 1. Sample indices S k {1, 2,...,N} 2. Compute stochastic (subsampled) gradient rl(w k ) rl(w k ) (S k), 1 S k X i2s k r`i(w k ) 3. Assign a learning rate k 4. Update parameters using p k = rl(w k ) (S k) w k+1 w k k rl(w k ) (S k) H. Robbins, D. Siegmund. (1971). A convergence theorem for non negative almost supermartingales and some applications. Optimizing methods in statistics.

9 Advantages of SGD SGD algorithms are very easy to implement. SGD requires only computing the gradient. SGD has a low cost-per-iteration. Bottou et al., (2016) Optimization methods for large-scale machine learning, print arxiv:

10 Disadvantages of SGD Very sensitive to the ill-conditioning problem and scaling. Requires fine-tuning many hyper-parameters. Unlikely exhibit acceptable performance on first try. requires many trials and errors. Can stuck in a saddle-point instead of local minimum. Sublinear and slow rate of convergence. Bottou et al., (2016). Optimization methods for large-scale machine learning. print arxiv: J. Nocedal and S. J. Wright. (2006). Numerical Optimization. 2nd ed. New York. Springer.

11 Second-Order Methods 1. Sample indices S k {1, 2,...,N} 2. Compute stochastic (subsampled) gradient rl(w k ) rl(w k ) (S k), 1 S k X i2s k r`i(w k ) 3. Compute Hessian r 2 L(w k ) r 2 L(w k ) (S k), 1 S k X i2s k r 2`i(w k )

12 Second-Order Methods 4. Compute Newton s direction p k = r 2 L(w k ) 1 rl(w k ) 5. Find proper step length k =min L(w k + p k ) 6. Update parameters w k+1 w k + k p k

13 Second-Order Methods Advantages The rate of convergence is super-linear (quadratic for Newton method). They are resilient to problem ill-conditioning. They involve less parameter tuning. They are less sensitive to the choice of hyperparameters. J. Nocedal and S. J. Wright. (2006). Numerical Optimization. 2nd ed. New York. Springer.

14 Second-Order Methods Disadvantages Computing the Hessian matrix is very expensive and requires massive storage. Computing the inverse of Hessian is not practical. J. Nocedal and S. J. Wright. (2006). Numerical Optimization. 2nd ed. New York. Springer. Bottou et al., (2016) Optimization methods for large-scale machine learning, print arxiv:

15 Quasi-Newton Methods 1. Construct a low-rank approximation of Hessian B k r 2 L(w k ) 2. Find the search direction by Minimizing the Quadratic Model of the objective function p k = argmin p2r n Q k (p), g T k p pt B k p T

16 Quasi-Newton Matrices Symmetric Easy and Fast Computation Satisfies Secant Condition B k+1 s k = y k s k, w k+1 w k y k, rl(w k+1 ) rl(w k )

17 Broyden Fletcher Goldfarb Shanno. J. Nocedal and S. J. Wright. (2006). Numerical Optimization. 2nd ed. New York. Springer.

18 Broyden Fletcher Goldfarb Shanno. 1 B k+1 = B k s T k B B k s k s T k B k + 1 ks k y T k s k y k y T k, s k, w k+1 w k y k, rl(w k+1 ) rl(w k ) B 0 = k I J. Nocedal and S. J. Wright. (2006). Numerical Optimization. 2nd ed. New York. Springer.

19 Quasi-Newton Methods Advantages The rate of convergence is super-linear. They are resilient to problem ill-conditioning. The second derivative is not required. They only use the gradient information to construct quasi-newton matrices. J. Nocedal and S. J. Wright. (2006). Numerical Optimization. 2nd ed. New York. Springer.

20 Quasi-Newton Methods disadvantages The cost of storing the gradient informations can be expensive. The quasi-newton matrix can be dense. The quasi-newton matrix grow in size and rank in large-scale problems. J. Nocedal and S. J. Wright. (2006). Numerical Optimization. 2nd ed. New York. Springer.

21 Limited-Memory BFGS Limited Memory Storage S k = s k m... s k 1 Y k = y k m... y k 1 L-BFGS Compact Representation B k = B 0 + km k T k B 0 = k I where apple S T k B 0 S k L k 1 k = B 0 S k Y k, Mk = L T k D k S T k Y k = L k + D k + U k

22 Limited-Memory Quasi-Newton Methods Low rank approximation Small memory of recent gradients. Low cost of computation of search direction. Linear or superlinear Convergence rate can be achieved. J. Nocedal and S. J. Wright. (2006). Numerical Optimization. 2nd ed. New York. Springer.

23 Objectives B 0 = k I B k = B 0 + km k T k What is the best choice for initialization?

24 Overview on Quasi-Newton Optimization Strategies

25 Line Search Method w k rl(w k ) p k Quadratic model p k = argmin p2r n Q k (p), g T k p pt B k p T if B k is positive definite: p k = B 1 k g k J. Nocedal and S. J. Wright. (2006). Numerical Optimization. 2nd ed. New York. Springer.

26 Line Search Method w k w k+1 k p k p k Wolfe conditions L(w k + k p k ) apple L(w k )+c 1 k rl(w k ) T p k rl(w k + k p k ) T p k c 2 rf(w k ) T p k J. Nocedal and S. J. Wright. (2006). Numerical Optimization. 2nd ed. New York. Springer.

27 Trust Region Method p k = arg min p2r n Q(p) s.t. kpk 2 apple k k w k p k Toint et al. (2000), Trust Region Methods, SIAM.

28 Trust Region Method Global minimum Newton step Local minimum J. J. Mor e and D. C. Sorensen, (1984) Newton s method, in Studies in Mathematics, Volume 24. Studies in Numerical Analysis, Math. Assoc., pp

29 L-BFGS Trust Region Optimization Method

30 L-BFGS in Trust Region B k = B 0 + km k T k Eigen-decomposition B k = P apple + k I 0 0 ki P T Sherman-Morrison-Woodbury Formula p k = 1 k + I k( M 1 = k + T k k) 1 T k gk, L. Adhikari et al. (2017) Limited-memory trust-region methods for sparse relaxation, in Proc.SPIE, vol Brust et al, (2017). On solving L-SR1 trust-region subproblems, Computational Optimization and Applications, vol. 66, pp

31 L-BFGS in Trust Region vs. Line-Search 26th European Signal Processing Conference, Rome, Italy. September 2018.

32 Proposed Methods for Initialization of L-BFGS

33 Initialization Method I B 0 = k I B k = B 0 + km k T k Spectral estimate of Hessian k = yt k 1 y k 1 s T k 1 y k 1 k = arg min kb 1 0 y k 1 s k 1 k 2 2, B 0 = I J. Nocedal and S. J. Wright. (2006). Numerical Optimization. 2nd ed. New York. Springer.

34 Initialization Method II Consider a quadratic function L(w) = 1 2 wt Hw + g T w r 2 L(w) =H We have HS k = Y k Therefore S T k HS k = S T k Y k Erway et al. (2018). Trust-Region Algorithms for Training Responses: Machine Learning Methods Using Indefinite Hessian Approximations, ArXiv e-prints.

35 Initialization Method II Since B k = B 0 + km k k = B 0 S k Y k, Mk = Secant Condition T k B 0 = apple S T k B 0 S k L k L T D k k k I 1 B k S T k = Y k We have S T k HS k k S T k S k = S T k km k T S k k

36 Initialization Method II S T k HS k k S T k S k = S T k km k T S k k General Eigen-Value Problem (L k + D k + L T k )z = S T k S k z Upper bound for initial value to avoid false curvature information k 2 (0, min)

37 Initialization Method III B 0 = k I B k = B 0 + km k T k S T k HS k k S T k S k = S T k km k T S k k Note that compact representation matrices contains k apple S T k B 0 S k L k 1 k = B 0 S k Y k, Mk = L T k D k

38 Initialization Method III General Eigen-Value Problem A z = B z Upper bound for initial values to avoid false curvature information k 2 (0, min) A = L k +D k +L T k S T k Y k DY T k S k 2 k 1 (S T k S k ÃS T k S k ), B = S T k S k + S T k S k BY T k S T k + S T k Y k BT S T k S k.

39 Applications in Deep Learning

40 Supervised Learning Features X = {x 1,x 2,...,x i,...,x N } Labels T = {t 1,t 2,...,t i,...,t N } : X! T

41 Supervised Learning Input: x Model (Predictor) Output: y (x; w)

42 Convolutional Neural Network Input conv1 pool1 conv2 pool2 hidden4 output (x; w) n = 413, 080 Lecun et al. (1998) Gradient-basedlearning applied to document recognition, Proceedings of the IEEE, vol. 86, no. 11, pp

43 Loss Function Target Output t = 0, 0, 1, 0,..., 0 y = 0, 0, 0.97, 0.03,..., 0 Cross-entropy `(t, y) = t. log(y) (1 t). log(1 y) Empirical Risk NX L(w) = 1 N `(t i, (x i,w)) i=1

44 Multi-Batch L-BFGS Shuffled Data Shuffled Data O k 1 O k S k O k = S k \ S k+1 O k O k+1 S k+1 O k+1 O k+2 S k+2 Berahas et al. (2016). A multi-batch L-BFGS method for machine learning, in Advances in Neural Information Processing Systems 29, pp

45 Computing gradients O k 1 O k S k O k = S k \ S k+1 O k O k+1 S k+1 g k = rl(w k ) (S k) = 1 S k X i2j k rl i (w k ) y k = rl(w k+1 ) (O k) rl(w k ) (O k) Berahas et al. (2016). A multi-batch L-BFGS method for machine learning, in Advances in Neural Information Processing Systems 29, pp

46 Experiment

47 Trust-Region Algorithm

48 Results - Loss Full Stochastic Full Stochastic

49 Results - Accuracy Full Stochastic Full Stochastic

50 Results - Training Time Full Stochastic Full Stochastic

51 Acknowledgement This research is supported by NSF Grants CMMI Award , IIS and ACI

52 Paper, Code and Slides:

Improving L-BFGS Initialization For Trust-Region Methods In Deep Learning

Improving L-BFGS Initialization For Trust-Region Methods In Deep Learning Improving L-BFGS Initialization For Trust-Region Methods In Deep Learning Jacob Rafati Electrical Engineering and Computer Science University of California, Merced Merced, CA 95340 USA jrafatiheravi@ucmerced.edu

More information

Trust-Region Optimization Methods Using Limited-Memory Symmetric Rank-One Updates for Off-The-Shelf Machine Learning

Trust-Region Optimization Methods Using Limited-Memory Symmetric Rank-One Updates for Off-The-Shelf Machine Learning Trust-Region Optimization Methods Using Limited-Memory Symmetric Rank-One Updates for Off-The-Shelf Machine Learning by Jennifer B. Erway, Joshua Griffin, Riadh Omheni, and Roummel Marcia Technical report

More information

Quasi-Newton methods: Symmetric rank 1 (SR1) Broyden Fletcher Goldfarb Shanno February 6, / 25 (BFG. Limited memory BFGS (L-BFGS)

Quasi-Newton methods: Symmetric rank 1 (SR1) Broyden Fletcher Goldfarb Shanno February 6, / 25 (BFG. Limited memory BFGS (L-BFGS) Quasi-Newton methods: Symmetric rank 1 (SR1) Broyden Fletcher Goldfarb Shanno (BFGS) Limited memory BFGS (L-BFGS) February 6, 2014 Quasi-Newton methods: Symmetric rank 1 (SR1) Broyden Fletcher Goldfarb

More information

Quasi-Newton Methods. Javier Peña Convex Optimization /36-725

Quasi-Newton Methods. Javier Peña Convex Optimization /36-725 Quasi-Newton Methods Javier Peña Convex Optimization 10-725/36-725 Last time: primal-dual interior-point methods Consider the problem min x subject to f(x) Ax = b h(x) 0 Assume f, h 1,..., h m are convex

More information

5 Quasi-Newton Methods

5 Quasi-Newton Methods Unconstrained Convex Optimization 26 5 Quasi-Newton Methods If the Hessian is unavailable... Notation: H = Hessian matrix. B is the approximation of H. C is the approximation of H 1. Problem: Solve min

More information

Higher-Order Methods

Higher-Order Methods Higher-Order Methods Stephen J. Wright 1 2 Computer Sciences Department, University of Wisconsin-Madison. PCMI, July 2016 Stephen Wright (UW-Madison) Higher-Order Methods PCMI, July 2016 1 / 25 Smooth

More information

Improving the Convergence of Back-Propogation Learning with Second Order Methods

Improving the Convergence of Back-Propogation Learning with Second Order Methods the of Back-Propogation Learning with Second Order Methods Sue Becker and Yann le Cun, Sept 1988 Kasey Bray, October 2017 Table of Contents 1 with Back-Propagation 2 the of BP 3 A Computationally Feasible

More information

Quasi-Newton Methods. Zico Kolter (notes by Ryan Tibshirani, Javier Peña, Zico Kolter) Convex Optimization

Quasi-Newton Methods. Zico Kolter (notes by Ryan Tibshirani, Javier Peña, Zico Kolter) Convex Optimization Quasi-Newton Methods Zico Kolter (notes by Ryan Tibshirani, Javier Peña, Zico Kolter) Convex Optimization 10-725 Last time: primal-dual interior-point methods Given the problem min x f(x) subject to h(x)

More information

LBFGS. John Langford, Large Scale Machine Learning Class, February 5. (post presentation version)

LBFGS. John Langford, Large Scale Machine Learning Class, February 5. (post presentation version) LBFGS John Langford, Large Scale Machine Learning Class, February 5 (post presentation version) We are still doing Linear Learning Features: a vector x R n Label: y R Goal: Learn w R n such that ŷ w (x)

More information

2. Quasi-Newton methods

2. Quasi-Newton methods L. Vandenberghe EE236C (Spring 2016) 2. Quasi-Newton methods variable metric methods quasi-newton methods BFGS update limited-memory quasi-newton methods 2-1 Newton method for unconstrained minimization

More information

Nonlinear Optimization Methods for Machine Learning

Nonlinear Optimization Methods for Machine Learning Nonlinear Optimization Methods for Machine Learning Jorge Nocedal Northwestern University University of California, Davis, Sept 2018 1 Introduction We don t really know, do we? a) Deep neural networks

More information

Optimization II: Unconstrained Multivariable

Optimization II: Unconstrained Multivariable Optimization II: Unconstrained Multivariable CS 205A: Mathematical Methods for Robotics, Vision, and Graphics Justin Solomon CS 205A: Mathematical Methods Optimization II: Unconstrained Multivariable 1

More information

Stochastic Optimization Algorithms Beyond SG

Stochastic Optimization Algorithms Beyond SG Stochastic Optimization Algorithms Beyond SG Frank E. Curtis 1, Lehigh University involving joint work with Léon Bottou, Facebook AI Research Jorge Nocedal, Northwestern University Optimization Methods

More information

Shiqian Ma, MAT-258A: Numerical Optimization 1. Chapter 3. Gradient Method

Shiqian Ma, MAT-258A: Numerical Optimization 1. Chapter 3. Gradient Method Shiqian Ma, MAT-258A: Numerical Optimization 1 Chapter 3 Gradient Method Shiqian Ma, MAT-258A: Numerical Optimization 2 3.1. Gradient method Classical gradient method: to minimize a differentiable convex

More information

ALGORITHM XXX: SC-SR1: MATLAB SOFTWARE FOR SOLVING SHAPE-CHANGING L-SR1 TRUST-REGION SUBPROBLEMS

ALGORITHM XXX: SC-SR1: MATLAB SOFTWARE FOR SOLVING SHAPE-CHANGING L-SR1 TRUST-REGION SUBPROBLEMS ALGORITHM XXX: SC-SR1: MATLAB SOFTWARE FOR SOLVING SHAPE-CHANGING L-SR1 TRUST-REGION SUBPROBLEMS JOHANNES BRUST, OLEG BURDAKOV, JENNIFER B. ERWAY, ROUMMEL F. MARCIA, AND YA-XIANG YUAN Abstract. We present

More information

Stochastic Quasi-Newton Methods

Stochastic Quasi-Newton Methods Stochastic Quasi-Newton Methods Donald Goldfarb Department of IEOR Columbia University UCLA Distinguished Lecture Series May 17-19, 2016 1 / 35 Outline Stochastic Approximation Stochastic Gradient Descent

More information

Optimization Methods for Machine Learning

Optimization Methods for Machine Learning Optimization Methods for Machine Learning Sathiya Keerthi Microsoft Talks given at UC Santa Cruz February 21-23, 2017 The slides for the talks will be made available at: http://www.keerthis.com/ Introduction

More information

Optimization II: Unconstrained Multivariable

Optimization II: Unconstrained Multivariable Optimization II: Unconstrained Multivariable CS 205A: Mathematical Methods for Robotics, Vision, and Graphics Doug James (and Justin Solomon) CS 205A: Mathematical Methods Optimization II: Unconstrained

More information

OPER 627: Nonlinear Optimization Lecture 14: Mid-term Review

OPER 627: Nonlinear Optimization Lecture 14: Mid-term Review OPER 627: Nonlinear Optimization Lecture 14: Mid-term Review Department of Statistical Sciences and Operations Research Virginia Commonwealth University Oct 16, 2013 (Lecture 14) Nonlinear Optimization

More information

Convex Optimization CMU-10725

Convex Optimization CMU-10725 Convex Optimization CMU-10725 Quasi Newton Methods Barnabás Póczos & Ryan Tibshirani Quasi Newton Methods 2 Outline Modified Newton Method Rank one correction of the inverse Rank two correction of the

More information

IPAM Summer School Optimization methods for machine learning. Jorge Nocedal

IPAM Summer School Optimization methods for machine learning. Jorge Nocedal IPAM Summer School 2012 Tutorial on Optimization methods for machine learning Jorge Nocedal Northwestern University Overview 1. We discuss some characteristics of optimization problems arising in deep

More information

Quasi-Newton methods for minimization

Quasi-Newton methods for minimization Quasi-Newton methods for minimization Lectures for PHD course on Numerical optimization Enrico Bertolazzi DIMS Universitá di Trento November 21 December 14, 2011 Quasi-Newton methods for minimization 1

More information

Lecture 1: Supervised Learning

Lecture 1: Supervised Learning Lecture 1: Supervised Learning Tuo Zhao Schools of ISYE and CSE, Georgia Tech ISYE6740/CSE6740/CS7641: Computational Data Analysis/Machine from Portland, Learning Oregon: pervised learning (Supervised)

More information

Introduction to Logistic Regression and Support Vector Machine

Introduction to Logistic Regression and Support Vector Machine Introduction to Logistic Regression and Support Vector Machine guest lecturer: Ming-Wei Chang CS 446 Fall, 2009 () / 25 Fall, 2009 / 25 Before we start () 2 / 25 Fall, 2009 2 / 25 Before we start Feel

More information

Second-Order Methods for Stochastic Optimization

Second-Order Methods for Stochastic Optimization Second-Order Methods for Stochastic Optimization Frank E. Curtis, Lehigh University involving joint work with Léon Bottou, Facebook AI Research Jorge Nocedal, Northwestern University Optimization Methods

More information

Sub-Sampled Newton Methods

Sub-Sampled Newton Methods Sub-Sampled Newton Methods F. Roosta-Khorasani and M. W. Mahoney ICSI and Dept of Statistics, UC Berkeley February 2016 F. Roosta-Khorasani and M. W. Mahoney (UCB) Sub-Sampled Newton Methods Feb 2016 1

More information

ORIE 6326: Convex Optimization. Quasi-Newton Methods

ORIE 6326: Convex Optimization. Quasi-Newton Methods ORIE 6326: Convex Optimization Quasi-Newton Methods Professor Udell Operations Research and Information Engineering Cornell April 10, 2017 Slides on steepest descent and analysis of Newton s method adapted

More information

DENSE INITIALIZATIONS FOR LIMITED-MEMORY QUASI-NEWTON METHODS

DENSE INITIALIZATIONS FOR LIMITED-MEMORY QUASI-NEWTON METHODS DENSE INITIALIZATIONS FOR LIMITED-MEMORY QUASI-NEWTON METHODS by Johannes Brust, Oleg Burdaov, Jennifer B. Erway, and Roummel F. Marcia Technical Report 07-, Department of Mathematics and Statistics, Wae

More information

Methods that avoid calculating the Hessian. Nonlinear Optimization; Steepest Descent, Quasi-Newton. Steepest Descent

Methods that avoid calculating the Hessian. Nonlinear Optimization; Steepest Descent, Quasi-Newton. Steepest Descent Nonlinear Optimization Steepest Descent and Niclas Börlin Department of Computing Science Umeå University niclas.borlin@cs.umu.se A disadvantage with the Newton method is that the Hessian has to be derived

More information

Incremental Quasi-Newton methods with local superlinear convergence rate

Incremental Quasi-Newton methods with local superlinear convergence rate Incremental Quasi-Newton methods wh local superlinear convergence rate Aryan Mokhtari, Mark Eisen, and Alejandro Ribeiro Department of Electrical and Systems Engineering Universy of Pennsylvania Int. Conference

More information

Improved Damped Quasi-Newton Methods for Unconstrained Optimization

Improved Damped Quasi-Newton Methods for Unconstrained Optimization Improved Damped Quasi-Newton Methods for Unconstrained Optimization Mehiddin Al-Baali and Lucio Grandinetti August 2015 Abstract Recently, Al-Baali (2014) has extended the damped-technique in the modified

More information

Stochastic Optimization Methods for Machine Learning. Jorge Nocedal

Stochastic Optimization Methods for Machine Learning. Jorge Nocedal Stochastic Optimization Methods for Machine Learning Jorge Nocedal Northwestern University SIAM CSE, March 2017 1 Collaborators Richard Byrd R. Bollagragada N. Keskar University of Colorado Northwestern

More information

Adaptive Gradient Methods AdaGrad / Adam. Machine Learning for Big Data CSE547/STAT548, University of Washington Sham Kakade

Adaptive Gradient Methods AdaGrad / Adam. Machine Learning for Big Data CSE547/STAT548, University of Washington Sham Kakade Adaptive Gradient Methods AdaGrad / Adam Machine Learning for Big Data CSE547/STAT548, University of Washington Sham Kakade 1 Announcements: HW3 posted Dual coordinate ascent (some review of SGD and random

More information

Nonlinear Optimization: What s important?

Nonlinear Optimization: What s important? Nonlinear Optimization: What s important? Julian Hall 10th May 2012 Convexity: convex problems A local minimizer is a global minimizer A solution of f (x) = 0 (stationary point) is a minimizer A global

More information

High Order Methods for Empirical Risk Minimization

High Order Methods for Empirical Risk Minimization High Order Methods for Empirical Risk Minimization Alejandro Ribeiro Department of Electrical and Systems Engineering University of Pennsylvania aribeiro@seas.upenn.edu Thanks to: Aryan Mokhtari, Mark

More information

Algorithms for Constrained Optimization

Algorithms for Constrained Optimization 1 / 42 Algorithms for Constrained Optimization ME598/494 Lecture Max Yi Ren Department of Mechanical Engineering, Arizona State University April 19, 2015 2 / 42 Outline 1. Convergence 2. Sequential quadratic

More information

Neural Network Training

Neural Network Training Neural Network Training Sargur Srihari Topics in Network Training 0. Neural network parameters Probabilistic problem formulation Specifying the activation and error functions for Regression Binary classification

More information

UNIVERSITY OF CALIFORNIA, MERCED LARGE-SCALE QUASI-NEWTON TRUST-REGION METHODS: HIGH-ACCURACY SOLVERS, DENSE INITIALIZATIONS, AND EXTENSIONS

UNIVERSITY OF CALIFORNIA, MERCED LARGE-SCALE QUASI-NEWTON TRUST-REGION METHODS: HIGH-ACCURACY SOLVERS, DENSE INITIALIZATIONS, AND EXTENSIONS UNIVERSITY OF CALIFORNIA, MERCED LARGE-SCALE QUASI-NEWTON TRUST-REGION METHODS: HIGH-ACCURACY SOLVERS, DENSE INITIALIZATIONS, AND EXTENSIONS A dissertation submitted in partial satisfaction of the requirements

More information

Optimization and Root Finding. Kurt Hornik

Optimization and Root Finding. Kurt Hornik Optimization and Root Finding Kurt Hornik Basics Root finding and unconstrained smooth optimization are closely related: Solving ƒ () = 0 can be accomplished via minimizing ƒ () 2 Slide 2 Basics Root finding

More information

Introduction. New Nonsmooth Trust Region Method for Unconstraint Locally Lipschitz Optimization Problems

Introduction. New Nonsmooth Trust Region Method for Unconstraint Locally Lipschitz Optimization Problems New Nonsmooth Trust Region Method for Unconstraint Locally Lipschitz Optimization Problems Z. Akbari 1, R. Yousefpour 2, M. R. Peyghami 3 1 Department of Mathematics, K.N. Toosi University of Technology,

More information

Unconstrained optimization

Unconstrained optimization Chapter 4 Unconstrained optimization An unconstrained optimization problem takes the form min x Rnf(x) (4.1) for a target functional (also called objective function) f : R n R. In this chapter and throughout

More information

MATH 4211/6211 Optimization Quasi-Newton Method

MATH 4211/6211 Optimization Quasi-Newton Method MATH 4211/6211 Optimization Quasi-Newton Method Xiaojing Ye Department of Mathematics & Statistics Georgia State University Xiaojing Ye, Math & Stat, Georgia State University 0 Quasi-Newton Method Motivation:

More information

ECS550NFB Introduction to Numerical Methods using Matlab Day 2

ECS550NFB Introduction to Numerical Methods using Matlab Day 2 ECS550NFB Introduction to Numerical Methods using Matlab Day 2 Lukas Laffers lukas.laffers@umb.sk Department of Mathematics, University of Matej Bel June 9, 2015 Today Root-finding: find x that solves

More information

Optimization for neural networks

Optimization for neural networks 0 - : Optimization for neural networks Prof. J.C. Kao, UCLA Optimization for neural networks We previously introduced the principle of gradient descent. Now we will discuss specific modifications we make

More information

Chapter 4. Unconstrained optimization

Chapter 4. Unconstrained optimization Chapter 4. Unconstrained optimization Version: 28-10-2012 Material: (for details see) Chapter 11 in [FKS] (pp.251-276) A reference e.g. L.11.2 refers to the corresponding Lemma in the book [FKS] PDF-file

More information

Variable Metric Stochastic Approximation Theory

Variable Metric Stochastic Approximation Theory Variable Metric Stochastic Approximation Theory Abstract We provide a variable metric stochastic approximation theory. In doing so, we provide a convergence theory for a large class of online variable

More information

Regression with Numerical Optimization. Logistic

Regression with Numerical Optimization. Logistic CSG220 Machine Learning Fall 2008 Regression with Numerical Optimization. Logistic regression Regression with Numerical Optimization. Logistic regression based on a document by Andrew Ng October 3, 204

More information

Methods for Unconstrained Optimization Numerical Optimization Lectures 1-2

Methods for Unconstrained Optimization Numerical Optimization Lectures 1-2 Methods for Unconstrained Optimization Numerical Optimization Lectures 1-2 Coralia Cartis, University of Oxford INFOMM CDT: Modelling, Analysis and Computation of Continuous Real-World Problems Methods

More information

Logistic Regression. COMP 527 Danushka Bollegala

Logistic Regression. COMP 527 Danushka Bollegala Logistic Regression COMP 527 Danushka Bollegala Binary Classification Given an instance x we must classify it to either positive (1) or negative (0) class We can use {1,-1} instead of {1,0} but we will

More information

A Stochastic Quasi-Newton Method for Online Convex Optimization

A Stochastic Quasi-Newton Method for Online Convex Optimization A Stochastic Quasi-Newton Method for Online Convex Optimization Nicol N. Schraudolph nic.schraudolph@nicta.com.au Jin Yu jin.yu@rsise.anu.edu.au Statistical Machine Learning, National ICT Australia Locked

More information

Newton s Method. Ryan Tibshirani Convex Optimization /36-725

Newton s Method. Ryan Tibshirani Convex Optimization /36-725 Newton s Method Ryan Tibshirani Convex Optimization 10-725/36-725 1 Last time: dual correspondences Given a function f : R n R, we define its conjugate f : R n R, Properties and examples: f (y) = max x

More information

Seminal papers in nonlinear optimization

Seminal papers in nonlinear optimization Seminal papers in nonlinear optimization Nick Gould, CSED, RAL, Chilton, OX11 0QX, England (n.gould@rl.ac.uk) December 7, 2006 The following papers are classics in the field. Although many of them cover

More information

Adaptive Gradient Methods AdaGrad / Adam

Adaptive Gradient Methods AdaGrad / Adam Case Study 1: Estimating Click Probabilities Adaptive Gradient Methods AdaGrad / Adam Machine Learning for Big Data CSE547/STAT548, University of Washington Sham Kakade 1 The Problem with GD (and SGD)

More information

Deep Learning & Neural Networks Lecture 4

Deep Learning & Neural Networks Lecture 4 Deep Learning & Neural Networks Lecture 4 Kevin Duh Graduate School of Information Science Nara Institute of Science and Technology Jan 23, 2014 2/20 3/20 Advanced Topics in Optimization Today we ll briefly

More information

Programming, numerics and optimization

Programming, numerics and optimization Programming, numerics and optimization Lecture C-3: Unconstrained optimization II Łukasz Jankowski ljank@ippt.pan.pl Institute of Fundamental Technological Research Room 4.32, Phone +22.8261281 ext. 428

More information

Nonlinear Models. Numerical Methods for Deep Learning. Lars Ruthotto. Departments of Mathematics and Computer Science, Emory University.

Nonlinear Models. Numerical Methods for Deep Learning. Lars Ruthotto. Departments of Mathematics and Computer Science, Emory University. Nonlinear Models Numerical Methods for Deep Learning Lars Ruthotto Departments of Mathematics and Computer Science, Emory University Intro 1 Course Overview Intro 2 Course Overview Lecture 1: Linear Models

More information

Numerical Optimization Professor Horst Cerjak, Horst Bischof, Thomas Pock Mat Vis-Gra SS09

Numerical Optimization Professor Horst Cerjak, Horst Bischof, Thomas Pock Mat Vis-Gra SS09 Numerical Optimization 1 Working Horse in Computer Vision Variational Methods Shape Analysis Machine Learning Markov Random Fields Geometry Common denominator: optimization problems 2 Overview of Methods

More information

Sub-Sampled Newton Methods for Machine Learning. Jorge Nocedal

Sub-Sampled Newton Methods for Machine Learning. Jorge Nocedal Sub-Sampled Newton Methods for Machine Learning Jorge Nocedal Northwestern University Goldman Lecture, Sept 2016 1 Collaborators Raghu Bollapragada Northwestern University Richard Byrd University of Colorado

More information

Maria Cameron. f(x) = 1 n

Maria Cameron. f(x) = 1 n Maria Cameron 1. Local algorithms for solving nonlinear equations Here we discuss local methods for nonlinear equations r(x) =. These methods are Newton, inexact Newton and quasi-newton. We will show that

More information

High Order Methods for Empirical Risk Minimization

High Order Methods for Empirical Risk Minimization High Order Methods for Empirical Risk Minimization Alejandro Ribeiro Department of Electrical and Systems Engineering University of Pennsylvania aribeiro@seas.upenn.edu IPAM Workshop of Emerging Wireless

More information

STA141C: Big Data & High Performance Statistical Computing

STA141C: Big Data & High Performance Statistical Computing STA141C: Big Data & High Performance Statistical Computing Lecture 8: Optimization Cho-Jui Hsieh UC Davis May 9, 2017 Optimization Numerical Optimization Numerical Optimization: min X f (X ) Can be applied

More information

Optimization 2. CS5240 Theoretical Foundations in Multimedia. Leow Wee Kheng

Optimization 2. CS5240 Theoretical Foundations in Multimedia. Leow Wee Kheng Optimization 2 CS5240 Theoretical Foundations in Multimedia Leow Wee Kheng Department of Computer Science School of Computing National University of Singapore Leow Wee Kheng (NUS) Optimization 2 1 / 38

More information

ECS171: Machine Learning

ECS171: Machine Learning ECS171: Machine Learning Lecture 4: Optimization (LFD 3.3, SGD) Cho-Jui Hsieh UC Davis Jan 22, 2018 Gradient descent Optimization Goal: find the minimizer of a function min f (w) w For now we assume f

More information

ABSTRACT 1. INTRODUCTION

ABSTRACT 1. INTRODUCTION A DIAGONAL-AUGMENTED QUASI-NEWTON METHOD WITH APPLICATION TO FACTORIZATION MACHINES Aryan Mohtari and Amir Ingber Department of Electrical and Systems Engineering, University of Pennsylvania, PA, USA Big-data

More information

Large-scale Stochastic Optimization

Large-scale Stochastic Optimization Large-scale Stochastic Optimization 11-741/641/441 (Spring 2016) Hanxiao Liu hanxiaol@cs.cmu.edu March 24, 2016 1 / 22 Outline 1. Gradient Descent (GD) 2. Stochastic Gradient Descent (SGD) Formulation

More information

Gradient-Based Optimization

Gradient-Based Optimization Multidisciplinary Design Optimization 48 Chapter 3 Gradient-Based Optimization 3. Introduction In Chapter we described methods to minimize (or at least decrease) a function of one variable. While problems

More information

CS60021: Scalable Data Mining. Large Scale Machine Learning

CS60021: Scalable Data Mining. Large Scale Machine Learning J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org 1 CS60021: Scalable Data Mining Large Scale Machine Learning Sourangshu Bhattacharya Example: Spam filtering Instance

More information

Stochastic Gradient Methods for Large-Scale Machine Learning

Stochastic Gradient Methods for Large-Scale Machine Learning Stochastic Gradient Methods for Large-Scale Machine Learning Leon Bottou Facebook A Research Frank E. Curtis Lehigh University Jorge Nocedal Northwestern University 1 Our Goal 1. This is a tutorial about

More information

Data Mining (Mineria de Dades)

Data Mining (Mineria de Dades) Data Mining (Mineria de Dades) Lluís A. Belanche belanche@lsi.upc.edu Soft Computing Research Group Dept. de Llenguatges i Sistemes Informàtics (Software department) Universitat Politècnica de Catalunya

More information

AM 205: lecture 19. Last time: Conditions for optimality Today: Newton s method for optimization, survey of optimization methods

AM 205: lecture 19. Last time: Conditions for optimality Today: Newton s method for optimization, survey of optimization methods AM 205: lecture 19 Last time: Conditions for optimality Today: Newton s method for optimization, survey of optimization methods Optimality Conditions: Equality Constrained Case As another example of equality

More information

Comparative study of Optimization methods for Unconstrained Multivariable Nonlinear Programming Problems

Comparative study of Optimization methods for Unconstrained Multivariable Nonlinear Programming Problems International Journal of Scientific and Research Publications, Volume 3, Issue 10, October 013 1 ISSN 50-3153 Comparative study of Optimization methods for Unconstrained Multivariable Nonlinear Programming

More information

Nonlinear Programming

Nonlinear Programming Nonlinear Programming Kees Roos e-mail: C.Roos@ewi.tudelft.nl URL: http://www.isa.ewi.tudelft.nl/ roos LNMB Course De Uithof, Utrecht February 6 - May 8, A.D. 2006 Optimization Group 1 Outline for week

More information

OPER 627: Nonlinear Optimization Lecture 9: Trust-region methods

OPER 627: Nonlinear Optimization Lecture 9: Trust-region methods OPER 627: Nonlinear Optimization Lecture 9: Trust-region methods Department of Statistical Sciences and Operations Research Virginia Commonwealth University Sept 25, 2013 (Lecture 9) Nonlinear Optimization

More information

Accelerating SVRG via second-order information

Accelerating SVRG via second-order information Accelerating via second-order information Ritesh Kolte Department of Electrical Engineering rkolte@stanford.edu Murat Erdogdu Department of Statistics erdogdu@stanford.edu Ayfer Özgür Department of Electrical

More information

ECS289: Scalable Machine Learning

ECS289: Scalable Machine Learning ECS289: Scalable Machine Learning Cho-Jui Hsieh UC Davis Sept 29, 2016 Outline Convex vs Nonconvex Functions Coordinate Descent Gradient Descent Newton s method Stochastic Gradient Descent Numerical Optimization

More information

Non-Convex Optimization. CS6787 Lecture 7 Fall 2017

Non-Convex Optimization. CS6787 Lecture 7 Fall 2017 Non-Convex Optimization CS6787 Lecture 7 Fall 2017 First some words about grading I sent out a bunch of grades on the course management system Everyone should have all their grades in Not including paper

More information

Normalization Techniques in Training of Deep Neural Networks

Normalization Techniques in Training of Deep Neural Networks Normalization Techniques in Training of Deep Neural Networks Lei Huang ( 黄雷 ) State Key Laboratory of Software Development Environment, Beihang University Mail:huanglei@nlsde.buaa.edu.cn August 17 th,

More information

OPTIMIZATION METHODS IN DEEP LEARNING

OPTIMIZATION METHODS IN DEEP LEARNING Tutorial outline OPTIMIZATION METHODS IN DEEP LEARNING Based on Deep Learning, chapter 8 by Ian Goodfellow, Yoshua Bengio and Aaron Courville Presented By Nadav Bhonker Optimization vs Learning Surrogate

More information

A Trust-region-based Sequential Quadratic Programming Algorithm

A Trust-region-based Sequential Quadratic Programming Algorithm Downloaded from orbit.dtu.dk on: Oct 19, 2018 A Trust-region-based Sequential Quadratic Programming Algorithm Henriksen, Lars Christian; Poulsen, Niels Kjølstad Publication date: 2010 Document Version

More information

Quasi-Newton Methods

Quasi-Newton Methods Newton s Method Pros and Cons Quasi-Newton Methods MA 348 Kurt Bryan Newton s method has some very nice properties: It s extremely fast, at least once it gets near the minimum, and with the simple modifications

More information

Empirical Risk Minimization and Optimization

Empirical Risk Minimization and Optimization Statistical Machine Learning Notes 3 Empirical Risk Minimization and Optimization Instructor: Justin Domke 1 Empirical Risk Minimization Empirical Risk Minimization is a fancy sounding name for a very

More information

Step lengths in BFGS method for monotone gradients

Step lengths in BFGS method for monotone gradients Noname manuscript No. (will be inserted by the editor) Step lengths in BFGS method for monotone gradients Yunda Dong Received: date / Accepted: date Abstract In this paper, we consider how to directly

More information

Term Paper: How and Why to Use Stochastic Gradient Descent?

Term Paper: How and Why to Use Stochastic Gradient Descent? 000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050

More information

Approximate Newton Methods and Their Local Convergence

Approximate Newton Methods and Their Local Convergence Haishan Ye Luo Luo Zhihua Zhang 2 Abstract Many machine learning models are reformulated as optimization problems. Thus, it is important to solve a large-scale optimization problem in big data applications.

More information

Math 408A: Non-Linear Optimization

Math 408A: Non-Linear Optimization February 12 Broyden Updates Given g : R n R n solve g(x) = 0. Algorithm: Broyden s Method Initialization: x 0 R n, B 0 R n n Having (x k, B k ) compute (x k+1, B x+1 ) as follows: Solve B k s k = g(x

More information

Warm up. Regrade requests submitted directly in Gradescope, do not instructors.

Warm up. Regrade requests submitted directly in Gradescope, do not  instructors. Warm up Regrade requests submitted directly in Gradescope, do not email instructors. 1 float in NumPy = 8 bytes 10 6 2 20 bytes = 1 MB 10 9 2 30 bytes = 1 GB For each block compute the memory required

More information

High Order Methods for Empirical Risk Minimization

High Order Methods for Empirical Risk Minimization High Order Methods for Empirical Risk Minimization Alejandro Ribeiro Department of Electrical and Systems Engineering University of Pennsylvania aribeiro@seas.upenn.edu IPAM Workshop of Emerging Wireless

More information

Advanced computational methods X Selected Topics: SGD

Advanced computational methods X Selected Topics: SGD Advanced computational methods X071521-Selected Topics: SGD. In this lecture, we look at the stochastic gradient descent (SGD) method 1 An illustrating example The MNIST is a simple dataset of variety

More information

Selected Topics in Optimization. Some slides borrowed from

Selected Topics in Optimization. Some slides borrowed from Selected Topics in Optimization Some slides borrowed from http://www.stat.cmu.edu/~ryantibs/convexopt/ Overview Optimization problems are almost everywhere in statistics and machine learning. Input Model

More information

Optimization: Nonlinear Optimization without Constraints. Nonlinear Optimization without Constraints 1 / 23

Optimization: Nonlinear Optimization without Constraints. Nonlinear Optimization without Constraints 1 / 23 Optimization: Nonlinear Optimization without Constraints Nonlinear Optimization without Constraints 1 / 23 Nonlinear optimization without constraints Unconstrained minimization min x f(x) where f(x) is

More information

Lecture 18: November Review on Primal-dual interior-poit methods

Lecture 18: November Review on Primal-dual interior-poit methods 10-725/36-725: Convex Optimization Fall 2016 Lecturer: Lecturer: Javier Pena Lecture 18: November 2 Scribes: Scribes: Yizhu Lin, Pan Liu Note: LaTeX template courtesy of UC Berkeley EECS dept. Disclaimer:

More information

Announcements Kevin Jamieson

Announcements Kevin Jamieson Announcements Project proposal due next week: Tuesday 10/24 Still looking for people to work on deep learning Phytolith project, join #phytolith slack channel 2017 Kevin Jamieson 1 Gradient Descent Machine

More information

The Kernel Trick, Gram Matrices, and Feature Extraction. CS6787 Lecture 4 Fall 2017

The Kernel Trick, Gram Matrices, and Feature Extraction. CS6787 Lecture 4 Fall 2017 The Kernel Trick, Gram Matrices, and Feature Extraction CS6787 Lecture 4 Fall 2017 Momentum for Principle Component Analysis CS6787 Lecture 3.1 Fall 2017 Principle Component Analysis Setting: find the

More information

AM 205: lecture 19. Last time: Conditions for optimality, Newton s method for optimization Today: survey of optimization methods

AM 205: lecture 19. Last time: Conditions for optimality, Newton s method for optimization Today: survey of optimization methods AM 205: lecture 19 Last time: Conditions for optimality, Newton s method for optimization Today: survey of optimization methods Quasi-Newton Methods General form of quasi-newton methods: x k+1 = x k α

More information

Lecture 14: October 17

Lecture 14: October 17 1-725/36-725: Convex Optimization Fall 218 Lecture 14: October 17 Lecturer: Lecturer: Ryan Tibshirani Scribes: Pengsheng Guo, Xian Zhou Note: LaTeX template courtesy of UC Berkeley EECS dept. Disclaimer:

More information

On Lagrange multipliers of trust region subproblems

On Lagrange multipliers of trust region subproblems On Lagrange multipliers of trust region subproblems Ladislav Lukšan, Ctirad Matonoha, Jan Vlček Institute of Computer Science AS CR, Prague Applied Linear Algebra April 28-30, 2008 Novi Sad, Serbia Outline

More information

Lecture 7 Unconstrained nonlinear programming

Lecture 7 Unconstrained nonlinear programming Lecture 7 Unconstrained nonlinear programming Weinan E 1,2 and Tiejun Li 2 1 Department of Mathematics, Princeton University, weinan@princeton.edu 2 School of Mathematical Sciences, Peking University,

More information

Cheng Soon Ong & Christian Walder. Canberra February June 2018

Cheng Soon Ong & Christian Walder. Canberra February June 2018 Cheng Soon Ong & Christian Walder Research Group and College of Engineering and Computer Science Canberra February June 2018 Outlines Overview Introduction Linear Algebra Probability Linear Regression

More information

A Quasi-Newton Algorithm for Nonconvex, Nonsmooth Optimization with Global Convergence Guarantees

A Quasi-Newton Algorithm for Nonconvex, Nonsmooth Optimization with Global Convergence Guarantees Noname manuscript No. (will be inserted by the editor) A Quasi-Newton Algorithm for Nonconvex, Nonsmooth Optimization with Global Convergence Guarantees Frank E. Curtis Xiaocun Que May 26, 2014 Abstract

More information

Why should you care about the solution strategies?

Why should you care about the solution strategies? Optimization Why should you care about the solution strategies? Understanding the optimization approaches behind the algorithms makes you more effectively choose which algorithm to run Understanding the

More information