Basic Thermodynamics Cycle analysis

Size: px
Start display at page:

Download "Basic Thermodynamics Cycle analysis"

Transcription

1 Basic Thermodynamics Cycle analysis

2 Objectives and other details of modules Duration 90 minutes Training aids Power point Presentations Reading Material Objective At the end of the session participants will be able to: Recap the basic thermodynamics, laws and thermodynamics cycles and its application in thermal power generation Effect various parameters on the cycle performance Undertake thermal cycle analysis and efficiency calculation Mittwoch, 4. September 2013 Fußzeilentext 2

3 Thermodynamic laws 9/4/2013 Steag O&M Company 3

4 Baisic Thermodynamics The four laws of thermodynamics define fundamental physical quantities (temperature, energy, and entropy) that characterize thermodynamic systems. The laws describe how these quantities behave under various circumstances, and forbid certain phenomena (such as perpetual motion). The four laws of thermodynamics are: From the above, all the energy associated with a system must be accounted for as heat, work, chemical energy etc., thus perpetual motion machines of the first kind, which would do work without using the energy resources of a system, are impossible. If two systems are both in thermal equilibrium with a third system then they are in thermal equilibrium with each other. This law helps define the notion of temperature. 9/4/2013 Steag O&M Company 4

5 Zeroeth Law There is a state function, called temperature which has the symbol T, which has the following relationship to heat, q : addition of heat to a system will increase the temperature of the system. if two closed system (together isolated), with different temperatures are brought into thermal contact, then the temperatures of the two systems will change to approach the same temperature. That is, the temperature of the system which is at a higher temperature will decrease and the temperature of the system with the lower temperature will increase. They will eventually have the same temperature. 9/4/2013 Steag O&M Company 5

6 First Law of thermodynamics Use of internal energy or change in internal energy, Δ E, is not very convenient in chemistry. The reason for this is that when chemical reactions occur or samples are heated, the volume does not stay constant. If one is therefore interested in only q, the ΔE is complicated by an additional w. To avoid this a new quantity called enthalpy is defined, given the symbol H. H = E + PV or ΔH = ΔE + PΔV Since at constant pressure PΔV = -- w if no other external form of work is present, then: ΔH = w + q + PΔ V and ΔH = q Therefore at constant pressure ΔH will yield the heat transferred. All thermodynamic tables use this as the tabulated "heat of reaction," etc. 9/4/2013 Steag O&M Company 6

7 Second Law of Thermodynamics 9/4/2013 Steag O&M Company 7

8 Vapor dome Critical State: Saturated liquid and saturated vapor states are identical. The two phases are indistinguishable. [Water: pc = MPa & Tc = K], The critical point is the tip of the vapor dome. Date Title of Presentation Page 8

9 Mollier chart Date Title of Presentation Page 9

10 Pressure-enthalpy diagram Date Title of Presentation Page 10

11 Isentropic and actual process Date Title of Presentation Page 11

12 Carnot Cycle Sadi Carnot ( ) Date Title of Presentation Page 12

13 Rankine Cycle Date Title of Presentation Page 13

14 Rankine Cycle Mittwoch, 4. September 2013 Fußzeilentext 14

15 Efficiency of Rankine cycle q absorb = h 2 - h 1 q exhaust = h 3 h 4 qabsorb q η = qabsorb h = h h = 2 exhaust 2 h1 ( h3 h4 ) h 2 h1 h3 + h4 ) h 2 1 h 1 Date Title of Presentation Page 15

16 Turbine analysis Date Title of Presentation Page 16

17 Pump work In this ideal cycle we assume that the feedwater pump is isentropic. Furthermore, since the suction temperature of the water is 46 C, we assume that it behaves as an incompressible liquid, even at 15 MPa Date Title of Presentation Page 17

18 Boiler Date Title of Presentation Page 18

19 Carnot and Rankin cycle Date Title of Presentation Page 19

20 Carnot and Rankin cycle Date Title of Presentation Page 20

21 Effect of increase in pressure Date Title of Presentation Page 21

22 Rankin cycle saturated Date Title of Presentation Page 22

23 Rankin cycle-super heated Date Title of Presentation Page 23

24 Cycle with out Reheating Date Title of Presentation Page 24

25 Effect of Reheating We notice that reheating the output of the HP turbine back to 600 C (process (2)- (3)) allows both significantly more power output as well as increasing the quality at the LP turbine output (4) to 98%. Date Title of Presentation Page 25

26 Rankin cycle -reheated Date Title of Presentation Page 26

27 Effect of condenser pressure Date Title of Presentation Page 27

28 Unit cycle analysis Date Title of Presentation Page 28

29 Feed water heating Date Title of Presentation Page 29

30 Thank You Mittwoch, 4. September 2013 Fußzeilentext 30

MAHALAKSHMI ENGINEERING COLLEGE

MAHALAKSHMI ENGINEERING COLLEGE MAHALAKSHMI ENGINEERING COLLEGE TIRUCHIRAPALLI 621 213. Department: Mechanical Subject Code: ME2202 Semester: III Subject Name: ENGG. THERMODYNAMICS UNIT-I Basic Concept and First Law 1. What do you understand

More information

ME6301- ENGINEERING THERMODYNAMICS UNIT I BASIC CONCEPT AND FIRST LAW PART-A

ME6301- ENGINEERING THERMODYNAMICS UNIT I BASIC CONCEPT AND FIRST LAW PART-A ME6301- ENGINEERING THERMODYNAMICS UNIT I BASIC CONCEPT AND FIRST LAW PART-A 1. What is meant by thermodynamics system? (A/M 2006) Thermodynamics system is defined as any space or matter or group of matter

More information

Lecture 44: Review Thermodynamics I

Lecture 44: Review Thermodynamics I ME 00 Thermodynamics I Lecture 44: Review Thermodynamics I Yong Li Shanghai Jiao Tong University Institute of Refrigeration and Cryogenics 800 Dong Chuan Road Shanghai, 0040, P. R. China Email : liyo@sjtu.edu.cn

More information

(1)5. Which of the following equations is always valid for a fixed mass system undergoing an irreversible or reversible process:

(1)5. Which of the following equations is always valid for a fixed mass system undergoing an irreversible or reversible process: Last Name First Name ME 300 Engineering Thermodynamics Exam #2 Spring 2008 March 28, 2008 Form A Note : (i) (ii) (iii) (iv) Closed book, closed notes; one 8.5 x 11 sheet allowed. 60 points total; 60 minutes;

More information

MARIA COLLEGE OF ENGINEERING AND TECHNOLOGY

MARIA COLLEGE OF ENGINEERING AND TECHNOLOGY MARIA COLLEGE OF ENGINEERING AND TECHNOLOGY ATTOOR ENGINEERING THERMODYNAMICS (TWO MARK QUESTION BANK) UNIT 1 (BASIC COMCEPTS AND FIRST LAW) 1. Define the term thermal engineering. Thermal engineering

More information

Unit Workbook 2 - Level 5 ENG U64 Thermofluids 2018 UniCourse Ltd. All Rights Reserved. Sample

Unit Workbook 2 - Level 5 ENG U64 Thermofluids 2018 UniCourse Ltd. All Rights Reserved. Sample Pearson BTEC Level 5 Higher Nationals in Engineering (RQF) Unit 64: Thermofluids Unit Workbook 2 in a series of 4 for this unit Learning Outcome 2 Vapour Power Cycles Page 1 of 26 2.1 Power Cycles Unit

More information

Thermodynamics is the Science of Energy and Entropy

Thermodynamics is the Science of Energy and Entropy Definition of Thermodynamics: Thermodynamics is the Science of Energy and Entropy - Some definitions. - The zeroth law. - Properties of pure substances. - Ideal gas law. - Entropy and the second law. Some

More information

ME 2322 Thermodynamics I PRE-LECTURE Lesson 23 Complete the items below Name:

ME 2322 Thermodynamics I PRE-LECTURE Lesson 23 Complete the items below Name: Lesson 23 1. (10 pt) Write the equation for the thermal efficiency of a Carnot heat engine below: 1 L H 2. (10 pt) Can the thermal efficiency of an actual engine ever exceed that of an equivalent Carnot

More information

5/6/ :41 PM. Chapter 6. Using Entropy. Dr. Mohammad Abuhaiba, PE

5/6/ :41 PM. Chapter 6. Using Entropy. Dr. Mohammad Abuhaiba, PE Chapter 6 Using Entropy 1 2 Chapter Objective Means are introduced for analyzing systems from the 2 nd law perspective as they undergo processes that are not necessarily cycles. Objective: introduce entropy

More information

The exergy of asystemis the maximum useful work possible during a process that brings the system into equilibrium with aheat reservoir. (4.

The exergy of asystemis the maximum useful work possible during a process that brings the system into equilibrium with aheat reservoir. (4. Energy Equation Entropy equation in Chapter 4: control mass approach The second law of thermodynamics Availability (exergy) The exergy of asystemis the maximum useful work possible during a process that

More information

Availability and Irreversibility

Availability and Irreversibility Availability and Irreversibility 1.0 Overview A critical application of thermodynamics is finding the maximum amount of work that can be extracted from a given energy resource. This calculation forms the

More information

Chapter 1 Introduction and Basic Concepts

Chapter 1 Introduction and Basic Concepts Chapter 1 Introduction and Basic Concepts 1-1 Thermodynamics and Energy Application Areas of Thermodynamics 1-2 Importance of Dimensions and Units Some SI and English Units Dimensional Homogeneity Unity

More information

Lecture 35: Vapor power systems, Rankine cycle

Lecture 35: Vapor power systems, Rankine cycle ME 00 Thermodynamics I Spring 015 Lecture 35: Vapor power systems, Rankine cycle Yong Li Shanghai Jiao Tong University Institute of Refrigeration and Cryogenics 800 Dong Chuan Road Shanghai, 0040, P. R.

More information

Non-Newtonian fluids is the fluids in which shear stress is not directly proportional to deformation rate, such as toothpaste,

Non-Newtonian fluids is the fluids in which shear stress is not directly proportional to deformation rate, such as toothpaste, CHAPTER1: Basic Definitions, Zeroth, First, and Second Laws of Thermodynamics 1.1. Definitions What does thermodynamic mean? It is a Greeks word which means a motion of the heat. Water is a liquid substance

More information

Boundary. Surroundings

Boundary. Surroundings Thermodynamics Thermodynamics describes the physics of matter using the concept of the thermodynamic system, a region of the universe that is under study. All quantities, such as pressure or mechanical

More information

DEPARTMENT OF MECHANICAL ENGINEERING ME6301-ENGINEERING THERMODYNAMICS

DEPARTMENT OF MECHANICAL ENGINEERING ME6301-ENGINEERING THERMODYNAMICS SYED AMMAL ENGINEERING COLLEGE (Approved by the AICTE, New Delhi, Govt. of Tamilnadu and Affiliated to Anna University, chennai) Established in 1998 - An ISO 9001:2008 Certified Institution Dr. E.M.Abdullah

More information

ME 354 THERMODYNAMICS 2 MIDTERM EXAMINATION. Instructor: R. Culham. Name: Student ID Number: Instructions

ME 354 THERMODYNAMICS 2 MIDTERM EXAMINATION. Instructor: R. Culham. Name: Student ID Number: Instructions ME 354 THERMODYNAMICS 2 MIDTERM EXAMINATION February 14, 2011 5:30 pm - 7:30 pm Instructor: R. Culham Name: Student ID Number: Instructions 1. This is a 2 hour, closed-book examination. 2. Answer all questions

More information

Scheme G. Sample Test Paper-I

Scheme G. Sample Test Paper-I Sample Test Paper-I Marks : 25 Time: 1 hour 1) All questions are compulsory 2) Illustrate your answers with neat sketches wherever necessary 3) Figures to the right indicate full marks 4) Assume suitable

More information

MAE 11. Homework 8: Solutions 11/30/2018

MAE 11. Homework 8: Solutions 11/30/2018 MAE 11 Homework 8: Solutions 11/30/2018 MAE 11 Fall 2018 HW #8 Due: Friday, November 30 (beginning of class at 12:00p) Requirements:: Include T s diagram for all cycles. Also include p v diagrams for Ch

More information

III. Evaluating Properties. III. Evaluating Properties

III. Evaluating Properties. III. Evaluating Properties F. Property Tables 1. What s in the tables and why specific volumes, v (m /kg) (as v, v i, v f, v g ) pressure, P (kpa) temperature, T (C) internal energy, u (kj/kg) (as u, u i, u f, u g, u ig, u fg )

More information

Department of Mechanical Engineering ME 322 Mechanical Engineering Thermodynamics. Lecture 26. Use of Regeneration in Vapor Power Cycles

Department of Mechanical Engineering ME 322 Mechanical Engineering Thermodynamics. Lecture 26. Use of Regeneration in Vapor Power Cycles Department of Mechanical Engineering ME 322 Mechanical Engineering Thermodynamics Lecture 2 Use of Regeneration in Vapor Power Cycles What is Regeneration? Goal of regeneration Reduce the fuel input requirements

More information

Refrigeration. 05/04/2011 T.Al-Shemmeri 1

Refrigeration. 05/04/2011 T.Al-Shemmeri 1 Refrigeration is a process of controlled removal of heat from a substance to keep it at a temperature below the ambient condition, often below the freezing point of water (0 O C) 05/04/0 T.Al-Shemmeri

More information

ME Thermodynamics I

ME Thermodynamics I Homework - Week 01 HW-01 (25 points) Given: 5 Schematic of the solar cell/solar panel Find: 5 Identify the system and the heat/work interactions associated with it. Show the direction of the interactions.

More information

Basic Thermodynamics Prof. S K Som Department of Mechanical Engineering Indian Institute of Technology, Kharagpur. Lecture - 21 Vapors Power Cycle-II

Basic Thermodynamics Prof. S K Som Department of Mechanical Engineering Indian Institute of Technology, Kharagpur. Lecture - 21 Vapors Power Cycle-II Basic Thermodynamics Prof. S K Som Department of Mechanical Engineering Indian Institute of Technology, Kharagpur Lecture - 21 Vapors Power Cycle-II Good morning to all of you. Today, we will be continuing

More information

ME Thermodynamics I. Lecture Notes and Example Problems

ME Thermodynamics I. Lecture Notes and Example Problems ME 227.3 Thermodynamics I Lecture Notes and Example Problems James D. Bugg September 2018 Department of Mechanical Engineering Introduction Part I: Lecture Notes This part contains handout versions of

More information

UBMCC11 - THERMODYNAMICS. B.E (Marine Engineering) B 16 BASIC CONCEPTS AND FIRST LAW PART- A

UBMCC11 - THERMODYNAMICS. B.E (Marine Engineering) B 16 BASIC CONCEPTS AND FIRST LAW PART- A UBMCC11 - THERMODYNAMICS B.E (Marine Engineering) B 16 UNIT I BASIC CONCEPTS AND FIRST LAW PART- A 1. What do you understand by pure substance? 2. Define thermodynamic system. 3. Name the different types

More information

Brown Hills College of Engineering & Technology

Brown Hills College of Engineering & Technology UNIT 4 Flow Through Nozzles Velocity and heat drop, Mass discharge through a nozzle, Critical pressure ratio and its significance, Effect of friction, Nozzle efficiency, Supersaturated flow, Design pressure

More information

Theoretical & Derivation based Questions and Answer. Unit Derive the condition for exact differentials. Solution:

Theoretical & Derivation based Questions and Answer. Unit Derive the condition for exact differentials. Solution: Theoretical & Derivation based Questions and Answer Unit 01 1. Derive the condition for exact differentials. Solution: 2*. Derive the Maxwell relations and explain their importance in thermodynamics. Solution:

More information

1. INTRODUCTION TO REFRIGERATION AND AIR CONDITION

1. INTRODUCTION TO REFRIGERATION AND AIR CONDITION CHAPTER ONE 1. INTRODUCTION TO REFRIGERATION AND AIR CONDITION Refrigeration may be defined as the process of reducing and maintaining a temperature of a space or material below that of the surroundings.

More information

CHEMICAL ENGINEERING THERMODYNAMICS. Andrew S. Rosen

CHEMICAL ENGINEERING THERMODYNAMICS. Andrew S. Rosen CHEMICAL ENGINEERING THERMODYNAMICS Andrew S. Rosen SYMBOL DICTIONARY 1 TABLE OF CONTENTS Symbol Dictionary... 3 1. Measured Thermodynamic Properties and Other Basic Concepts... 5 1.1 Preliminary Concepts

More information

ECE309 THERMODYNAMICS & HEAT TRANSFER MIDTERM EXAMINATION. Instructor: R. Culham. Name: Student ID Number:

ECE309 THERMODYNAMICS & HEAT TRANSFER MIDTERM EXAMINATION. Instructor: R. Culham. Name: Student ID Number: ECE309 THERMODYNAMICS & HEAT TRANSFER MIDTERM EXAMINATION June 19, 2015 2:30 pm - 4:30 pm Instructor: R. Culham Name: Student ID Number: Instructions 1. This is a 2 hour, closed-book examination. 2. Permitted

More information

NPP Simulators for Education Workshop - Passive PWR Models

NPP Simulators for Education Workshop - Passive PWR Models NPP Simulators for Education Workshop - Passive PWR Models Wilson Lam (wilson@cti-simulation.com) CTI Simulation International Corp. www.cti-simulation.com Sponsored by IAEA Learning Objectives Understand

More information

An introduction to thermodynamics applied to Organic Rankine Cycles

An introduction to thermodynamics applied to Organic Rankine Cycles An introduction to thermodynamics applied to Organic Rankine Cycles By : Sylvain Quoilin PhD Student at the University of Liège November 2008 1 Definition of a few thermodynamic variables 1.1 Main thermodynamics

More information

CHAPTER 7 ENTROPY. Copyright Hany A. Al-Ansary and S. I. Abdel-Khalik (2014) 1

CHAPTER 7 ENTROPY. Copyright Hany A. Al-Ansary and S. I. Abdel-Khalik (2014) 1 CHAPTER 7 ENTROPY S. I. Abdel-Khalik (2014) 1 ENTROPY The Clausius Inequality The Clausius inequality states that for for all cycles, reversible or irreversible, engines or refrigerators: For internally-reversible

More information

Chapter 6. Using Entropy

Chapter 6. Using Entropy Chapter 6 Using Entropy Learning Outcomes Demonstrate understanding of key concepts related to entropy and the second law... including entropy transfer, entropy production, and the increase in entropy

More information

8.21 The Physics of Energy Fall 2009

8.21 The Physics of Energy Fall 2009 MIT OpenCourseWare http://ocw.mit.edu 8.21 The Physics of Energy Fall 2009 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. 8.21 Lecture 10 Phase Change

More information

ME 200 Final Exam December 14, :00 a.m. to 10:00 a.m.

ME 200 Final Exam December 14, :00 a.m. to 10:00 a.m. CIRCLE YOUR LECTURE BELOW: First Name Last Name 7:30 a.m. 8:30 a.m. 10:30 a.m. 11:30 a.m. Boregowda Boregowda Braun Bae 2:30 p.m. 3:30 p.m. 4:30 p.m. Meyer Naik Hess ME 200 Final Exam December 14, 2015

More information

THERMODYNAMICS (Date of document: 8 th March 2016)

THERMODYNAMICS (Date of document: 8 th March 2016) THERMODYNAMICS (Date of document: 8 th March 2016) Course Code : MEHD214 Course Status : Core Level : Diploma Semester Taught : 3 Credit : 4 Pre-requisites : None Assessments : Computerized homework 20

More information

R13. II B. Tech I Semester Regular Examinations, Jan THERMODYNAMICS (Com. to ME, AE, AME) PART- A

R13. II B. Tech I Semester Regular Examinations, Jan THERMODYNAMICS (Com. to ME, AE, AME) PART- A SET - 1 II B. Tech I Semester Regular Examinations, Jan - 2015 THERMODYNAMICS (Com. to ME, AE, AME) Time: 3 hours Max. Marks: 70 Note 1. Question Paper consists of two parts (Part-A and Part-B) 2. Answer

More information

Existing Resources: Supplemental/reference for students with thermodynamics background and interests:

Existing Resources: Supplemental/reference for students with thermodynamics background and interests: Existing Resources: Masters, G. (1991) Introduction to Environmental Engineering and Science (Prentice Hall: NJ), pages 15 29. [ Masters_1991_Energy.pdf] Supplemental/reference for students with thermodynamics

More information

Part III: Planes, Trains, and Automobiles: Making Heat Work for You

Part III: Planes, Trains, and Automobiles: Making Heat Work for You Contents at a Glance Introduction... 1 Part I: Covering the Basics in Thermodynamics... 7 Chapter 1: Thermodynamics in Everyday Life...9 Chapter 2: Laying the Foundation of Thermodynamics...15 Chapter

More information

Second Law of Thermodynamics -

Second Law of Thermodynamics - Second Law of Thermodynamics - REVIEW ENTROPY EXAMPLE Dr. Garrick 1/19/09 First Law of Thermodynamics you can t win! First Law of Thermodynamics: Energy cannot be Created or Destroyed the total energy

More information

Chemical Engineering Thermodynamics Spring 2002

Chemical Engineering Thermodynamics Spring 2002 10.213 Chemical Engineering Thermodynamics Spring 2002 Test 2 Solution Problem 1 (35 points) High pressure steam (stream 1) at a rate of 1000 kg/h initially at 3.5 MPa and 350 ºC is expanded in a turbine

More information

FINAL EXAM. ME 200 Thermodynamics I, Spring 2013 CIRCLE YOUR LECTURE BELOW:

FINAL EXAM. ME 200 Thermodynamics I, Spring 2013 CIRCLE YOUR LECTURE BELOW: ME 200 Thermodynamics I, Spring 2013 CIRCLE YOUR LECTURE BELOW: Div. 5 7:30 am Div. 2 10:30 am Div. 4 12:30 am Prof. Naik Prof. Braun Prof. Bae Div. 3 2:30 pm Div. 1 4:30 pm Div. 6 4:30 pm Prof. Chen Prof.

More information

Department: Machines and equipments. Stage: First Stage Title: Thermodynamic week: 19

Department: Machines and equipments. Stage: First Stage Title: Thermodynamic week: 19 Department: Machines and equipments Stage: First Stage Title: Thermodynamic week: 19 Entropy, changes on closed systems and temperature entropy plane Entropy is an extensive property of a system and sometimes

More information

10. Heat devices: heat engines and refrigerators (Hiroshi Matsuoka)

10. Heat devices: heat engines and refrigerators (Hiroshi Matsuoka) 10 Heat devices: heat engines and refrigerators (Hiroshi Matsuoka) 1 In this chapter we will discuss how heat devices work Heat devices convert heat into work or work into heat and include heat engines

More information

IS A PARTICULAR PROCESS / REACTION FEASIBLE? TO WHAT EXTENT DOES THE PROCESS / REACTION PROCEED?

IS A PARTICULAR PROCESS / REACTION FEASIBLE? TO WHAT EXTENT DOES THE PROCESS / REACTION PROCEED? Limitations of First Law of Thermodynamics The first law of thermodynamics is a law of conservation of energy. It does not specify the direction of the process. All spontaneous processes processed in one

More information

ME 201 Thermodynamics

ME 201 Thermodynamics ME 0 Thermodynamics Solutions First Law Practice Problems. Consider a balloon that has been blown up inside a building and has been allowed to come to equilibrium with the inside temperature of 5 C and

More information

FUNDAMENTALS OF THERMODYNAMICS

FUNDAMENTALS OF THERMODYNAMICS FUNDAMENTALS OF THERMODYNAMICS SEVENTH EDITION CLAUS BORGNAKKE RICHARD E. SONNTAG University of Michigan John Wiley & Sons, Inc. PUBLISHER ASSOCIATE PUBLISHER ACQUISITIONS EDITOR SENIOR PRODUCTION EDITOR

More information

Engineering Thermodynamics. Chapter 6. Entropy: a measure of Disorder 6.1 Introduction

Engineering Thermodynamics. Chapter 6. Entropy: a measure of Disorder 6.1 Introduction Engineering hermodynamics AAi Chapter 6 Entropy: a measure of Disorder 6. Introduction he second law of thermodynamics leads to the definition of a new property called entropy, a quantitative measure of

More information

ECE309 INTRODUCTION TO THERMODYNAMICS & HEAT TRANSFER. 20 June 2005

ECE309 INTRODUCTION TO THERMODYNAMICS & HEAT TRANSFER. 20 June 2005 ECE309 INTRODUCTION TO THERMODYNAMICS & HEAT TRANSFER 20 June 2005 Midterm Examination R. Culham & M. Bahrami This is a 90 minute, closed-book examination. You are permitted to use one 8.5 in. 11 in. crib

More information

Chapter 7. Entropy. by Asst.Prof. Dr.Woranee Paengjuntuek and Asst. Prof. Dr.Worarattana Pattaraprakorn

Chapter 7. Entropy. by Asst.Prof. Dr.Woranee Paengjuntuek and Asst. Prof. Dr.Worarattana Pattaraprakorn Chapter 7 Entropy by Asst.Prof. Dr.Woranee Paengjuntuek and Asst. Prof. Dr.Worarattana Pattaraprakorn Reference: Cengel, Yunus A. and Michael A. Boles, Thermodynamics: An Engineering Approach, 5th ed.,

More information

Chapter Two. Basic Thermodynamics, Fluid Mechanics: Definitions of Efficiency. Laith Batarseh

Chapter Two. Basic Thermodynamics, Fluid Mechanics: Definitions of Efficiency. Laith Batarseh Chapter Two Basic Thermodynamics, Fluid Mechanics: Definitions of Efficiency Laith Batarseh The equation of continuity Most analyses in this book are limited to one-dimensional steady flows where the velocity

More information

Chapter 4. Entropy and the Second Law. Soong Ho Um Sungkyunkwan University Chemical Engineering

Chapter 4. Entropy and the Second Law. Soong Ho Um Sungkyunkwan University Chemical Engineering Chapter 4. Entropy and the Second Law Soong Ho Um Sungkyunkwan University Chemical Engineering 1 st Law to 2 nd Law The first law, discussed in the previous chapter, expresses a fundamental principle,

More information

ECE309 INTRODUCTION TO THERMODYNAMICS & HEAT TRANSFER. 13 June 2007

ECE309 INTRODUCTION TO THERMODYNAMICS & HEAT TRANSFER. 13 June 2007 ECE309 INTRODUCTION TO THERMODYNAMICS & HEAT TRANSFER 13 June 2007 Midterm Examination R. Culham This is a 2 hour, open-book examination. You are permitted to use: course text book calculator There are

More information

ME 201 Thermodynamics

ME 201 Thermodynamics Spring 01 ME 01 Thermodynamics Property Evaluation Practice Problems II Solutions 1. Air at 100 K and 1 MPa goes to MPa isenthapically. Determine the entropy change. Substance Type: Ideal Gas (air) Process:

More information

2.0 KEY EQUATIONS. Evaporator Net Refrigeration Effect. Compressor Work. Net Condenser Effect

2.0 KEY EQUATIONS. Evaporator Net Refrigeration Effect. Compressor Work. Net Condenser Effect 2.0 KEY EQUATIONS Evaporator Net Refrigeration Effect Q net refrigeration effect [] = (H 1 H 4 ) lb (Refrig Flow Rate) (60) min lb min hr H 1 = leaving evaporator enthalpy lb ; H 4 = entering evaporator

More information

Basic Thermodynamics Module 1

Basic Thermodynamics Module 1 Basic Thermodynamics Module 1 Lecture 9: Thermodynamic Properties of Fluids Thermodynamic Properties of fluids Most useful properties: Properties like pressure, volume and temperature which can be measured

More information

ME 2202 ENGINEERING THERMODYNAMICS TWO MARKS QUESTIONS AND ANSWERS UNIT I BASIC CONCEPTS AND FIRST LAW

ME 2202 ENGINEERING THERMODYNAMICS TWO MARKS QUESTIONS AND ANSWERS UNIT I BASIC CONCEPTS AND FIRST LAW ME 2202 ENGINEERING THERMODYNAMICS TWO MARKS QUESTIONS AND ANSWERS UNIT I BASIC CONCEPTS AND FIRST LAW 1. What is thermodynamics? It is a basic science that deals with energy and its transformations. The

More information

Slide 1. Slide 2. Slide 3. Conservation of Mechanical Energy and Efficiency Presentation

Slide 1. Slide 2. Slide 3. Conservation of Mechanical Energy and Efficiency Presentation Slide 1 Using Newton s 2 nd Law to solve problems can be complicated. Forces are vectors and vectors go in different directions. The math required to get an answer can be very difficult. Slide 2 You would

More information

20 m neon m propane. g 20. Problems with solutions:

20 m neon m propane. g 20. Problems with solutions: Problems with solutions:. A -m tank is filled with a gas at room temperature 0 C and pressure 00 Kpa. How much mass is there if the gas is a) Air b) Neon, or c) Propane? Given: T7K; P00KPa; M air 9; M

More information

Thermodynamics. AP Physics B

Thermodynamics. AP Physics B Thermodynamics AP Physics B Important Distinctions Thermodynamics study of processes in which energy is transferred as heat and work. There is a difference between heat and work: Heat is energy transferred

More information

wb Thermodynamics 2 Lecture 9 Energy Conversion Systems

wb Thermodynamics 2 Lecture 9 Energy Conversion Systems wb1224 - Thermodynamics 2 Lecture 9 Energy Conversion Systems Piero Colonna, Lecturer Prepared with the help of Teus van der Stelt 8-12-2010 Delft University of Technology Challenge the future Content

More information

Thermodynamic Third class Dr. Arkan J. Hadi

Thermodynamic Third class Dr. Arkan J. Hadi 5.5 ENTROPY CHANGES OF AN IDEAL GAS For one mole or a unit mass of fluid undergoing a mechanically reversible process in a closed system, the first law, Eq. (2.8), becomes: Differentiation of the defining

More information

25. Water Module. HSC 8 - Water November 19, Research Center, Pori / Petri Kobylin, Peter Björklund ORC-J 1 (13)

25. Water Module. HSC 8 - Water November 19, Research Center, Pori / Petri Kobylin, Peter Björklund ORC-J 1 (13) 25. Water Module 14018-ORC-J 1 (13) Fig. 1. Pressure-Temperature calculator for water. The Pressure and Temperature calculator enables a complete thermodynamic description for a species, by allowing the

More information

Entropy and the Second Law of Thermodynamics

Entropy and the Second Law of Thermodynamics Entropy and the Second Law of hermodynamics Reading Problems 6-, 6-2, 6-7, 6-8, 6-6-8, 6-87, 7-7-0, 7-2, 7-3 7-39, 7-46, 7-6, 7-89, 7-, 7-22, 7-24, 7-30, 7-55, 7-58 Why do we need another law in thermodynamics?

More information

Massachusetts Institute of Technology Physics Department

Massachusetts Institute of Technology Physics Department Massachusetts Institute of Technology Physics Department Physics 8.21 Fall 2011 Physics of Energy November 8, 2011 Quiz 2 Instructions Problem Points 1 50 2 25 3 25 (+ 20) Total 100 You must do problems

More information

Direct assessment details: Name of assessment Marks Topics Tentative date Duration Cycle test - I 10 Up to heat engines

Direct assessment details: Name of assessment Marks Topics Tentative date Duration Cycle test - I 10 Up to heat engines Faculty of Engineering & Technology, SRM University, Kattankulathur 603203 School of Mechanical Engineering Department of Mechatronics Engineering Course plan Course code : MH0201 Date : 05.07.2011 Course

More information

Basic Thermodynamics Prof. S.K Som Department of Mechanical Engineering Indian Institute of Technology, Kharagpur

Basic Thermodynamics Prof. S.K Som Department of Mechanical Engineering Indian Institute of Technology, Kharagpur Basic Thermodynamics Prof. S.K Som Department of Mechanical Engineering Indian Institute of Technology, Kharagpur Lecture - 17 Properties of Pure Substances-I Good morning to all of you. We were discussing

More information

Basics of Thermodynamics: Easy learning by Dr. Anjana Sen

Basics of Thermodynamics: Easy learning by Dr. Anjana Sen Basics of Thermodynamics: Easy learning by Dr. Anjana Sen Part 1: Theory and concept Part 2: Definitions and equations Part 3: Laws of Thermodynamics Part 1: theory and concept Thermodynamics means conversion

More information

King Fahd University of Petroleum & Minerals

King Fahd University of Petroleum & Minerals King Fahd University of Petroleum & Minerals Mechanical Engineering Thermodynamics ME 04 BY Dr. Haitham Bahaidarah My Office Office Hours: :00 0:00 am SMW 03:00 04:00 pm UT Location: Building Room # 5.4

More information

7. Development of the 2nd Law

7. Development of the 2nd Law 7-1 7. Development of the 2nd Law 7.1 1st Law Limitations The 1 st Law describes energy accounting. Once we have a process (or string of processes) we can calculate the relevant energy interactions. The

More information

I. (20%) Answer the following True (T) or False (F). If false, explain why for full credit.

I. (20%) Answer the following True (T) or False (F). If false, explain why for full credit. I. (20%) Answer the following True (T) or False (F). If false, explain why for full credit. Both the Kelvin and Fahrenheit scales are absolute temperature scales. Specific volume, v, is an intensive property,

More information

Chapter 12 Thermodynamics

Chapter 12 Thermodynamics Chapter 12 Thermodynamics 12.1 Thermodynamic Systems, States, and Processes System: definite quantity of matter with real or imaginary boundaries If heat transfer is impossible, the system is thermally

More information

5.2. The Rankine Cycle

5.2. The Rankine Cycle Figure 5.1. Illustration of a Carnot cycle based on steam in T-S coordinates. The Carnot cycle has a major advantage over other cycles. It operates at the highest temperature available for as long as possible,

More information

S.E. (Chemical Engineering) (Second Semester)EXAMINATION, 2012 THERMODYNAMICS-I (2008 PATTERN) Time : Three Hours Maximum Marks : 100

S.E. (Chemical Engineering) (Second Semester)EXAMINATION, 2012 THERMODYNAMICS-I (2008 PATTERN) Time : Three Hours Maximum Marks : 100 Total No. of Questions 12] [Total No. of Printed Pages 7 Seat No. [4162]-189 S.E. (Chemical Engineering) (Second Semester)EXAMINATION, 2012 THERMODYNAMICS-I (2008 PATTERN) Time : Three Hours Maximum Marks

More information

Excercise: Steam superheating

Excercise: Steam superheating Steam superheating Excercise: Steam superheating Calculate the efficiency of thermodynamic cycle in optimum working conditions for: a) the system without repeated steam superheating; b) the system with

More information

Thermodynamics Fundamentals for Energy Conversion Systems Renewable Energy Applications

Thermodynamics Fundamentals for Energy Conversion Systems Renewable Energy Applications Thermodynamics Fundamentals for Energy Conversion Systems Renewable Energy Applications The study of the laws that govern the conversion of energy from one form to the other Energy Conversion Concerned

More information

first law of ThermodyNamics

first law of ThermodyNamics first law of ThermodyNamics First law of thermodynamics - Principle of conservation of energy - Energy can be neither created nor destroyed Basic statement When any closed system is taken through a cycle,

More information

Examples Clausius uncertainty Carnot cycle Asymmetry of heat and work Perpetual mobile Heat pump 10 version of 2 nd law

Examples Clausius uncertainty Carnot cycle Asymmetry of heat and work Perpetual mobile Heat pump 10 version of 2 nd law Chem 759 Entropy Part III Examples Clausius uncertainty Carnot cycle Asymmetry of heat and work Perpetual mobile Heat pump 10 version of 2 nd law Updated PowerPoints with in-class solutions, go to http://www.uweburghaus.us/classes/chem759

More information

Two mark questions and answers UNIT I BASIC CONCEPT AND FIRST LAW SVCET

Two mark questions and answers UNIT I BASIC CONCEPT AND FIRST LAW SVCET Two mark questions and answers UNIT I BASIC CONCEPT AND FIRST LAW 1. What do you understand by pure substance? A pure substance is defined as one that is homogeneous and invariable in chemical composition

More information

Preface Acknowledgments Nomenclature

Preface Acknowledgments Nomenclature CONTENTS Preface Acknowledgments Nomenclature page xv xvii xix 1 BASIC CONCEPTS 1 1.1 Overview 1 1.2 Thermodynamic Systems 3 1.3 States and Properties 4 1.3.1 State of a System 4 1.3.2 Measurable and Derived

More information

Chapter 19. Heat Engines

Chapter 19. Heat Engines Chapter 19 Heat Engines Thermo Processes Eint = Q+ W Adiabatic No heat exchanged Q = 0 and E int = W Isobaric Constant pressure W = P (V f V i ) and E int = Q + W Isochoric Constant Volume W = 0 and E

More information

Physics 115. Specific heats revisited Entropy. General Physics II. Session 13

Physics 115. Specific heats revisited Entropy. General Physics II. Session 13 Physics 115 General Physics II Session 13 Specific heats revisited Entropy R. J. Wilkes Email: phy115a@u.washington.edu Home page: http://courses.washington.edu/phy115a/ 4/22/14 Physics 115 1 Lecture Schedule

More information

Teaching schedule *15 18

Teaching schedule *15 18 Teaching schedule Session *15 18 19 21 22 24 Topics 5. Gas power cycles Basic considerations in the analysis of power cycle; Carnot cycle; Air standard cycle; Reciprocating engines; Otto cycle; Diesel

More information

Lecture 2 Entropy and Second Law

Lecture 2 Entropy and Second Law Lecture 2 Entropy and Second Law Etymology: Entropy, entropie in German. En from energy and trope turning toward Turning to energy Motivation for a Second Law!! First law allows us to calculate the energy

More information

CHAPTER 6 THE SECOND LAW OF THERMODYNAMICS

CHAPTER 6 THE SECOND LAW OF THERMODYNAMICS CHAPTER 6 THE SECOND LAW OF THERMODYNAMICS S. I. Abdel-Khalik (2014) 1 CHAPTER 6 -- The Second Law of Thermodynamics OUTCOME: Identify Valid (possible) Processes as those that satisfy both the first and

More information

Chapter 16 Thermodynamics

Chapter 16 Thermodynamics Nicholas J. Giordano www.cengage.com/physics/giordano Chapter 16 Thermodynamics Thermodynamics Introduction Another area of physics is thermodynamics Continues with the principle of conservation of energy

More information

This follows from the Clausius inequality as a consequence of the second law of thermodynamics. Therefore. (for reversible process only) (22.

This follows from the Clausius inequality as a consequence of the second law of thermodynamics. Therefore. (for reversible process only) (22. Entropy Clausius inequality can be used to analyze the cyclic process in a quantitative manner. The second law became a law of wider applicability when Clausius introduced the property called entropy.

More information

Chapter 7. Entropy: A Measure of Disorder

Chapter 7. Entropy: A Measure of Disorder Chapter 7 Entropy: A Measure of Disorder Entropy and the Clausius Inequality The second law of thermodynamics leads to the definition of a new property called entropy, a quantitative measure of microscopic

More information

ME 022: Thermodynamics

ME 022: Thermodynamics ME 022: Thermodynamics General Information: Term: 2019 Summer Session Instructor: Staff Language of Instruction: English Classroom: TBA Office Hours: TBA Class Sessions Per Week: 5 Total Weeks: 5 Total

More information

Course: MECH-341 Thermodynamics II Semester: Fall 2006

Course: MECH-341 Thermodynamics II Semester: Fall 2006 FINAL EXAM Date: Thursday, December 21, 2006, 9 am 12 am Examiner: Prof. E. Timofeev Associate Examiner: Prof. D. Frost READ CAREFULLY BEFORE YOU PROCEED: Course: MECH-341 Thermodynamics II Semester: Fall

More information

Chapter 5. Mass and Energy Analysis of Control Volumes. by Asst. Prof. Dr.Woranee Paengjuntuek and Asst. Prof. Dr.Worarattana Pattaraprakorn

Chapter 5. Mass and Energy Analysis of Control Volumes. by Asst. Prof. Dr.Woranee Paengjuntuek and Asst. Prof. Dr.Worarattana Pattaraprakorn Chapter 5 Mass and Energy Analysis of Control Volumes by Asst. Prof. Dr.Woranee Paengjuntuek and Asst. Prof. Dr.Worarattana Pattaraprakorn Reference: Cengel, Yunus A. and Michael A. Boles, Thermodynamics:

More information

INDUSTRIAL RESOURCES, INC. Power Plant Fundamentals Training

INDUSTRIAL RESOURCES, INC. Power Plant Fundamentals Training INDUSTRIAL RESOURCES, INC Power Plant Fundamentals Training Module 2 Power Plant Theory Power Plant Fundamentals Training This program is designed to provide you with a fundamental understanding of power

More information

Pumped Heat Electricity Storage: Potential Analysis and ORC Requirements

Pumped Heat Electricity Storage: Potential Analysis and ORC Requirements Pumped Heat Electricity Storage: Potential Analysis and ORC Requirements Institute of Combustion and Gas Dynamics Chair of Thermodynamics Dennis Roskosch, Burak Atakan ASME ORC 2017 Milano September 15,

More information

Chapter 16 The Second Law of Thermodynamics

Chapter 16 The Second Law of Thermodynamics Chapter 16 The Second Law of Thermodynamics To examine the directions of thermodynamic processes. To study heat engines. To understand internal combustion engines and refrigerators. To learn and apply

More information

Thermodynamic Systems, States, and Processes

Thermodynamic Systems, States, and Processes Thermodynamics Thermodynamic Systems, States, and Processes A thermodynamic system is described by an equation of state, such as the ideal gas law. The location of the state can be plotted on a p V diagram,

More information

= for reversible < for irreversible

= for reversible < for irreversible CHAPER 6 Entropy Copyright he McGraw-Hill Companies, Inc. Permission required for reproduction or display. he Clausius Inequality: δ 0 Cyclic integral his inequality is valid for all cycles, reversible

More information

Chapter 19. Heat Engines

Chapter 19. Heat Engines Chapter 19 Heat Engines QuickCheck 19.11 The efficiency of this Carnot heat engine is A. Less than 0.5. B. 0.5. C. Between 0.5 and 1.0. D. 2.0. E. Can t say without knowing Q H. 2013 Pearson Education,

More information

Physics 150. Thermodynamics. Chapter 15

Physics 150. Thermodynamics. Chapter 15 Physics 150 Thermodynamics Chapter 15 The First Law of Thermodynamics Let s consider an ideal gas confined in a chamber with a moveable piston If we press the piston è the gas in the chamber compresses

More information