274 C hap te rei g h t

Size: px
Start display at page:

Download "274 C hap te rei g h t"

Transcription

1 274 C hap te rei g h t Sampling Distributions n most Six Sigma projects involving enumerative statistics, we deal with samples, not populations. We now consider the estimation of certain characteristics or parameters of the distribution from the data. The empirical distribution assigns the probability lin to each Xi in the sample, thus the mean of this distribution is (8.54) The symbol X is called "Xbar." Since the empirical distribution is determined by a sample, X is simply called the sample mean. The sample variance is given by (8.55) This equation for S2 is commonly referred to as the unbiased sample variance. The sample standard deviation is given by (8.56) Another sampling statistic of special interest in Six Sigma is the standard deviation of the sample average, also referred to as the standard error of the mean or simply the standard error. This statistic is given by (8.57) As can be seen, the standard error of the mean is inversely proportional to the square root of the sample size. That is, the larger the sample size, the smaller the standard deviation of the sample average. This relationship is shown in Fig t can be seen that averages of n = 4 have a distribution half as variable as the population from which the samples are drawn. Binomial Distribution Assume that a process is producing some proportion of nonconforming units, which we will call p. f we are basing p on a sample we find p by dividing the number of nonconforming units in the sample by the number of items sampled. The equation that will tell us the probability of getting x defectives in a sample of n units is shown by Eq. (8.58). (8.58) This equation is known as the binomial probability distribution. n addition to being useful as the exact distribution of nonconforming units for processes in continuous production, it is also an excellent approximation to the cumbersome hypergeometric probability distribution when the sample size is less than 10% of the lot size.

2 Pro c e s s B e hay i 0 r C h art s 275 Distribution of Population distribution ---- FGURE 8.34 Effect of sample size on the standard error. Example of Applying the Binomial Probability Distribution A process is producing glass bottles on a continuous basis. Past history shows that 1 % of the bottles have one or more flaws. f we draw a sample of 10 units from the process, what is the probability that there will be 0 nonconforming bottles? Using the above information, n = 10, P =.01, and x = O. Substituting these values into Eq. (8.58) gives us p(o) = qoo.01 (1-0.01)10-0 = 1 x 1 X = = 90.4% Another way of interpreting the above example is that a sampling plan "inspect 10 units, accept the process if no nonconformances are found" has a 90.4% probability of accepting a process that is averaging 1 % nonconforming units. Example of Binomial Probability Calculations Using Microsoft Excel" Microsoft Excel has a built-in capability to analyze binomial probabilities. To solve the above problem using Excel, enter the sample size, p value, and x value as shown in Fig Note the formula result near the bottom of the screen. Poisson Distribution Another situation encountered often in quality control is that we are not just concerned with units that don't conform to requirements, instead we are concerned with the number of nonconformances themselves. For example, let's say we are trying to control the quality of a computer. A complete audit of the finished computer would almost certainly reveal some nonconformances, even though these nonconformances might be of minor importance (for example, a decal on the back panel might not be perfectly straight). f we tried to use the hypergeometric or binomial probability distributions to evaluate sampling plans for this situation, we would find they didn't work because our

3 276 C hap te rei g h t 8NOMDST "'J x.j ;; =BNOMDST(B4.B1,B2,FALSE) A B c 1 D 1 E 1 F G 1 n 10 t--- r-l P x 0.- r--i- 5 P(x) i--- ~ -BNOMDST FALSE] ~ Number..:.15 " j] Tnials 1B1 j] = Pnj bability..:.s 1B2 j] = 0.Q1 -- r-11- Cumula,tive FALSE ~ = FALSE,J '" 0.91J Returns the individjal term binomial distribution probability, t ~ Nlfllbe:r --.:s is the rumber off successes in trials. Formula result "'0, FGURE 8.35 Example of finding binomial probability using Microsoft Excel. OK Cal'l(le'l lot or process would be composed of 100% nonconforming units. Obviously, we are interested not in the units per se, but in the non-conformances themselves. n other cases, it isn't even possible to count sample units per se. For example, the number of accidents must be counted as occurrences. The correct probability distribution for evaluating counts of non-conformances is the Poisson distribution. The pdf is given in Eq. (8.59). p(x) = 11 x:;~ (8.59) n Eq. (8.59), 11 is the average number of nonconformances per unit, x is the number of nonconformances in the sample, and e is the constant approximately equal to P(x) gives the probability of exactly x occurrences in the sample. Example of Applying the Poisson Distribution A production line is producing guided missiles. When each missile is completed, an audit is conducted by an Air Force representative and every nonconformance to requirements is noted. Even though any major nonconformance is cause for rejection, the prime contractor wants to control minor nonconformances as well. Such minor problems as blurred stencils, small burrs, etc., are recorded during the audit. Past history shows that on the average each missile has 3 minor nonconformances. What is the probability that the next missile will have 0 nonconformances? We have 11 = 3, x = O. Substituting these values into Eq. (8.59) gives us p(0)=3 0 e- 3 =lxo =5% O! 1 n other words, 100% - 5% = 95% of the missiles will have at least one nonconformance.

4 Process Behavior Charts 277 The Poisson distribution, in addition to being the exact distribution for the number of non-conformances, is also a good approximation to the binomial distribution in certain cases. To use the Poisson approximation, you simply let /.l = np in Eq. (8.59). Juran (1988) recommends considering the Poisson approximation if the sample size is at least 16, the population size is at least 10 times the sample size, and the probability of occurrence p on each trial is less than 0.1. The major advantage of this approach is that it allows you to use the tables of the Poisson distribution, such as in Appendix 7. Also, the approach is useful for designing sampling plans. Example of Poisson Probability Calculations Using Microsoft Excel Microsoft Excel has a built-in capability to analyze Poisson probabilities. To solve the above problem using Excel, enter the average and x values as shown in Fig Note the formula result near the bottom of the screen. Hypergeometric Distribution Assume we have received a lot of 12 parts from a distributor. We need the parts badly and are willing to accept the lot if it has fewer than 3 nonconforming parts. We decide to inspect only 4 parts since we can't spare the time to check every part. Checking the sample, we find 1 part that doesn't conform to the requirements. Should we reject the remainder of the lot? This situation involves sampling without replacement. We draw a unit from the lot, inspect it, and draw another unit from the lot. Furthermore, the lot is quite small, the sample is 25% of the entire lot. The formula needed to compute probabilities for this POSSON A ~ m ea n 21x 3 + ip(x) 6l POSSON... J X,,~ =POSSON( B2.B1,O) B led E 3 o t2.b1.0) 1 7 ~= o 8 Mea nfb-l ~jg~ - : = cumulative 10 jj = FALSE 11 = Reams the POisson distr ibution, 13 l - 14 Cumulative s a logica l value: for the curnulative Poisson probability, use TRUE; for the Poisson probabllit:,t mass function, use F.il.LSE E [1J1 Formul1a result =0, OK Cancel.J6 1! FGURE 8.36 Example of finding Poisson probability using Microsoft Excel. F G

5 278 Chapter Eight procedure is known as the hypergeometric probability distribution, and it is shown in Eq. (8.60). (8.60) n Eq. (8.60), N is the lot size, m is the number of defectives in the lot, n is the sample size, x is the number of defectives in the sample, and P(x) is the probability of getting exactly x defectives in the sample. Note that the numerator term c ::-~m gives the number of combinations of non-defectives while C;Z is the number of combinations of defectives. Thus the numerator gives the total number of arrangements of samples from lots of size N with m defectives where the sample n contains exactly x defectives. The term C~ the denominator is the total number of combinations of samples of size n from lots of size N, regardless of the number of defectives. Thus, the probability is a ratio of the likelihood of getting the result under the assumed conditions. For our example, we must solve the above equation for x = 0 as well as x =, since we would also accept the lot if we had no defectives. The solution is shown as follows. C 12-3 C x 1 P(O)= =--=0255 q C12-3C 3 84 x P(l)= =--=-=0509 q P(l or less) = P(O) + P(l) Adding the two probabilities tells uoooos the probability that our sampling plan will accept lots of 12 with 3 nonconforming units. The plan of inspecting 4 parts and accepting the lot if we have 0 or 1 nonconforming has a probability of = 0.764, or 76.4%, of accepting this "bad" quality lot. This is the "consumer's risk" for this sampling plan. Such a high sampling risk would be unacceptable to most people. Example of Hypergeometric Probability Calculations Using Microsoft Excel Microsoft Excel has a built-in capability to analyze hypergeometric probabilities. To solve the above problem using Excel, enter the population and sample values as shown in Fig Note the formula result near the bottom of the screen (0.509) gives the probability for x = 1. To find the cumulative probability you need to sum the probabilities for x = 0 and x = 1 etc. Normal Distribution The most common continuous distribution encountered in Six Sigma work is, by far, the normal distribution. Sometimes the process itself produces an approximately normal distribution, other times a normal distribution can be obtained by performing a mathematical transformation on the data or by using averages. The probability density function for the normal distribution is given by Eq. (8.61). (8.61)

OHSU OGI Class ECE-580-DOE :Statistical Process Control and Design of Experiments Steve Brainerd Basic Statistics Sample size?

OHSU OGI Class ECE-580-DOE :Statistical Process Control and Design of Experiments Steve Brainerd Basic Statistics Sample size? ECE-580-DOE :Statistical Process Control and Design of Experiments Steve Basic Statistics Sample size? Sample size determination: text section 2-4-2 Page 41 section 3-7 Page 107 Website::http://www.stat.uiowa.edu/~rlenth/Power/

More information

0 0'0 2S ~~ Employment category

0 0'0 2S ~~ Employment category Analyze Phase 331 60000 50000 40000 30000 20000 10000 O~----,------.------,------,,------,------.------,----- N = 227 136 27 41 32 5 ' V~ 00 0' 00 00 i-.~ fl' ~G ~~ ~O~ ()0 -S 0 -S ~~ 0 ~~ 0 ~G d> ~0~

More information

Learning Objectives 15.1 The Acceptance-Sampling Problem

Learning Objectives 15.1 The Acceptance-Sampling Problem Learning Objectives 5. The Acceptance-Sampling Problem Acceptance sampling plan (ASP): ASP is a specific plan that clearly states the rules for sampling and the associated criteria for acceptance or otherwise.

More information

Statistical Process Control

Statistical Process Control Statistical Process Control Outline Statistical Process Control (SPC) Process Capability Acceptance Sampling 2 Learning Objectives When you complete this supplement you should be able to : S6.1 Explain

More information

Geometric Distribution The characteristics of a geometric experiment are: 1. There are one or more Bernoulli trials with all failures except the last

Geometric Distribution The characteristics of a geometric experiment are: 1. There are one or more Bernoulli trials with all failures except the last Geometric Distribution The characteristics of a geometric experiment are: 1. There are one or more Bernoulli trials with all failures except the last one, which is a success. In other words, you keep repeating

More information

ME 418 Quality in Manufacturing ISE Quality Control and Industrial Statistics CHAPTER 07 ACCEPTANCE SAMPLING PLANS.

ME 418 Quality in Manufacturing ISE Quality Control and Industrial Statistics CHAPTER 07 ACCEPTANCE SAMPLING PLANS. University of Hail College of Engineering ME 418 Quality in Manufacturing ISE 320 - Quality Control and Industrial Statistics CHAPTER 07 ACCEPTANCE SAMPLING PLANS Professor Mohamed Aichouni http://cutt.us/maichouni

More information

1.0 Continuous Distributions. 5.0 Shapes of Distributions. 6.0 The Normal Curve. 7.0 Discrete Distributions. 8.0 Tolerances. 11.

1.0 Continuous Distributions. 5.0 Shapes of Distributions. 6.0 The Normal Curve. 7.0 Discrete Distributions. 8.0 Tolerances. 11. Chapter 4 Statistics 45 CHAPTER 4 BASIC QUALITY CONCEPTS 1.0 Continuous Distributions.0 Measures of Central Tendency 3.0 Measures of Spread or Dispersion 4.0 Histograms and Frequency Distributions 5.0

More information

Statistical Quality Control - Stat 3081

Statistical Quality Control - Stat 3081 Statistical Quality Control - Stat 3081 Awol S. Department of Statistics College of Computing & Informatics Haramaya University Dire Dawa, Ethiopia March 2015 Introduction Lot Disposition One aspect of

More information

Known probability distributions

Known probability distributions Known probability distributions Engineers frequently wor with data that can be modeled as one of several nown probability distributions. Being able to model the data allows us to: model real systems design

More information

Statistical Process Control

Statistical Process Control Statistical Process Control What is a process? Inputs PROCESS Outputs A process can be described as a transformation of set of inputs into desired outputs. Types of Measures Measures where the metric is

More information

Better AOQL Formulas -- copyright 2016 by John Zorich; all rights reserved. Better AOQ Formulas

Better AOQL Formulas -- copyright 2016 by John Zorich; all rights reserved. Better AOQ Formulas Better AOQ Formulas John N. Zorich, Jr. Independent Consultant in Applied Statistics Houston, Texas, USA July 22, 2016 JOHNZORICH@YAHOO.COM WWW.JOHNZORICH.COM ABSTRACT: The classic formula for AOQ calculates

More information

CENTRAL LIMIT THEOREM (CLT)

CENTRAL LIMIT THEOREM (CLT) CENTRAL LIMIT THEOREM (CLT) A sampling distribution is the probability distribution of the sample statistic that is formed when samples of size n are repeatedly taken from a population. If the sample statistic

More information

Zero-Inflated Models in Statistical Process Control

Zero-Inflated Models in Statistical Process Control Chapter 6 Zero-Inflated Models in Statistical Process Control 6.0 Introduction In statistical process control Poisson distribution and binomial distribution play important role. There are situations wherein

More information

Using Minitab to construct Attribute charts Control Chart

Using Minitab to construct Attribute charts Control Chart Using Minitab to construct Attribute charts Control Chart Attribute Control Chart Attribute control charts are the charts that plot nonconformities (defects) or nonconforming units (defectives). A nonconformity

More information

Objective Experiments Glossary of Statistical Terms

Objective Experiments Glossary of Statistical Terms Objective Experiments Glossary of Statistical Terms This glossary is intended to provide friendly definitions for terms used commonly in engineering and science. It is not intended to be absolutely precise.

More information

Determination of cumulative Poisson probabilities for double sampling plan

Determination of cumulative Poisson probabilities for double sampling plan 2017; 3(3): 241-246 ISSN Print: 2394-7500 ISSN Online: 2394-5869 Impact Factor: 5.2 IJAR 2017; 3(3): 241-246 www.allresearchjournal.com Received: 25-01-2017 Accepted: 27-02-2017 G Uma Assistant Professor,

More information

An-Najah National University Faculty of Engineering Industrial Engineering Department. Course : Quantitative Methods (65211)

An-Najah National University Faculty of Engineering Industrial Engineering Department. Course : Quantitative Methods (65211) An-Najah National University Faculty of Engineering Industrial Engineering Department Course : Quantitative Methods (65211) Instructor: Eng. Tamer Haddad 2 nd Semester 2009/2010 Chapter 3 Discrete Random

More information

PASS Sample Size Software. Poisson Regression

PASS Sample Size Software. Poisson Regression Chapter 870 Introduction Poisson regression is used when the dependent variable is a count. Following the results of Signorini (99), this procedure calculates power and sample size for testing the hypothesis

More information

Counting principles, including permutations and combinations.

Counting principles, including permutations and combinations. 1 Counting principles, including permutations and combinations. The binomial theorem: expansion of a + b n, n ε N. THE PRODUCT RULE If there are m different ways of performing an operation and for each

More information

Statistical quality control (SQC)

Statistical quality control (SQC) Statistical quality control (SQC) The application of statistical techniques to measure and evaluate the quality of a product, service, or process. Two basic categories: I. Statistical process control (SPC):

More information

Suppose that you have three coins. Coin A is fair, coin B shows heads with probability 0.6 and coin C shows heads with probability 0.8.

Suppose that you have three coins. Coin A is fair, coin B shows heads with probability 0.6 and coin C shows heads with probability 0.8. Suppose that you have three coins. Coin A is fair, coin B shows heads with probability 0.6 and coin C shows heads with probability 0.8. Coin A is flipped until a head appears, then coin B is flipped until

More information

1. Analysis of Grouped Data

1. Analysis of Grouped Data Old Business - Books ew Business - Analysis of grouped data - Hypergeometric distribution - Poisson distribution 1. Analysis of Grouped Data Grouped Data (frequency table or frequency distribution) Often

More information

ECE-580-DOE : Statistical Process Control and Design of Experiments Steve Brainerd 27 Distributions:

ECE-580-DOE : Statistical Process Control and Design of Experiments Steve Brainerd 27 Distributions: Distributions ECE-580-DOE : Statistical Process Control and Design of Experiments Steve Brainerd 27 Distributions: 1/29/03 Other Distributions Steve Brainerd 1 Distributions ECE-580-DOE : Statistical Process

More information

2. A Basic Statistical Toolbox

2. A Basic Statistical Toolbox . A Basic Statistical Toolbo Statistics is a mathematical science pertaining to the collection, analysis, interpretation, and presentation of data. Wikipedia definition Mathematical statistics: concerned

More information

A Theoretically Appropriate Poisson Process Monitor

A Theoretically Appropriate Poisson Process Monitor International Journal of Performability Engineering, Vol. 8, No. 4, July, 2012, pp. 457-461. RAMS Consultants Printed in India A Theoretically Appropriate Poisson Process Monitor RYAN BLACK and JUSTIN

More information

DISCRETE RANDOM VARIABLES EXCEL LAB #3

DISCRETE RANDOM VARIABLES EXCEL LAB #3 DISCRETE RANDOM VARIABLES EXCEL LAB #3 ECON/BUSN 180: Quantitative Methods for Economics and Business Department of Economics and Business Lake Forest College Lake Forest, IL 60045 Copyright, 2011 Overview

More information

Probability and Probability Distributions. Dr. Mohammed Alahmed

Probability and Probability Distributions. Dr. Mohammed Alahmed Probability and Probability Distributions 1 Probability and Probability Distributions Usually we want to do more with data than just describing them! We might want to test certain specific inferences about

More information

Probability Distribution

Probability Distribution Economic Risk and Decision Analysis for Oil and Gas Industry CE81.98 School of Engineering and Technology Asian Institute of Technology January Semester Presented by Dr. Thitisak Boonpramote Department

More information

Introduction to Statistical Data Analysis Lecture 3: Probability Distributions

Introduction to Statistical Data Analysis Lecture 3: Probability Distributions Introduction to Statistical Data Analysis Lecture 3: Probability Distributions James V. Lambers Department of Mathematics The University of Southern Mississippi James V. Lambers Statistical Data Analysis

More information

3/30/2009. Probability Distributions. Binomial distribution. TI-83 Binomial Probability

3/30/2009. Probability Distributions. Binomial distribution. TI-83 Binomial Probability Random variable The outcome of each procedure is determined by chance. Probability Distributions Normal Probability Distribution N Chapter 6 Discrete Random variables takes on a countable number of values

More information

Statistics for Economists. Lectures 3 & 4

Statistics for Economists. Lectures 3 & 4 Statistics for Economists Lectures 3 & 4 Asrat Temesgen Stockholm University 1 CHAPTER 2- Discrete Distributions 2.1. Random variables of the Discrete Type Definition 2.1.1: Given a random experiment with

More information

Introduction to Statistics and Error Analysis II

Introduction to Statistics and Error Analysis II Introduction to Statistics and Error Analysis II Physics116C, 4/14/06 D. Pellett References: Data Reduction and Error Analysis for the Physical Sciences by Bevington and Robinson Particle Data Group notes

More information

Distribusi Binomial, Poisson, dan Hipergeometrik

Distribusi Binomial, Poisson, dan Hipergeometrik Distribusi Binomial, Poisson, dan Hipergeometrik CHAPTER TOPICS The Probability of a Discrete Random Variable Covariance and Its Applications in Finance Binomial Distribution Poisson Distribution Hypergeometric

More information

Practice Problems Section Problems

Practice Problems Section Problems Practice Problems Section 4-4-3 4-4 4-5 4-6 4-7 4-8 4-10 Supplemental Problems 4-1 to 4-9 4-13, 14, 15, 17, 19, 0 4-3, 34, 36, 38 4-47, 49, 5, 54, 55 4-59, 60, 63 4-66, 68, 69, 70, 74 4-79, 81, 84 4-85,

More information

Discrete Random Variables

Discrete Random Variables Discrete Random Variables An Undergraduate Introduction to Financial Mathematics J. Robert Buchanan Introduction The markets can be thought of as a complex interaction of a large number of random processes,

More information

Statistics for Managers Using Microsoft Excel/SPSS Chapter 4 Basic Probability And Discrete Probability Distributions

Statistics for Managers Using Microsoft Excel/SPSS Chapter 4 Basic Probability And Discrete Probability Distributions Statistics for Managers Using Microsoft Excel/SPSS Chapter 4 Basic Probability And Discrete Probability Distributions 1999 Prentice-Hall, Inc. Chap. 4-1 Chapter Topics Basic Probability Concepts: Sample

More information

BINOMIAL DISTRIBUTION

BINOMIAL DISTRIBUTION BINOMIAL DISTRIBUTION The binomial distribution is a particular type of discrete pmf. It describes random variables which satisfy the following conditions: 1 You perform n identical experiments (called

More information

Taguchi Method and Robust Design: Tutorial and Guideline

Taguchi Method and Robust Design: Tutorial and Guideline Taguchi Method and Robust Design: Tutorial and Guideline CONTENT 1. Introduction 2. Microsoft Excel: graphing 3. Microsoft Excel: Regression 4. Microsoft Excel: Variance analysis 5. Robust Design: An Example

More information

Statistics for Managers Using Microsoft Excel (3 rd Edition)

Statistics for Managers Using Microsoft Excel (3 rd Edition) Statistics for Managers Using Microsoft Excel (3 rd Edition) Chapter 4 Basic Probability and Discrete Probability Distributions 2002 Prentice-Hall, Inc. Chap 4-1 Chapter Topics Basic probability concepts

More information

Section II: Assessing Chart Performance. (Jim Benneyan)

Section II: Assessing Chart Performance. (Jim Benneyan) Section II: Assessing Chart Performance (Jim Benneyan) 1 Learning Objectives Understand concepts of chart performance Two types of errors o Type 1: Call an in-control process out-of-control o Type 2: Call

More information

Closed book and notes. 120 minutes. Cover page, five pages of exam. No calculators.

Closed book and notes. 120 minutes. Cover page, five pages of exam. No calculators. IE 230 Seat # Closed book and notes. 120 minutes. Cover page, five pages of exam. No calculators. Score Final Exam, Spring 2005 (May 2) Schmeiser Closed book and notes. 120 minutes. Consider an experiment

More information

Chapter (4) Discrete Probability Distributions Examples

Chapter (4) Discrete Probability Distributions Examples Chapter (4) Discrete Probability Distributions Examples Example () Two balanced dice are rolled. Let X be the sum of the two dice. Obtain the probability distribution of X. Solution When the two balanced

More information

APPENDICES APPENDIX A. STATISTICAL TABLES AND CHARTS 651 APPENDIX B. BIBLIOGRAPHY 677 APPENDIX C. ANSWERS TO SELECTED EXERCISES 679

APPENDICES APPENDIX A. STATISTICAL TABLES AND CHARTS 651 APPENDIX B. BIBLIOGRAPHY 677 APPENDIX C. ANSWERS TO SELECTED EXERCISES 679 APPENDICES APPENDIX A. STATISTICAL TABLES AND CHARTS 1 Table I Summary of Common Probability Distributions 2 Table II Cumulative Standard Normal Distribution Table III Percentage Points, 2 of the Chi-Squared

More information

Session XIV. Control Charts For Attributes P-Chart

Session XIV. Control Charts For Attributes P-Chart Session XIV Control Charts For Attributes P-Chart The P Chart The P Chart is used for data that consist of the proportion of the number of occurrences of an event to the total number of occurrences. It

More information

HW on Ch Let X be a discrete random variable with V (X) = 8.6, then V (3X+5.6) is. V (3X + 5.6) = 3 2 V (X) = 9(8.6) = 77.4.

HW on Ch Let X be a discrete random variable with V (X) = 8.6, then V (3X+5.6) is. V (3X + 5.6) = 3 2 V (X) = 9(8.6) = 77.4. HW on Ch 3 Name: Questions:. Let X be a discrete random variable with V (X) = 8.6, then V (3X+5.6) is. V (3X + 5.6) = 3 2 V (X) = 9(8.6) = 77.4. 2. Let X be a discrete random variable with E(X 2 ) = 9.75

More information

Discrete Probability Distributions

Discrete Probability Distributions Discrete Probability Distributions EGR 260 R. Van Til Industrial & Systems Engineering Dept. Copyright 2013. Robert P. Van Til. All rights reserved. 1 What s It All About? The behavior of many random processes

More information

Discrete Random Variables

Discrete Random Variables Discrete Random Variables An Undergraduate Introduction to Financial Mathematics J. Robert Buchanan 2014 Introduction The markets can be thought of as a complex interaction of a large number of random

More information

Physics 509: Bootstrap and Robust Parameter Estimation

Physics 509: Bootstrap and Robust Parameter Estimation Physics 509: Bootstrap and Robust Parameter Estimation Scott Oser Lecture #20 Physics 509 1 Nonparametric parameter estimation Question: what error estimate should you assign to the slope and intercept

More information

a b *c d Correct Answer Reply: ASQ CQE A-90 Incorrect Answer Reply: = C *(0.40) *(0.60) =

a b *c d Correct Answer Reply: ASQ CQE A-90 Incorrect Answer Reply: = C *(0.40) *(0.60) = ConteSolutions 2017 OceanSpray June 7, 2017 Quality Tools Session 1 1-009 Question A process is producing material which is 40 percent defective. Four pieces are selected at random for inspection. What

More information

Topic 3 - Discrete distributions

Topic 3 - Discrete distributions Topic 3 - Discrete distributions Basics of discrete distributions Mean and variance of a discrete distribution Binomial distribution Poisson distribution and process 1 A random variable is a function which

More information

Sampling Inspection. Young W. Lim Wed. Young W. Lim Sampling Inspection Wed 1 / 26

Sampling Inspection. Young W. Lim Wed. Young W. Lim Sampling Inspection Wed 1 / 26 Sampling Inspection Young W. Lim 2018-07-18 Wed Young W. Lim Sampling Inspection 2018-07-18 Wed 1 / 26 Outline 1 Sampling Inspection Based on Background Single Sampling Inspection Scheme Simulating Sampling

More information

PhysicsAndMathsTutor.com

PhysicsAndMathsTutor.com 1. An effect of a certain disease is that a small number of the red blood cells are deformed. Emily has this disease and the deformed blood cells occur randomly at a rate of 2.5 per ml of her blood. Following

More information

MITOCW ocw f99-lec05_300k

MITOCW ocw f99-lec05_300k MITOCW ocw-18.06-f99-lec05_300k This is lecture five in linear algebra. And, it will complete this chapter of the book. So the last section of this chapter is two point seven that talks about permutations,

More information

What is Probability? Probability. Sample Spaces and Events. Simple Event

What is Probability? Probability. Sample Spaces and Events. Simple Event What is Probability? Probability Peter Lo Probability is the numerical measure of likelihood that the event will occur. Simple Event Joint Event Compound Event Lies between 0 & 1 Sum of events is 1 1.5

More information

Probability Distributions

Probability Distributions 02/07/07 PHY310: Statistical Data Analysis 1 PHY310: Lecture 05 Probability Distributions Road Map The Gausssian Describing Distributions Expectation Value Variance Basic Distributions Generating Random

More information

Bus 216: Business Statistics II Introduction Business statistics II is purely inferential or applied statistics.

Bus 216: Business Statistics II Introduction Business statistics II is purely inferential or applied statistics. Bus 216: Business Statistics II Introduction Business statistics II is purely inferential or applied statistics. Study Session 1 1. Random Variable A random variable is a variable that assumes numerical

More information

Random Variable. Random Variables. Chapter 5 Slides. Maurice Geraghty Inferential Statistics and Probability a Holistic Approach

Random Variable. Random Variables. Chapter 5 Slides. Maurice Geraghty Inferential Statistics and Probability a Holistic Approach Inferential Statistics and Probability a Holistic Approach Chapter 5 Discrete Random Variables This Course Material by Maurice Geraghty is licensed under a Creative Commons Attribution-ShareAlike 4.0 International

More information

Estimating the accuracy of a hypothesis Setting. Assume a binary classification setting

Estimating the accuracy of a hypothesis Setting. Assume a binary classification setting Estimating the accuracy of a hypothesis Setting Assume a binary classification setting Assume input/output pairs (x, y) are sampled from an unknown probability distribution D = p(x, y) Train a binary classifier

More information

Statistics for Data Analysis. Niklaus Berger. PSI Practical Course Physics Institute, University of Heidelberg

Statistics for Data Analysis. Niklaus Berger. PSI Practical Course Physics Institute, University of Heidelberg Statistics for Data Analysis PSI Practical Course 2014 Niklaus Berger Physics Institute, University of Heidelberg Overview You are going to perform a data analysis: Compare measured distributions to theoretical

More information

Random Variable And Probability Distribution. Is defined as a real valued function defined on the sample space S. We denote it as X, Y, Z,

Random Variable And Probability Distribution. Is defined as a real valued function defined on the sample space S. We denote it as X, Y, Z, Random Variable And Probability Distribution Introduction Random Variable ( r.v. ) Is defined as a real valued function defined on the sample space S. We denote it as X, Y, Z, T, and denote the assumed

More information

CS 5014: Research Methods in Computer Science. Bernoulli Distribution. Binomial Distribution. Poisson Distribution. Clifford A. Shaffer.

CS 5014: Research Methods in Computer Science. Bernoulli Distribution. Binomial Distribution. Poisson Distribution. Clifford A. Shaffer. Department of Computer Science Virginia Tech Blacksburg, Virginia Copyright c 2015 by Clifford A. Shaffer Computer Science Title page Computer Science Clifford A. Shaffer Fall 2015 Clifford A. Shaffer

More information

In this context, the thing we call the decision variable is K, the number of beds. Our solution will be done by stating a value for K.

In this context, the thing we call the decision variable is K, the number of beds. Our solution will be done by stating a value for K. STAT-UB.0103 NOTES for Wednesday 2012.FEB.15 Suppose that a hospital has a cardiac care unit which handles heart attac victims on the first day of their problems. The geographic area served by the hospital

More information

STAT509: Discrete Random Variable

STAT509: Discrete Random Variable University of South Carolina September 16, 2014 Motivation So far, we have already known how to calculate probabilities of events. Suppose we toss a fair coin three times, we know that the probability

More information

Probability Methods in Civil Engineering Prof. Dr. Rajib Maity Department of Civil Engineering Indian Institution of Technology, Kharagpur

Probability Methods in Civil Engineering Prof. Dr. Rajib Maity Department of Civil Engineering Indian Institution of Technology, Kharagpur Probability Methods in Civil Engineering Prof. Dr. Rajib Maity Department of Civil Engineering Indian Institution of Technology, Kharagpur Lecture No. # 36 Sampling Distribution and Parameter Estimation

More information

COVENANT UNIVERSITY NIGERIA TUTORIAL KIT OMEGA SEMESTER PROGRAMME: ECONOMICS

COVENANT UNIVERSITY NIGERIA TUTORIAL KIT OMEGA SEMESTER PROGRAMME: ECONOMICS COVENANT UNIVERSITY NIGERIA TUTORIAL KIT OMEGA SEMESTER PROGRAMME: ECONOMICS COURSE: CBS 221 DISCLAIMER The contents of this document are intended for practice and leaning purposes at the undergraduate

More information

Statistics for Engineers Lecture 2 Discrete Distributions

Statistics for Engineers Lecture 2 Discrete Distributions Statistics for Engineers Lecture 2 Discrete Distributions Chong Ma Department of Statistics University of South Carolina chongm@email.sc.edu January 18, 2017 Chong Ma (Statistics, USC) STAT 509 Spring

More information

Chapter 23. Inference About Means

Chapter 23. Inference About Means Chapter 23 Inference About Means 1 /57 Homework p554 2, 4, 9, 10, 13, 15, 17, 33, 34 2 /57 Objective Students test null and alternate hypotheses about a population mean. 3 /57 Here We Go Again Now that

More information

Continuous Improvement Toolkit. Probability Distributions. Continuous Improvement Toolkit.

Continuous Improvement Toolkit. Probability Distributions. Continuous Improvement Toolkit. Continuous Improvement Toolkit Probability Distributions The Continuous Improvement Map Managing Risk FMEA Understanding Performance** Check Sheets Data Collection PDPC RAID Log* Risk Analysis* Benchmarking***

More information

Expectations. Definition Let X be a discrete rv with set of possible values D and pmf p(x). The expected value or mean value of X, denoted by E(X ) or

Expectations. Definition Let X be a discrete rv with set of possible values D and pmf p(x). The expected value or mean value of X, denoted by E(X ) or Expectations Expectations Definition Let X be a discrete rv with set of possible values D and pmf p(x). The expected value or mean value of X, denoted by E(X ) or µ X, is E(X ) = µ X = x D x p(x) Expectations

More information

TRANSFORMATIONS TO OBTAIN EQUAL VARIANCE. Apply to ANOVA situation with unequal variances: are a function of group means µ i, say

TRANSFORMATIONS TO OBTAIN EQUAL VARIANCE. Apply to ANOVA situation with unequal variances: are a function of group means µ i, say 1 TRANSFORMATIONS TO OBTAIN EQUAL VARIANCE General idea for finding variance-stabilizing transformations: Response Y µ = E(Y)! = Var(Y) U = f(y) First order Taylor approximation for f around µ: U " f(µ)

More information

RELIABILITY TEST PLANS BASED ON BURR DISTRIBUTION FROM TRUNCATED LIFE TESTS

RELIABILITY TEST PLANS BASED ON BURR DISTRIBUTION FROM TRUNCATED LIFE TESTS International Journal of Mathematics and Computer Applications Research (IJMCAR) Vol.1, Issue 2 (2011) 28-40 TJPRC Pvt. Ltd., RELIABILITY TEST PLANS BASED ON BURR DISTRIBUTION FROM TRUNCATED LIFE TESTS

More information

Sample Problems for the Final Exam

Sample Problems for the Final Exam Sample Problems for the Final Exam 1. Hydraulic landing assemblies coming from an aircraft rework facility are each inspected for defects. Historical records indicate that 8% have defects in shafts only,

More information

An optimization model for designing acceptance sampling plan based on cumulative count of conforming run length using minimum angle method

An optimization model for designing acceptance sampling plan based on cumulative count of conforming run length using minimum angle method Hacettepe Journal of Mathematics and Statistics Volume 44 (5) (2015), 1271 1281 An optimization model for designing acceptance sampling plan based on cumulative count of conforming run length using minimum

More information

CHAPTER 5 MATHEMATICAL MODELS OF RELIABILITY

CHAPTER 5 MATHEMATICAL MODELS OF RELIABILITY CHAPTER 5 MATHEMATICAL MODELS OF RELIABILITY INTRODUCTION In a general sense, we can say that the science of statistics attempts to quantify our uncertainty about the outcome of an experiment or test.

More information

375 PU M Sc Statistics

375 PU M Sc Statistics 375 PU M Sc Statistics 1 of 100 193 PU_2016_375_E For the following 2x2 contingency table for two attributes the value of chi-square is:- 20/36 10/38 100/21 10/18 2 of 100 120 PU_2016_375_E If the values

More information

Basic Statistics. Resources. Statistical Tables Murdoch & Barnes. Scientific Calculator. Minitab 17.

Basic Statistics. Resources. Statistical Tables Murdoch & Barnes. Scientific Calculator. Minitab 17. Basic Statistics Resources 1160 Statistical Tables Murdoch & Barnes Scientific Calculator Minitab 17 http://www.mathsisfun.com/data/ 1 Statistics 1161 The science of collection, analysis, interpretation

More information

Glossary for the Triola Statistics Series

Glossary for the Triola Statistics Series Glossary for the Triola Statistics Series Absolute deviation The measure of variation equal to the sum of the deviations of each value from the mean, divided by the number of values Acceptance sampling

More information

spc Statistical process control Key Quality characteristic :Forecast Error for demand

spc Statistical process control Key Quality characteristic :Forecast Error for demand spc Statistical process control Key Quality characteristic :Forecast Error for demand BENEFITS of SPC Monitors and provides feedback for keeping processes in control. Triggers when a problem occurs Differentiates

More information

Seismic Analysis of Structures Prof. T.K. Datta Department of Civil Engineering Indian Institute of Technology, Delhi. Lecture 03 Seismology (Contd.

Seismic Analysis of Structures Prof. T.K. Datta Department of Civil Engineering Indian Institute of Technology, Delhi. Lecture 03 Seismology (Contd. Seismic Analysis of Structures Prof. T.K. Datta Department of Civil Engineering Indian Institute of Technology, Delhi Lecture 03 Seismology (Contd.) In the previous lecture, we discussed about the earth

More information

Designing of Special Type of Double Sampling Plan for Compliance Testing through Generalized Poisson Distribution

Designing of Special Type of Double Sampling Plan for Compliance Testing through Generalized Poisson Distribution Volume 117 No. 12 2017, 7-17 ISSN: 1311-8080 (printed version); ISSN: 1314-3395 (on-line version) url: http://www.ijpam.eu ijpam.eu Designing of Special Type of Double Sampling Plan for Compliance Testing

More information

Quick-and-Easy Factoring. of lower degree; several processes are available to fi nd factors.

Quick-and-Easy Factoring. of lower degree; several processes are available to fi nd factors. Lesson 11-3 Quick-and-Easy Factoring BIG IDEA Some polynomials can be factored into polynomials of lower degree; several processes are available to fi nd factors. Vocabulary factoring a polynomial factored

More information

We're in interested in Pr{three sixes when throwing a single dice 8 times}. => Y has a binomial distribution, or in official notation, Y ~ BIN(n,p).

We're in interested in Pr{three sixes when throwing a single dice 8 times}. => Y has a binomial distribution, or in official notation, Y ~ BIN(n,p). Sampling distributions and estimation. 1) A brief review of distributions: We're in interested in Pr{three sixes when throwing a single dice 8 times}. => Y has a binomial distribution, or in official notation,

More information

SMAM Exam 1 Name

SMAM Exam 1 Name SMAM 314-04 Exam 1 Name 1. A chemical reaction was run several times using a catalyst to control the yield of an undesireable side product. Results in units of percentage yield are given for 24 runs. 4.4

More information

Random Number Generation. CS1538: Introduction to simulations

Random Number Generation. CS1538: Introduction to simulations Random Number Generation CS1538: Introduction to simulations Random Numbers Stochastic simulations require random data True random data cannot come from an algorithm We must obtain it from some process

More information

Chapter 3 Discrete Random Variables

Chapter 3 Discrete Random Variables MICHIGAN STATE UNIVERSITY STT 351 SECTION 2 FALL 2008 LECTURE NOTES Chapter 3 Discrete Random Variables Nao Mimoto Contents 1 Random Variables 2 2 Probability Distributions for Discrete Variables 3 3 Expected

More information

Time: 1 hour 30 minutes

Time: 1 hour 30 minutes Paper Reference(s) 6684/01 Edexcel GCE Statistics S2 Bronze Level B4 Time: 1 hour 30 minutes Materials required for examination papers Mathematical Formulae (Green) Items included with question Nil Candidates

More information

Some Famous Discrete Distributions. 1. Uniform 2. Bernoulli 3. Binomial 4. Negative Binomial 5. Geometric 6. Hypergeometric 7.

Some Famous Discrete Distributions. 1. Uniform 2. Bernoulli 3. Binomial 4. Negative Binomial 5. Geometric 6. Hypergeometric 7. Some Famous Discrete Distributions. Uniform 2. Bernoulli 3. Binomial 4. Negative Binomial 5. Geometric 6. Hypergeometric 7. Poisson 5.2: Discrete Uniform Distribution: If the discrete random variable X

More information

Statistical Quality Control IE 3255 Spring 2005 Solution HomeWork #2

Statistical Quality Control IE 3255 Spring 2005 Solution HomeWork #2 Statistical Quality Control IE 3255 Spring 25 Solution HomeWork #2. (a)stem-and-leaf, No of samples, N = 8 Leaf Unit =. Stem Leaf Frequency 2+ 3-3+ 4-4+ 5-5+ - + 7-8 334 77978 33333242344 585958988995

More information

Change Point Estimation of the Process Fraction Non-conforming with a Linear Trend in Statistical Process Control

Change Point Estimation of the Process Fraction Non-conforming with a Linear Trend in Statistical Process Control Change Point Estimation of the Process Fraction Non-conforming with a Linear Trend in Statistical Process Control F. Zandi a,*, M. A. Nayeri b, S. T. A. Niaki c, & M. Fathi d a Department of Industrial

More information

Chapter 3 Probability Distribution

Chapter 3 Probability Distribution Chapter 3 Probability Distribution Probability Distributions A probability function is a function which assigns probabilities to the values of a random variable. Individual probability values may be denoted

More information

Biased Urn Theory. Agner Fog October 4, 2007

Biased Urn Theory. Agner Fog October 4, 2007 Biased Urn Theory Agner Fog October 4, 2007 1 Introduction Two different probability distributions are both known in the literature as the noncentral hypergeometric distribution. These two distributions

More information

Stochastic Modelling

Stochastic Modelling Stochastic Modelling Simulating Random Walks and Markov Chains This lab sheets is available for downloading from www.staff.city.ac.uk/r.j.gerrard/courses/dam/, as is the spreadsheet mentioned in section

More information

Smoking Habits. Moderate Smokers Heavy Smokers Total. Hypertension No Hypertension Total

Smoking Habits. Moderate Smokers Heavy Smokers Total. Hypertension No Hypertension Total Math 3070. Treibergs Final Exam Name: December 7, 00. In an experiment to see how hypertension is related to smoking habits, the following data was taken on individuals. Test the hypothesis that the proportions

More information

CONTINUOUS RANDOM VARIABLES

CONTINUOUS RANDOM VARIABLES the Further Mathematics network www.fmnetwork.org.uk V 07 REVISION SHEET STATISTICS (AQA) CONTINUOUS RANDOM VARIABLES The main ideas are: Properties of Continuous Random Variables Mean, Median and Mode

More information

STA301- Statistics and Probability Solved Subjective From Final term Papers. STA301- Statistics and Probability Final Term Examination - Spring 2012

STA301- Statistics and Probability Solved Subjective From Final term Papers. STA301- Statistics and Probability Final Term Examination - Spring 2012 STA30- Statistics and Probability Solved Subjective From Final term Papers Feb 6,03 MC004085 Moaaz.pk@gmail.com Mc004085@gmail.com PSMD0 STA30- Statistics and Probability Final Term Examination - Spring

More information

Determination of Quick Switching System by Attributes under the Conditions of Zero-Inflated Poisson Distribution

Determination of Quick Switching System by Attributes under the Conditions of Zero-Inflated Poisson Distribution International Journal of Statistics and Systems ISSN 0973-2675 Volume 11, Number 2 (2016), pp. 157-165 Research India Publications http://www.ripublication.com Determination of Quick Switching System by

More information

37.3. The Poisson Distribution. Introduction. Prerequisites. Learning Outcomes

37.3. The Poisson Distribution. Introduction. Prerequisites. Learning Outcomes The Poisson Distribution 37.3 Introduction In this Section we introduce a probability model which can be used when the outcome of an experiment is a random variable taking on positive integer values and

More information

NANO QUALITY LEVELS IN THE CONSTRUCTION OF DOUBLE SAMPLING PLAN OF THE TYPE DSP- (0,1)

NANO QUALITY LEVELS IN THE CONSTRUCTION OF DOUBLE SAMPLING PLAN OF THE TYPE DSP- (0,1) International Journal of Nanotechnology and Application (IJNA) ISSN: 2277 4777 Vol.2, Issue 1 Mar 2012 1-9 TJPRC Pvt. Ltd., NANO QUALITY LEVELS IN THE CONSTRUCTION OF DOUBLE SAMPLING PLAN OF THE TYPE DSP-

More information

Probability Methods in Civil Engineering Prof. Dr. Rajib Maity Department of Civil Engineering Indian Institute of Technology, Kharagpur

Probability Methods in Civil Engineering Prof. Dr. Rajib Maity Department of Civil Engineering Indian Institute of Technology, Kharagpur Probability Methods in Civil Engineering Prof. Dr. Rajib Maity Department of Civil Engineering Indian Institute of Technology, Kharagpur Lecture No. # 38 Goodness - of fit tests Hello and welcome to this

More information

Table of z values and probabilities for the standard normal distribution. z is the first column plus the top row. Each cell shows P(X z).

Table of z values and probabilities for the standard normal distribution. z is the first column plus the top row. Each cell shows P(X z). Table of z values and probabilities for the standard normal distribution. z is the first column plus the top row. Each cell shows P(X z). For example P(X.04) =.8508. For z < 0 subtract the value from,

More information