PHYS 1140 lecture 6. During lab this week (Tuesday to next Monday):

Size: px
Start display at page:

Download "PHYS 1140 lecture 6. During lab this week (Tuesday to next Monday):"

Transcription

1 Deadlines coming up PHYS 1140 lecture 6 During lab this week (Tuesday to next Monday): Turn in Pre-lab 3 at the START of your lab session Expt. 3: take data, start analysis during your lab session. Next week: Turn in Homework set 4 by the end of Monday (last one). Expt. 3: complete your report and turn in at end of the third weekday after your lab session. Read guide for Expt. E1 which you ll all do the following week. No more lectures after today s Check the course home page for pre-lab and lab assignments. 1

2 Today s topics Review from last week: standard deviation, SDOM, Gaussian distribution Error for counting experiments General review (Correlated measurements) 2

3

4 Error on the mean (repeated measurements) If we have N measurements of a quantity x with mean x standard deviation σx then the standard deviation of the mean, SDOM (or standard error of the mean) is given by σ x = σ x N 4

5 Concept ques/on 6.1 A series of measurements of a quan/ty is taken with apparatus A and then again with apparatus B. The distribu/on of A and B results are shown. Which series of measurements has the smaller standard devia/on σ? A) A B) B C) both A and B have the same standard devia/on. D) impossible to tell from the informa/on given.

6 Concept ques/on 6.2 A series of measurements of a quan/ty is taken with apparatus A and then again with apparatus B. The distribu/on of A and B results are shown. Which series of measurements has the smaller standard devia/on of the mean σ mean? A) A B) B C) impossible to tell from the informa/on given.

7 P(x) Interpreting a result in standard form We quote x = X ± σ (mean and SDOM) We may plot it as a point with error bars The significance is measured in sigmas, with probabilities below G X,σ (x) = 1 2πσ e 1 2 (x X) 2 σ % % 95% (x-x)/! 7

8 P(x) Concept ques/on % % 99.7% (x-x)/!

9 g [m/s 2 ] A case study: measuring g Measurements of g From M1 reports of one lab section in PHYS Lab M1 (g) Expected value Measured points g =4π 2 L T Measurement No. 9

10 Standard deviation in a counting experiment Suppose we have events (e.g., radioactive decays) occurring randomly in time at constant rate R N = R t (N decays occur over time t) In a given trial N will differ from R t (random fluctuation). The standard deviation of the fluctuations is, from probability theory, σ = N Therefore the fractional error on N is δn / N = σ / N = N / N = 1 / N We measure R by counting over (exact) time t: R = N / t ± σ / t = N / t ± N / t, δr / R = δn / N = 1 / N That is, by counting over a longer time we increase N and thereby reduce the error on R. We usually call this random uncertainty the statistical error. 10

11 Concept question 6.5 The rate R of decay of a radioactive source is about 1000 per minute, from a rough estimate. If we seek a measurement of R precise within 0.5% we need to accumulate counts for A) 1 minute B) 200 minutes C) 12 seconds D) about a month E) 40 minutes We want δr / R = 1/ N to be 1/200 N = 200 N = = 40,000 t = N / R = 40,000 / 1000 = 40 11

12 Error propagation: general rule Our master equation for error propagation is Given w = f(x, y, z,... ), δw = f x 2 (δx) 2 + f y 2 (δy) 2 + f z 2 (δz)

13 Error on a sum or difference For the case z = x + y or z = x - y, the partial derivatives are just = 1, whence We add the errors in quadrature. δz = δx 2 + δy 2 13

14 And for the error on a product or quotient For, z = x y and z = x / y the error propagation formula becomes simply δz z = δx x We add the fractional errors in quadrature. 2 + δy y 2 Finally, for f(x) = ax n, dx δf f = n δx x The fractional error of a power n of x is n times the fractional error of x. 14

15 Concept ques/on 6.6 A = 1.6 ± 0.2, B = 53.2 ± 1.0 P(A,B) = A B =? Which term is going to dominate the error in P? A) A B) B

16 Concept ques/on 6.7 A = 1.6 ± 0.2, B = 53.2 ± 1.0 P(A,B) = A + B =? Which term is going to dominate the error in P? A) A B) B

17 Recipe (repeated measurements) We quote our result x = x ± σ x x = N i=1 x i N average or mean σ x = N i=1 (x i x) 2 N 1 standard deviation (error on a single measurement) σ x = σ x N SDOM, standard error of the mean 17

18 (Positively) correlated errors A mysterious, generous banker takes a big pile of pennies, cuts it exactly in two, and gives one pile to Frank, one to Jill. He tells them the piles are exactly, to the penny, the same, but he doesn t tell them how many there are. Frank does a rough count of his pile, gets F = 200 ± 30. Now he knows that Jill s share J = 200 ± 30! Note that δj and δf are perfectly correlated. If rough count of F is too high, then rough count of J is too high, also! 18

19 Concept question 6.8 In the above scenario, J = F, F = 200 ± 30, difference D = J - F, we can say that D ± δd is D = 0 A) 0 ± 0 pennies B) 0 ± 30 pennies C) 0 ± 42 pennies D) 0 ± 60 pennies E) some other answer 19

20 Concept question 6.9 In the same scenario, J = F, F = 200 ± 30, sum S = J + F, we can say that S ± δs is S = 2 F A) 400 ± 0 pennies B) 400 ± 30 pennies C) 400 ± 42 pennies D) 400 ± 60 pennies E) some other answer 20

21 Negatively (or anti-) correlated errors Now our banker counts out exactly 1000 pennies, not one more or one less. He offers some to Frank, who takes a big scoop of them. He gives the rest to Jill, telling her there were originally exactly 1000 pennies. Jill does a rough count of her pennies, and estimates J = 200 ± 30 No dummy, Jill, she uses the exactly 1000 info and quickly figures out Frank must have F = 800 ± 30. In this case δj and δf are perfectly anti-correlated. If rough count of J is too high, then rough count of F is too low! 21

22 Concept question 6.10 In the above scenario, J + F = 1000, J = 200 ± 30, difference D = F - J, we can say that D ± δd is A) 600 ± 0 pennies B) 600 ± 30 pennies C) 600 ± 42 pennies D) 600 ± 60 pennies E) some other answer 22

23 Concept question 6.11 In the same scenario, J + F = 1000, J = 200 ± 30, sum S = J + F, we can say that S ± δs is A) 1000 ± 0 pennies B) 1000 ± 30 pennies C) 1000 ± 42 pennies D) 1000 ± 60 pennies E) some other answer 23

24 Uncorrelated errors Our banker has yet another trick. This time he takes a huge sack of pennies, thousands and thousands, and offers them to Frank. Frank politely takes only a handful. He does a rough count and gets F = 300 ± 30 Then Jill gets a turn. She dips into the huge sack with both hands, pulls up a quantity of pennies. She does a rough count of her pile and gets J = 700 ± 30 This time, δf and δj are nothing to do with each other. They are statistically independent, or uncorrelated. This is the situation that we usually assume. 24

25 Concept question 6.12 In this last scenario, F = 300 ± 30, J = 700 ± 30, difference D = J - F, we can say that D ± δd is A) 400 ± 0 pennies B) 400 ± 30 pennies C) 400 ± 42 pennies D) 400 ± 60 pennies E) some other answer 25

26 Concept question 6.13 We start with a number x ± δx. We define: f(x) = x + x What is δf? A) Well, this is just like that subrule, f(x) = ax, with a =2, and so I think δf = 2δx B) No, I think it s that other subrule, for addition, so that since f(x) = x + x, I think δf = ( (δx) 2 + (δx) 2 ) 1/2 = (2) 1/2 δx = 1.4 δx 26

Error analysis for the physical sciences A course reader for phys 1140 Scott Pinegar and Markus Raschke Department of Physics, University of Colorado

Error analysis for the physical sciences A course reader for phys 1140 Scott Pinegar and Markus Raschke Department of Physics, University of Colorado Error analysis for the physical sciences A course reader for phys 1140 Scott Pinegar and Markus Raschke Department of Physics, University of Colorado Version 1.0 (September 9, 2012) 1 Part 1 (chapter 1

More information

Poisson distribution and χ 2 (Chap 11-12)

Poisson distribution and χ 2 (Chap 11-12) Poisson distribution and χ 2 (Chap 11-12) Announcements: Last lecture today! Labs will continue. Homework assignment will be posted tomorrow or Thursday (I will send email) and is due Thursday, February

More information

Introduction to the General Physics Laboratories

Introduction to the General Physics Laboratories Introduction to the General Physics Laboratories September 5, 2007 Course Goals The goal of the IIT General Physics laboratories is for you to learn to be experimental scientists. For this reason, you

More information

More on infinite series Antiderivatives and area

More on infinite series Antiderivatives and area More on infinite series Antiderivatives and area September 28, 2017 The eighth breakfast was on Monday: There are still slots available for the October 4 breakfast (Wednesday, 8AM), and there s a pop-in

More information

Physics 1140 Fall 2013 Introduction to Experimental Physics

Physics 1140 Fall 2013 Introduction to Experimental Physics Physics 1140 Fall 2013 Introduction to Experimental Physics Joanna Atkin Lecture 5: Recap of Error Propagation and Gaussian Statistics Graphs and linear fitting Experimental analysis Typically make repeat

More information

Dealing with uncertainty

Dealing with uncertainty Appendix A Dealing with uncertainty A.1 Overview An uncertainty is always a positive number δx > 0. If you measure x with a device that has a precision of u, thenδx is at least as large as u. Fractional

More information

Physics 121, Spring 2008 Mechanics. Physics 121, Spring What are we going to talk about today? Physics 121, Spring Goal of the course.

Physics 121, Spring 2008 Mechanics. Physics 121, Spring What are we going to talk about today? Physics 121, Spring Goal of the course. Physics 11, Spring 008 Mechanics Department of Physics and Astronomy University of Rochester Physics 11, Spring 008. What are we going to talk about today? Goals of the course Who am I? Who are you? Course

More information

26, 24, 26, 28, 23, 23, 25, 24, 26, 25

26, 24, 26, 28, 23, 23, 25, 24, 26, 25 The ormal Distribution Introduction Chapter 5 in the text constitutes the theoretical heart of the subject of error analysis. We start by envisioning a series of experimental measurements of a quantity.

More information

The Treatment of Numerical Experimental Results

The Treatment of Numerical Experimental Results Memorial University of Newfoundl Department of Physics Physical Oceanography The Treatment of Numerical Experimental Results The purpose of these notes is to introduce you to some techniques of error analysis

More information

PHYSICS 2150 LABORATORY

PHYSICS 2150 LABORATORY PHYSICS 2150 LABORATORY Instructors: Noel Clark James G. Smith Eric D. Zimmerman Lab Coordinator: Jerry Leigh Lecture 2 January 22, 2008 PHYS2150 Lecture 2 Announcements/comments The Gaussian distribution

More information

APPENDIX A: DEALING WITH UNCERTAINTY

APPENDIX A: DEALING WITH UNCERTAINTY APPENDIX A: DEALING WITH UNCERTAINTY 1. OVERVIEW An uncertainty is always a positive number δx > 0. If the uncertainty of x is 5%, then δx =.05x. If the uncertainty in x is δx, then the fractional uncertainty

More information

Acceleration and Force: I

Acceleration and Force: I Lab Section (circle): Day: Monday Tuesday Time: 8:00 9:30 1:10 2:40 Acceleration and Force: I Name Partners Pre-Lab You are required to finish this section before coming to the lab, which will be checked

More information

Dealing with uncertainty

Dealing with uncertainty Appendix A Dealing with uncertainty A.1 Overview An uncertainty is always a positive number δx > 0. If you measure x with a device that has a precision of u, thenδx is at least as large as u. Fractional

More information

PHYSICS 15a, Fall 2006 SPEED OF SOUND LAB Due: Tuesday, November 14

PHYSICS 15a, Fall 2006 SPEED OF SOUND LAB Due: Tuesday, November 14 PHYSICS 15a, Fall 2006 SPEED OF SOUND LAB Due: Tuesday, November 14 GENERAL INFO The goal of this lab is to determine the speed of sound in air, by making measurements and taking into consideration the

More information

Lesson 12: Absolute Value Inequalities

Lesson 12: Absolute Value Inequalities Warm-Up Exercise 1. Use the number lines below to graph each inequality. A. x < 4 B. x > 1 C. 2 + x < 5 Exploratory Exercise Next, we ll combine two ideas inequalities and absolute value. 2. For each inequality

More information

Physics 1140 Fall 2011

Physics 1140 Fall 2011 Physics 1140 Fall 2011 Prof. Markus B. Raschke Lecture #6: 1. Summary 2. Fast than the speed of light 3. Scientific misconduct Where we are at: Fresh from the lab 1. E1 this and next week. 2. No more homework.

More information

Error Analysis How Do We Deal With Uncertainty In Science.

Error Analysis How Do We Deal With Uncertainty In Science. How Do We Deal With Uncertainty In Science. 1 Error Analysis - the study and evaluation of uncertainty in measurement. 2 The word error does not mean mistake or blunder in science. 3 Experience shows no

More information

Propagation of Error Notes

Propagation of Error Notes Propagation of Error Notes From http://facultyfiles.deanza.edu/gems/lunaeduardo/errorpropagation2a.pdf The analysis of uncertainties (errors) in measurements and calculations is essential in the physics

More information

Junior Laboratory. PHYC 307L, Spring Webpage:

Junior Laboratory. PHYC 307L, Spring Webpage: Lectures: Mondays, 13:00-13:50 am, P&A room 184 Lab Sessions: Room 133 Junior Laboratory PHYC 307L, Spring 2016 Webpage: http://physics.unm.edu/courses/becerra/phys307lsp16/ Monday 14:00-16:50 (Group 1)

More information

PHY 101L - Experiments in Mechanics

PHY 101L - Experiments in Mechanics PHY 101L - Experiments in Mechanics introduction to error analysis What is Error? In everyday usage, the word error usually refers to a mistake of some kind. However, within the laboratory, error takes

More information

Physics 403. Segev BenZvi. Propagation of Uncertainties. Department of Physics and Astronomy University of Rochester

Physics 403. Segev BenZvi. Propagation of Uncertainties. Department of Physics and Astronomy University of Rochester Physics 403 Propagation of Uncertainties Segev BenZvi Department of Physics and Astronomy University of Rochester Table of Contents 1 Maximum Likelihood and Minimum Least Squares Uncertainty Intervals

More information

Error analysis for IPhO contestants

Error analysis for IPhO contestants Error analysis for IPhO contestants Heikki Mäntysaari University of Jyväskylä, Department of Physics Abstract In the experimental part of IPhO (and generally when performing measurements) you have to estimate

More information

Introduction to Measurements of Physical Quantities

Introduction to Measurements of Physical Quantities 1 Goal Introduction to Measurements of Physical Quantities Content Discussion and Activities PHYS 104L The goal of this week s activities is to provide a foundational understanding regarding measurements

More information

Take the measurement of a person's height as an example. Assuming that her height has been determined to be 5' 8", how accurate is our result?

Take the measurement of a person's height as an example. Assuming that her height has been determined to be 5' 8, how accurate is our result? Error Analysis Introduction The knowledge we have of the physical world is obtained by doing experiments and making measurements. It is important to understand how to express such data and how to analyze

More information

Introduction to Statistics and Data Analysis

Introduction to Statistics and Data Analysis Introduction to Statistics and Data Analysis RSI 2005 Staff July 15, 2005 Variation and Statistics Good experimental technique often requires repeated measurements of the same quantity These repeatedly

More information

BRIDGE CIRCUITS EXPERIMENT 5: DC AND AC BRIDGE CIRCUITS 10/2/13

BRIDGE CIRCUITS EXPERIMENT 5: DC AND AC BRIDGE CIRCUITS 10/2/13 EXPERIMENT 5: DC AND AC BRIDGE CIRCUITS 0//3 This experiment demonstrates the use of the Wheatstone Bridge for precise resistance measurements and the use of error propagation to determine the uncertainty

More information

Electricity & Magnetism Lecture 3: Electric Flux and Field Lines

Electricity & Magnetism Lecture 3: Electric Flux and Field Lines Electricity & Magnetism Lecture 3: Electric Flux and Field Lines Today s Concepts: A) Electric Flux B) Field Lines Gauss Law Electricity & Magne@sm Lecture 3, Slide 1 Your Comments What the heck is epsilon

More information

Measurement and Uncertainty

Measurement and Uncertainty Physics 1020 Laboratory #1 Measurement and Uncertainty 1 Measurement and Uncertainty Any experimental measurement or result has an uncertainty associated with it. In todays lab you will perform a set of

More information

8.04: Quantum Mechanics Professor Allan Adams Massachusetts Institute of Technology. Problem Set 2. Due Thursday Feb 21 at 11.00AM

8.04: Quantum Mechanics Professor Allan Adams Massachusetts Institute of Technology. Problem Set 2. Due Thursday Feb 21 at 11.00AM 8.04: Quantum Mechanics Professor Allan Adams Massachusetts Institute of Technology Tuesday Feb 2 Problem Set 2 Due Thursday Feb 2 at.00am Assigned Reading: E&R 3.(all) 5.(,3,4,6) Li. 2.(5-8) 3.(-3) Ga.

More information

PHYSICS 2150 LABORATORY

PHYSICS 2150 LABORATORY PHYSICS 2150 LABORATORY Professor John Cumalat TAs: Adam Green John Houlton Lab Coordinator: Scott Pinegar Lecture 6 Feb. 17, 2015 ANNOUNCEMENT The problem set will be posted on the course website or you

More information

Chapter 1. Functions and Graphs. 1.5 More on Slope

Chapter 1. Functions and Graphs. 1.5 More on Slope Chapter 1 Functions and Graphs 1.5 More on Slope 1/21 Chapter 1 Homework 1.5 p200 2, 4, 6, 8, 12, 14, 16, 18, 22, 24, 26, 29, 30, 32, 46, 48 2/21 Chapter 1 Objectives Find slopes and equations of parallel

More information

Lecture 14: Course Review. Physics 3719 Spring Semester 2011

Lecture 14: Course Review. Physics 3719 Spring Semester 2011 Lecture 14: Course Review Physics 3719 Spring Semester 2011 Lab 4 Experiments Gravitational Constant G Ramirez, Thomas (PM) Speed of Light C Richards, Topham (AM) Electron Charge-to-Mass Ratio e/m Jensen,

More information

Intermediate Lab PHYS 3870

Intermediate Lab PHYS 3870 Intermediate Lab PHYS 3870 Lecture 4 Comparing Data and Models Quantitatively Linear Regression Introduction Section 0 Lecture 1 Slide 1 References: Taylor Ch. 8 and 9 Also refer to Glossary of Important

More information

PHYSICS 2150 LABORATORY

PHYSICS 2150 LABORATORY PHYSICS 2150 LABORATORY Instructors: John Cumalat Jiayan Pheonix Dai Lab Coordinator: Jerry Leigh Lecture 2 September 2, 2008 PHYS2150 Lecture 2 Need to complete the Radiation Certification The Gaussian

More information

Physics 1140 Fall 2013 Introduction to Experimental Physics

Physics 1140 Fall 2013 Introduction to Experimental Physics Physics 1140 Fall 2013 Introduction to Experimental Physics Joanna Atkin Lecture 4: Statistics of uncertainty Today If you re missing a pre-lab grade and you handed it in (or any other problem), talk to

More information

Conservation of Momentum

Conservation of Momentum Learning Goals Conservation of Momentum After you finish this lab, you will be able to: 1. Use Logger Pro to analyze video and calculate position, velocity, and acceleration. 2. Use the equations for 2-dimensional

More information

Experiment 2 Random Error and Basic Statistics

Experiment 2 Random Error and Basic Statistics PHY191 Experiment 2: Random Error and Basic Statistics 7/12/2011 Page 1 Experiment 2 Random Error and Basic Statistics Homework 2: turn in the second week of the experiment. This is a difficult homework

More information

Computational Physics (6810): Session 13

Computational Physics (6810): Session 13 Computational Physics (6810): Session 13 Dick Furnstahl Nuclear Theory Group OSU Physics Department April 14, 2017 6810 Endgame Various recaps and followups Random stuff (like RNGs :) Session 13 stuff

More information

Physics 1140 Lecture 6: Gaussian Distributions

Physics 1140 Lecture 6: Gaussian Distributions Physics 1140 Lecture 6: Gaussian Distributions February 21/22, 2008 Homework #3 due Monday, 5 PM Should have taken data for Lab 3 this week - due Tues. Mar. 4, 5:30 PM Final (end of lectures) is next week

More information

MA 1125 Lecture 15 - The Standard Normal Distribution. Friday, October 6, Objectives: Introduce the standard normal distribution and table.

MA 1125 Lecture 15 - The Standard Normal Distribution. Friday, October 6, Objectives: Introduce the standard normal distribution and table. MA 1125 Lecture 15 - The Standard Normal Distribution Friday, October 6, 2017. Objectives: Introduce the standard normal distribution and table. 1. The Standard Normal Distribution We ve been looking at

More information

Normal Distributions Rejection of Data + RLC Circuits. Lecture 4 Physics 2CL Summer 2011

Normal Distributions Rejection of Data + RLC Circuits. Lecture 4 Physics 2CL Summer 2011 Normal Distributions Rejection of Data + RLC Circuits Lecture 4 Physics 2CL Summer 2011 Outline Reminder of simple uncertainty propagation formulae Hidden useful formula for estimating uncertainties More

More information

Modern Methods of Data Analysis - WS 07/08

Modern Methods of Data Analysis - WS 07/08 Modern Methods of Data Analysis Lecture VIa (19.11.07) Contents: Uncertainties (II): Re: error propagation Correlated uncertainties Systematic uncertainties Re: Error Propagation (I) x = Vi,j and µi known

More information

Physics 403 Probability Distributions II: More Properties of PDFs and PMFs

Physics 403 Probability Distributions II: More Properties of PDFs and PMFs Physics 403 Probability Distributions II: More Properties of PDFs and PMFs Segev BenZvi Department of Physics and Astronomy University of Rochester Table of Contents 1 Last Time: Common Probability Distributions

More information

PHYSICS 2150 LABORATORY LECTURE 1

PHYSICS 2150 LABORATORY LECTURE 1 PHYSICS 2150 LABORATORY LECTURE 1 1865 Maxwell equations HISTORY theory expt in 2150 expt not in 2150 SCOPE OF THIS COURSE Experimental introduction to modern physics! Modern in this case means roughly

More information

PHY131H1S Class 13. Today: Nonuniform Circular Motion. Review of Chapters 1-8 Review of Error Analysis

PHY131H1S Class 13. Today: Nonuniform Circular Motion. Review of Chapters 1-8 Review of Error Analysis PHYHS lass Today: onuniform ircular Motion Review of hapters -8 Review of Error nalysis 80 minute test tomorrow evening at 6:00pm in H40 see you there!. n = w. n > w. n < w onuniform ircular Motion onuniform

More information

Mon 3 Nov Tuesday 4 Nov: Quiz 8 ( ) Friday 7 Nov: Exam 2!!! Today: 4.5 Wednesday: REVIEW. In class Covers

Mon 3 Nov Tuesday 4 Nov: Quiz 8 ( ) Friday 7 Nov: Exam 2!!! Today: 4.5 Wednesday: REVIEW. In class Covers Mon 3 Nov 2014 Tuesday 4 Nov: Quiz 8 (4.2-4.4) Friday 7 Nov: Exam 2!!! In class Covers 3.9-4.5 Today: 4.5 Wednesday: REVIEW Linear Approximation and Differentials In section 4.5, you see the pictures on

More information

From Determinism to Stochasticity

From Determinism to Stochasticity From Determinism to Stochasticity Reading for this lecture: (These) Lecture Notes. Lecture 8: Nonlinear Physics, Physics 5/25 (Spring 2); Jim Crutchfield Monday, May 24, 2 Cave: Sensory Immersive Visualization

More information

Lecture 1: Probability Fundamentals

Lecture 1: Probability Fundamentals Lecture 1: Probability Fundamentals IB Paper 7: Probability and Statistics Carl Edward Rasmussen Department of Engineering, University of Cambridge January 22nd, 2008 Rasmussen (CUED) Lecture 1: Probability

More information

Experiment 2. Reaction Time. Make a series of measurements of your reaction time. Use statistics to analyze your reaction time.

Experiment 2. Reaction Time. Make a series of measurements of your reaction time. Use statistics to analyze your reaction time. Experiment 2 Reaction Time 2.1 Objectives Make a series of measurements of your reaction time. Use statistics to analyze your reaction time. 2.2 Introduction The purpose of this lab is to demonstrate repeated

More information

Welcome to Physics 211! General Physics I

Welcome to Physics 211! General Physics I Welcome to Physics 211! General Physics I Physics 211 Fall 2015 Lecture 01-1 1 Physics 215 Honors & Majors Are you interested in becoming a physics major? Do you have a strong background in physics and

More information

Chapter 2 Linear Relationships. Vocabulary

Chapter 2 Linear Relationships. Vocabulary Chapter 2 Linear Relationships Monday Tuesday Wednesday Thursday Friday Sept. 2 Lesson: 2.1.1/2.1.2 Sept. 3 Lesson: 2.1.3/2.1.4 Sept. 4 Lesson: 2.2.2 HW: Day 1 2-6 2-10 2-19 2-24 HW: Day 2 2-31 2-35 2-41

More information

Lecture : More Derivative Rules MTH 124

Lecture : More Derivative Rules MTH 124 Today we investigate how to differentiate products of functions and quotients of functions. For example how can we go about differentiating (x + 4)(x 2 + 5) or x+4? The rules we will x 2 +5 learn today

More information

EM Waves in Media. What happens when an EM wave travels through our model material?

EM Waves in Media. What happens when an EM wave travels through our model material? EM Waves in Media We can model a material as made of atoms which have a charged electron bound to a nucleus by a spring. We model the nuclei as being fixed to a grid (because they are heavy, they don t

More information

An Introduction to Error Analysis

An Introduction to Error Analysis An Introduction to Error Analysis Introduction The following notes (courtesy of Prof. Ditchfield) provide an introduction to quantitative error analysis: the study and evaluation of uncertainty in measurement.

More information

Lab 1: Simple Pendulum 1. The Pendulum. Laboratory 1, Physics 15c Due Friday, February 16, in front of Sci Cen 301

Lab 1: Simple Pendulum 1. The Pendulum. Laboratory 1, Physics 15c Due Friday, February 16, in front of Sci Cen 301 Lab 1: Simple Pendulum 1 The Pendulum Laboratory 1, Physics 15c Due Friday, February 16, in front of Sci Cen 301 Physics 15c; REV 0 1 January 31, 2007 1 Introduction Most oscillating systems behave like

More information

Department of Electrical- and Information Technology. ETS061 Lecture 3, Verification, Validation and Input

Department of Electrical- and Information Technology. ETS061 Lecture 3, Verification, Validation and Input ETS061 Lecture 3, Verification, Validation and Input Verification and Validation Real system Validation Model Verification Measurements Verification Break model down into smaller bits and test each bit

More information

Lecture 10. Lidar Simulation and Error Analysis Overview (2)

Lecture 10. Lidar Simulation and Error Analysis Overview (2) Lecture 10. Lidar Simulation and Error Analysis Overview () Introduction Accuracy versus Precision Classification of Measurement Errors Accuracy in lidar measurements Precision in lidar measurements General

More information

Error Analysis in Experimental Physical Science Mini-Version

Error Analysis in Experimental Physical Science Mini-Version Error Analysis in Experimental Physical Science Mini-Version by David Harrison and Jason Harlow Last updated July 13, 2012 by Jason Harlow. Original version written by David M. Harrison, Department of

More information

Introduction to Error Analysis

Introduction to Error Analysis Introduction to Error Analysis Part 1: the Basics Andrei Gritsan based on lectures by Petar Maksimović February 1, 2010 Overview Definitions Reporting results and rounding Accuracy vs precision systematic

More information

Jerry Gilfoyle The Hydrogen Optical Spectrum 1 / 15

Jerry Gilfoyle The Hydrogen Optical Spectrum 1 / 15 Jerry Gilfoyle The Hydrogen Optical Spectrum 1 / 15 What holds atoms together? Jerry Gilfoyle The Hydrogen Optical Spectrum 1 / 15 What holds atoms together? How do we know? Jerry Gilfoyle The Hydrogen

More information

Measurements and Data Analysis

Measurements and Data Analysis Measurements and Data Analysis 1 Introduction The central point in experimental physical science is the measurement of physical quantities. Experience has shown that all measurements, no matter how carefully

More information

A review of probability theory

A review of probability theory 1 A review of probability theory In this book we will study dynamical systems driven by noise. Noise is something that changes randomly with time, and quantities that do this are called stochastic processes.

More information

Stat Lecture 20. Last class we introduced the covariance and correlation between two jointly distributed random variables.

Stat Lecture 20. Last class we introduced the covariance and correlation between two jointly distributed random variables. Stat 260 - Lecture 20 Recap of Last Class Last class we introduced the covariance and correlation between two jointly distributed random variables. Today: We will introduce the idea of a statistic and

More information

12:40-2:40 3:00-4:00 PM

12:40-2:40 3:00-4:00 PM Physics 294H l Professor: Joey Huston l email:huston@msu.edu l office: BPS3230 l Homework will be with Mastering Physics (and an average of 1 hand-written problem per week) Help-room hours: 12:40-2:40

More information

CS 361: Probability & Statistics

CS 361: Probability & Statistics February 26, 2018 CS 361: Probability & Statistics Random variables The discrete uniform distribution If every value of a discrete random variable has the same probability, then its distribution is called

More information

Some Review and Hypothesis Tes4ng. Friday, March 15, 13

Some Review and Hypothesis Tes4ng. Friday, March 15, 13 Some Review and Hypothesis Tes4ng Outline Discussing the homework ques4ons from Joey and Phoebe Review of Sta4s4cal Inference Proper4es of OLS under the normality assump4on Confidence Intervals, T test,

More information

Intermediate Lab PHYS 3870

Intermediate Lab PHYS 3870 Intermediate Lab PHYS 3870 Lecture 3 Distribution Functions References: Taylor Ch. 5 (and Chs. 10 and 11 for Reference) Taylor Ch. 6 and 7 Also refer to Glossary of Important Terms in Error Analysis Probability

More information

Error propagation. Alexander Khanov. October 4, PHYS6260: Experimental Methods is HEP Oklahoma State University

Error propagation. Alexander Khanov. October 4, PHYS6260: Experimental Methods is HEP Oklahoma State University Error propagation Alexander Khanov PHYS660: Experimental Methods is HEP Oklahoma State University October 4, 017 Why error propagation? In many cases we measure one thing and want to know something else

More information

Physics 2020 Laboratory Manual

Physics 2020 Laboratory Manual Physics 00 Laboratory Manual Department of Physics University of Colorado at Boulder Spring, 000 This manual is available for FREE online at: http://www.colorado.edu/physics/phys00/ This manual supercedes

More information

Chapter 2 INTEGERS. There will be NO CALCULATORS used for this unit!

Chapter 2 INTEGERS. There will be NO CALCULATORS used for this unit! Chapter 2 INTEGERS There will be NO CALCULATORS used for this unit! 2.2 What are integers? 1. Positives 2. Negatives 3. 0 4. Whole Numbers They are not 1. Not Fractions 2. Not Decimals What Do You Know?!

More information

Experiment 2 Random Error and Basic Statistics

Experiment 2 Random Error and Basic Statistics PHY9 Experiment 2: Random Error and Basic Statistics 8/5/2006 Page Experiment 2 Random Error and Basic Statistics Homework 2: Turn in at start of experiment. Readings: Taylor chapter 4: introduction, sections

More information

Experiment 4 Free Fall

Experiment 4 Free Fall PHY9 Experiment 4: Free Fall 8/0/007 Page Experiment 4 Free Fall Suggested Reading for this Lab Bauer&Westfall Ch (as needed) Taylor, Section.6, and standard deviation rule ( t < ) rule in the uncertainty

More information

Week 4: Chap. 3 Statistics of Radioactivity

Week 4: Chap. 3 Statistics of Radioactivity Week 4: Chap. 3 Statistics of Radioactivity Vacuum Technology General use of Statistical Distributions in Radiation Measurements -- Fluctuations in Number --- distribution function models -- Fluctuations

More information

Waves and Fields (PHYS 195): Week 4 Spring 2019 v1.0

Waves and Fields (PHYS 195): Week 4 Spring 2019 v1.0 Waves and Fields (PHYS 195): Week 4 Spring 2019 v1.0 Intro: This week we finish our study of damped driven oscillators and resonance in these systems and start on our study of waves, beginning with transverse

More information

Math Lecture 1: Differential Equations - What Are They, Where Do They Come From, and What Do They Want?

Math Lecture 1: Differential Equations - What Are They, Where Do They Come From, and What Do They Want? Math 2280 - Lecture 1: Differential Equations - What Are They, Where Do They Come From, and What Do They Want? Dylan Zwick Fall 2013 Newton s fundamental discovery, the one which he considered necessary

More information

Outline. Recall... Limits. Problem Solving Sessions. MA211 Lecture 4: Limits and Derivatives Wednesday 17 September Definition (Limit)

Outline. Recall... Limits. Problem Solving Sessions. MA211 Lecture 4: Limits and Derivatives Wednesday 17 September Definition (Limit) Outline MA211 Lecture 4: Limits and Wednesday 17 September 2008 1 0.2 0.15 0.1 2 ) x) 0.05 0 0.05 0.1 3 ) t) 0.15 0.2 0.4 0.3 0.2 0.1 0 0.1 0.2 0.3 0.4 4 Extra: Binomial Expansions MA211 Lecture 4: Limits

More information

ME751 Advanced Computational Multibody Dynamics. September 14, 2016

ME751 Advanced Computational Multibody Dynamics. September 14, 2016 ME751 Advanced Computational Multibody Dynamics September 14, 2016 Quote of the Day My own business always bores me to death; I prefer other people's. -- Oscar Wilde 2 Looking Ahead, Friday Need to wrap

More information

Probability Foundation for Electrical Engineers Prof. Krishna Jagannathan Department of Electrical Engineering Indian Institute of Technology, Madras

Probability Foundation for Electrical Engineers Prof. Krishna Jagannathan Department of Electrical Engineering Indian Institute of Technology, Madras (Refer Slide Time: 00:23) Probability Foundation for Electrical Engineers Prof. Krishna Jagannathan Department of Electrical Engineering Indian Institute of Technology, Madras Lecture - 22 Independent

More information

Introductory Physics PHYS101

Introductory Physics PHYS101 Introductory Physics PHYS101 Dr Richard H. Cyburt Assistant Professor of Physics My office: 402c in the Science Building My phone: (304) 384-6006 My email: rcyburt@concord.edu In person or email is the

More information

MAT01B1: Integration of Rational Functions by Partial Fractions

MAT01B1: Integration of Rational Functions by Partial Fractions MAT01B1: Integration of Rational Functions by Partial Fractions Dr Craig 1 August 2018 My details: Dr Andrew Craig acraig@uj.ac.za Consulting hours: Monday 14h40 15h25 Thursday 11h20 12h55 Friday 11h20

More information

5 Error Propagation We start from eq , which shows the explicit dependence of g on the measured variables t and h. Thus.

5 Error Propagation We start from eq , which shows the explicit dependence of g on the measured variables t and h. Thus. 5 Error Propagation We start from eq..4., which shows the explicit dependence of g on the measured variables t and h. Thus g(t,h) = h/t eq..5. The simplest way to get the error in g from the error in t

More information

Calculus Review Session. Brian Prest Duke University Nicholas School of the Environment August 18, 2017

Calculus Review Session. Brian Prest Duke University Nicholas School of the Environment August 18, 2017 Calculus Review Session Brian Prest Duke University Nicholas School of the Environment August 18, 2017 Topics to be covered 1. Functions and Continuity 2. Solving Systems of Equations 3. Derivatives (one

More information

O.K. But what if the chicken didn t have access to a teleporter.

O.K. But what if the chicken didn t have access to a teleporter. The intermediate value theorem, and performing algebra on its. This is a dual topic lecture. : The Intermediate value theorem First we should remember what it means to be a continuous function: A function

More information

Lecture 16. Lectures 1-15 Review

Lecture 16. Lectures 1-15 Review 18.440: Lecture 16 Lectures 1-15 Review Scott Sheffield MIT 1 Outline Counting tricks and basic principles of probability Discrete random variables 2 Outline Counting tricks and basic principles of probability

More information

LAB INFORMATION TFYA76 Mekanik

LAB INFORMATION TFYA76 Mekanik LAB INFORMATION TFYA76 Mekanik September 18, 2018 Lecturer: Bo Durbeej (bo.durbeej@liu.se) Lab Assistants: Tim Cornelissen (tim.cornelissen@liu.se) Indre Urbanaviciute (indre.urbanaviciute@liu.se) Contents

More information

Statistics and data analyses

Statistics and data analyses Statistics and data analyses Designing experiments Measuring time Instrumental quality Precision Standard deviation depends on Number of measurements Detection quality Systematics and methology σ tot =

More information

Physics 1A, Lecture 2: Math Review and Intro to Mo;on Summer Session 1, 2011

Physics 1A, Lecture 2: Math Review and Intro to Mo;on Summer Session 1, 2011 Physics 1A, Lecture 2: Math Review and Intro to Mo;on Summer Session 1, 2011 Your textbook should be closed, though you may use any handwrieen notes that you have taken. You will use your clicker to answer

More information

Data Analysis I. Dr Martin Hendry, Dept of Physics and Astronomy University of Glasgow, UK. 10 lectures, beginning October 2006

Data Analysis I. Dr Martin Hendry, Dept of Physics and Astronomy University of Glasgow, UK. 10 lectures, beginning October 2006 Astronomical p( y x, I) p( x, I) p ( x y, I) = p( y, I) Data Analysis I Dr Martin Hendry, Dept of Physics and Astronomy University of Glasgow, UK 10 lectures, beginning October 2006 4. Monte Carlo Methods

More information

Lesson 20B: Absolute Value Equations and Inequalities

Lesson 20B: Absolute Value Equations and Inequalities : Absolute Value Equations and Inequalities Warm-Up Exercise 1. Watch the absolute value video on YouTube Math Shorts Episode 10 and then answer the questions below. https://www.youtube.com/watch?v=wrof6dw63es

More information

Astronomy 102 Lecture 04

Astronomy 102 Lecture 04 Today in Astronomy 102: relativity q Measurement of physical quantities, reference frames, and space-time diagrams. q Relative and absolute physical quantities. q Classical physics and Galileo s theory

More information

Errors: What they are, and how to deal with them

Errors: What they are, and how to deal with them Errors: What they are, and how to deal with them A series of three lectures plus exercises, by Alan Usher Room 111, a.usher@ex.ac.uk Synopsis 1) Introduction ) Rules for quoting errors 3) Combining errors

More information

Measurements, Sig Figs and Graphing

Measurements, Sig Figs and Graphing Measurements, Sig Figs and Graphing Chem 1A Laboratory #1 Chemists as Control Freaks Precision: How close together Accuracy: How close to the true value Accurate Measurements g Knowledge Knowledge g Power

More information

Scientific Notation. exploration. 1. Complete the table of values for the powers of ten M8N1.j. 110 Holt Mathematics

Scientific Notation. exploration. 1. Complete the table of values for the powers of ten M8N1.j. 110 Holt Mathematics exploration Georgia Performance Standards M8N1.j 1. Complete the table of values for the powers of ten. Exponent 6 10 6 5 10 5 4 10 4 Power 3 10 3 2 10 2 1 1 0 2 1 0.01 10 10 1 10 1 1 1 0 1 1 0.1 10 0

More information

Section 1.6 Inverse Functions

Section 1.6 Inverse Functions 0 Chapter 1 Section 1.6 Inverse Functions A fashion designer is travelling to Milan for a fashion show. He asks his assistant, Betty, what 7 degrees Fahrenheit is in Celsius, and after a quick search on

More information

CHM 532 Notes on Wavefunctions and the Schrödinger Equation

CHM 532 Notes on Wavefunctions and the Schrödinger Equation CHM 532 Notes on Wavefunctions and the Schrödinger Equation In class we have discussed a thought experiment 1 that contrasts the behavior of classical particles, classical waves and quantum particles.

More information

Evaluate the following expression: (7 7) (7 7) 2 = (49) 2 = = = 105 G E. Evaluate the following expression: 75

Evaluate the following expression: (7 7) (7 7) 2 = (49) 2 = = = 105 G E. Evaluate the following expression: 75 AUSD Grade 5 Evaluate the following expression: 4 2 + (7 7) 2 4 2 + (7 7) 2 = 4 2 + (49) 2 = 7 + 49 2 = 7 + 98 = 05 G E M D A S 5.OA. Evaluate the following expression: 75 + (3+ 2) (0 3) 3 Gael says that

More information

LECTURE 24 HALF-LIFE, RADIOACTIVE DATING, AND BINDING ENERGY. Instructor: Kazumi Tolich

LECTURE 24 HALF-LIFE, RADIOACTIVE DATING, AND BINDING ENERGY. Instructor: Kazumi Tolich LECTURE 24 HALF-LIFE, RADIOACTIVE DATING, AND BINDING ENERGY Instructor: Kazumi Tolich Lecture 24 2 Reading chapter 32.3 to 32.4 Half-life Radioactive dating Binding energy Nuclear decay functions 3 If

More information

As you come in today, pull out a piece of paper and respond to the following prompts:

As you come in today, pull out a piece of paper and respond to the following prompts: October 16, 2014 LB273 Prof. Vash: Sawtelle As you come in today, pull out a piece of paper and respond to the following prompts: 1. Write down 5 things that you value most in your life (these do not need

More information

The SuperBall Lab. Objective. Instructions

The SuperBall Lab. Objective. Instructions 1 The SuperBall Lab Objective This goal of this tutorial lab is to introduce data analysis techniques by examining energy loss in super ball collisions. Instructions This laboratory does not have to be

More information

Introduction to Data Analysis

Introduction to Data Analysis Introduction to Data Analysis Analysis of Experimental Errors How to Report and Use Experimental Errors Statistical Analysis of Data Simple statistics of data Plotting and displaying the data Summary Errors

More information