PHYSICS 2150 LABORATORY

Size: px
Start display at page:

Download "PHYSICS 2150 LABORATORY"

Transcription

1 PHYSICS 2150 LABORATORY Instructors: Noel Clark James G. Smith Eric D. Zimmerman Lab Coordinator: Jerry Leigh Lecture 2 January 22, 2008

2 PHYS2150 Lecture 2 Announcements/comments The Gaussian distribution What it looks like Where and why it shows up Mean, sigma, and all that Statistical and systematic error

3 A COMMENT: YOUR FIRST LAB We hope you enjoyed the first experiment. Your first lab reports are due next week! Recall the advice in the syllabus and first lecture on your lab reports. More info next week when you are deeper into writing!

4 GAUSSIAN DISTRIBUTION Shows up just about everywhere Synonyms: Normal Distribution, Bell Curve Most basic form is unit Gaussian: centered at zero, unit integral, unit σ: F (x) = 1 2π exp ( x2 This is the probability density for a continuous, normally distributed random variable with mean zero and standard deviation of 1. 2 ) F(x) Unit Gaussian µ = 0! = 1 µ µ"! µ+! As with any probability density function, + dxf (x) = 1. x

5 GAUSSIAN DISTRIBUTION What can you do to the unit gaussian, and still keep it a gaussian? Change its mean from zero to µ Change its width from 1 to σ (while increasing height by 1/σ) Change its integral but then it s not a normalized probability distribution anymore. So this isn t allowed here. F (x) = 1 [ (x µ) 2 σ 2π exp 2σ 2 ] F(x) General µ normalized 0.5 Gaussian µ = ! = 0.7 µ"! µ+! As with any probability density function, this still integrates to 1. x

6 WHERE IT SHOWS UP If you don t have a clue what the probability distribution of a random quantity is (say, the circumferences of cows at the EDZ Ranch), it s highly likely to be approximately gaussian! This is due to the Central Limit Theorem: a sum of a large enough number of random numbers has a gaussian distribution, no matter what the initial distribution shapes might have been. Aside: Distribution of counts of a process with a uniform rate in a finite amount of time is Poisson-distributed (see a later lecture) but is approximately gaussian in the high-number limit. This is another example of the Central Limit Theorem. If there is no systematic bias (more on that later), then the mean of measurements of a quantity is the best estimate of its true value.

7 MEAN, SIGMA, AND ALL THAT Say we measured 150 cows, and have the histogram of results. Calculate the mean circumference <c>: Standard deviation is calculated by: σ c = c = 1 N N i=1 (c i c ) 2 N 1 i c i = 4.39 m = 0.70 m Read up in Taylor on definitions and uses of Entries Cows/0.2 / 0.02 cm m tries variance, standard deviation. WARNING: This is a histogram (a plot showing how many times the result fell in each bin), NOT a normalized probability distribution. Note that its integral is not Bovine Measured Circumference length (m) cm

8 MEAN, SIGMA, AND ALL THAT So, we can now say that the mean circumference is 4.39 m and the standard deviation is 0.70 m. What do we know? 68% of cows have circumference between ( ) and ( ) m. This is because the integral of the gaussian from µ σ to µ +σ is How well do we know the mean circumference? Need std. dev. on the mean: σ c = σ c N = 0.06 Entries Cows/0.2 / 0.02 cm m tries Bovine Measured Circumference length (m) cm So <c>=(4.39 ± 0.06) m, where ± means 1 sigma, or 68% probability that the true mean is within that interval (68% confidence level ). Note that we know the mean to much better than σ of individual measurements.

9 USING THE GAUSSIAN Can use the same mathematics to describe the results of repeated measurements of the same quantity, where there is random error/resolution in the instrument. The distribution will be centered on a mean (assume for now that this is the correct value) The distribution will have a standard deviation Can fit this to a gaussian (Lecture 4,5) or just calculate mean, sigma directly Uncertainty on the mean is now σ µ = σ N Entries / 0.02 cm ries σ Measured length cm µμ Note: More measurements smaller error on the mean! Also means better determination of error.

10 WHAT DOES SIGMA MEAN? First if the measurements are from a gaussian Fµμ, (x), then the probability of measuring a value in the range (a,b) is b P = a dxf µ,σ(x) µ+σ For a normalized gaussian, µ σ dxf µ,σ(x) = 0.68 The general integral can t be expressed analytically. Use error function (erf(x)) tables for values other than 1. So, saying J=5.4±0.9 means one can say the true value of J is between 4.5 and 6.3 with 68% confidence level.

11 ANALYZING ERROR ON A QUANTITY You are in a car on a bumpy road on a rainy day, and are trying to measure the length of the moving windshield wiper with a shaky ruler. You measure it 37 times. The histogram of your results is at right. It doesn t look very gaussian. But, with only 37 measurements plotted in lots of bins, distributions often look ratty. 1σ error on mean You calculate the mean to be 56.2 cm, and the standard deviation to be 6.8 cm. The 1σ uncertainty on the mean is 1.1 cm. If we assume the underlying distribution is nevertheless gaussian and centered on the true value, we can turn this into a confidence level: the wiper length is between 55.1 and 57.3 cm with 68% confidence.

12 ANALYZING ERROR ON A QUANTITY Stop the car, go outside and measure the wiper properly: it is 61.0 cm long! true We said the wiper length was between 55.1 and 57.3 cm with 68% confidence. 1σ error on mean We are off by over 4 sigma. This is shockingly unlikely! Clearly there is a systematic shift. The distribution does not center on the true value. More data points won t get us any closer to the true value. We need to make better measurements, or find the source of the error and apply a correction to the data.

13 STATISTICAL (RANDOM) vs SYSTEMATIC UNCERTAINTIES STATISTICAL SYSTEMATIC NO PREFERRED DIRECTION BIAS ON THE MEASUREMENT: ONLY ONE DIRECTION (THOUGH OFTEN DON T KNOW WHICH) CHANGES WITH EACH DATA POINT: TAKNG MORE DATA REDUCES ERROR ON THE MEAN STAYS THE SAME FOR EACH MEASUREMENT: MORE DATA WON T HELP YOU! GAUSSIAN MODEL IS USUALLY GOOD (EXCEPT COUNTING EXPERIMENTS WITH FEW EVENTS) GAUSSIAN MODEL IS USUALLY TERRIBLE. BUT WE USE IT ANYWAY IF DON T HAVE A BETTER MODEL. Keep statistical, systematic errors separate. Report results as something like: g = [965 ± 30(stat) ± 12(syst)] cm/s 2 Add in quadrature (note that this assumes gaussian distribution) to compare with known values: g = [965 ± 32(total)] cm/s 2

14 PROPAGATION OF ERRORS Often, we aren t measuring directly the quantity our experiment is after: we measure some lab quantities and our final physics result is a function of them. Kaon experiment: we measure curvature of tracks, and from them calculate the momentum of the pions, and then calculate the mass of the kaon from that. We know the errors on the lab quantities. How do we find the error on the final physics result? This is a specific case of the general problem of finding the error on a quantity that is a function of random (uncertain) variables.

15 PROPAGATION OF ERRORS The general formula for error on a function q of random variables x,y,z,...: δq(x, y, z,...) =. ( ) 2 q x δx + ( ) 2 q y δy + ( ) 2 q z δz +... Special case 1: addition (with, say, multiples). Let q= x + y + 2z. ) 2 δq = ( q x δx ) 2 + ( q y δy = (δx) 2 + (δy) 2 + (2δz) 2 = (δx) 2 + (δy) 2 + 4(δz) 2 ) 2 + ( q z δz

16 PROPAGATION OF ERRORS. Special case 2: multiplication. Let q=xyz. δq = ( ) 2 q x δx + ( ) 2 q y δy + ( ) 2 q z δz δq q = (yzδx) 2 + (xzδy) 2 + (xyδz) 2 (δx ) 2 ( ) 2 ( ) 2 δy δz = + + x y z We can add fractional errors in quadrature to get the fractional error on the final result! (This works for division too. Derive it yourself!)

17 COMPARING WITH KNOWN VALUE: Measure: g = [965 ± 32] cm/s 2 = x± x Often negligible Known value: cm/s 2 = x0± x0 Discrepancy is (x-x0)±δ(x-x0), where [δ(x-x0)] 2 = (δx) 2 + (δx0) 2 (add in quadrature) Discrepancy in units of sigma (often called significance of discrepancy) is x x 0 = x x 0 σ x x0 σ 2 x + σx 2 0 Discrepancy here is (16 ± 32) cm/s 2, or 0.5σ. Use erf table to determine agreement confidence level: 62% agreement: good!

18 ANOTHER EXAMPLE: e/m

19 ANOTHER EXAMPLE: e/m artifact

20 ANOTHER EXAMPLE: e/m

21 ANOTHER EXAMPLE: e/m

22 ANOTHER EXAMPLE: e/m

23 ANOTHER EXAMPLE: e/m

24 ANOTHER EXAMPLE: e/m

PHYSICS 2150 LABORATORY

PHYSICS 2150 LABORATORY PHYSICS 2150 LABORATORY Instructors: John Cumalat Jiayan Pheonix Dai Lab Coordinator: Jerry Leigh Lecture 2 September 2, 2008 PHYS2150 Lecture 2 Need to complete the Radiation Certification The Gaussian

More information

Modern Methods of Data Analysis - WS 07/08

Modern Methods of Data Analysis - WS 07/08 Modern Methods of Data Analysis Lecture VIa (19.11.07) Contents: Uncertainties (II): Re: error propagation Correlated uncertainties Systematic uncertainties Re: Error Propagation (I) x = Vi,j and µi known

More information

BRIDGE CIRCUITS EXPERIMENT 5: DC AND AC BRIDGE CIRCUITS 10/2/13

BRIDGE CIRCUITS EXPERIMENT 5: DC AND AC BRIDGE CIRCUITS 10/2/13 EXPERIMENT 5: DC AND AC BRIDGE CIRCUITS 0//3 This experiment demonstrates the use of the Wheatstone Bridge for precise resistance measurements and the use of error propagation to determine the uncertainty

More information

Experiment 2 Random Error and Basic Statistics

Experiment 2 Random Error and Basic Statistics PHY9 Experiment 2: Random Error and Basic Statistics 8/5/2006 Page Experiment 2 Random Error and Basic Statistics Homework 2: Turn in at start of experiment. Readings: Taylor chapter 4: introduction, sections

More information

Experiment 2 Random Error and Basic Statistics

Experiment 2 Random Error and Basic Statistics PHY191 Experiment 2: Random Error and Basic Statistics 7/12/2011 Page 1 Experiment 2 Random Error and Basic Statistics Homework 2: turn in the second week of the experiment. This is a difficult homework

More information

Physics 1140 Fall 2013 Introduction to Experimental Physics

Physics 1140 Fall 2013 Introduction to Experimental Physics Physics 1140 Fall 2013 Introduction to Experimental Physics Joanna Atkin Lecture 4: Statistics of uncertainty Today If you re missing a pre-lab grade and you handed it in (or any other problem), talk to

More information

Lecture 2: Reporting, Using, and Calculating Uncertainties 2. v = 6050 ± 30 m/s. v = 6047 ± 3 m/s

Lecture 2: Reporting, Using, and Calculating Uncertainties 2. v = 6050 ± 30 m/s. v = 6047 ± 3 m/s 1 CHAPTER 2: Reporting and Using Uncertainties Quoting a result as: Best Estimate ± Uncertainty In the Archimedes experiment result, we had a table which read Measurement of Crown Density by Two Experts

More information

Statistics. Lent Term 2015 Prof. Mark Thomson. 2: The Gaussian Limit

Statistics. Lent Term 2015 Prof. Mark Thomson. 2: The Gaussian Limit Statistics Lent Term 2015 Prof. Mark Thomson Lecture 2 : The Gaussian Limit Prof. M.A. Thomson Lent Term 2015 29 Lecture Lecture Lecture Lecture 1: Back to basics Introduction, Probability distribution

More information

Error Analysis in Experimental Physical Science Mini-Version

Error Analysis in Experimental Physical Science Mini-Version Error Analysis in Experimental Physical Science Mini-Version by David Harrison and Jason Harlow Last updated July 13, 2012 by Jason Harlow. Original version written by David M. Harrison, Department of

More information

Measurements and Data Analysis

Measurements and Data Analysis Measurements and Data Analysis 1 Introduction The central point in experimental physical science is the measurement of physical quantities. Experience has shown that all measurements, no matter how carefully

More information

PHY 101L - Experiments in Mechanics

PHY 101L - Experiments in Mechanics PHY 101L - Experiments in Mechanics introduction to error analysis What is Error? In everyday usage, the word error usually refers to a mistake of some kind. However, within the laboratory, error takes

More information

PHYS 1140 lecture 6. During lab this week (Tuesday to next Monday):

PHYS 1140 lecture 6. During lab this week (Tuesday to next Monday): Deadlines coming up PHYS 1140 lecture 6 During lab this week (Tuesday to next Monday): Turn in Pre-lab 3 at the START of your lab session Expt. 3: take data, start analysis during your lab session. Next

More information

PHYSICS 15a, Fall 2006 SPEED OF SOUND LAB Due: Tuesday, November 14

PHYSICS 15a, Fall 2006 SPEED OF SOUND LAB Due: Tuesday, November 14 PHYSICS 15a, Fall 2006 SPEED OF SOUND LAB Due: Tuesday, November 14 GENERAL INFO The goal of this lab is to determine the speed of sound in air, by making measurements and taking into consideration the

More information

Error analysis for IPhO contestants

Error analysis for IPhO contestants Error analysis for IPhO contestants Heikki Mäntysaari University of Jyväskylä, Department of Physics Abstract In the experimental part of IPhO (and generally when performing measurements) you have to estimate

More information

1 Measurement Uncertainties

1 Measurement Uncertainties 1 Measurement Uncertainties (Adapted stolen, really from work by Amin Jaziri) 1.1 Introduction No measurement can be perfectly certain. No measuring device is infinitely sensitive or infinitely precise.

More information

26, 24, 26, 28, 23, 23, 25, 24, 26, 25

26, 24, 26, 28, 23, 23, 25, 24, 26, 25 The ormal Distribution Introduction Chapter 5 in the text constitutes the theoretical heart of the subject of error analysis. We start by envisioning a series of experimental measurements of a quantity.

More information

Error analysis for the physical sciences A course reader for phys 1140 Scott Pinegar and Markus Raschke Department of Physics, University of Colorado

Error analysis for the physical sciences A course reader for phys 1140 Scott Pinegar and Markus Raschke Department of Physics, University of Colorado Error analysis for the physical sciences A course reader for phys 1140 Scott Pinegar and Markus Raschke Department of Physics, University of Colorado Version 1.0 (September 9, 2012) 1 Part 1 (chapter 1

More information

PHYS Uncertainty Analysis

PHYS Uncertainty Analysis PHYS 213 1 Uncertainty Analysis Types of uncertainty We will consider two types of uncertainty that affect our measured or calculated values: random uncertainty and systematic uncertainty. Random uncertainties,

More information

Intermediate Lab PHYS 3870

Intermediate Lab PHYS 3870 Intermediate Lab PHYS 3870 Lecture 4 Comparing Data and Models Quantitatively Linear Regression Introduction Section 0 Lecture 1 Slide 1 References: Taylor Ch. 8 and 9 Also refer to Glossary of Important

More information

1 Measurement Uncertainties

1 Measurement Uncertainties 1 Measurement Uncertainties (Adapted stolen, really from work by Amin Jaziri) 1.1 Introduction No measurement can be perfectly certain. No measuring device is infinitely sensitive or infinitely precise.

More information

Propagation of Error Notes

Propagation of Error Notes Propagation of Error Notes From http://facultyfiles.deanza.edu/gems/lunaeduardo/errorpropagation2a.pdf The analysis of uncertainties (errors) in measurements and calculations is essential in the physics

More information

Introduction to Error Analysis

Introduction to Error Analysis Introduction to Error Analysis Part 1: the Basics Andrei Gritsan based on lectures by Petar Maksimović February 1, 2010 Overview Definitions Reporting results and rounding Accuracy vs precision systematic

More information

Modern Methods of Data Analysis - WS 07/08

Modern Methods of Data Analysis - WS 07/08 Modern Methods of Data Analysis Lecture V (12.11.07) Contents: Central Limit Theorem Uncertainties: concepts, propagation and properties Central Limit Theorem Consider the sum X of n independent variables,

More information

Physics 6720 Introduction to Statistics April 4, 2017

Physics 6720 Introduction to Statistics April 4, 2017 Physics 6720 Introduction to Statistics April 4, 2017 1 Statistics of Counting Often an experiment yields a result that can be classified according to a set of discrete events, giving rise to an integer

More information

Poisson distribution and χ 2 (Chap 11-12)

Poisson distribution and χ 2 (Chap 11-12) Poisson distribution and χ 2 (Chap 11-12) Announcements: Last lecture today! Labs will continue. Homework assignment will be posted tomorrow or Thursday (I will send email) and is due Thursday, February

More information

Data and Error Analysis

Data and Error Analysis Data and Error Analysis Introduction In this lab you will learn a bit about taking data and error analysis. The physics of the experiment itself is not the essential point. (Indeed, we have not completed

More information

Experiment 2. Reaction Time. Make a series of measurements of your reaction time. Use statistics to analyze your reaction time.

Experiment 2. Reaction Time. Make a series of measurements of your reaction time. Use statistics to analyze your reaction time. Experiment 2 Reaction Time 2.1 Objectives Make a series of measurements of your reaction time. Use statistics to analyze your reaction time. 2.2 Introduction The purpose of this lab is to demonstrate repeated

More information

Uncertainty in Measurement

Uncertainty in Measurement CHICO STATE UNIVERSITY, PHYSICS DEPARTMENT DR. CULBREATH FALL 2015 Uncertainty in Measurement REFERENCES: Many sections of this text adapted and summarized from An Introduction to Error Analysis: The Study

More information

STATISTICS OF OBSERVATIONS & SAMPLING THEORY. Parent Distributions

STATISTICS OF OBSERVATIONS & SAMPLING THEORY. Parent Distributions ASTR 511/O Connell Lec 6 1 STATISTICS OF OBSERVATIONS & SAMPLING THEORY References: Bevington Data Reduction & Error Analysis for the Physical Sciences LLM: Appendix B Warning: the introductory literature

More information

PS2 Lab 1: Measurement and Uncertainty Supplemental Fall 2013

PS2 Lab 1: Measurement and Uncertainty Supplemental Fall 2013 Background and Introduction (If you haven t already read the chapters from Taylor posted on the course website, do so now before continuing.) In an experimental setting it is just as important to specify

More information

Statistics and Data Analysis

Statistics and Data Analysis Statistics and Data Analysis The Crash Course Physics 226, Fall 2013 "There are three kinds of lies: lies, damned lies, and statistics. Mark Twain, allegedly after Benjamin Disraeli Statistics and Data

More information

Physics 403. Segev BenZvi. Propagation of Uncertainties. Department of Physics and Astronomy University of Rochester

Physics 403. Segev BenZvi. Propagation of Uncertainties. Department of Physics and Astronomy University of Rochester Physics 403 Propagation of Uncertainties Segev BenZvi Department of Physics and Astronomy University of Rochester Table of Contents 1 Maximum Likelihood and Minimum Least Squares Uncertainty Intervals

More information

Physics 509: Propagating Systematic Uncertainties. Scott Oser Lecture #12

Physics 509: Propagating Systematic Uncertainties. Scott Oser Lecture #12 Physics 509: Propagating Systematic Uncertainties Scott Oser Lecture #1 1 Additive offset model Suppose we take N measurements from a distribution, and wish to estimate the true mean of the underlying

More information

Error propagation. Alexander Khanov. October 4, PHYS6260: Experimental Methods is HEP Oklahoma State University

Error propagation. Alexander Khanov. October 4, PHYS6260: Experimental Methods is HEP Oklahoma State University Error propagation Alexander Khanov PHYS660: Experimental Methods is HEP Oklahoma State University October 4, 017 Why error propagation? In many cases we measure one thing and want to know something else

More information

Lab 1: Simple Pendulum 1. The Pendulum. Laboratory 1, Physics 15c Due Friday, February 16, in front of Sci Cen 301

Lab 1: Simple Pendulum 1. The Pendulum. Laboratory 1, Physics 15c Due Friday, February 16, in front of Sci Cen 301 Lab 1: Simple Pendulum 1 The Pendulum Laboratory 1, Physics 15c Due Friday, February 16, in front of Sci Cen 301 Physics 15c; REV 0 1 January 31, 2007 1 Introduction Most oscillating systems behave like

More information

Inferring from data. Theory of estimators

Inferring from data. Theory of estimators Inferring from data Theory of estimators 1 Estimators Estimator is any function of the data e(x) used to provide an estimate ( a measurement ) of an unknown parameter. Because estimators are functions

More information

Intermediate Lab PHYS 3870

Intermediate Lab PHYS 3870 Intermediate Lab PHYS 3870 Lecture 2 Defining Errors References: Taylor Ch. 1, 2, 3 Introduction Section 0 Lecture 1 Slide 1 Also refer to [HANDOUT] Baird Problems (Ch 5-See web site) Glossary of Important

More information

PHYSICS 2150 EXPERIMENTAL MODERN PHYSICS. Lecture 3 Rejection of Data; Weighted Averages

PHYSICS 2150 EXPERIMENTAL MODERN PHYSICS. Lecture 3 Rejection of Data; Weighted Averages PHYSICS 15 EXPERIMENTAL MODERN PHYSICS Lecture 3 Rejection of Data; Weighted Averages PREVIOUS LECTURE: GAUSS DISTRIBUTION 1.5 p(x µ, )= 1 e 1 ( x µ ) µ=, σ=.5 1. µ=3, σ=.5.5 µ=4, σ=1 4 6 8 WE CAN NOW

More information

The Treatment of Numerical Experimental Results

The Treatment of Numerical Experimental Results Memorial University of Newfoundl Department of Physics Physical Oceanography The Treatment of Numerical Experimental Results The purpose of these notes is to introduce you to some techniques of error analysis

More information

Electromagnetism lab project

Electromagnetism lab project Electromagnetism lab project Contents 1. Overview of the course 2. How to analyse errors in measurements 3. How to make graphical representations (plots) Overview Four lab experiments Biot Savart s law

More information

Introduction to Statistics and Error Analysis II

Introduction to Statistics and Error Analysis II Introduction to Statistics and Error Analysis II Physics116C, 4/14/06 D. Pellett References: Data Reduction and Error Analysis for the Physical Sciences by Bevington and Robinson Particle Data Group notes

More information

Uncertainty in Measurements

Uncertainty in Measurements Uncertainty in Measurements Joshua Russell January 4, 010 1 Introduction Error analysis is an important part of laboratory work and research in general. We will be using probability density functions PDF)

More information

Intermediate Lab PHYS 3870

Intermediate Lab PHYS 3870 Intermediate Lab PHYS 3870 Lecture 3 Distribution Functions References: Taylor Ch. 5 (and Chs. 10 and 11 for Reference) Taylor Ch. 6 and 7 Also refer to Glossary of Important Terms in Error Analysis Probability

More information

Measurements of a Table

Measurements of a Table Measurements of a Table OBJECTIVES to practice the concepts of significant figures, the mean value, the standard deviation of the mean and the normal distribution by making multiple measurements of length

More information

Math 1b Sequences and series summary

Math 1b Sequences and series summary Math b Sequences and series summary December 22, 2005 Sequences (Stewart p. 557) Notations for a sequence: or a, a 2, a 3,..., a n,... {a n }. The numbers a n are called the terms of the sequence.. Limit

More information

Measurements and Data Analysis An Introduction

Measurements and Data Analysis An Introduction Measurements and Data Analysis An Introduction Introduction 1. Significant Figures 2. Types of Errors 3. Deviation from the Mean 4. Accuracy & Precision 5. Expressing Measurement Errors and Uncertainty

More information

EXPERIMENT: REACTION TIME

EXPERIMENT: REACTION TIME EXPERIMENT: REACTION TIME OBJECTIVES to make a series of measurements of your reaction time to make a histogram, or distribution curve, of your measured reaction times to calculate the "average" or "mean"

More information

Lab 1: Introduction to Measurement

Lab 1: Introduction to Measurement Lab 1: Introduction to Measurement Instructor: Professor Dr. K. H. Chu Measurement is the foundation of gathering data in science. In order to perform successful experiments, it is vitally important to

More information

Measurement Error PHYS Introduction

Measurement Error PHYS Introduction PHYS 1301 Measurement Error Introduction We have confidence that a particular physics theory is telling us something interesting about the physical universe because we are able to test quantitatively its

More information

PHYSICS 2150 LABORATORY LECTURE 1

PHYSICS 2150 LABORATORY LECTURE 1 PHYSICS 2150 LABORATORY LECTURE 1 1865 Maxwell equations HISTORY theory expt in 2150 expt not in 2150 SCOPE OF THIS COURSE Experimental introduction to modern physics! Modern in this case means roughly

More information

Measurement and Uncertainty

Measurement and Uncertainty Physics 1020 Laboratory #1 Measurement and Uncertainty 1 Measurement and Uncertainty Any experimental measurement or result has an uncertainty associated with it. In todays lab you will perform a set of

More information

Measurement Error PHYS Introduction

Measurement Error PHYS Introduction PHYS 1301 Measurement Error Introduction We have confidence that a particular physics theory is telling us something interesting about the physical universe because we are able to test quantitatively its

More information

Experiment 1 Simple Measurements and Error Estimation

Experiment 1 Simple Measurements and Error Estimation Experiment 1 Simple Measurements and Error Estimation Reading and problems (1 point for each problem): Read Taylor sections 3.6-3.10 Do problems 3.18, 3.22, 3.23, 3.28 Experiment 1 Goals 1. To perform

More information

Experimental Uncertainty (Error) and Data Analysis

Experimental Uncertainty (Error) and Data Analysis E X P E R I M E N T 1 Experimental Uncertainty (Error) and Data Analysis INTRODUCTION AND OBJECTIVES Laboratory investigations involve taking measurements of physical quantities, and the process of taking

More information

California State Science Fair

California State Science Fair California State Science Fair How to Estimate the Experimental Uncertainty in Your Science Fair Project Part 2 -- The Gaussian Distribution: What the Heck is it Good For Anyway? Edward Ruth drruth6617@aol.com

More information

Statistical Data Analysis Stat 3: p-values, parameter estimation

Statistical Data Analysis Stat 3: p-values, parameter estimation Statistical Data Analysis Stat 3: p-values, parameter estimation London Postgraduate Lectures on Particle Physics; University of London MSci course PH4515 Glen Cowan Physics Department Royal Holloway,

More information

Analyzing Data With Regression Models

Analyzing Data With Regression Models Analyzing Data With Regression Models Professor Diane Lambert June 2010 Supported by MOE-Microsoft Key Laboratory of Statistics and Information Technology and the Beijing International Center for Mathematical

More information

Introduction to Experiment: Part 1

Introduction to Experiment: Part 1 Introduction to Experiment: Part 1 Nate Saffold nas2173@columbia.edu Office Hours: Mondays 5-6PM Pupin 1216 INTRO TO EXPERIMENTAL PHYS-LAB 1493/1494/2699 General Announcements Labs will commence February

More information

Error Analysis How Do We Deal With Uncertainty In Science.

Error Analysis How Do We Deal With Uncertainty In Science. How Do We Deal With Uncertainty In Science. 1 Error Analysis - the study and evaluation of uncertainty in measurement. 2 The word error does not mean mistake or blunder in science. 3 Experience shows no

More information

Modern Methods of Data Analysis - WS 07/08

Modern Methods of Data Analysis - WS 07/08 Modern Methods of Data Analysis Lecture VII (26.11.07) Contents: Maximum Likelihood (II) Exercise: Quality of Estimators Assume hight of students is Gaussian distributed. You measure the size of N students.

More information

Measurements and Error Analysis

Measurements and Error Analysis Experiment : Measurements and Error Analysis 1 Measurements and Error Analysis Introduction: [Two students per group. There should not be more than one group of three students.] All experiments require

More information

9/2/2010. Wildlife Management is a very quantitative field of study. throughout this course and throughout your career.

9/2/2010. Wildlife Management is a very quantitative field of study. throughout this course and throughout your career. Introduction to Data and Analysis Wildlife Management is a very quantitative field of study Results from studies will be used throughout this course and throughout your career. Sampling design influences

More information

Appendix II Calculation of Uncertainties

Appendix II Calculation of Uncertainties Part 1: Sources of Uncertainties Appendix II Calculation of Uncertainties In any experiment or calculation, uncertainties can be introduced from errors in accuracy or errors in precision. A. Errors in

More information

Physics 1140 Fall 2013 Introduction to Experimental Physics

Physics 1140 Fall 2013 Introduction to Experimental Physics Physics 1140 Fall 2013 Introduction to Experimental Physics Joanna Atkin Lecture 5: Recap of Error Propagation and Gaussian Statistics Graphs and linear fitting Experimental analysis Typically make repeat

More information

ERRORS AND THE TREATMENT OF DATA

ERRORS AND THE TREATMENT OF DATA M. Longo ERRORS AND THE TREATMENT OF DATA Essentially all experimental quantities have an uncertainty associated with them. The only exceptions are a few defined quantities like the wavelength of the orange-red

More information

Experiment 1: The Same or Not The Same?

Experiment 1: The Same or Not The Same? Experiment 1: The Same or Not The Same? Learning Goals After you finish this lab, you will be able to: 1. Use Logger Pro to collect data and calculate statistics (mean and standard deviation). 2. Explain

More information

O.K. But what if the chicken didn t have access to a teleporter.

O.K. But what if the chicken didn t have access to a teleporter. The intermediate value theorem, and performing algebra on its. This is a dual topic lecture. : The Intermediate value theorem First we should remember what it means to be a continuous function: A function

More information

Measurement and Uncertainty

Measurement and Uncertainty Measurement and Uncertainty Michael Gold Physics 307L September 16, 2006 Michael Gold (Physics 307L) Measurement and Uncertainty September 16, 2006 1 / 9 Goal of Experiment Measure a parameter: statistical

More information

Probability & Statistics: Introduction. Robert Leishman Mark Colton ME 363 Spring 2011

Probability & Statistics: Introduction. Robert Leishman Mark Colton ME 363 Spring 2011 Probability & Statistics: Introduction Robert Leishman Mark Colton ME 363 Spring 2011 Why do we care? Why do we care about probability and statistics in an instrumentation class? Example Measure the strength

More information

5 Error Propagation We start from eq , which shows the explicit dependence of g on the measured variables t and h. Thus.

5 Error Propagation We start from eq , which shows the explicit dependence of g on the measured variables t and h. Thus. 5 Error Propagation We start from eq..4., which shows the explicit dependence of g on the measured variables t and h. Thus g(t,h) = h/t eq..5. The simplest way to get the error in g from the error in t

More information

Uncertainty and Bias UIUC, 403 Advanced Physics Laboratory, Fall 2014

Uncertainty and Bias UIUC, 403 Advanced Physics Laboratory, Fall 2014 Uncertainty and Bias UIUC, 403 Advanced Physics Laboratory, Fall 2014 Liang Yang* There are three kinds of lies: lies, damned lies and statistics. Benjamin Disraeli If your experiment needs statistics,

More information

Error Analysis and Graph Drawing

Error Analysis and Graph Drawing Error Analysis and Graph Drawing I. Introduction: I.1 It is impossible to do an experimental measurement with perfect accuracy. There is always an uncertainty associated with any measured quantity in an

More information

Uncertainty, Errors, and Noise in Experimental Measurements

Uncertainty, Errors, and Noise in Experimental Measurements Uncertainty, Errors, and Noise in Experimental Measurements... as we know, there are known knowns; there are things we know we know. We also know there are known unknowns; that is to say we know there

More information

Introduction to Data Analysis

Introduction to Data Analysis Introduction to Data Analysis Analysis of Experimental Errors How to Report and Use Experimental Errors Statistical Analysis of Data Simple statistics of data Plotting and displaying the data Summary Errors

More information

A Review/Intro to some Principles of Astronomy

A Review/Intro to some Principles of Astronomy A Review/Intro to some Principles of Astronomy The game of astrophysics is using physical laws to explain astronomical observations There are many instances of interesting physics playing important role

More information

Parameter Estimation and Fitting to Data

Parameter Estimation and Fitting to Data Parameter Estimation and Fitting to Data Parameter estimation Maximum likelihood Least squares Goodness-of-fit Examples Elton S. Smith, Jefferson Lab 1 Parameter estimation Properties of estimators 3 An

More information

Fourier and Stats / Astro Stats and Measurement : Stats Notes

Fourier and Stats / Astro Stats and Measurement : Stats Notes Fourier and Stats / Astro Stats and Measurement : Stats Notes Andy Lawrence, University of Edinburgh Autumn 2013 1 Probabilities, distributions, and errors Laplace once said Probability theory is nothing

More information

EXPERIMENT 2 Reaction Time Objectives Theory

EXPERIMENT 2 Reaction Time Objectives Theory EXPERIMENT Reaction Time Objectives to make a series of measurements of your reaction time to make a histogram, or distribution curve, of your measured reaction times to calculate the "average" or mean

More information

Maximum-Likelihood fitting

Maximum-Likelihood fitting CMP 0b Lecture F. Sigworth Maximum-Likelihood fitting One of the issues I want to address in this lecture is the fitting of distributions dwell times. We want to find the best curve to draw over a histogram,

More information

Lecture 3. G. Cowan. Lecture 3 page 1. Lectures on Statistical Data Analysis

Lecture 3. G. Cowan. Lecture 3 page 1. Lectures on Statistical Data Analysis Lecture 3 1 Probability (90 min.) Definition, Bayes theorem, probability densities and their properties, catalogue of pdfs, Monte Carlo 2 Statistical tests (90 min.) general concepts, test statistics,

More information

Lab 1: Measurement, Uncertainty, and Uncertainty Propagation

Lab 1: Measurement, Uncertainty, and Uncertainty Propagation Lab 1: Measurement, Uncertainty, and Uncertainty Propagation 17 ame Date Partners TA Section Lab 1: Measurement, Uncertainty, and Uncertainty Propagation The first principle is that you must not fool yourself

More information

Business Statistics. Lecture 5: Confidence Intervals

Business Statistics. Lecture 5: Confidence Intervals Business Statistics Lecture 5: Confidence Intervals Goals for this Lecture Confidence intervals The t distribution 2 Welcome to Interval Estimation! Moments Mean 815.0340 Std Dev 0.8923 Std Error Mean

More information

Introduction to Statistics and Error Analysis

Introduction to Statistics and Error Analysis Introduction to Statistics and Error Analysis Physics116C, 4/3/06 D. Pellett References: Data Reduction and Error Analysis for the Physical Sciences by Bevington and Robinson Particle Data Group notes

More information

Physics Sep Example A Spin System

Physics Sep Example A Spin System Physics 30 7-Sep-004 4- Example A Spin System In the last lecture, we discussed the binomial distribution. Now, I would like to add a little physical content by considering a spin system. Actually this

More information

Significant Figures and an Introduction to the Normal Distribution

Significant Figures and an Introduction to the Normal Distribution Significant Figures and an Introduction to the Normal Distribution Object: To become familiar with the proper use of significant figures and to become acquainted with some rudiments of the theory of measurement.

More information

STAT 1060: Lecture 6 Sampling

STAT 1060: Lecture 6 Sampling STAT 1060: Lecture 6 Sampling Chapter 11 September 23, 2011 (Chapter 11) STAT 1060 September 23, 2011 1 / 14 : Sampling (Chapter 11) Population Final marks for students in STAT 1060, Fall 2002 Size of

More information

Physics 509: Error Propagation, and the Meaning of Error Bars. Scott Oser Lecture #10

Physics 509: Error Propagation, and the Meaning of Error Bars. Scott Oser Lecture #10 Physics 509: Error Propagation, and the Meaning of Error Bars Scott Oser Lecture #10 1 What is an error bar? Someone hands you a plot like this. What do the error bars indicate? Answer: you can never be

More information

Statistics - Lecture One. Outline. Charlotte Wickham 1. Basic ideas about estimation

Statistics - Lecture One. Outline. Charlotte Wickham  1. Basic ideas about estimation Statistics - Lecture One Charlotte Wickham wickham@stat.berkeley.edu http://www.stat.berkeley.edu/~wickham/ Outline 1. Basic ideas about estimation 2. Method of Moments 3. Maximum Likelihood 4. Confidence

More information

STA Module 10 Comparing Two Proportions

STA Module 10 Comparing Two Proportions STA 2023 Module 10 Comparing Two Proportions Learning Objectives Upon completing this module, you should be able to: 1. Perform large-sample inferences (hypothesis test and confidence intervals) to compare

More information

Uncertainty, Error, and Precision in Quantitative Measurements an Introduction 4.4 cm Experimental error

Uncertainty, Error, and Precision in Quantitative Measurements an Introduction 4.4 cm Experimental error Uncertainty, Error, and Precision in Quantitative Measurements an Introduction Much of the work in any chemistry laboratory involves the measurement of numerical quantities. A quantitative measurement

More information

Lab 0 Appendix C L0-1 APPENDIX C ACCURACY OF MEASUREMENTS AND TREATMENT OF EXPERIMENTAL UNCERTAINTY

Lab 0 Appendix C L0-1 APPENDIX C ACCURACY OF MEASUREMENTS AND TREATMENT OF EXPERIMENTAL UNCERTAINTY Lab 0 Appendix C L0-1 APPENDIX C ACCURACY OF MEASUREMENTS AND TREATMENT OF EXPERIMENTAL UNCERTAINTY A measurement whose accuracy is unknown has no use whatever. It is therefore necessary to know how to

More information

Uncertainties & Error Analysis Tutorial

Uncertainties & Error Analysis Tutorial Uncertainties & Error Analysis Tutorial Physics 118/198/1 Reporting Measurements Uncertainties & Error Analysis Tutorial When we report a measured value of some parameter, X, we write it as X X best ±

More information

Introducing the Normal Distribution

Introducing the Normal Distribution Department of Mathematics Ma 3/103 KC Border Introduction to Probability and Statistics Winter 2017 Lecture 10: Introducing the Normal Distribution Relevant textbook passages: Pitman [5]: Sections 1.2,

More information

AE2160 Introduction to Experimental Methods in Aerospace

AE2160 Introduction to Experimental Methods in Aerospace AE160 Introduction to Experimental Methods in Aerospace Uncertainty Analysis C.V. Di Leo (Adapted from slides by J.M. Seitzman, J.J. Rimoli) 1 Accuracy and Precision Accuracy is defined as the difference

More information

Normal Distributions Rejection of Data + RLC Circuits. Lecture 4 Physics 2CL Summer 2011

Normal Distributions Rejection of Data + RLC Circuits. Lecture 4 Physics 2CL Summer 2011 Normal Distributions Rejection of Data + RLC Circuits Lecture 4 Physics 2CL Summer 2011 Outline Reminder of simple uncertainty propagation formulae Hidden useful formula for estimating uncertainties More

More information

Notes Errors and Noise PHYS 3600, Northeastern University, Don Heiman, 6/9/ Accuracy versus Precision. 2. Errors

Notes Errors and Noise PHYS 3600, Northeastern University, Don Heiman, 6/9/ Accuracy versus Precision. 2. Errors Notes Errors and Noise PHYS 3600, Northeastern University, Don Heiman, 6/9/2011 1. Accuracy versus Precision 1.1 Precision how exact is a measurement, or how fine is the scale (# of significant figures).

More information

Lab 1: Measurement and Uncertainty

Lab 1: Measurement and Uncertainty 3 Lab 1: Measurement and Uncertainty I. Before you come to lab... A. Read through the handout on the course website, Chapters 1-2 from Taylor, An Introduction to Error Analysis. These chapters will introduce

More information

Uncertainties and Error Propagation Part I of a manual on Uncertainties, Graphing, and the Vernier Caliper

Uncertainties and Error Propagation Part I of a manual on Uncertainties, Graphing, and the Vernier Caliper Contents Uncertainties and Error Propagation Part I of a manual on Uncertainties, Graphing, and the Vernier Caliper Copyright July 1, 2000 Vern Lindberg 1. Systematic versus Random Errors 2. Determining

More information

Understanding Errors and Uncertainties in the Physics Laboratory

Understanding Errors and Uncertainties in the Physics Laboratory Chapter 2 Understanding Errors and Uncertainties in the Physics Laboratory 2.1 Introduction We begin with a review of general properties of measurements and how measurements affect what we, as scientists,

More information

1.10 Continuity Brian E. Veitch

1.10 Continuity Brian E. Veitch 1.10 Continuity Definition 1.5. A function is continuous at x = a if 1. f(a) exists 2. lim x a f(x) exists 3. lim x a f(x) = f(a) If any of these conditions fail, f is discontinuous. Note: From algebra

More information