Introduction to Experiment: Part 1

Size: px
Start display at page:

Download "Introduction to Experiment: Part 1"

Transcription

1 Introduction to Experiment: Part 1 Nate Saffold nas2173@columbia.edu Office Hours: Mondays 5-6PM Pupin 1216 INTRO TO EXPERIMENTAL PHYS-LAB 1493/1494/2699

2 General Announcements Labs will commence February 6th Lab room assignments change from week to week, will be posted on 5th floor bulletin board Waitlist Protocol First quiz on January 30th 2

3 General info At the beginning of each lecture I will give you a 10 minute long quiz about the topic covered in the previous week The quizzes are graded and they will contribute to 10% of the final grade These lectures have essentially three goals: 1. Introduce you to the basics of error analysis. The aim is to provide the tools to have an idea of how errors work and what they mean (useful in many different circumstances) 2. Review the main concepts of physics needed to perform the weekly experiments 3. Introduce the weekly experiments and describe the procedures Do not hesitate to stop me and ask questions! 3

4 Useful resources Some useful resources like the pdf version of the lab manual and the calendar of the weekly experiments can be found on the preceptors website: (you can also simply Google columbia physics preceptor ) I will post lecture slides and Mathematica tutorials on the course website: 4

5 What is an experiment? Essentially two types: (often both at the same time) You will mostly perform this kind Parameter determination Hypothesis testing Examples include: measurement of g, e/m, speed of light, etc... Examples include: Newton s gravity, quantum mechanics, Maxwell's equations (E&M), etc... Experiments must be reproducible! You cannot be the only one to ever make a particular observation The scientific description of the experiment must allow other scientists to check your results independently 5

6 Bad Science: Reproducible experiments 1989: Cold fusion experiment. Created lots of hope and excitement. Nobody has been able to reproduce the results again Good Science: 1798: Cavendish Experiment: Measured gravitational constant G. Confirmed Newton s Theory of Gravitation 1887: Michelson-Morley experiment. Attempted to find ether for E&M waves. Surprisingly, they found no evidence of the ether. Later explained by the Theory of Special Relativity 2012: LHC@CERN discovers the Higgs boson. This confirms the Standard Model of particle physics What can we do to avoid misinterpreting our results? CAREFUL ERROR ANALYSIS 6

7 Error Analysis Unfortunately, in most classes we are led to believe that we are done after obtaining a numerical value Equally important as your results are the errors of your results! Quantification of confidence in experiment Where U U = mgh = J U ± U = 19.3 ± 0.8 J is the uncertainty in the result (Also note significant figures in reporting the value!) An experimental value without an error does not make sense! Errors determine the boundaries of our ignorance on the measured quantity Much of the data analysis will be spent trying to quantify errors 7

8 Types of Errors Essentially fall into two categories: Statistical Errors: Due to random fluctuations from measurement to measurement They are unavoidable Can be reduced by taking more measurements They can be quantified using statistical analysis Systematic Errors: Always bias the data in one direction Should be identified and corrected Hard to quantify 8

9 Statistical Errors A statistical (random) error defines a typical spread in a measurement caused by random effects Governed by probability and statistics Could have a real physical value e.g. Thermal fluctuations in the room temperature make rulers contract/expand a little bit at every measure It can also be a result of the measurement technique Timing experiment: random fluctuations in reaction time Use of a ruler: starting position is different at every trial because of hands shaking Statistical errors are quantifiable. Math allows us to go from fluctuations on the measured quantities to uncertainties on the final results 9

10 Systematic Errors They can be caused by many factors. This makes hard their identification Wrong calibration of instrument Examples: Observer bias: Faulty meter stick: Shorter or longer than one meter Scales: not calibrated to zero Parallax error in reading angle on analog display Timing: Jumping the gun Use of approximate equations: Neglecting some piece of math in the data analysis Ideally, systematic errors should be small correct them if possible If unable to remove, identify source and acknowledge it in lab report and state how this effects the measurement 10

11 Accuracy vs. Precision Attention: accuracy and precision of a measure are two different things! Accuracy: How close your measure is to the true value of the quantity of interest Precision: How close the measured values are to each other The smaller the spread, the more precise a measurement. Very often one has measurements that are: Accurate but imprecise or precise but not accurate The best experiment aims for both! 11

12 Accuracy vs. Precision To make things more concrete, let s look at an example. In the following case: Center of bullseye = True value Black points = Measurement (data) Red point = Average. Accurate but imprecise Precise but inaccurate Accurate and precise 12

13 A real example: measurement of G Accurate and Precise Accurate but imprecise Precise but inaccurate 13

14 Quantifying statistical errors How do we quantify statistical errors? Values from different measurements fluctuate. However, they tend to fluctuate around a certain value. The tools to help us in quantifying statistical errors (random fluctuations in measurement) are: Mean: Average of measurementsthe measurements will fluctuate around this value. Standard deviation: It is the average distance between a measure and the mean Standard error of the mean: Given N measurements, it is the expected distance between the mean and the true value 14

15 Statistical mean: Given N measures, the mean of the measured distribution is defined as: Quantities like this one are called estimators If we were able to perform infinite measures, the estimator would give the exact average value of the quantity of interest, The error in the accuracy of an experiment is then defined as: The smaller is this quantity the more accurate is the experiment 15

16 Standard deviation: s The sample standard deviation of the N measures is defined as: It quantifies how far from the statistical average each measure is (this is the reason for the square, no negative distances). As for the statistical average, the sample standard deviation is an estimator for the true spread of the population, 16

17 Standard error of the mean: The spread in each individual measurement is often less interesting than the uncertainty in the mean of x. Be careful of the distinction! We expect the precision in our measurement of the mean value of x to improve with larger sample size. So we define the spread of in the measurement of the mean as the standard error of the mean: In contrast to the sample standard deviation, the standard error of the mean gets smaller with more measurements. 17

18 Practice Given the timing measurements below Find the mean Find the sample standard deviation Find the standard error of the mean Timing measurements: s, s, s, 9.10 s The total number of measures is then N=4 18

19 Calculating the mean: Calculations 19

20 Calculating the mean: Calculations Sample Standard deviation: 20

21 Calculating the mean: Calculations Sample Standard deviation: Standard error of the mean: 21

22 Calculating the mean: Calculations Sample Standard deviation: Standard error of the mean: IMPORTANT: Note that standard deviation and standard error of the mean have units as well! 22

23 How to report an experimental value Significant figures: Since the error is the measure of our ignorance it does not make sense to add too many significant figures to it Only one or two significant figures should be assigned to your uncertainty. In the previous example: The number of decimal figures on the error dictates the number of decimal figures (not the significant ones!) on the value 23

24 Gaussian distribution and confidence intervals 24

25 Gaussian distribution For certain types of distributions of the measured quantities, the errors can be predicted before the experiment is perfomed Gaussian distribution (a.k.a. Normal distribution) For this semester: Unless otherwise noted, assume statistical uncertainty in parameter is Gaussian distributed. 25

26 Estimating Confidence Intervals If the measures follow a Gaussian distribution one can compute the probability for the true average,, to fall at a certain distance from the statistical mean, 26

27 Confidence Intervals 27

28 Confidence Intervals 28

29 Uncertainties and Experiment Using Gaussian distribution we can estimate whether a certain result is reasonable. Result is within of expected value: Experiment is in good agreement with expected value. Result is within of expected value: Experiment and expectation are consistent. (Probably need more measures) Result is within of expected value: Experiment and expectation may disagree. Result is or more from expected value: The difference between experiment and expectation is statistically significant. They do not agree. 29

30 Summary Defined What is an experiment? Accuracy vs. precision Statistical (random) vs. Systematic errors Quantifying measurements and uncertainties (mean, standard deviation, error of the mean) Reporting results (significant and decimal figures) Gaussian distribution and confidence intervals Agreement of your data with theory or another accepted value (use of the confidence levels) 30

Experiment 2: Projectile motion and conservation of energy

Experiment 2: Projectile motion and conservation of energy Experiment 2: Projectile motion and conservation of energy Nate Saffold nas2173@columbia.edu Office Hour: Mondays, 5:30PM-6:30PM @ Pupin 1216 INTRO TO EXPERIMENTAL PHYS-LAB 1494/2699 Overview The physics

More information

Measurement Error PHYS Introduction

Measurement Error PHYS Introduction PHYS 1301 Measurement Error Introduction We have confidence that a particular physics theory is telling us something interesting about the physical universe because we are able to test quantitatively its

More information

Measurement Error PHYS Introduction

Measurement Error PHYS Introduction PHYS 1301 Measurement Error Introduction We have confidence that a particular physics theory is telling us something interesting about the physical universe because we are able to test quantitatively its

More information

Experiment 4: Charge to mass ratio (e/m) of the electron

Experiment 4: Charge to mass ratio (e/m) of the electron Experiment 4: Charge to mass ratio (e/m) of the electron Nate Saffold nas2173@columbia.edu Office Hour: Monday, 5:30PM-6:30PM @ Pupin 1216 INTRO TO EXPERIMENTAL PHYS-LAB 1494/2699 Introduction Our first

More information

Physics 1140 Fall 2013 Introduction to Experimental Physics

Physics 1140 Fall 2013 Introduction to Experimental Physics Physics 1140 Fall 2013 Introduction to Experimental Physics Joanna Atkin Lecture 4: Statistics of uncertainty Today If you re missing a pre-lab grade and you handed it in (or any other problem), talk to

More information

PHY 101L - Experiments in Mechanics

PHY 101L - Experiments in Mechanics PHY 101L - Experiments in Mechanics introduction to error analysis What is Error? In everyday usage, the word error usually refers to a mistake of some kind. However, within the laboratory, error takes

More information

Physics 2BL: Experiments in Mechanics and Electricity Summer Session I, 2012

Physics 2BL: Experiments in Mechanics and Electricity Summer Session I, 2012 Physics BL: Experiments in Mechanics and Electricity Summer Session I, 01 Instructor: E-mail: Office: Office Hours: Phone: Tera (Bell) Austrum tbell@physics.ucsd.edu 164 Mayer Hall Addition TuTh 6-7 pm

More information

Acceleration Due to Gravity

Acceleration Due to Gravity Acceleration Due to Gravity You are probably familiar with the motion of a pendulum, swinging back and forth about some equilibrium position. A simple pendulum consists of a mass m suspended by a string

More information

Introduction to Measurement

Introduction to Measurement Units and Measurement Introduction to Measurement One of the most important steps in applying the scientific method is experiment: testing the prediction of a hypothesis. Typically we measure simple quantities

More information

Physics 2D Lecture Slides Lecture 1: Jan

Physics 2D Lecture Slides Lecture 1: Jan Physics 2D Lecture Slides Lecture 1: Jan 3 2005 Vivek Sharma UCSD Physics 1 Modern Physics (PHYS 2D) Exploration of physical ideas and phenomena related to High velocities and acceleration ( Einstein s

More information

Big Bang, Black Holes, No Math

Big Bang, Black Holes, No Math ASTR/PHYS 109 Dr. David Toback Lecture 10 1 Prep For Today (is now due) L10 Reading: BBBHNM Unit 2 (already due) Pre-Lecture Reading Questions: Unit 2 Original: Grades posted If you were misgraded, need

More information

Physics 121, Spring 2008 Mechanics. Physics 121, Spring What are we going to talk about today? Physics 121, Spring Goal of the course.

Physics 121, Spring 2008 Mechanics. Physics 121, Spring What are we going to talk about today? Physics 121, Spring Goal of the course. Physics 11, Spring 008 Mechanics Department of Physics and Astronomy University of Rochester Physics 11, Spring 008. What are we going to talk about today? Goals of the course Who am I? Who are you? Course

More information

Big Bang, Black Holes, No Math

Big Bang, Black Holes, No Math ASTR/PHYS 109 Dr. David Toback Lecture 5 1 Prep For Today (is now due) L5 Reading: No new reading Unit 2 reading assigned at the end of class Pre-Lecture Reading Questions: Unit 1: Grades have been posted

More information

SPH3U UNIVERSITY PHYSICS

SPH3U UNIVERSITY PHYSICS SPH3U UNIVERSITY PHYSICS REVIEW: MATH SKILLS L (P.651; 653) Many people believe that all measurements are reliable (consistent over many trials), precise (to as many decimal places as possible), and accurate

More information

Introduction to Statistics, Error and Measurement

Introduction to Statistics, Error and Measurement Introduction to Statistics, Error and Measurement Throughout the semester we will be making measurements. When you do an experiment, it is important to be able to evaluate how well you can trust your measurements.

More information

Physics 2D Lecture Slides Lecture 1: Jan

Physics 2D Lecture Slides Lecture 1: Jan Physics 2D Lecture Slides Lecture 1: Jan 5 2004 Vivek Sharma UCSD Physics Modern Physics (PHYS 2D) Exploration of physical ideas and phenomena related to High velocities and acceleration ( Einstein s Theory

More information

Appendix C: Accuracy, Precision, and Uncertainty

Appendix C: Accuracy, Precision, and Uncertainty Appendix C: Accuracy, Precision, and Uncertainty How tall are you? How old are you? When you answered these everyday questions, you probably did it in round numbers such as "five foot, six inches" or "nineteen

More information

PHYSICS 15a, Fall 2006 SPEED OF SOUND LAB Due: Tuesday, November 14

PHYSICS 15a, Fall 2006 SPEED OF SOUND LAB Due: Tuesday, November 14 PHYSICS 15a, Fall 2006 SPEED OF SOUND LAB Due: Tuesday, November 14 GENERAL INFO The goal of this lab is to determine the speed of sound in air, by making measurements and taking into consideration the

More information

Experiment 0 ~ Introduction to Statistics and Excel Tutorial. Introduction to Statistics, Error and Measurement

Experiment 0 ~ Introduction to Statistics and Excel Tutorial. Introduction to Statistics, Error and Measurement Experiment 0 ~ Introduction to Statistics and Excel Tutorial Many of you already went through the introduction to laboratory practice and excel tutorial in Physics 1011. For that reason, we aren t going

More information

Physics 1140 Fall 2013 Introduction to Experimental Physics

Physics 1140 Fall 2013 Introduction to Experimental Physics Physics 1140 Fall 2013 Introduction to Experimental Physics Joanna Atkin Lecture 1: Introduction to Course Significant Figures Standard Notation General information Lecture instructor: Joanna Atkin email:

More information

Treatment of Error in Experimental Measurements

Treatment of Error in Experimental Measurements in Experimental Measurements All measurements contain error. An experiment is truly incomplete without an evaluation of the amount of error in the results. In this course, you will learn to use some common

More information

Measurement and Measurement Errors

Measurement and Measurement Errors 1 Measurement and Measurement Errors Introduction Physics makes very general yet quite detailed statements about how the universe works. These statements are organized or grouped together in such a way

More information

Uncertainty, Measurement, and Models. Lecture 2 Physics 2CL Summer Session 2011

Uncertainty, Measurement, and Models. Lecture 2 Physics 2CL Summer Session 2011 Uncertainty, Measurement, and Models Lecture 2 Physics 2CL Summer Session 2011 Outline What is uncertainty (error) analysis and what can it do for you Issues with measurement and observation What does

More information

Measurements and Data Analysis

Measurements and Data Analysis Measurements and Data Analysis 1 Introduction The central point in experimental physical science is the measurement of physical quantities. Experience has shown that all measurements, no matter how carefully

More information

Pre-AP Chemistry Dr. Brighid Corcoran, Ph.D. Lake Dallas High School Classroom Policies and Procedures

Pre-AP Chemistry Dr. Brighid Corcoran, Ph.D. Lake Dallas High School Classroom Policies and Procedures Pre-AP Chemistry 2016-2017 Dr. Brighid Corcoran, Ph.D. Lake Dallas High School Classroom Policies and Procedures The following topics were covered with your child during class: Attendance/Make-Up Procedure

More information

Error Analysis. To become familiar with some principles of error analysis for use in later laboratories.

Error Analysis. To become familiar with some principles of error analysis for use in later laboratories. 1. Object Error Analysis To become familiar with some principles of error analysis for use in later laboratories. 2. Apparatus A plastic tub, water, Saxon Bowls, and a stopwatch. 3. Theory In science one

More information

Big Bang, Black Holes, No Math

Big Bang, Black Holes, No Math ASTR/PHYS 109 Dr. David Toback Lectures 8 & 9 1 Prep For Today (is now due) L9 Reading: BBBHNM Unit 2 (already due) Pre-Lecture Reading Questions (PLRQ) Unit 2 Revision (if desired), Stage 2: Was due today

More information

Meas ure ment: Uncertainty and Error in Lab Measurements

Meas ure ment: Uncertainty and Error in Lab Measurements Meas ure ment: Uncertainty and Error in Lab Measurements Measurement is at the heart of science. In order to do science, we must be able to measure quantities such as time, distance, and mass. As famous

More information

Physics 2D Lecture Slides Sep 26. Vivek Sharma UCSD Physics

Physics 2D Lecture Slides Sep 26. Vivek Sharma UCSD Physics Physics 2D Lecture Slides Sep 26 Vivek Sharma UCSD Physics Modern Physics (PHYS 2D) Exploration of physical ideas and phenomena related to High velocities and acceleration ( Einstein s Theory of Relativity)

More information

NO CREDIT DO NOT USE IT

NO CREDIT DO NOT USE IT 1. Liela is standing on the opponents 40 yard line. She throws a pass toward the goal line. The ball is 2 meters above the ground when she lets go. It follows a parabolic path, reaching its highest point,

More information

Junior Laboratory. PHYC 307L, Spring Webpage:

Junior Laboratory. PHYC 307L, Spring Webpage: Lectures: Mondays, 13:00-13:50 am, P&A room 184 Lab Sessions: Room 133 Junior Laboratory PHYC 307L, Spring 2016 Webpage: http://physics.unm.edu/courses/becerra/phys307lsp16/ Monday 14:00-16:50 (Group 1)

More information

Topic 1: 1D Motion PHYSICS 231

Topic 1: 1D Motion PHYSICS 231 Topic 1: 1D Motion PHYSICS 231 Current Assignments Reading Chapter 1.5 and 3 due Tuesday, Jan 18, beginning of class Homework Set 1 already open (covers this week) due Thursday, Jan 20, 11 pm Recommended

More information

SPH3U1 Lesson 03 Introduction. 6.1 Expressing Error in Measurement

SPH3U1 Lesson 03 Introduction. 6.1 Expressing Error in Measurement SIGNIFICANT DIGITS AND SCIENTIFIC NOTATION LEARNING GOALS Students will: 6 ERROR Describe the difference between precision and accuracy Be able to compare values quantitatively Understand and describe

More information

Appendix II Calculation of Uncertainties

Appendix II Calculation of Uncertainties Part 1: Sources of Uncertainties Appendix II Calculation of Uncertainties In any experiment or calculation, uncertainties can be introduced from errors in accuracy or errors in precision. A. Errors in

More information

Black Holes and Beyond Modeling a Black Hole

Black Holes and Beyond Modeling a Black Hole Black Holes and Beyond Modeling a Black Hole Subject: Science Grade Level: 6 th 8 th Materials: (For a class of 28 working in pairs) 14 small round balloons 14 basic calculators 14 pieces of string in

More information

Experiment 6: Interferometers

Experiment 6: Interferometers Experiment 6: Interferometers Nate Saffold nas2173@columbia.edu Office Hour: Mondays, 5:30PM-6:30PM @ Pupin 1216 INTRO TO EXPERIMENTAL PHYS-LAB 1493/1494/2699 NOTE: No labs and no lecture next week! Outline

More information

Course Project. Physics I with Lab

Course Project. Physics I with Lab COURSE OBJECTIVES 1. Explain the fundamental laws of physics in both written and equation form 2. Describe the principles of motion, force, and energy 3. Predict the motion and behavior of objects based

More information

The SuperBall Lab. Objective. Instructions

The SuperBall Lab. Objective. Instructions 1 The SuperBall Lab Objective This goal of this tutorial lab is to introduce data analysis techniques by examining energy loss in super ball collisions. Instructions This laboratory does not have to be

More information

Experiment 2 Random Error and Basic Statistics

Experiment 2 Random Error and Basic Statistics PHY9 Experiment 2: Random Error and Basic Statistics 8/5/2006 Page Experiment 2 Random Error and Basic Statistics Homework 2: Turn in at start of experiment. Readings: Taylor chapter 4: introduction, sections

More information

Announcements Wednesday, August 30

Announcements Wednesday, August 30 Announcements Wednesday, August 30 WeBWorK due on Friday at 11:59pm. The first quiz is on Friday, during recitation. It covers through Monday s material. Quizzes mostly test your understanding of the homework.

More information

Significant Figures: A Brief Tutorial

Significant Figures: A Brief Tutorial Significant Figures: A Brief Tutorial 2013-2014 Mr. Berkin *Please note that some of the information contained within this guide has been reproduced for non-commercial, educational purposes under the Fair

More information

Uncertainty: A Reading Guide and Self-Paced Tutorial

Uncertainty: A Reading Guide and Self-Paced Tutorial Uncertainty: A Reading Guide and Self-Paced Tutorial First, read the description of uncertainty at the Experimental Uncertainty Review link on the Physics 108 web page, up to and including Rule 6, making

More information

BRIDGE CIRCUITS EXPERIMENT 5: DC AND AC BRIDGE CIRCUITS 10/2/13

BRIDGE CIRCUITS EXPERIMENT 5: DC AND AC BRIDGE CIRCUITS 10/2/13 EXPERIMENT 5: DC AND AC BRIDGE CIRCUITS 0//3 This experiment demonstrates the use of the Wheatstone Bridge for precise resistance measurements and the use of error propagation to determine the uncertainty

More information

Introduction to Measurements of Physical Quantities

Introduction to Measurements of Physical Quantities 1 Goal Introduction to Measurements of Physical Quantities Content Discussion and Activities PHYS 104L The goal of this week s activities is to provide a foundational understanding regarding measurements

More information

KNOWLEDGE TO GET FROM TODAY S CLASS MEETING

KNOWLEDGE TO GET FROM TODAY S CLASS MEETING KNOWLEDGE TO GET FROM TODAY S CLASS MEETING Class Meeting #5, Friday, January 29 th, 2016 1) GRAVITY: (text pages 111-112, 123) 2) Isaac Newton s LAWS of MOTION (briefly) (text pages 115-117) 3) Distances

More information

HEAT AND THERMODYNAMICS PHY 522 Fall, 2010

HEAT AND THERMODYNAMICS PHY 522 Fall, 2010 HEAT AND THERMODYNAMICS PHY 522 Fall, 2010 I. INSTRUCTOR Professor Lance De Long Office: CP363 (257-4775) Labs: CP75, CP158 (257-8883), ASTeCC A041 Office Hours: M 10:30-11:30 a.m.; T 8:30-9:30 a.m. II.

More information

Physics 141 Course Information

Physics 141 Course Information Physics 141 Course Information General Physics I - Mechanics Spring 2008 Instructors: Office Hours: Textbook: Online Homework: Disclaimer: Nikos Varelas 2134 SES (312) 996-3415 varelas@uic.edu Charles

More information

Announcements Wednesday, August 30

Announcements Wednesday, August 30 Announcements Wednesday, August 30 WeBWorK due on Friday at 11:59pm. The first quiz is on Friday, during recitation. It covers through Monday s material. Quizzes mostly test your understanding of the homework.

More information

Statics - TAM 210 & TAM 211. Spring 2018

Statics - TAM 210 & TAM 211. Spring 2018 Statics - TAM 210 & TAM 211 Spring 2018 Course distribution Required TAM 210 TAM 211 Aerospace Engineering 31 1 Agricultural & Biological 12 3 Bioengineering 2 6 Civil Engineering 41 Engineering Mechanics

More information

Name: Lab Partner: Section: In this experiment error analysis and propagation will be explored.

Name: Lab Partner: Section: In this experiment error analysis and propagation will be explored. Chapter 2 Error Analysis Name: Lab Partner: Section: 2.1 Purpose In this experiment error analysis and propagation will be explored. 2.2 Introduction Experimental physics is the foundation upon which the

More information

course overview 18.06: Linear Algebra

course overview 18.06: Linear Algebra course overview 18.06: Linear Algebra Prof. Steven G. Johnson, MIT Applied Math Fall 2017 http://web.mit.edu/18.06 Textbook: Strang, Introduction to Linear Algebra, 5 th edition + supplementary notes Help

More information

Take the measurement of a person's height as an example. Assuming that her height has been determined to be 5' 8", how accurate is our result?

Take the measurement of a person's height as an example. Assuming that her height has been determined to be 5' 8, how accurate is our result? Error Analysis Introduction The knowledge we have of the physical world is obtained by doing experiments and making measurements. It is important to understand how to express such data and how to analyze

More information

Physics 141 Course Information

Physics 141 Course Information Physics 141 Course Information General Physics I - Mechanics Spring 2009 Instructors: Office Hours: Textbook: Online Homework: Disclaimer: Nikos Varelas 2134 SES (312) 996-3415 varelas@uic.edu Adrian Barkan

More information

The beginnings of physics

The beginnings of physics The beginnings of physics Astronomy 101 Syracuse University, Fall 2018 Walter Freeman October 9, 2018 Astronomy 101 The beginnings of physics October 9, 2018 1 / 28 Announcements No office hours this week

More information

Experiment 1: The Same or Not The Same?

Experiment 1: The Same or Not The Same? Experiment 1: The Same or Not The Same? Learning Goals After you finish this lab, you will be able to: 1. Use Logger Pro to collect data and calculate statistics (mean and standard deviation). 2. Explain

More information

Welcome to Physics 211! General Physics I

Welcome to Physics 211! General Physics I Welcome to Physics 211! General Physics I Physics 211 Fall 2015 Lecture 01-1 1 Physics 215 Honors & Majors Are you interested in becoming a physics major? Do you have a strong background in physics and

More information

Momentum and Impulse. Announcements. Learning Resources and Suggestions 8.01 W05D1

Momentum and Impulse. Announcements. Learning Resources and Suggestions 8.01 W05D1 Momentum and Impulse 8.01 W05D1 Today s Reading Assignment (W05D1): MIT 8.01 Course Notes Chapter 10 Momentum, System of Particles, and Conservation of Momentum Sections 10.1-10.9 Announcements Problem

More information

Purpose: Materials: WARNING! Section: Partner 2: Partner 1:

Purpose: Materials: WARNING! Section: Partner 2: Partner 1: Partner 1: Partner 2: Section: PLEASE NOTE: You will need this particular lab report later in the semester again for the homework of the Rolling Motion Experiment. When you get back this graded report,

More information

CHAPTER 1: Preliminary Description of Errors Experiment Methodology and Errors To introduce the concept of error analysis, let s take a real world

CHAPTER 1: Preliminary Description of Errors Experiment Methodology and Errors To introduce the concept of error analysis, let s take a real world CHAPTER 1: Preliminary Description of Errors Experiment Methodology and Errors To introduce the concept of error analysis, let s take a real world experiment. Suppose you wanted to forecast the results

More information

How and Why to go Beyond the Discovery of the Higgs Boson

How and Why to go Beyond the Discovery of the Higgs Boson How and Why to go Beyond the Discovery of the Higgs Boson John Alison University of Chicago http://hep.uchicago.edu/~johnda/comptonlectures.html Lecture Outline April 1st: Newton s dream & 20th Century

More information

ASTR1120L & 2030L Introduction to Astronomical Observations Spring 2019

ASTR1120L & 2030L Introduction to Astronomical Observations Spring 2019 ASTR1120L & 2030L Introduction to Astronomical Observations Spring 2019 Professor: Teaching Assistant: Office: Loris Magnani Jayne Dailey Physics 238 (Loris Magnani) Physics 241C (Jayne Dailey) E-Mail:

More information

Physics 120b Quantum Physics and Beyond Spring 2019

Physics 120b Quantum Physics and Beyond Spring 2019 Physics 120b Quantum Physics and Beyond Spring 2019 Course Homepage see course info on Canvas until class starts or go directly to the course homepage at http://star.physics.yale.edu/~harris/physics_120/

More information

LAB INFORMATION TFYA76 Mekanik

LAB INFORMATION TFYA76 Mekanik LAB INFORMATION TFYA76 Mekanik September 18, 2018 Lecturer: Bo Durbeej (bo.durbeej@liu.se) Lab Assistants: Tim Cornelissen (tim.cornelissen@liu.se) Indre Urbanaviciute (indre.urbanaviciute@liu.se) Contents

More information

Impact Craters AST 1022L

Impact Craters AST 1022L Impact Craters AST 1022L Crater Cross- Section *Breccia: rock made of shattered fragments cemented back together Terrestrial Craters I Meteor Crater, AZ 1.2 km across 170 m deep 50,000 years old Impactor

More information

Introduction to the General Physics Laboratories

Introduction to the General Physics Laboratories Introduction to the General Physics Laboratories September 5, 2007 Course Goals The goal of the IIT General Physics laboratories is for you to learn to be experimental scientists. For this reason, you

More information

CHEMISTRY 3A INTRODUCTION TO CHEMISTRY SPRING

CHEMISTRY 3A INTRODUCTION TO CHEMISTRY SPRING CHEMISTRY 3A INTRODUCTION TO CHEMISTRY SPRING ---- 2007 INSTRUCTOR: Dr. Phil Reedy Office: Cunningham 321 Telephone: 954-5671 email: preedy@deltacollege.edu WEBSITES: www.deltacollege.edu/emp/preedy www.preparatorychemistry.com

More information

UNIVERSITY OF TORONTO Department of Electrical and Computer Engineering ECE320H1-F: Fields and Waves, Course Outline Fall 2013

UNIVERSITY OF TORONTO Department of Electrical and Computer Engineering ECE320H1-F: Fields and Waves, Course Outline Fall 2013 UNIVERSITY OF TORONTO Department of Electrical and Computer Engineering ECE320H1-F: Fields and Waves, Course Outline Fall 2013 Name Office Room Email Address Lecture Times Professor Mo Mojahedi SF2001D

More information

Experiment 7: Spectrum of the Hydrogen Atom

Experiment 7: Spectrum of the Hydrogen Atom Experiment 7: Spectrum of the Hydrogen Nate Saffold nas2173@columbia.edu Office Hour: Mondays, 5:30-6:30PM INTRO TO EXPERIMENTAL PHYS-LAB 1493/1494/2699 Introduction The physics behind: The spectrum of

More information

Course Logistics for Math 195. Instructor: Alexander Hahn, Professor of Mathematics, 238 Hayes-Healy or Honors Program Office.

Course Logistics for Math 195. Instructor: Alexander Hahn, Professor of Mathematics, 238 Hayes-Healy or Honors Program Office. Course Logistics for Math 195 Instructor: Alexander Hahn, Professor of Mathematics, 238 Hayes-Healy or Honors Program Office. E-mail: hahn.1@nd.edu Class Times and Location: MWF, 9:35 am to 10:25 am, 214

More information

2018 SPRING PHYS 8011 Classical mechanics I (as of Apr. 19/2018) The course syllabus is a general plan for the course; deviations announced to the class by the instructor may be necessary. A FRIENDLY REMINDER:

More information

Uncertainty, Error, and Precision in Quantitative Measurements an Introduction 4.4 cm Experimental error

Uncertainty, Error, and Precision in Quantitative Measurements an Introduction 4.4 cm Experimental error Uncertainty, Error, and Precision in Quantitative Measurements an Introduction Much of the work in any chemistry laboratory involves the measurement of numerical quantities. A quantitative measurement

More information

EXPERIMENTAL UNCERTAINTY

EXPERIMENTAL UNCERTAINTY 3 EXPERIMENTAL UNCERTAINTY I am no matchmaker, as you well know, said Lady Russell, being much too aware of the uncertainty of all human events and calculations. --- Persuasion 3.1 UNCERTAINTY AS A 95%

More information

Big Bang, Black Holes, No Math

Big Bang, Black Holes, No Math ASTR/PHYS 109 Dr. David Toback Lecture 8 1 Prep For Today (is now due) L8 Reading: If you haven t already: Unit 2 (Chapters 5-9) Pre-Lecture Reading Questions: If you were misgraded, need help or an extension

More information

Chemistry Syllabus Fall Term 2017

Chemistry Syllabus Fall Term 2017 Chemistry 9 - Syllabus Fall Term 17 Date Lecture Number - General Subject Chapter W 8/30 F 9/1 1 - Introduction and orgo I review X - Review, friendly diagnostic exam M 9/4 2 - Orgo I review, exam highlights

More information

Welcome to Physics 161 Elements of Physics Fall 2018, Sept 4. Wim Kloet

Welcome to Physics 161 Elements of Physics Fall 2018, Sept 4. Wim Kloet Welcome to Physics 161 Elements of Physics Fall 2018, Sept 4 Wim Kloet 1 Lecture 1 TOPICS Administration - course web page - contact details Course materials - text book - iclicker - syllabus Course Components

More information

Understanding Errors and Uncertainties in the Physics Laboratory

Understanding Errors and Uncertainties in the Physics Laboratory Chapter 2 Understanding Errors and Uncertainties in the Physics Laboratory 2.1 Introduction We begin with a review of general properties of measurements and how measurements affect what we, as scientists,

More information

PHYSICS 2150 LABORATORY LECTURE 1

PHYSICS 2150 LABORATORY LECTURE 1 PHYSICS 2150 LABORATORY LECTURE 1 1865 Maxwell equations HISTORY theory expt in 2150 expt not in 2150 SCOPE OF THIS COURSE Experimental introduction to modern physics! Modern in this case means roughly

More information

Appendix B: Accuracy, Precision and Uncertainty

Appendix B: Accuracy, Precision and Uncertainty Appendix B: Accuracy, Precision and Uncertainty How tall are you? How old are you? When you answered these everyday questions, you probably did it in round numbers such as "five foot, six inches" or "nineteen

More information

Physics 1140 Experimental Physics 1

Physics 1140 Experimental Physics 1 Physics 1140 Experimental Physics 1 Debbie Jin Lecture 1: Introduc>on to Course Measurement Uncertainty Standard Format 1 General Informa>on Lecture instructor: Debbie Jin email: deborah.jin@colorado.edu

More information

WELCOME TO PHYSICS 201. Dr. Luis Dias Summer 2007 M, Tu, Wed, Th 10am-12pm 245 Walter Hall

WELCOME TO PHYSICS 201. Dr. Luis Dias Summer 2007 M, Tu, Wed, Th 10am-12pm 245 Walter Hall WELCOME TO PHYSICS 201 Dr. Luis Dias Summer 2007 M, Tu, Wed, Th 10am-12pm 245 Walter Hall PHYSICS 201 - Summer 2007 TEXTBOOK: Cutnell & Johnson, 6th ed. SYLLABUS : Please READ IT carefully. LONCAPA Learning

More information

Instructor: Welcome to

Instructor: Welcome to Instructor: Welcome to Physics 105 Summer 2006 Prof. Andrei Sirenko http://web.njit.edu/~sirenko 423E Tiernan Office hours: After the classes M. R. or by appointment 973-596-5342 Lecture 1 Andrei Sirenko,

More information

Poisson distribution and χ 2 (Chap 11-12)

Poisson distribution and χ 2 (Chap 11-12) Poisson distribution and χ 2 (Chap 11-12) Announcements: Last lecture today! Labs will continue. Homework assignment will be posted tomorrow or Thursday (I will send email) and is due Thursday, February

More information

MATH 450: Mathematical statistics

MATH 450: Mathematical statistics Departments of Mathematical Sciences University of Delaware August 28th, 2018 General information Classes: Tuesday & Thursday 9:30-10:45 am, Gore Hall 115 Office hours: Tuesday Wednesday 1-2:30 pm, Ewing

More information

Physics 207, Sections: 302/ /616 General Physics Faculty Instructors: General Announcements

Physics 207, Sections: 302/ /616 General Physics Faculty Instructors: General Announcements Physics 207, Sections: 302/602 313/616 General Physics Faculty Instructors: Michael Winokur Deniz Yavuz Agenda for Today l Course Introduction v Course structure v Course scope v Begin chapter 1 Course

More information

Experiment 2 Random Error and Basic Statistics

Experiment 2 Random Error and Basic Statistics PHY191 Experiment 2: Random Error and Basic Statistics 7/12/2011 Page 1 Experiment 2 Random Error and Basic Statistics Homework 2: turn in the second week of the experiment. This is a difficult homework

More information

Physics 253 P. LeClair

Physics 253 P. LeClair Physics 253 P. LeClair official things Dr. Patrick LeClair - leclair.homework@gmail.com - offices: 2012 Bevill, 323 Gallalee - 857-891-4267 (cell) - facebook/twitter (@pleclair) Office hours: - MWF 1-2

More information

AS 102 The Astronomical Universe (Spring 2010) Lectures: TR 11:00 am 12:30 pm, CAS Room 316 Course web page:

AS 102 The Astronomical Universe (Spring 2010) Lectures: TR 11:00 am 12:30 pm, CAS Room 316 Course web page: Instructor: AS 102 The Astronomical Universe (Spring 2010) Lectures: TR 11:00 am 12:30 pm, CAS Room 316 Course web page: http://firedrake.bu.edu/as102/as102.html Professor Tereasa Brainerd office: CAS

More information

Introduction to Uncertainty and Treatment of Data

Introduction to Uncertainty and Treatment of Data Introduction to Uncertainty and Treatment of Data Introduction The purpose of this experiment is to familiarize the student with some of the instruments used in making measurements in the physics laboratory,

More information

Physics Quantum Field Theory I. Section 1: Course Logistics and Introduction

Physics Quantum Field Theory I. Section 1: Course Logistics and Introduction Physics 8.323 Quantum Field Theory I Section 1: Course Logistics and February 2012 c 2012 W. Taylor 8.323 Section 1: Logistics + intro 1 / 1 Course info: http://web.mit.edu/8.323/www Lecturer: Washington

More information

Chemistry 883 Computational Quantum Chemistry

Chemistry 883 Computational Quantum Chemistry Chemistry 883 Computational Quantum Chemistry Instructor Contact Information Professor Benjamin G. Levine levine@chemistry.msu.edu 215 Chemistry Building 517-353-1113 Office Hours Tuesday 9:00-11:00 am

More information

Ph 1a Fall General Information

Ph 1a Fall General Information Ph 1a Fall 2017 General Information Lecturer Jonas Zmuidzinas 306 Cahill, Ext. 6229, jonas@caltech.edu Lectures are on Wednesdays and Fridays, 11:00-11:55 am, in 201 E. Bridge. Course Administrator Meagan

More information

No Math. ASTR/PHYS 109 at. Texas A&M University November Big Bang, Black Holes, No Math ASTR/PHYS 109 at Texas A&M 1

No Math. ASTR/PHYS 109 at. Texas A&M University November Big Bang, Black Holes, No Math ASTR/PHYS 109 at Texas A&M 1 Big Bang, Black Holes, No Math ASTR/PHYS 109 at Texas A&M David Toback Texas A&M University November 2009 ASTR/PHYS 109 at Texas A&M 1 Talk Outline Motivation, Intended Audience and Class Goals Course

More information

CHM Accuracy, Precision, and Significant Figures (r14) C. Taylor 1/10

CHM Accuracy, Precision, and Significant Figures (r14) C. Taylor 1/10 CHM 110 - Accuracy, Precision, and Significant Figures (r14) - 2014 C. Taylor 1/10 Introduction Observations are vitally important to all of science. Some observations are qualitative in nature - such

More information

Lec 1, , Course Intro. PHYS-1401, General Physics I Spring Physics I Lab starts next week.

Lec 1, , Course Intro. PHYS-1401, General Physics I Spring Physics I Lab starts next week. Lec 1, 2019-01-14, Course Intro Monday, January 14, 2019 10:21 AM PHYS-1401, General Physics I Spring 2019 - Physics I Lab starts next week. Science - Studying patterns in Nature Mathematics - Language

More information

Welcome to Chemistry 1A. This course in the first half of the General Chemistry course offered at RCC.

Welcome to Chemistry 1A. This course in the first half of the General Chemistry course offered at RCC. Chemistry 1A Syllabus Winter 2018 Welcome to Chemistry 1A, the first semester of General chemistry. Dr Kime 951-222-8285 Office: MTSC building 422 Ellen.Kime@rcc.edu http://websites.rcc.edu/kime/ Welcome

More information

AS 203 Principles of Astronomy 2 Introduction to Stellar and Galactic Astronomy Syllabus Spring 2012

AS 203 Principles of Astronomy 2 Introduction to Stellar and Galactic Astronomy Syllabus Spring 2012 AS 203 Principles of Astronomy 2 Introduction to Stellar and Galactic Astronomy Syllabus Spring 2012 Instructor Prof. Elizabeth Blanton Room: CAS 519 Email: eblanton@bu.edu Phone: 617-353-2633 Office hours:

More information

Chem 103: Foundations of Physical Chemistry Fall 2011

Chem 103: Foundations of Physical Chemistry Fall 2011 Chem 103: Foundations of Physical Chemistry Fall 2011 Course Description: A study of foundational principles in chemical thermodynamics, kinetics, quantum mechanics, and spectroscopy. Topics include the

More information

Statistical Methods in Particle Physics

Statistical Methods in Particle Physics Statistical Methods in Particle Physics Lecture 11 January 7, 2013 Silvia Masciocchi, GSI Darmstadt s.masciocchi@gsi.de Winter Semester 2012 / 13 Outline How to communicate the statistical uncertainty

More information

Big Bang, Black Holes, No Math

Big Bang, Black Holes, No Math ASTR/PHYS 109 Dr. David Toback Lectures 10, 11 & 12 1 Prep For Today (is now due) L12 Reading: (BBBHNM Unit 2) Pre-Lecture Reading Questions: If you were misgraded, need help or an extension let me know

More information

Lab 10 - Harmonic Motion and the Pendulum

Lab 10 - Harmonic Motion and the Pendulum Lab 10 Harmonic Motion and the Pendulum L10-1 Name Date Partners Lab 10 - Harmonic Motion and the Pendulum L (measured from the suspension point to the center of mass) Groove marking the center of mass

More information