PHYSICS 2150 LABORATORY

Size: px
Start display at page:

Download "PHYSICS 2150 LABORATORY"

Transcription

1 PHYSICS 2150 LABORATORY Professor John Cumalat TAs: Adam Green John Houlton Lab Coordinator: Scott Pinegar Lecture 6 Feb. 17, 2015

2 ANNOUNCEMENT The problem set will be posted on the course website or you can pick one up. They are due Tuesday, Feb. 24 at 5pm. Place them in the black box in lab. Your second lab report is due on Friday, Feb.20. This is the last lecture in Physics 2150.

3 THIS LECTURE Introduction to the Poisson Distribution More comments on fitting data

4 COUNTING EXPERIMENTS Should there be a consistent trend? NO! The long half-life assures that over the time of the experiment, the decay rate isn t changing significantly. Should the five intervals all have the same number of decays? NO! The decay is a random process.

5 THE POISSON DISTRIBUTION This is obviously asymmetric, doesn t allow negative events, and is obviously discrete (factorial is only defined for nonnegative integers). Note that the mean µ doesn t have to be an integer. The sum rule works too: try it out at home. Note that µ n factor keeps probability down for too few events; n! factor keeps it down for too many events.

6 The Poisson Distribution, cont. What s the average? P µ ( n) = e µ µ n n! Where n! = n υ = µ n P µ (n) = n n e µ n! n =0 n =0 n n! = 1 ; n = 0 term is zero (n 1)! µ n 1 υ = µe µ = µe µ (1+ µ + µ2 (n 1)! 2! + µ3 3!...) n =1 υ = µ e µ

7 :Example: Cosmic Ray experiment in which a detector counts an average of 20 cosmic rays per day. How many times during a one year period would you expect the detector to count just 10 cosmic rays over a day? µ = 20 ; P µ (n) = e µ µ n n! (20) 10 (10) 10 (2) 10 P 20 (10) = e 20 = e 20 10! 10! = /day = e (# of expected 10 count days) = 365 ( ) = 2.12 expect to observe 10 events twice in one year!

8 The Poisson Distribution, cont. What s the standard deviation? σ 2 υ = ( υ υ ) 2 = υ 2 2υυ + ( υ ) 2 = υ 2 ( υ ) 2 ; but already shown ( υ ) = µ υ 2 = µ n 2 P µ (n) = n n 2 e µ n! n =0 n =0 nµ n 1 (m +1)µ m υ 2 = µe µ = µe µ = µe µ {e µ µ + e µ } (n 1)! (m)! n =0 n =0 υ 2 = µ 2 + µ σ υ 2 = µ ; σ µ = µ

9 The Poisson Distribution, possesses Reproductive Property If X and Y are independent, Poisson distributed random variables P X (x) = (X )x e X x! ; P Y (y) = (Y )y e Y then Z= X + Y is Poisson distributed random variable, with P Z (z) = (Z )z e Z z! y! ; where Z = X + Y Means can accumulate for an extended time period OR divide the time period into a number of smaller periods and get same result.

10 :Example: Suppose we make ten 1 minute counts x = x i N = = 20.1 cnts/min σ = x = 20.1 = 4.5 cnts/min σ x = σ N = x =1.4 cnts/min N x = (20.1±1.4) cnts/min 201

11 :Example, cont: If we had chosen to regard this as one 10 minute count x T = 201 cnts σ T = 201 =14.18 cnts and on a per minute basis x = (20.1 ± 1.4) cnts/min same as before 201

12 GAUSS VS. POISSON GAUSSIAN POISSON

13 POISSON DISTRIBUTION

14 POISSON DISTRIBUTION

15 SMALL-MEAN BEHAVIOR OF POISSON DISTRIBUTION

16 LARGE-MEAN POISSON BEHAVIOR: GAUSSIAN LIMIT

17 HOW TO USE POISSON DISTRIBUTIONS IN COUNTING Uncertainty: σ= µ (for large µ, can be interpreted similarly to gaussian σ) STATISTICAL uncertainty on the number of counts is thus the square root of the number of counts. Background processes may be contributing to your rate: µ=µsignal+µbkg. Often, can measure µbkg by turning off the signal, so when you then measure µtotal you can subtract the background to measure your signal rate. How do you handle the error in this situation?

18 Counting in Presence of Background Let s say we have a total count and a background count and we want the net count say radioactivity from mortar in fireplace. Let N=Net Count; T= total Count; B = background count N = T B ; σ N = σ T 2 +σ B 2 σ N = T + B N If T=200 and B= 150; N = 50 +/- (350).5 =50+/- 19

19 An Example Claim to have 160 accidents in a 10 year period at the intersection of Broadway and Tablemesa Drive. The City of Boulder decides to install a turn-only lane. Over the next two years they record 26 accidents at the intersection. The city makes the claim that the accident rate has gone down. Can they justify their claim statistically? (16 +/- 1.26) per year - (13.0+/- 2.55) per year = (3 +/- 2.8 ) accidents per year Yes it is significant!

20 A SCIENCE EXAMPLE: FITTING RADIOISOTOPE LIFETIME Measure count rate (background) with no radioactive material present Introduce radioactive material Count the number of decays in a 1-second period; remeasure every 30 seconds Subtract the background rate Fit the rate vs. time to an exponential lifetime

21 MEASURING BACKGROUND Background rate should be constant, so each trial is a remeasurement of the same thing Get the background rate by taking mean: 402/10=40.2 (note that this is exactly equivalent to simply measuring for 10 seconds and dividing by 10 to find the rate). Uncertainty in the rate: total counts is 402± 402 So in 10 seconds, mean = 402±20 Divide by 10 to get rate in 1 sec: 40.2±2.0 Background rate is 40.2±2.0 counts/second

22 SIGNAL DATA Are all the trials measuring the same rate? What are the uncertainties in the number of counts? What is the measured signal rate? Subtract background (40.2 cts/sec) Statistical error remains the square root of the total number of counts Also there is a systematic error (not shown) due to uncertainty in the background

23 FITTING FOR THE MEAN LIFE Plot the rate vs. seconds To fit to a line, take the log: N(t) = N0 exp( t/ ) ln(n) = ln(n0) t/ Linear fit: y= ln(n); x=t. What s the uncertainty on y if uncertainty on N is σn?

24 HOW GOOD IS THE FIT? Often want to know how good a fit is. Minimizing χ 2 told you what the best fit to your function was The value of that minimum χ 2 can tell you how well data actually fit your function.

25 THE CHI-SQUARED TEST in high-dof limit

26

27 LEAST-SQUARES AND CHI- SQUARED If you do a straight-line fit without using errors (unweighted leastsquares fit) Fit returns error on y (assuming they are all the same) Min χ 2 /dof is 1 by definition Can t use χ 2 /dof to determine fit quality If you use externally known uncertainties to do a weighted line fit (See Taylor problems 8.9, 8.19) Fit returns function parameters (slope,offset) and χ 2 You can use the table to determine fit compatibility with data as a confidence probability

28 LOOK AT THE DECAY DATA

29 Final Comment Don t hesitate to ask for assistance on the homework. I want all of you to learn the material! Good Luck!

Poisson distribution and χ 2 (Chap 11-12)

Poisson distribution and χ 2 (Chap 11-12) Poisson distribution and χ 2 (Chap 11-12) Announcements: Last lecture today! Labs will continue. Homework assignment will be posted tomorrow or Thursday (I will send email) and is due Thursday, February

More information

Physics 6720 Introduction to Statistics April 4, 2017

Physics 6720 Introduction to Statistics April 4, 2017 Physics 6720 Introduction to Statistics April 4, 2017 1 Statistics of Counting Often an experiment yields a result that can be classified according to a set of discrete events, giving rise to an integer

More information

Statistics. Lent Term 2015 Prof. Mark Thomson. 2: The Gaussian Limit

Statistics. Lent Term 2015 Prof. Mark Thomson. 2: The Gaussian Limit Statistics Lent Term 2015 Prof. Mark Thomson Lecture 2 : The Gaussian Limit Prof. M.A. Thomson Lent Term 2015 29 Lecture Lecture Lecture Lecture 1: Back to basics Introduction, Probability distribution

More information

Probability Distributions

Probability Distributions 02/07/07 PHY310: Statistical Data Analysis 1 PHY310: Lecture 05 Probability Distributions Road Map The Gausssian Describing Distributions Expectation Value Variance Basic Distributions Generating Random

More information

I will post Homework 1 soon, probably over the weekend, due Friday, September 30.

I will post Homework 1 soon, probably over the weekend, due Friday, September 30. Random Variables Friday, September 09, 2011 2:02 PM I will post Homework 1 soon, probably over the weekend, due Friday, September 30. No class or office hours next week. Next class is on Tuesday, September

More information

Physics 248, Spring 2009 Lab 6: Radiation and its Interaction with Matter

Physics 248, Spring 2009 Lab 6: Radiation and its Interaction with Matter Name Section Physics 48, Spring 009 Lab 6: Radiation and its Interaction with Matter Your TA will use this sheet to score your lab. It is to be turned in at the end of lab. To receive full credit you must

More information

CS 361: Probability & Statistics

CS 361: Probability & Statistics February 26, 2018 CS 361: Probability & Statistics Random variables The discrete uniform distribution If every value of a discrete random variable has the same probability, then its distribution is called

More information

Atomic structure Radioactive decay Exponential functions and graphs

Atomic structure Radioactive decay Exponential functions and graphs TEACHER NOTES LAB NR 4 RELATED TOPICS STANDARDS ADDRESSED Science and Technology 3.1.1, 3.1.1 3..1,3..1 3.4.1, 3.4.1 3.7.1, 3.7.1 3.8.1, 3.8.1 Atomic structure Radioactive decay Exponential functions and

More information

Experiment 2 Random Error and Basic Statistics

Experiment 2 Random Error and Basic Statistics PHY9 Experiment 2: Random Error and Basic Statistics 8/5/2006 Page Experiment 2 Random Error and Basic Statistics Homework 2: Turn in at start of experiment. Readings: Taylor chapter 4: introduction, sections

More information

Take the measurement of a person's height as an example. Assuming that her height has been determined to be 5' 8", how accurate is our result?

Take the measurement of a person's height as an example. Assuming that her height has been determined to be 5' 8, how accurate is our result? Error Analysis Introduction The knowledge we have of the physical world is obtained by doing experiments and making measurements. It is important to understand how to express such data and how to analyze

More information

Checking the Radioactive Decay Euler Algorithm

Checking the Radioactive Decay Euler Algorithm Lecture 2: Checking Numerical Results Review of the first example: radioactive decay The radioactive decay equation dn/dt = N τ has a well known solution in terms of the initial number of nuclei present

More information

Phys 243 Lab 7: Radioactive Half-life

Phys 243 Lab 7: Radioactive Half-life Phys 243 Lab 7: Radioactive Half-life Dr. Robert MacDonald The King s University College Winter 2013 Abstract In today s lab you ll be measuring the half-life of barium-137, a radioactive isotope of barium.

More information

Counting Statistics and Error Propagation!

Counting Statistics and Error Propagation! Counting Statistics and Error Propagation Nuclear Medicine Physics Lectures 10/4/11 Lawrence MacDonald, PhD macdon@uw.edu Imaging Research Laboratory, Radiology Dept. 1 Statistics Type of analysis which

More information

Computer simulation of radioactive decay

Computer simulation of radioactive decay Computer simulation of radioactive decay y now you should have worked your way through the introduction to Maple, as well as the introduction to data analysis using Excel Now we will explore radioactive

More information

ACCESS TO SCIENCE, ENGINEERING AND AGRICULTURE: MATHEMATICS 2 MATH00040 SEMESTER / Probability

ACCESS TO SCIENCE, ENGINEERING AND AGRICULTURE: MATHEMATICS 2 MATH00040 SEMESTER / Probability ACCESS TO SCIENCE, ENGINEERING AND AGRICULTURE: MATHEMATICS 2 MATH00040 SEMESTER 2 2017/2018 DR. ANTHONY BROWN 5.1. Introduction to Probability. 5. Probability You are probably familiar with the elementary

More information

15-388/688 - Practical Data Science: Basic probability. J. Zico Kolter Carnegie Mellon University Spring 2018

15-388/688 - Practical Data Science: Basic probability. J. Zico Kolter Carnegie Mellon University Spring 2018 15-388/688 - Practical Data Science: Basic probability J. Zico Kolter Carnegie Mellon University Spring 2018 1 Announcements Logistics of next few lectures Final project released, proposals/groups due

More information

Physics 1140 Fall 2013 Introduction to Experimental Physics

Physics 1140 Fall 2013 Introduction to Experimental Physics Physics 1140 Fall 2013 Introduction to Experimental Physics Joanna Atkin Lecture 5: Recap of Error Propagation and Gaussian Statistics Graphs and linear fitting Experimental analysis Typically make repeat

More information

Math 31 Lesson Plan. Day 2: Sets; Binary Operations. Elizabeth Gillaspy. September 23, 2011

Math 31 Lesson Plan. Day 2: Sets; Binary Operations. Elizabeth Gillaspy. September 23, 2011 Math 31 Lesson Plan Day 2: Sets; Binary Operations Elizabeth Gillaspy September 23, 2011 Supplies needed: 30 worksheets. Scratch paper? Sign in sheet Goals for myself: Tell them what you re going to tell

More information

Announcements Wednesday, August 30

Announcements Wednesday, August 30 Announcements Wednesday, August 30 WeBWorK due on Friday at 11:59pm. The first quiz is on Friday, during recitation. It covers through Monday s material. Quizzes mostly test your understanding of the homework.

More information

We ll start today by learning how to change a repeating decimal into a fraction! Then we will do a review of Unit 1 - half of Unit 3!

We ll start today by learning how to change a repeating decimal into a fraction! Then we will do a review of Unit 1 - half of Unit 3! Welcome to math! We ll start today by learning how to change a repeating decimal into a fraction! Then we will do a review of Unit 1 - half of Unit 3! So grab a seat where you can focus, and get ready

More information

Lecture 2 Binomial and Poisson Probability Distributions

Lecture 2 Binomial and Poisson Probability Distributions Binomial Probability Distribution Lecture 2 Binomial and Poisson Probability Distributions Consider a situation where there are only two possible outcomes (a Bernoulli trial) Example: flipping a coin James

More information

Announcements Monday, September 18

Announcements Monday, September 18 Announcements Monday, September 18 WeBWorK 1.4, 1.5 are due on Wednesday at 11:59pm. The first midterm is on this Friday, September 22. Midterms happen during recitation. The exam covers through 1.5. About

More information

Vehicle Arrival Models : Count

Vehicle Arrival Models : Count Transportation System Engineering 34. Vehicle Arrival Models : Count Chapter 34 Vehicle Arrival Models : Count h 1 h 2 h 3 h 4 h 5 h 6 h 7 h 8 h 9 h 10 t 1 t 2 t 3 t 4 Time Figure 34.1: Illustration of

More information

Radiation and Radioactivity. PHYS 0219 Radiation and Radioactivity

Radiation and Radioactivity. PHYS 0219 Radiation and Radioactivity Radiation and Radioactivity 1 Radiation and Radioactivity This experiment has four parts: 1. Counting Statistics 2. Gamma (g) Ray Absorption Half-length and shielding 3. 137 Ba Decay Half-life 4. Dosimetry

More information

Chapter 26: Comparing Counts (Chi Square)

Chapter 26: Comparing Counts (Chi Square) Chapter 6: Comparing Counts (Chi Square) We ve seen that you can turn a qualitative variable into a quantitative one (by counting the number of successes and failures), but that s a compromise it forces

More information

PHYSICS 2150 LABORATORY LECTURE 1

PHYSICS 2150 LABORATORY LECTURE 1 PHYSICS 2150 LABORATORY LECTURE 1 1865 Maxwell equations HISTORY theory expt in 2150 expt not in 2150 SCOPE OF THIS COURSE Experimental introduction to modern physics! Modern in this case means roughly

More information

Model Fitting using Excel and Gnuplot

Model Fitting using Excel and Gnuplot Model Fitting using Excel and Gnuplot Biochemistry Boot Camp 18 Session #4 Nick Fitzkee nfitzkee@chemistry.msstate.edu Think and Discuss What is a scientific model? 1 Properties of Models Explain an observable

More information

Experiment 1: The Same or Not The Same?

Experiment 1: The Same or Not The Same? Experiment 1: The Same or Not The Same? Learning Goals After you finish this lab, you will be able to: 1. Use Logger Pro to collect data and calculate statistics (mean and standard deviation). 2. Explain

More information

Because of the special form of an alternating series, there is an simple way to determine that many such series converge:

Because of the special form of an alternating series, there is an simple way to determine that many such series converge: Section.5 Absolute and Conditional Convergence Another special type of series that we will consider is an alternating series. A series is alternating if the sign of the terms alternates between positive

More information

Before this course is over we will see the need to split up a fraction in a couple of ways, one using multiplication and the other using addition.

Before this course is over we will see the need to split up a fraction in a couple of ways, one using multiplication and the other using addition. CH 0 MORE FRACTIONS Introduction I n this chapter we tie up some loose ends. First, we split a single fraction into two fractions, followed by performing our standard math operations on positive and negative

More information

Fitting a Straight Line to Data

Fitting a Straight Line to Data Fitting a Straight Line to Data Thanks for your patience. Finally we ll take a shot at real data! The data set in question is baryonic Tully-Fisher data from http://astroweb.cwru.edu/sparc/btfr Lelli2016a.mrt,

More information

Astronomy 102 Math Review

Astronomy 102 Math Review Astronomy 102 Math Review 2003-August-06 Prof. Robert Knop r.knop@vanderbilt.edu) For Astronomy 102, you will not need to do any math beyond the high-school alegbra that is part of the admissions requirements

More information

Experiment 4 Free Fall

Experiment 4 Free Fall PHY9 Experiment 4: Free Fall 8/0/007 Page Experiment 4 Free Fall Suggested Reading for this Lab Bauer&Westfall Ch (as needed) Taylor, Section.6, and standard deviation rule ( t < ) rule in the uncertainty

More information

Scientific Notation. exploration. 1. Complete the table of values for the powers of ten M8N1.j. 110 Holt Mathematics

Scientific Notation. exploration. 1. Complete the table of values for the powers of ten M8N1.j. 110 Holt Mathematics exploration Georgia Performance Standards M8N1.j 1. Complete the table of values for the powers of ten. Exponent 6 10 6 5 10 5 4 10 4 Power 3 10 3 2 10 2 1 1 0 2 1 0.01 10 10 1 10 1 1 1 0 1 1 0.1 10 0

More information

Probability Method in Civil Engineering Prof. Dr. Rajib Maity Department of Civil Engineering Indian Institute of Technology, Kharagpur

Probability Method in Civil Engineering Prof. Dr. Rajib Maity Department of Civil Engineering Indian Institute of Technology, Kharagpur Probability Method in Civil Engineering Prof. Dr. Rajib Maity Department of Civil Engineering Indian Institute of Technology, Kharagpur Lecture No. # 34 Probability Models using Discrete Probability Distributions

More information

Error Analysis. V. Lorenz L. Yang, M. Grosse Perdekamp, D. Hertzog, R. Clegg PHYS403 Spring 2016

Error Analysis. V. Lorenz L. Yang, M. Grosse Perdekamp, D. Hertzog, R. Clegg PHYS403 Spring 2016 Error Analysis V. Lorenz L. Yang, M. Grosse Perdekamp, D. Hertzog, R. Clegg PHYS403 Spring 2016 Reporting measurement results Always include uncertainty estimates in your results Have the correct number

More information

Maps and differential equations

Maps and differential equations Maps and differential equations Marc R. Roussel November 8, 2005 Maps are algebraic rules for computing the next state of dynamical systems in discrete time. Differential equations and maps have a number

More information

Read Hewitt Chapter 33

Read Hewitt Chapter 33 Cabrillo College Physics 10L LAB 6 Radioactivity Read Hewitt Chapter 33 Name What to BRING TO LAB: Any suspicious object that MIGHT be radioactive. What to explore and learn An amazing discovery was made

More information

Physics Experimental Physics Temple University, Spring C. J. Martoff, Instructor

Physics Experimental Physics Temple University, Spring C. J. Martoff, Instructor Physics 4796 - Experimental Physics Temple University, Spring 2010-11 C. J. Martoff, Instructor Physics 4796 Lab Writeup Counting Statistics (or, Is it Radioactive?) 0.1 Purpose of This Lab Exercise: Demonstrate

More information

Experiment 2 Random Error and Basic Statistics

Experiment 2 Random Error and Basic Statistics PHY191 Experiment 2: Random Error and Basic Statistics 7/12/2011 Page 1 Experiment 2 Random Error and Basic Statistics Homework 2: turn in the second week of the experiment. This is a difficult homework

More information

Before this course is over we will see the need to split up a fraction in a couple of ways, one using multiplication and the other using addition.

Before this course is over we will see the need to split up a fraction in a couple of ways, one using multiplication and the other using addition. CH MORE FRACTIONS Introduction I n this chapter we tie up some loose ends. First, we split a single fraction into two fractions, followed by performing our standard math operations on positive and negative

More information

Reminders : Sign up to make up Labs (Tues/Thurs from 3 4 pm)

Reminders : Sign up to make up Labs (Tues/Thurs from 3 4 pm) Monday, 5.11.15 Learning Target : I can identify nuclear reactions based on the characteristics of their chemical equations. Homework: Bingo packet 2 due Thursday What is a fission reaction? What is a

More information

Math101, Sections 2 and 3, Spring 2008 Review Sheet for Exam #2:

Math101, Sections 2 and 3, Spring 2008 Review Sheet for Exam #2: Math101, Sections 2 and 3, Spring 2008 Review Sheet for Exam #2: 03 17 08 3 All about lines 3.1 The Rectangular Coordinate System Know how to plot points in the rectangular coordinate system. Know the

More information

CMPSCI 240: Reasoning Under Uncertainty

CMPSCI 240: Reasoning Under Uncertainty CMPSCI 240: Reasoning Under Uncertainty Lecture 5 Prof. Hanna Wallach wallach@cs.umass.edu February 7, 2012 Reminders Pick up a copy of B&T Check the course website: http://www.cs.umass.edu/ ~wallach/courses/s12/cmpsci240/

More information

P.7 Solving Inequalities Algebraically and Graphically

P.7 Solving Inequalities Algebraically and Graphically 54 CHAPTER P Prerequisites What you ll learn about Solving Absolute Value Inequalities Solving Quadratic Inequalities Approximating Solutions to Inequalities Projectile Motion... and why These techniques

More information

Math 250B Midterm I Information Fall 2018

Math 250B Midterm I Information Fall 2018 Math 250B Midterm I Information Fall 2018 WHEN: Wednesday, September 26, in class (no notes, books, calculators I will supply a table of integrals) EXTRA OFFICE HOURS: Sunday, September 23 from 8:00 PM

More information

ECE 510 Lecture 7 Goodness of Fit, Maximum Likelihood. Scott Johnson Glenn Shirley

ECE 510 Lecture 7 Goodness of Fit, Maximum Likelihood. Scott Johnson Glenn Shirley ECE 510 Lecture 7 Goodness of Fit, Maximum Likelihood Scott Johnson Glenn Shirley Confidence Limits 30 Jan 2013 ECE 510 S.C.Johnson, C.G.Shirley 2 Binomial Confidence Limits (Solution 6.2) UCL: Prob of

More information

Announcements Wednesday, August 30

Announcements Wednesday, August 30 Announcements Wednesday, August 30 WeBWorK due on Friday at 11:59pm. The first quiz is on Friday, during recitation. It covers through Monday s material. Quizzes mostly test your understanding of the homework.

More information

Probability Methods in Civil Engineering Prof. Rajib Maity Department of Civil Engineering Indian Institute of Technology, Kharagpur

Probability Methods in Civil Engineering Prof. Rajib Maity Department of Civil Engineering Indian Institute of Technology, Kharagpur Probability Methods in Civil Engineering Prof. Rajib Maity Department of Civil Engineering Indian Institute of Technology, Kharagpur Lecture No. # 12 Probability Distribution of Continuous RVs (Contd.)

More information

Computer 3. Lifetime Measurement

Computer 3. Lifetime Measurement Lifetime Measurement Computer 3 The activity (in decays per second) of some radioactive samples varies in time in a particularly simple way. If the activity (R) in decays per second of a sample is proportional

More information

Probability Methods in Civil Engineering Prof. Dr. Rajib Maity Department of Civil Engineering Indian Institution of Technology, Kharagpur

Probability Methods in Civil Engineering Prof. Dr. Rajib Maity Department of Civil Engineering Indian Institution of Technology, Kharagpur Probability Methods in Civil Engineering Prof. Dr. Rajib Maity Department of Civil Engineering Indian Institution of Technology, Kharagpur Lecture No. # 36 Sampling Distribution and Parameter Estimation

More information

Originality in the Arts and Sciences: Lecture 2: Probability and Statistics

Originality in the Arts and Sciences: Lecture 2: Probability and Statistics Originality in the Arts and Sciences: Lecture 2: Probability and Statistics Let s face it. Statistics has a really bad reputation. Why? 1. It is boring. 2. It doesn t make a lot of sense. Actually, the

More information

PHYSICS 2150 LABORATORY

PHYSICS 2150 LABORATORY PHYSICS 2150 LABORATORY Instructors: John Cumalat Jiayan Pheonix Dai Lab Coordinator: Jerry Leigh Lecture 2 September 2, 2008 PHYS2150 Lecture 2 Need to complete the Radiation Certification The Gaussian

More information

The Derivative of a Function

The Derivative of a Function The Derivative of a Function James K Peterson Department of Biological Sciences and Department of Mathematical Sciences Clemson University March 1, 2017 Outline A Basic Evolutionary Model The Next Generation

More information

Lecture 14: Course Review. Physics 3719 Spring Semester 2011

Lecture 14: Course Review. Physics 3719 Spring Semester 2011 Lecture 14: Course Review Physics 3719 Spring Semester 2011 Lab 4 Experiments Gravitational Constant G Ramirez, Thomas (PM) Speed of Light C Richards, Topham (AM) Electron Charge-to-Mass Ratio e/m Jensen,

More information

We ll start today by learning how to change a decimal to a fraction on our calculator! Then we will pick up our Unit 1-5 Review where we left off!

We ll start today by learning how to change a decimal to a fraction on our calculator! Then we will pick up our Unit 1-5 Review where we left off! Welcome to math! We ll start today by learning how to change a decimal to a fraction on our calculator! Then we will pick up our Unit 1-5 Review where we left off! So go back to your normal seat and get

More information

Statistics of Radioactive Decay

Statistics of Radioactive Decay Statistics of Radioactive Decay Introduction The purpose of this experiment is to analyze a set of data that contains natural variability from sample to sample, but for which the probability distribution

More information

Experiment 2. F r e e F a l l

Experiment 2. F r e e F a l l Suggested Reading for this Lab Experiment F r e e F a l l Taylor, Section.6, and standard deviation rule in Taylor handout. Review Chapters 3 & 4, Read Sections 8.1-8.6. You will also need some procedures

More information

ORF 245 Fundamentals of Engineering Statistics. Final Exam

ORF 245 Fundamentals of Engineering Statistics. Final Exam Princeton University Department of Operations Research and Financial Engineering ORF 245 Fundamentals of Engineering Statistics Final Exam May 22, 2008 7:30pm-10:30pm PLEASE DO NOT TURN THIS PAGE AND START

More information

Statistics, Data Analysis, and Simulation SS 2013

Statistics, Data Analysis, and Simulation SS 2013 Statistics, Data Analysis, and Simulation SS 213 8.128.73 Statistik, Datenanalyse und Simulation Dr. Michael O. Distler Mainz, 23. April 213 What we ve learned so far Fundamental

More information

Homework 1 2/7/2018 SOLUTIONS Exercise 1. (a) Graph the following sets (i) C = {x R x in Z} Answer:

Homework 1 2/7/2018 SOLUTIONS Exercise 1. (a) Graph the following sets (i) C = {x R x in Z} Answer: Homework 1 2/7/2018 SOLTIONS Eercise 1. (a) Graph the following sets (i) C = { R in Z} nswer: 0 R (ii) D = {(, y), y in R,, y 2}. nswer: = 2 y y = 2 (iii) C C nswer: y 1 2 (iv) (C C) D nswer: = 2 y y =

More information

Experiment #4: Radiation Counting Statistics

Experiment #4: Radiation Counting Statistics Experiment #4: Radiation Counting Statistics NUC E 450 - Radiation Detection and Measurement Spring 2014 Report Prepared By: Christine Yeager Lab Preformed By: Christine Yeager Martin Gudewicz Connor Dickey

More information

THE GEIGER-MULLER TUBE AND THE STATISTICS OF RADIOACTIVITY

THE GEIGER-MULLER TUBE AND THE STATISTICS OF RADIOACTIVITY GMstats. THE GEIGER-MULLER TUBE AN THE STATISTICS OF RAIOACTIVITY This experiment examines the Geiger-Muller counter, a device commonly used for detecting and counting ionizing radiation. Various properties

More information

Stat 609: Mathematical Statistics I (Fall Semester, 2016) Introduction

Stat 609: Mathematical Statistics I (Fall Semester, 2016) Introduction Stat 609: Mathematical Statistics I (Fall Semester, 2016) Introduction Course information Instructor Professor Jun Shao TA Mr. Han Chen Office 1235A MSC 1335 MSC Phone 608-262-7938 608-263-5948 Email shao@stat.wisc.edu

More information

PHYS 1140 lecture 6. During lab this week (Tuesday to next Monday):

PHYS 1140 lecture 6. During lab this week (Tuesday to next Monday): Deadlines coming up PHYS 1140 lecture 6 During lab this week (Tuesday to next Monday): Turn in Pre-lab 3 at the START of your lab session Expt. 3: take data, start analysis during your lab session. Next

More information

1 Some Statistical Basics.

1 Some Statistical Basics. Q Some Statistical Basics. Statistics treats random errors. (There are also systematic errors e.g., if your watch is 5 minutes fast, you will always get the wrong time, but it won t be random.) The two

More information

MAT01A1: Functions and Mathematical Models

MAT01A1: Functions and Mathematical Models MAT01A1: Functions and Mathematical Models Dr Craig 21 February 2017 Introduction Who: Dr Craig What: Lecturer & course coordinator for MAT01A1 Where: C-Ring 508 acraig@uj.ac.za Web: http://andrewcraigmaths.wordpress.com

More information

f rot (Hz) L x (max)(erg s 1 )

f rot (Hz) L x (max)(erg s 1 ) How Strongly Correlated are Two Quantities? Having spent much of the previous two lectures warning about the dangers of assuming uncorrelated uncertainties, we will now address the issue of correlations

More information

(b) What is the variance of the time until the second customer arrives, starting empty, assuming that we measure time in minutes?

(b) What is the variance of the time until the second customer arrives, starting empty, assuming that we measure time in minutes? IEOR 3106: Introduction to Operations Research: Stochastic Models Fall 2006, Professor Whitt SOLUTIONS to Final Exam Chapters 4-7 and 10 in Ross, Tuesday, December 19, 4:10pm-7:00pm Open Book: but only

More information

K 40 activity and Detector Efficiency

K 40 activity and Detector Efficiency K 40 activity and Detector Efficiency Your goal in this experiment is to determine the activity of a salt substitute purchased in a local store. The salt subsitute is pure KCl. Most of the potassium found

More information

Lecture 32. Lidar Error and Sensitivity Analysis

Lecture 32. Lidar Error and Sensitivity Analysis Lecture 3. Lidar Error and Sensitivity Analysis Introduction Accuracy in lidar measurements Precision in lidar measurements Error analysis for Na Doppler lidar Sensitivity analysis Summary 1 Errors vs.

More information

Physics 1140 Fall 2013 Introduction to Experimental Physics

Physics 1140 Fall 2013 Introduction to Experimental Physics Physics 1140 Fall 2013 Introduction to Experimental Physics Joanna Atkin Lecture 1: Introduction to Course Significant Figures Standard Notation General information Lecture instructor: Joanna Atkin email:

More information

Physics 403 Probability Distributions II: More Properties of PDFs and PMFs

Physics 403 Probability Distributions II: More Properties of PDFs and PMFs Physics 403 Probability Distributions II: More Properties of PDFs and PMFs Segev BenZvi Department of Physics and Astronomy University of Rochester Table of Contents 1 Last Time: Common Probability Distributions

More information

Junior Laboratory. PHYC 307L, Spring Webpage:

Junior Laboratory. PHYC 307L, Spring Webpage: Lectures: Mondays, 13:00-13:50 am, P&A room 184 Lab Sessions: Room 133 Junior Laboratory PHYC 307L, Spring 2016 Webpage: http://physics.unm.edu/courses/becerra/phys307lsp16/ Monday 14:00-16:50 (Group 1)

More information

Physics 1140 Fall 2013 Introduction to Experimental Physics

Physics 1140 Fall 2013 Introduction to Experimental Physics Physics 1140 Fall 2013 Introduction to Experimental Physics Joanna Atkin Lecture 4: Statistics of uncertainty Today If you re missing a pre-lab grade and you handed it in (or any other problem), talk to

More information

Practice paper Set 2 MAXIMUM MARK 100 FINAL. A Level Physics B (Advancing Physics) H557/03 Practical skills in physics MARK SCHEME

Practice paper Set 2 MAXIMUM MARK 100 FINAL. A Level Physics B (Advancing Physics) H557/03 Practical skills in physics MARK SCHEME Practice paper Set 2 A Level Physics B (Advancing Physics) H557/03 Practical skills in physics MARK SCHEME Duration: hour 30 minutes MAXIMUM MARK 00 FINAL This document consists of 8 pages Question Solution

More information

1 Basic continuous random variable problems

1 Basic continuous random variable problems Name M362K Final Here are problems concerning material from Chapters 5 and 6. To review the other chapters, look over previous practice sheets for the two exams, previous quizzes, previous homeworks and

More information

Announcements. 10pm Room assignments for Exam III and TA Exam Review Sessions are posted on website. Look under Exam Info link

Announcements. 10pm Room assignments for Exam III and TA Exam Review Sessions are posted on website. Look under Exam Info link Announcements 1. Exam #3: Thursday, Dec. 6 th, 7:00-8:15pm (Conflict: 5:15-6:30pm) No calculators allowed 2. Activity 3: Making Models of Molecules lab write-up due tomorrow in discussion 3. Lon-capa HW

More information

Experiment 1 Simple Measurements and Error Estimation

Experiment 1 Simple Measurements and Error Estimation Experiment 1 Simple Measurements and Error Estimation Reading and problems (1 point for each problem): Read Taylor sections 3.6-3.10 Do problems 3.18, 3.22, 3.23, 3.28 Experiment 1 Goals 1. To perform

More information

Phil Introductory Formal Logic

Phil Introductory Formal Logic Phil 134 - Introductory Formal Logic Lecture 7: Deduction At last, it is time to learn about proof formal proof as a model of reasoning demonstrating validity metatheory natural deduction systems what

More information

MASSACHUSETTS INSTITUTE OF TECHNOLOGY PHYSICS DEPARTMENT

MASSACHUSETTS INSTITUTE OF TECHNOLOGY PHYSICS DEPARTMENT G. Clark 7oct96 1 MASSACHUSETTS INSTITUTE OF TECHNOLOGY PHYSICS DEPARTMENT 8.13/8.14 Junior Laboratory STATISTICS AND ERROR ESTIMATION The purpose of this note is to explain the application of statistics

More information

Statistical Data Analysis Stat 3: p-values, parameter estimation

Statistical Data Analysis Stat 3: p-values, parameter estimation Statistical Data Analysis Stat 3: p-values, parameter estimation London Postgraduate Lectures on Particle Physics; University of London MSci course PH4515 Glen Cowan Physics Department Royal Holloway,

More information

Welcome to Physics 211! General Physics I

Welcome to Physics 211! General Physics I Welcome to Physics 211! General Physics I Physics 211 Fall 2015 Lecture 01-1 1 Physics 215 Honors & Majors Are you interested in becoming a physics major? Do you have a strong background in physics and

More information

BRIDGE CIRCUITS EXPERIMENT 5: DC AND AC BRIDGE CIRCUITS 10/2/13

BRIDGE CIRCUITS EXPERIMENT 5: DC AND AC BRIDGE CIRCUITS 10/2/13 EXPERIMENT 5: DC AND AC BRIDGE CIRCUITS 0//3 This experiment demonstrates the use of the Wheatstone Bridge for precise resistance measurements and the use of error propagation to determine the uncertainty

More information

System of Linear Equation: with more than Two Equations and more than Two Unknowns

System of Linear Equation: with more than Two Equations and more than Two Unknowns System of Linear Equation: with more than Two Equations and more than Two Unknowns Michigan Department of Education Standards for High School: Standard 1: Solve linear equations and inequalities including

More information

MATH Section 4.1

MATH Section 4.1 MATH 1311 Section 4.1 Exponential Growth and Decay As we saw in the previous chapter, functions are linear if adding or subtracting the same value will get you to different coordinate points. Exponential

More information

Lecture 2. Binomial and Poisson Probability Distributions

Lecture 2. Binomial and Poisson Probability Distributions Durkin, Lecture 2, Page of 6 Lecture 2 Binomial and Poisson Probability Distributions ) Bernoulli Distribution or Binomial Distribution: Consider a situation where there are only two possible outcomes

More information

26, 24, 26, 28, 23, 23, 25, 24, 26, 25

26, 24, 26, 28, 23, 23, 25, 24, 26, 25 The ormal Distribution Introduction Chapter 5 in the text constitutes the theoretical heart of the subject of error analysis. We start by envisioning a series of experimental measurements of a quantity.

More information

Experiment 2. Reaction Time. Make a series of measurements of your reaction time. Use statistics to analyze your reaction time.

Experiment 2. Reaction Time. Make a series of measurements of your reaction time. Use statistics to analyze your reaction time. Experiment 2 Reaction Time 2.1 Objectives Make a series of measurements of your reaction time. Use statistics to analyze your reaction time. 2.2 Introduction The purpose of this lab is to demonstrate repeated

More information

Introduction to Vectors

Introduction to Vectors Introduction to Vectors K. Behrend January 31, 008 Abstract An introduction to vectors in R and R 3. Lines and planes in R 3. Linear dependence. 1 Contents Introduction 3 1 Vectors 4 1.1 Plane vectors...............................

More information

Announcements. Unit 3: Foundations for inference Lecture 3: Decision errors, significance levels, sample size, and power.

Announcements. Unit 3: Foundations for inference Lecture 3: Decision errors, significance levels, sample size, and power. Announcements Announcements Unit 3: Foundations for inference Lecture 3:, significance levels, sample size, and power Statistics 101 Mine Çetinkaya-Rundel October 1, 2013 Project proposal due 5pm on Friday,

More information

Unit 2: Polynomials Guided Notes

Unit 2: Polynomials Guided Notes Unit 2: Polynomials Guided Notes Name Period **If found, please return to Mrs. Brandley s room, M 8.** Self Assessment The following are the concepts you should know by the end of Unit 1. Periodically

More information

Chapter 4 Part 3. Sections Poisson Distribution October 2, 2008

Chapter 4 Part 3. Sections Poisson Distribution October 2, 2008 Chapter 4 Part 3 Sections 4.10-4.12 Poisson Distribution October 2, 2008 Goal: To develop an understanding of discrete distributions by considering the binomial (last lecture) and the Poisson distributions.

More information

1 Basic continuous random variable problems

1 Basic continuous random variable problems Name M362K Final Here are problems concerning material from Chapters 5 and 6. To review the other chapters, look over previous practice sheets for the two exams, previous quizzes, previous homeworks and

More information

Lifetime Measurement

Lifetime Measurement Lifetime Measurement LabQuest 3 The activity (in decays per second) of some radioactive samples varies in time in a particularly simple way. If the activity (R) in decays per second of a sample is proportional

More information

Principles and Problems. Chapter 1: A Physics Toolkit

Principles and Problems. Chapter 1: A Physics Toolkit PHYSICS Principles and Problems Chapter 1: A Physics Toolkit CHAPTER 1 A Physics Toolkit BIG IDEA Physicists use scientific methods to investigate energy and matter. CHAPTER 1 Table Of Contents Section

More information

Physics 2BL: Experiments in Mechanics and Electricity Summer Session I, 2012

Physics 2BL: Experiments in Mechanics and Electricity Summer Session I, 2012 Physics BL: Experiments in Mechanics and Electricity Summer Session I, 01 Instructor: E-mail: Office: Office Hours: Phone: Tera (Bell) Austrum tbell@physics.ucsd.edu 164 Mayer Hall Addition TuTh 6-7 pm

More information

Solving Quadratic & Higher Degree Equations

Solving Quadratic & Higher Degree Equations Chapter 9 Solving Quadratic & Higher Degree Equations Sec 1. Zero Product Property Back in the third grade students were taught when they multiplied a number by zero, the product would be zero. In algebra,

More information

CSE 103 Homework 8: Solutions November 30, var(x) = np(1 p) = P r( X ) 0.95 P r( X ) 0.

CSE 103 Homework 8: Solutions November 30, var(x) = np(1 p) = P r( X ) 0.95 P r( X ) 0. () () a. X is a binomial distribution with n = 000, p = /6 b. The expected value, variance, and standard deviation of X is: E(X) = np = 000 = 000 6 var(x) = np( p) = 000 5 6 666 stdev(x) = np( p) = 000

More information

Calculus (Math 1A) Lecture 1

Calculus (Math 1A) Lecture 1 Calculus (Math 1A) Lecture 1 Vivek Shende August 23, 2017 Hello and welcome to class! I am Vivek Shende I will be teaching you this semester. My office hours Starting next week: 1-3 pm on tuesdays; 2-3

More information