Stat Lecture 20. Last class we introduced the covariance and correlation between two jointly distributed random variables.

Size: px
Start display at page:

Download "Stat Lecture 20. Last class we introduced the covariance and correlation between two jointly distributed random variables."

Transcription

1 Stat Lecture 20 Recap of Last Class Last class we introduced the covariance and correlation between two jointly distributed random variables. Today: We will introduce the idea of a statistic and the sampling distribution of a statistic.

2 Samples and Statistics Consider observing n data values x 1,.., x n. These could be say, the test scores of n randomly selected students in a class. Before collecting and observing these data, there is uncertainty regarding the value of each x i, i = 1,..., n. As a result of this uncertainty, before the data becomes available, we view each observation as a random variable and denote the sample (before observation) by X 1,..., X N a collection of random variables.

3 Since X 1,..., X n are considered random variables, any function of these is also a random variable. For example the sample mean X = 1 n or the sample variance S 2 1 n 1 n i=1 n X i i=1 (X i X) 2 are considered random variables before the data are actually observed and the likelihood of X or S 2 taking on any particular value is governed by their probability distributions. More generally, a statistic is any quantity whose value can be calculated from sample data. Prior to observing the data there is uncertainty as to what value of any particular statistic will result a statistic is a random variable.

4 We will denote all statistics with uppercase letters when we are refereing to random variables. We will use lowercase letters to represent the calculated or observed value of a statistic. Example: 1. X is a random variable before we observe data 2. x is the calculate value after we observe x 1,..., x n. So this is just a number. Since any statistic S(X 1,..., X n ) is a random variable (before data are observed) it will have an associated probability distribution.

5 The probability distribution of any statistic is referred to as its sampling distribution. The sampling distribution describes how the statistic varies across all samples of data X 1,..., X n that might be selected. Definition: The random variable X 1,..., X n form a simple random sample of size n if 1. The X i s are independent random variables 2. Every X i has the same probability distribution. In this case we say that the X i s are independent and identically distributed (iid).

6 There are two general methods for obtaining information about the sampling distribution of a statistic. The first is based on analytically deriving the distribution based on probability rules. The second involves conducting a simulation experiment through the use of a computer. Example (analytic derivation): Suppose X 1,..., X n are a random sample from a Bernoulli distribution with parameter p X i iid Bern(p), i = 1,..., n and consider the statistic S(X 1,..., X n ) = n X i i=1 what is the sampling distribution of S(X 1,..., X n )?

7 Since each X i is Bernoulli with parameter p, we can think of each as the outcome of a dichotomous experiment yielding either a success (X i = 1) or a failure (X i = 0). In this case S(X 1,..., X n ) = n i=1 X i is the total number of successes in n independent trials each having probability p of success. S(X 1,..., X n ) Bin(n, p) In this case it was easy to derive the sampling distribution of the statistic analytically. In more complicated situations this is often not possible in which case we can use a simulation experiment to investigate the sampling distribution.

8 To conduct such a simulation experiment we need to specify the following: 1. The statistic of interest S(X 1,..., X n ) 2. The probability distribution of X 1,..., X n 3. The sample size n 4. The number of simulation replications k Given this information we 1. Use a computer to obtain k different random samples each of size n 2. For each simulated sample we calculate the value of the statistic 3. Construct a histogram of the k calculated values.

9 The histogram of the simulated values will give the approximate sampling distribution of the statistic. Example: Consider a sample of size n = 500 with X i iid Poisson(0.1) and suppose our statistic of interest was S(X 1,..., X 500 ) = X X2 500 n There is no easy way to analytically determine (based on what we have learned so far)the sampling distribution of S here. Instead we can simulate 1000 random samples each of size 500 with X i iid Poisson(0.1), i = 1,..., 500 and for each sample, calculate the value of S(X 1,..., X n ).

10 From this we will then have 1000 simulated value of the statistic: S 1,..., S The histogram of these simulated values gives us a rough idea of what the pmf of S(X 1,..., X 500 ) looks like:

11 Histogram of S from 1000 Simulations Frequency s

12 In this case the histogram of the simulated value looked normal... next class we will discuss the theory behind this observation.

13 Summary of Today s Class We introduced the idea of a statistic and its sampling distribution. Homework: Problem set 20

Bernoulli and Binomial Distributions. Notes. Bernoulli Trials. Bernoulli/Binomial Random Variables Bernoulli and Binomial Distributions.

Bernoulli and Binomial Distributions. Notes. Bernoulli Trials. Bernoulli/Binomial Random Variables Bernoulli and Binomial Distributions. Lecture 11 Text: A Course in Probability by Weiss 5.3 STAT 225 Introduction to Probability Models February 16, 2014 Whitney Huang Purdue University 11.1 Agenda 1 2 11.2 Bernoulli trials Many problems in

More information

CMPSCI 240: Reasoning Under Uncertainty

CMPSCI 240: Reasoning Under Uncertainty CMPSCI 240: Reasoning Under Uncertainty Lecture 5 Prof. Hanna Wallach wallach@cs.umass.edu February 7, 2012 Reminders Pick up a copy of B&T Check the course website: http://www.cs.umass.edu/ ~wallach/courses/s12/cmpsci240/

More information

ELEG 3143 Probability & Stochastic Process Ch. 2 Discrete Random Variables

ELEG 3143 Probability & Stochastic Process Ch. 2 Discrete Random Variables Department of Electrical Engineering University of Arkansas ELEG 3143 Probability & Stochastic Process Ch. 2 Discrete Random Variables Dr. Jingxian Wu wuj@uark.edu OUTLINE 2 Random Variable Discrete Random

More information

Lecture 6. Probability events. Definition 1. The sample space, S, of a. probability experiment is the collection of all

Lecture 6. Probability events. Definition 1. The sample space, S, of a. probability experiment is the collection of all Lecture 6 1 Lecture 6 Probability events Definition 1. The sample space, S, of a probability experiment is the collection of all possible outcomes of an experiment. One such outcome is called a simple

More information

Lecture 14. Text: A Course in Probability by Weiss 5.6. STAT 225 Introduction to Probability Models February 23, Whitney Huang Purdue University

Lecture 14. Text: A Course in Probability by Weiss 5.6. STAT 225 Introduction to Probability Models February 23, Whitney Huang Purdue University Lecture 14 Text: A Course in Probability by Weiss 5.6 STAT 225 Introduction to Probability Models February 23, 2014 Whitney Huang Purdue University 14.1 Agenda 14.2 Review So far, we have covered Bernoulli

More information

Binomial random variable

Binomial random variable Binomial random variable Toss a coin with prob p of Heads n times X: # Heads in n tosses X is a Binomial random variable with parameter n,p. X is Bin(n, p) An X that counts the number of successes in many

More information

Review. A Bernoulli Trial is a very simple experiment:

Review. A Bernoulli Trial is a very simple experiment: Review A Bernoulli Trial is a very simple experiment: Review A Bernoulli Trial is a very simple experiment: two possible outcomes (success or failure) probability of success is always the same (p) the

More information

Lecture 13. Poisson Distribution. Text: A Course in Probability by Weiss 5.5. STAT 225 Introduction to Probability Models February 16, 2014

Lecture 13. Poisson Distribution. Text: A Course in Probability by Weiss 5.5. STAT 225 Introduction to Probability Models February 16, 2014 Lecture 13 Text: A Course in Probability by Weiss 5.5 STAT 225 Introduction to Probability Models February 16, 2014 Whitney Huang Purdue University 13.1 Agenda 1 2 3 13.2 Review So far, we have seen discrete

More information

3.4. The Binomial Probability Distribution

3.4. The Binomial Probability Distribution 3.4. The Binomial Probability Distribution Objectives. Binomial experiment. Binomial random variable. Using binomial tables. Mean and variance of binomial distribution. 3.4.1. Four Conditions that determined

More information

Things to remember when learning probability distributions:

Things to remember when learning probability distributions: SPECIAL DISTRIBUTIONS Some distributions are special because they are useful They include: Poisson, exponential, Normal (Gaussian), Gamma, geometric, negative binomial, Binomial and hypergeometric distributions

More information

STAT 302 Introduction to Probability Learning Outcomes. Textbook: A First Course in Probability by Sheldon Ross, 8 th ed.

STAT 302 Introduction to Probability Learning Outcomes. Textbook: A First Course in Probability by Sheldon Ross, 8 th ed. STAT 302 Introduction to Probability Learning Outcomes Textbook: A First Course in Probability by Sheldon Ross, 8 th ed. Chapter 1: Combinatorial Analysis Demonstrate the ability to solve combinatorial

More information

Discrete Distributions

Discrete Distributions Discrete Distributions STA 281 Fall 2011 1 Introduction Previously we defined a random variable to be an experiment with numerical outcomes. Often different random variables are related in that they have

More information

Chapter 12 - Lecture 2 Inferences about regression coefficient

Chapter 12 - Lecture 2 Inferences about regression coefficient Chapter 12 - Lecture 2 Inferences about regression coefficient April 19th, 2010 Facts about slope Test Statistic Confidence interval Hypothesis testing Test using ANOVA Table Facts about slope In previous

More information

Chapter 3. Discrete Random Variables and Their Probability Distributions

Chapter 3. Discrete Random Variables and Their Probability Distributions Chapter 3. Discrete Random Variables and Their Probability Distributions 1 3.4-3 The Binomial random variable The Binomial random variable is related to binomial experiments (Def 3.6) 1. The experiment

More information

Learning Objectives for Stat 225

Learning Objectives for Stat 225 Learning Objectives for Stat 225 08/20/12 Introduction to Probability: Get some general ideas about probability, and learn how to use sample space to compute the probability of a specific event. Set Theory:

More information

Discrete Probability Distributions

Discrete Probability Distributions Discrete Probability Distributions Data Science: Jordan Boyd-Graber University of Maryland JANUARY 18, 2018 Data Science: Jordan Boyd-Graber UMD Discrete Probability Distributions 1 / 1 Refresher: Random

More information

Lab #12: Exam 3 Review Key

Lab #12: Exam 3 Review Key Psychological Statistics Practice Lab#1 Dr. M. Plonsky Page 1 of 7 Lab #1: Exam 3 Review Key 1) a. Probability - Refers to the likelihood that an event will occur. Ranges from 0 to 1. b. Sampling Distribution

More information

SDS 321: Introduction to Probability and Statistics

SDS 321: Introduction to Probability and Statistics SDS 321: Introduction to Probability and Statistics Lecture 10: Expectation and Variance Purnamrita Sarkar Department of Statistics and Data Science The University of Texas at Austin www.cs.cmu.edu/ psarkar/teaching

More information

Random variables. DS GA 1002 Probability and Statistics for Data Science.

Random variables. DS GA 1002 Probability and Statistics for Data Science. Random variables DS GA 1002 Probability and Statistics for Data Science http://www.cims.nyu.edu/~cfgranda/pages/dsga1002_fall17 Carlos Fernandez-Granda Motivation Random variables model numerical quantities

More information

Discrete Distributions

Discrete Distributions Chapter 2 Discrete Distributions 2.1 Random Variables of the Discrete Type An outcome space S is difficult to study if the elements of S are not numbers. However, we can associate each element/outcome

More information

Lecture #11: Classification & Logistic Regression

Lecture #11: Classification & Logistic Regression Lecture #11: Classification & Logistic Regression CS 109A, STAT 121A, AC 209A: Data Science Weiwei Pan, Pavlos Protopapas, Kevin Rader Fall 2016 Harvard University 1 Announcements Midterm: will be graded

More information

Lecture 13: Covariance. Lisa Yan July 25, 2018

Lecture 13: Covariance. Lisa Yan July 25, 2018 Lecture 13: Covariance Lisa Yan July 25, 2018 Announcements Hooray midterm Grades (hopefully) by Monday Problem Set #3 Should be graded by Monday as well (instead of Friday) Quick note about Piazza 2 Goals

More information

STAT 430/510: Lecture 16

STAT 430/510: Lecture 16 STAT 430/510: Lecture 16 James Piette June 24, 2010 Updates HW4 is up on my website. It is due next Mon. (June 28th). Starting today back at section 6.7 and will begin Ch. 7. Joint Distribution of Functions

More information

Review. DS GA 1002 Statistical and Mathematical Models. Carlos Fernandez-Granda

Review. DS GA 1002 Statistical and Mathematical Models.   Carlos Fernandez-Granda Review DS GA 1002 Statistical and Mathematical Models http://www.cims.nyu.edu/~cfgranda/pages/dsga1002_fall16 Carlos Fernandez-Granda Probability and statistics Probability: Framework for dealing with

More information

Northwestern University Department of Electrical Engineering and Computer Science

Northwestern University Department of Electrical Engineering and Computer Science Northwestern University Department of Electrical Engineering and Computer Science EECS 454: Modeling and Analysis of Communication Networks Spring 2008 Probability Review As discussed in Lecture 1, probability

More information

(a) Calculate the bee s mean final position on the hexagon, and clearly label this position on the figure below. Show all work.

(a) Calculate the bee s mean final position on the hexagon, and clearly label this position on the figure below. Show all work. 1. A worker bee inspects a hexagonal honeycomb cell, starting at corner A. When done, she proceeds to an adjacent corner (always facing inward as shown), either by randomly moving along the lefthand edge

More information

1 Bernoulli Distribution: Single Coin Flip

1 Bernoulli Distribution: Single Coin Flip STAT 350 - An Introduction to Statistics Named Discrete Distributions Jeremy Troisi Bernoulli Distribution: Single Coin Flip trial of an experiment that yields either a success or failure. X Bern(p),X

More information

Lecture 20 Random Samples 0/ 13

Lecture 20 Random Samples 0/ 13 0/ 13 One of the most important concepts in statistics is that of a random sample. The definition of a random sample is rather abstract. However it is critical to understand the idea behind the definition,

More information

Review of Discrete Probability (contd.)

Review of Discrete Probability (contd.) Stat 504, Lecture 2 1 Review of Discrete Probability (contd.) Overview of probability and inference Probability Data generating process Observed data Inference The basic problem we study in probability:

More information

What s for today. More on Binomial distribution Poisson distribution. c Mikyoung Jun (Texas A&M) stat211 lecture 7 February 8, / 16

What s for today. More on Binomial distribution Poisson distribution. c Mikyoung Jun (Texas A&M) stat211 lecture 7 February 8, / 16 What s for today More on Binomial distribution Poisson distribution c Mikyoung Jun (Texas A&M) stat211 lecture 7 February 8, 2011 1 / 16 Review: Binomial distribution Question: among the following, what

More information

Probability and Distributions

Probability and Distributions Probability and Distributions What is a statistical model? A statistical model is a set of assumptions by which the hypothetical population distribution of data is inferred. It is typically postulated

More information

STAT/MATH 395 A - PROBABILITY II UW Winter Quarter Moment functions. x r p X (x) (1) E[X r ] = x r f X (x) dx (2) (x E[X]) r p X (x) (3)

STAT/MATH 395 A - PROBABILITY II UW Winter Quarter Moment functions. x r p X (x) (1) E[X r ] = x r f X (x) dx (2) (x E[X]) r p X (x) (3) STAT/MATH 395 A - PROBABILITY II UW Winter Quarter 07 Néhémy Lim Moment functions Moments of a random variable Definition.. Let X be a rrv on probability space (Ω, A, P). For a given r N, E[X r ], if it

More information

Lecture 3. Discrete Random Variables

Lecture 3. Discrete Random Variables Math 408 - Mathematical Statistics Lecture 3. Discrete Random Variables January 23, 2013 Konstantin Zuev (USC) Math 408, Lecture 3 January 23, 2013 1 / 14 Agenda Random Variable: Motivation and Definition

More information

Binomial and Poisson Probability Distributions

Binomial and Poisson Probability Distributions Binomial and Poisson Probability Distributions Esra Akdeniz March 3, 2016 Bernoulli Random Variable Any random variable whose only possible values are 0 or 1 is called a Bernoulli random variable. What

More information

7.1 Sampling Error The Need for Sampling Distributions

7.1 Sampling Error The Need for Sampling Distributions 7.1 Sampling Error The Need for Sampling Distributions Tom Lewis Fall Term 2009 Tom Lewis () 7.1 Sampling Error The Need for Sampling Distributions Fall Term 2009 1 / 5 Outline 1 Tom Lewis () 7.1 Sampling

More information

CMPSCI 240: Reasoning Under Uncertainty

CMPSCI 240: Reasoning Under Uncertainty CMPSCI 240: Reasoning Under Uncertainty Lecture 7 Prof. Hanna Wallach wallach@cs.umass.edu February 14, 2012 Reminders Check the course website: http://www.cs.umass.edu/ ~wallach/courses/s12/cmpsci240/

More information

Probability Distributions Columns (a) through (d)

Probability Distributions Columns (a) through (d) Discrete Probability Distributions Columns (a) through (d) Probability Mass Distribution Description Notes Notation or Density Function --------------------(PMF or PDF)-------------------- (a) (b) (c)

More information

1 Review of Probability and Distributions

1 Review of Probability and Distributions Random variables. A numerically valued function X of an outcome ω from a sample space Ω X : Ω R : ω X(ω) is called a random variable (r.v.), and usually determined by an experiment. We conventionally denote

More information

MATH 450: Mathematical statistics

MATH 450: Mathematical statistics Departments of Mathematical Sciences University of Delaware August 28th, 2018 General information Classes: Tuesday & Thursday 9:30-10:45 am, Gore Hall 115 Office hours: Tuesday Wednesday 1-2:30 pm, Ewing

More information

SUFFICIENT STATISTICS

SUFFICIENT STATISTICS SUFFICIENT STATISTICS. Introduction Let X (X,..., X n ) be a random sample from f θ, where θ Θ is unknown. We are interested using X to estimate θ. In the simple case where X i Bern(p), we found that the

More information

Lecture 2: Repetition of probability theory and statistics

Lecture 2: Repetition of probability theory and statistics Algorithms for Uncertainty Quantification SS8, IN2345 Tobias Neckel Scientific Computing in Computer Science TUM Lecture 2: Repetition of probability theory and statistics Concept of Building Block: Prerequisites:

More information

Introduction to Matrix Algebra and the Multivariate Normal Distribution

Introduction to Matrix Algebra and the Multivariate Normal Distribution Introduction to Matrix Algebra and the Multivariate Normal Distribution Introduction to Structural Equation Modeling Lecture #2 January 18, 2012 ERSH 8750: Lecture 2 Motivation for Learning the Multivariate

More information

(Ch 3.4.1, 3.4.2, 4.1, 4.2, 4.3)

(Ch 3.4.1, 3.4.2, 4.1, 4.2, 4.3) 3 Probability Distributions (Ch 3.4.1, 3.4.2, 4.1, 4.2, 4.3) Probability Distribution Functions Probability distribution function (pdf): Function for mapping random variables to real numbers. Discrete

More information

Random Variables Example:

Random Variables Example: Random Variables Example: We roll a fair die 6 times. Suppose we are interested in the number of 5 s in the 6 rolls. Let X = number of 5 s. Then X could be 0, 1, 2, 3, 4, 5, 6. X = 0 corresponds to the

More information

Chapter 3. Discrete Random Variables and Their Probability Distributions

Chapter 3. Discrete Random Variables and Their Probability Distributions Chapter 3. Discrete Random Variables and Their Probability Distributions 2.11 Definition of random variable 3.1 Definition of a discrete random variable 3.2 Probability distribution of a discrete random

More information

(Ch 3.4.1, 3.4.2, 4.1, 4.2, 4.3)

(Ch 3.4.1, 3.4.2, 4.1, 4.2, 4.3) 3 Probability Distributions (Ch 3.4.1, 3.4.2, 4.1, 4.2, 4.3) Probability Distribution Functions Probability distribution function (pdf): Function for mapping random variables to real numbers. Discrete

More information

Lecture 2: Discrete Probability Distributions

Lecture 2: Discrete Probability Distributions Lecture 2: Discrete Probability Distributions IB Paper 7: Probability and Statistics Carl Edward Rasmussen Department of Engineering, University of Cambridge February 1st, 2011 Rasmussen (CUED) Lecture

More information

(3) Review of Probability. ST440/540: Applied Bayesian Statistics

(3) Review of Probability. ST440/540: Applied Bayesian Statistics Review of probability The crux of Bayesian statistics is to compute the posterior distribution, i.e., the uncertainty distribution of the parameters (θ) after observing the data (Y) This is the conditional

More information

1 of 6 7/16/2009 6:31 AM Virtual Laboratories > 11. Bernoulli Trials > 1 2 3 4 5 6 1. Introduction Basic Theory The Bernoulli trials process, named after James Bernoulli, is one of the simplest yet most

More information

Statistics - Lecture One. Outline. Charlotte Wickham 1. Basic ideas about estimation

Statistics - Lecture One. Outline. Charlotte Wickham  1. Basic ideas about estimation Statistics - Lecture One Charlotte Wickham wickham@stat.berkeley.edu http://www.stat.berkeley.edu/~wickham/ Outline 1. Basic ideas about estimation 2. Method of Moments 3. Maximum Likelihood 4. Confidence

More information

Probability theory and inference statistics! Dr. Paola Grosso! SNE research group!! (preferred!)!!

Probability theory and inference statistics! Dr. Paola Grosso! SNE research group!!  (preferred!)!! Probability theory and inference statistics Dr. Paola Grosso SNE research group p.grosso@uva.nl paola.grosso@os3.nl (preferred) Roadmap Lecture 1: Monday Sep. 22nd Collecting data Presenting data Descriptive

More information

Modeling Uncertainty in the Earth Sciences Jef Caers Stanford University

Modeling Uncertainty in the Earth Sciences Jef Caers Stanford University Probability theory and statistical analysis: a review Modeling Uncertainty in the Earth Sciences Jef Caers Stanford University Concepts assumed known Histograms, mean, median, spread, quantiles Probability,

More information

Bernoulli Trials, Binomial and Cumulative Distributions

Bernoulli Trials, Binomial and Cumulative Distributions Bernoulli Trials, Binomial and Cumulative Distributions Sec 4.4-4.6 Cathy Poliak, Ph.D. cathy@math.uh.edu Office in Fleming 11c Department of Mathematics University of Houston Lecture 9-3339 Cathy Poliak,

More information

Business Statistics Midterm Exam Fall 2015 Russell. Please sign here to acknowledge

Business Statistics Midterm Exam Fall 2015 Russell. Please sign here to acknowledge Business Statistics Midterm Exam Fall 5 Russell Name Do not turn over this page until you are told to do so. You will have hour and 3 minutes to complete the exam. There are a total of points divided into

More information

Review of probability

Review of probability Review of probability Computer Sciences 760 Spring 2014 http://pages.cs.wisc.edu/~dpage/cs760/ Goals for the lecture you should understand the following concepts definition of probability random variables

More information

STAT 430/510 Probability

STAT 430/510 Probability STAT 430/510 Probability Hui Nie Lecture 16 June 24th, 2009 Review Sum of Independent Normal Random Variables Sum of Independent Poisson Random Variables Sum of Independent Binomial Random Variables Conditional

More information

CMPSCI 240: Reasoning Under Uncertainty

CMPSCI 240: Reasoning Under Uncertainty CMPSCI 240: Reasoning Under Uncertainty Lecture 8 Prof. Hanna Wallach wallach@cs.umass.edu February 16, 2012 Reminders Check the course website: http://www.cs.umass.edu/ ~wallach/courses/s12/cmpsci240/

More information

b. ( ) ( ) ( ) ( ) ( ) 5. Independence: Two events (A & B) are independent if one of the conditions listed below is satisfied; ( ) ( ) ( )

b. ( ) ( ) ( ) ( ) ( ) 5. Independence: Two events (A & B) are independent if one of the conditions listed below is satisfied; ( ) ( ) ( ) 1. Set a. b. 2. Definitions a. Random Experiment: An experiment that can result in different outcomes, even though it is performed under the same conditions and in the same manner. b. Sample Space: This

More information

STAT Chapter 5 Continuous Distributions

STAT Chapter 5 Continuous Distributions STAT 270 - Chapter 5 Continuous Distributions June 27, 2012 Shirin Golchi () STAT270 June 27, 2012 1 / 59 Continuous rv s Definition: X is a continuous rv if it takes values in an interval, i.e., range

More information

Special distributions

Special distributions Special distributions August 22, 2017 STAT 101 Class 4 Slide 1 Outline of Topics 1 Motivation 2 Bernoulli and binomial 3 Poisson 4 Uniform 5 Exponential 6 Normal STAT 101 Class 4 Slide 2 What distributions

More information

Chapter 1. Modeling Basics

Chapter 1. Modeling Basics Chapter 1. Modeling Basics What is a model? Model equation and probability distribution Types of model effects Writing models in matrix form Summary 1 What is a statistical model? A model is a mathematical

More information

STAT 430/510: Lecture 15

STAT 430/510: Lecture 15 STAT 430/510: Lecture 15 James Piette June 23, 2010 Updates HW4 is up on my website. It is due next Mon. (June 28th). Starting today back at section 6.4... Conditional Distribution: Discrete Def: The conditional

More information

Chapter 24. Comparing Means

Chapter 24. Comparing Means Chapter 4 Comparing Means!1 /34 Homework p579, 5, 7, 8, 10, 11, 17, 31, 3! /34 !3 /34 Objective Students test null and alternate hypothesis about two!4 /34 Plot the Data The intuitive display for comparing

More information

ECO220Y Continuous Probability Distributions: Uniform and Triangle Readings: Chapter 9, sections

ECO220Y Continuous Probability Distributions: Uniform and Triangle Readings: Chapter 9, sections ECO220Y Continuous Probability Distributions: Uniform and Triangle Readings: Chapter 9, sections 9.8-9.9 Fall 2011 Lecture 8 Part 1 (Fall 2011) Probability Distributions Lecture 8 Part 1 1 / 19 Probability

More information

Introduction to Bayesian Learning. Machine Learning Fall 2018

Introduction to Bayesian Learning. Machine Learning Fall 2018 Introduction to Bayesian Learning Machine Learning Fall 2018 1 What we have seen so far What does it mean to learn? Mistake-driven learning Learning by counting (and bounding) number of mistakes PAC learnability

More information

STAT/MATH 395 PROBABILITY II

STAT/MATH 395 PROBABILITY II STAT/MATH 395 PROBABILITY II Chapter 6 : Moment Functions Néhémy Lim 1 1 Department of Statistics, University of Washington, USA Winter Quarter 2016 of Common Distributions Outline 1 2 3 of Common Distributions

More information

Probability and Information Theory. Sargur N. Srihari

Probability and Information Theory. Sargur N. Srihari Probability and Information Theory Sargur N. srihari@cedar.buffalo.edu 1 Topics in Probability and Information Theory Overview 1. Why Probability? 2. Random Variables 3. Probability Distributions 4. Marginal

More information

Section 9 2B:!! Using Confidence Intervals to Estimate the Difference ( µ 1 µ 2 ) in Two Population Means using Two Independent Samples.

Section 9 2B:!! Using Confidence Intervals to Estimate the Difference ( µ 1 µ 2 ) in Two Population Means using Two Independent Samples. Section 9 2B:!! Using Confidence Intervals to Estimate the Difference ( µ 1 µ 2 ) in Two Population Means using Two Independent Samples Requirements 1.A random sample of each population is taken. The sample

More information

Quick review on Discrete Random Variables

Quick review on Discrete Random Variables STAT/MATH 395 A - PROBABILITY II UW Winter Quarter 2017 Néhémy Lim Quick review on Discrete Random Variables Notations. Z = {..., 2, 1, 0, 1, 2,...}, set of all integers; N = {0, 1, 2,...}, set of natural

More information

Class 26: review for final exam 18.05, Spring 2014

Class 26: review for final exam 18.05, Spring 2014 Probability Class 26: review for final eam 8.05, Spring 204 Counting Sets Inclusion-eclusion principle Rule of product (multiplication rule) Permutation and combinations Basics Outcome, sample space, event

More information

Lecture Notes 5 Convergence and Limit Theorems. Convergence with Probability 1. Convergence in Mean Square. Convergence in Probability, WLLN

Lecture Notes 5 Convergence and Limit Theorems. Convergence with Probability 1. Convergence in Mean Square. Convergence in Probability, WLLN Lecture Notes 5 Convergence and Limit Theorems Motivation Convergence with Probability Convergence in Mean Square Convergence in Probability, WLLN Convergence in Distribution, CLT EE 278: Convergence and

More information

Statistics for Economists. Lectures 3 & 4

Statistics for Economists. Lectures 3 & 4 Statistics for Economists Lectures 3 & 4 Asrat Temesgen Stockholm University 1 CHAPTER 2- Discrete Distributions 2.1. Random variables of the Discrete Type Definition 2.1.1: Given a random experiment with

More information

Probability Distributions.

Probability Distributions. Probability Distributions http://www.pelagicos.net/classes_biometry_fa18.htm Probability Measuring Discrete Outcomes Plotting probabilities for discrete outcomes: 0.6 0.5 0.4 0.3 0.2 0.1 NOTE: Area within

More information

Lecture 01: Introduction

Lecture 01: Introduction Lecture 01: Introduction Dipankar Bandyopadhyay, Ph.D. BMTRY 711: Analysis of Categorical Data Spring 2011 Division of Biostatistics and Epidemiology Medical University of South Carolina Lecture 01: Introduction

More information

Poisson Chris Piech CS109, Stanford University. Piech, CS106A, Stanford University

Poisson Chris Piech CS109, Stanford University. Piech, CS106A, Stanford University Poisson Chris Piech CS109, Stanford University Piech, CS106A, Stanford University Probability for Extreme Weather? Piech, CS106A, Stanford University Four Prototypical Trajectories Review Binomial Random

More information

Review of probabilities

Review of probabilities CS 1675 Introduction to Machine Learning Lecture 5 Density estimation Milos Hauskrecht milos@pitt.edu 5329 Sennott Square Review of probabilities 1 robability theory Studies and describes random processes

More information

TABLE OF CONTENTS CHAPTER 1 COMBINATORIAL PROBABILITY 1

TABLE OF CONTENTS CHAPTER 1 COMBINATORIAL PROBABILITY 1 TABLE OF CONTENTS CHAPTER 1 COMBINATORIAL PROBABILITY 1 1.1 The Probability Model...1 1.2 Finite Discrete Models with Equally Likely Outcomes...5 1.2.1 Tree Diagrams...6 1.2.2 The Multiplication Principle...8

More information

COMP2610/COMP Information Theory

COMP2610/COMP Information Theory COMP2610/COMP6261 - Information Theory Lecture 9: Probabilistic Inequalities Mark Reid and Aditya Menon Research School of Computer Science The Australian National University August 19th, 2014 Mark Reid

More information

Practice Problem - Skewness of Bernoulli Random Variable. Lecture 7: Joint Distributions and the Law of Large Numbers. Joint Distributions - Example

Practice Problem - Skewness of Bernoulli Random Variable. Lecture 7: Joint Distributions and the Law of Large Numbers. Joint Distributions - Example A little more E(X Practice Problem - Skewness of Bernoulli Random Variable Lecture 7: and the Law of Large Numbers Sta30/Mth30 Colin Rundel February 7, 014 Let X Bern(p We have shown that E(X = p Var(X

More information

STAT200 Elementary Statistics for applications

STAT200 Elementary Statistics for applications STAT200 Elementary Statistics for applications Lecture # 12 Dr. Ruben Zamar Winter 2011 / 2012 http://www4.agr.gc.ca/aafc-aac/display-afficher.do?id=1256763623482 Randomness Randomness is unpredictable

More information

It can be shown that if X 1 ;X 2 ;:::;X n are independent r.v. s with

It can be shown that if X 1 ;X 2 ;:::;X n are independent r.v. s with Example: Alternative calculation of mean and variance of binomial distribution A r.v. X has the Bernoulli distribution if it takes the values 1 ( success ) or 0 ( failure ) with probabilities p and (1

More information

Closed book and notes. 120 minutes. Cover page, five pages of exam. No calculators.

Closed book and notes. 120 minutes. Cover page, five pages of exam. No calculators. IE 230 Seat # Closed book and notes. 120 minutes. Cover page, five pages of exam. No calculators. Score Final Exam, Spring 2005 (May 2) Schmeiser Closed book and notes. 120 minutes. Consider an experiment

More information

Data, Estimation and Inference

Data, Estimation and Inference Data, Estimation and Inference Pedro Piniés ppinies@robots.ox.ac.uk Michaelmas 2016 1 2 p(x) ( = ) = δ 0 ( < < + δ ) δ ( ) =1. x x+dx (, ) = ( ) ( ) = ( ) ( ) 3 ( ) ( ) 0 ( ) =1 ( = ) = ( ) ( < < ) = (

More information

MA 1125 Lecture 15 - The Standard Normal Distribution. Friday, October 6, Objectives: Introduce the standard normal distribution and table.

MA 1125 Lecture 15 - The Standard Normal Distribution. Friday, October 6, Objectives: Introduce the standard normal distribution and table. MA 1125 Lecture 15 - The Standard Normal Distribution Friday, October 6, 2017. Objectives: Introduce the standard normal distribution and table. 1. The Standard Normal Distribution We ve been looking at

More information

EXAM # 3 PLEASE SHOW ALL WORK!

EXAM # 3 PLEASE SHOW ALL WORK! Stat 311, Summer 2018 Name EXAM # 3 PLEASE SHOW ALL WORK! Problem Points Grade 1 30 2 20 3 20 4 30 Total 100 1. A socioeconomic study analyzes two discrete random variables in a certain population of households

More information

Expected Value - Revisited

Expected Value - Revisited Expected Value - Revisited An experiment is a Bernoulli Trial if: there are two outcomes (success and failure), the probability of success, p, is always the same, the trials are independent. Expected Value

More information

BINOMIAL DISTRIBUTION

BINOMIAL DISTRIBUTION BINOMIAL DISTRIBUTION The binomial distribution is a particular type of discrete pmf. It describes random variables which satisfy the following conditions: 1 You perform n identical experiments (called

More information

1. Frequency Distribution The total number of goals scored in a World Cup soccer match approximately follows the following distribution.

1. Frequency Distribution The total number of goals scored in a World Cup soccer match approximately follows the following distribution. STAT 345 Fall 2018 Homework 3 - Discrete Random Variables Name: Please adhere to the homework rules as given in the Syllabus. 1. Frequency Distribution The total number of goals scored in a World Cup soccer

More information

Kernel-based density. Nuno Vasconcelos ECE Department, UCSD

Kernel-based density. Nuno Vasconcelos ECE Department, UCSD Kernel-based density estimation Nuno Vasconcelos ECE Department, UCSD Announcement last week of classes we will have Cheetah Day (exact day TBA) what: 4 teams of 6 people each team will write a report

More information

INF FALL NATURAL LANGUAGE PROCESSING. Jan Tore Lønning

INF FALL NATURAL LANGUAGE PROCESSING. Jan Tore Lønning 1 INF4080 2018 FALL NATURAL LANGUAGE PROCESSING Jan Tore Lønning 2 Probability distributions Lecture 5, 5 September Today 3 Recap: Bayes theorem Discrete random variable Probability distribution Discrete

More information

CS 237: Probability in Computing

CS 237: Probability in Computing CS 237: Probability in Computing Wayne Snyder Computer Science Department Boston University Lecture 11: Geometric Distribution Poisson Process Poisson Distribution Geometric Distribution The Geometric

More information

Random Variable. Discrete Random Variable. Continuous Random Variable. Discrete Random Variable. Discrete Probability Distribution

Random Variable. Discrete Random Variable. Continuous Random Variable. Discrete Random Variable. Discrete Probability Distribution Random Variable Theoretical Probability Distribution Random Variable Discrete Probability Distributions A variable that assumes a numerical description for the outcome of a random eperiment (by chance).

More information

Loglikelihood and Confidence Intervals

Loglikelihood and Confidence Intervals Stat 504, Lecture 2 1 Loglikelihood and Confidence Intervals The loglikelihood function is defined to be the natural logarithm of the likelihood function, l(θ ; x) = log L(θ ; x). For a variety of reasons,

More information

Lecture 3. Biostatistics in Veterinary Science. Feb 2, Jung-Jin Lee Drexel University. Biostatistics in Veterinary Science Lecture 3

Lecture 3. Biostatistics in Veterinary Science. Feb 2, Jung-Jin Lee Drexel University. Biostatistics in Veterinary Science Lecture 3 Lecture 3 Biostatistics in Veterinary Science Jung-Jin Lee Drexel University Feb 2, 2015 Review Let S be the sample space and A, B be events. Then 1 P (S) = 1, P ( ) = 0. 2 If A B, then P (A) P (B). In

More information

Chapters 9. Properties of Point Estimators

Chapters 9. Properties of Point Estimators Chapters 9. Properties of Point Estimators Recap Target parameter, or population parameter θ. Population distribution f(x; θ). { probability function, discrete case f(x; θ) = density, continuous case The

More information

18.05 Practice Final Exam

18.05 Practice Final Exam No calculators. 18.05 Practice Final Exam Number of problems 16 concept questions, 16 problems. Simplifying expressions Unless asked to explicitly, you don t need to simplify complicated expressions. For

More information

STAT2201. Analysis of Engineering & Scientific Data. Unit 3

STAT2201. Analysis of Engineering & Scientific Data. Unit 3 STAT2201 Analysis of Engineering & Scientific Data Unit 3 Slava Vaisman The University of Queensland School of Mathematics and Physics What we learned in Unit 2 (1) We defined a sample space of a random

More information

Introduction and Overview STAT 421, SP Course Instructor

Introduction and Overview STAT 421, SP Course Instructor Introduction and Overview STAT 421, SP 212 Prof. Prem K. Goel Mon, Wed, Fri 3:3PM 4:48PM Postle Hall 118 Course Instructor Prof. Goel, Prem E mail: goel.1@osu.edu Office: CH 24C (Cockins Hall) Phone: 614

More information

Today we will prove one result from probability that will be useful in several statistical tests. ... B1 B2 Br. Figure 23.1:

Today we will prove one result from probability that will be useful in several statistical tests. ... B1 B2 Br. Figure 23.1: Lecture 23 23. Pearson s theorem. Today we will prove one result from probability that will be useful in several statistical tests. Let us consider r boxes B,..., B r as in figure 23.... B B2 Br Figure

More information

Section 2: Estimation, Confidence Intervals and Testing Hypothesis

Section 2: Estimation, Confidence Intervals and Testing Hypothesis Section 2: Estimation, Confidence Intervals and Testing Hypothesis Carlos M. Carvalho The University of Texas at Austin McCombs School of Business http://faculty.mccombs.utexas.edu/carlos.carvalho/teaching/

More information