Atom Interferometry II. F. Pereira Dos Santos

Size: px
Start display at page:

Download "Atom Interferometry II. F. Pereira Dos Santos"

Transcription

1 Atom Interferometry II F. Pereira Dos Santos

2 Organization of the lecture 1 : Applications of inertial sensors/gravimetry : A case study : the SYRTE atom gravimeter 3 : Towards more compact sensors 4 : Other instruments : gravimeters, gradiometers 5 : Atomic gyroscope

3 Organization of the lecture 1 : Applications of inertial sensors/gravimetry : A case study : the SYRTE atom gravimeter 3 : Towards more compact sensors 4 : Other instruments : gravimeters, gradiometers 5 : Atomic gyroscope

4 Inertial sensors Inertial navigation satellite, submarine Fundamental physics measurement of a, G... watt balance (gravimeter) test of general relativity Lense-Thirring effect (gyroscope) WEP, anomalous gravity (accelerometer) gravitational waves g Geophysics ground or space Earth s rotation rate, tidal effects, gravity field mapping and monitoring

5 Gravimetry Deduce from local variations of gravity density variations in the ground Measure small variations with transportable sensors microgravimetry : 1 µgal ~ 10-9 g with g ~9.8 m/s = 980 Gal Looking for small (temporal and local) changes µgal Variation of g with height : 3 µgal/cm

6 Simple examples in geophysics Measurement of (Bouguer) gravity anomaly to map influence of mass distribution, detect changes Deformation and constraints: accumulation during seismic cycle... Volcanology: 4D mapping of mass distribution evolutions

7 Measurements at all scales

8 World gravity map

9

10 Fundamental metrology: watt balance Goal: Measure Planck constant h with a 10-8 relative accuracy Interest: Replace the Kg etalon by a definition linked to h Static phase Dynamic phase B F Laplace = i L B j.dl B.i.L = m.g F g = m.g U m g v = U i B v U = B.L.v Quantum Hall and Josephson effects Planck constant Accurate measurement of g needed

11 Organization of the lecture 1 : Applications of inertial sensors/gravimetry : A case study : SYRTE atom gravimeter 3 : Towards more compact sensors 4 : Other instruments : gravimeters, gradiometers 5 : Atomic gyroscope

12 Interferometer configuration 3-Raman pulses interferometer = Mach Zehnder/ Chu-Bordé interferometer T T

13 Acceleration phase shift F( t) = k. r( t) eff 1 at T F T F 3 a F 1 F 1 ( t 1 ) = 0 1 F ( t) = keff. at. at DF = F 1 (t 1 ) F (t ) + F 3 (t 3 ) = k eff F 1 3 ( t3) = keff. a (T )

14 Gravimeter : Implementation of Raman lasers Laser 1 Vertical Raman lasers DF = k eff.g.t Pulse 1 Pulse z = 0 1 z ( T ) = gt Retroreflect two (copropagating) Raman lasers Reduces influence of path fluctuations (common mode) 4 laser beams pairs of counterpropragating Raman lasers with opposite k eff wavevectors Pulse 3 z ( T ) = gt Position of planes of equal phase difference attached to position of retroreflecting mirror Miroir Laser Interferometer measurement = relative displacement atoms/mirror

15 SYRTE Gravimeter vacuum chamber Titanium vacuum chamber (non magnetic) viewports Indium seals Pumps : getter pumps 50 l/s 1 ion pump l/s 4 getter pills Two layers magnetic shield Retroreflecting mirror under vacuum

16 Drop chamber Commercial fiber splitters Fibered angled MOT collimators Symmetric detection 16

17 Laser requirements 5 different frequencies : Cooling+Repumper + Raman 1& + Detection Cooling Repumper Detection Pusher

18 Optical bench «Compact» laser system : 60 x 90 cm 3 ECDL, TA Key feature : Use the same lasers for Cooling/Repumping and Raman beams Frequency control thanks to offset locks (using FVC) and/or PLL REFERENCE/ DETECTION REPUMPER/ RAMAN1 COOLING/ RAMAN1

19 Sequence D + 3DMOT and far detuned molasses : ~ 100 ms Loading rate ~ 10 9 atoms/s 10 8 atoms at T~µK State preparation : ~ 15 ms Use of a combination of MW/pusher/Raman pulses ~10 7 atoms in F=1, mf=0 δv~1v r Interferometer : T~140 ms Raman pulses of typically ~ µs Detection : ~ 80 ms Total cycle time : ~ 360 ms

20 Fluoresecnce Signal (a.u.) Horizontal detection Diaphragm Atoms blocker Mirror Repumper Detection λ/4 Collection efficiency : 1% Saturation parameter : x Time of flight signals Time (ms) F= F=1

21 Fluorescence Signal (u.a.) Vertical detection Raman Vertical Beam back to resonance during the detection 1) First pulse at low intensity to slow down the F= atoms (cooling beam only) ) Wait for the F=1 atoms to reach the bottom position 3) Second pulse at full power (cooling + repumper beams) 4) Third pulse for background substraction 100 nd Pulse F= F= F= PD rd Pulse F=1 400 PD Time (ms) Collection efficiency : 1% Saturation Parameter : x 5

22 Fringe pattern Free fall Doppler shift of the resonance condition of the Raman transition Ramping of the frequency difference to stay on resonance : = a t 0 DF = k eff.g.t - at π/ π π / 0, 0,1 0,0-0,1-0, 5,140 3,5 4,0 5,14 4,55,144 5,0 5,1465,5 5,148 6,0 5,150 6,5 a/ (MHz/s)

23 Probabilité de transition Principle of measurement, interferometer fringes Free fall Doppler shift of the resonance condition of the Raman transition 1 = e k v( t) m Ramping of the frequency difference to stay on resonance : f DDS1 (Hz) a t π/ π π / eff k eff = DF = k eff gt at C=45% a (MHz.s -1 ) 3

24 Probabilité de transition Principle of measurement : interferometer fringes Free fall Doppler shift of the resonance condition of the Raman transition 1 = e k v( t) Ramping of the frequency difference to stay on resonance : f DDS1 (Hz) a t π/ π π / eff k eff m = DF = keff g T a T C=45% 0.4 Dark fringe : independent of T g = a 0 k eff The measurement of g is a frequency measurement a (MHz.s -1 ) 4

25 Probabilité de transition Principle of measurement : interferometer lock 0,8 a a 0 a a 0 0,7 0,6 a Digital Lock : a > aa 0,5 0,4 P - P + a 0,3 5,1435 5,1440 5,1445 a/ (MHz/s) P a = K( P P )

26 Sensitivity P C = A cos( DF) F = P C g = k eff P CT The sensitivity depends : on the noise on the measurement of P contrast of the fringes scaling factor (keff T )

27 Probabilité de transition Noise DDS1 (Hz) Parameters T=140 ms t = 0 µs s v ~ v r N det = T c = 360 ms Contrast ~ % a (MHz.s -1 ) σ Φ = 1/SNR = 160 mrad/shot s g /g ~ 10-7 /shot Sources of noise - Detection noise - Laser phase noise - Mirror vibrations

28 Detection noise A 1 s = P N 4N C Electronic Noise Quantum Projection Noise s P 10 - s P Vertical Detection s P Horizontal Detection Quantum Projection Noise Detection Noise Detection Noise σ Φ =σ P /C C ~ 50% T = 70 ms & Tc= 360 ms 10 4 atoms : 40 mrad g/shot g at 1s 10-3 QPN Number of atoms 10 6 atoms : mrad g/shot g at 1s

29 Sensitivity function g(t) Quantifies the sensitivity of the interferometer to phase fluctuations t g( t) = lim 0 P Hypothesis : << R, Rt = / Plane waves Neglect spatial phase inhomogeneities at the scale of the separation between wavepackets T T τ -T-τ 0 τ T+τ T+τ

30 g( t) = lim 0 Sensitivity function g(t) P Method of calculation : Evolution matrix Expression for the matrix : Raman pulse Free evolution Total evolution in the interferometer : product of such matrices : Result :

31 Sensitivity function g(t) t Split a matrix in two : Example if the phase jump occurs dring the first pulse In the case of a phase jump : t t t t t 0 )) ( sin( 1 ) sin( ) ( = T t T T t t T t t t g R R Result (for t>0) :

32 Sensitivity function g(t) The sensitivity function is an odd function

33 Experimental demonstration P. Cheinet et al., "Measurement of the sensitivity function in time-domain atomic interferometer", IEEE Transactions on Instrumentation and Measurement 57, (008)

34 ( 0 ) v gt k v k dt dz k dt d eff eff eff = = = Gives the scale factor : = dt dt d t g P t ) ( 1 ) ( = = F s ) ( ) ( ) ( ) ( d S H d S G In the spectral domain : )) sin( ) ) ( )(cos( ) ( sin( 4 ) ( T T T i H R R R t t = Response to a time dependent perturbation Example : gravity!! : ) 4 ( ) ( t t = D T T g k eff Time dependent phase fluctuations

35 <H(f) > Transfer function H(ω) 4i R H( ) = R ( T sin( t ) ( T )(cos( t ) ) R T sin( )) H(f) 10 t Frequency (Hz) Insensitive to frequencies multiples of 1/(T+τ) /(f) 1E Frequency (Hz) 3 = Finite duration of the pulses Low pass filtering 0

36 Degradation of the stability Stability characterized by the Allan standard deviation Sampled measurement : f c =1/T c => Aliasing For long enough averaging time, only components at frequencies at multiples of the cycling frequency contribute s ( t ) = F m t 1 m n= 1 H ( nf c ) S ( nf c ) White phase noise ( S 0 ) => s F ( t ) = m S t 0 T t c m

37 Derivation of the stability Allan standard deviation where δφ k is the k-th average of the interferometer phase over duration τ m Using the sensitivity function, it can be expressed as where

38 Derivation of the stability The difference between consecutive averages can be expressed as : Assuming uncorrelated averaged samples with As We finally get

39 Sensitivity function g(t) The sensitivity function is a simple and powerful tool Allows to calculate the influence of all kinds of perturbations : - Laser/microwave reference phase/frequency noise - Magnetic field fluctuations - Light shift fluctuations - Vibrations -

40 Laser phase stability The two Raman lasers are phase locked onto an ultra-low noise µwave oscillator The µwave oscillator is phase locked onto an ULN Quartz oscillator The Raman phase is also perturbed by non common perturbations during propagation ECL1 ECL PLL DDS 190 MHz PhC 6,834 GHz 7,04 GHz HF synthesis L ~ 1 m 100 MHz

41 S F (dbc) Laser phase stability : influence of ULN Quartz 100 MHz reference signal realized by phase locking an ULN 100 MHz oscillator onto an ULN 5 MHz oscillator s ( t ) = F m t 1 m n= 1 H ( nf c ) S ( nf c ) Contribution to s F T=70 ms Total : => => ~ Frequency (Hz) Frequency (Hz) Contribution to the noise of the interferometer dominated by low frequencies

42 Influence of laser phase noise ECL1 Source σ Φ (mrad/coup) σ g (g/hz 1/ ) ECL Référence 100 MHz 1,0 1, DDS 190 MHz PLL PhC 6,834 GHz L a s e r s Synthèse HF 0,7 Résidu PLL 1,6 Fibre optique 1,0 Rétro-réflexion,0 0,9 10-9, ,3 10-9, ,04 GHz L ~ 1 m Total 3,1 3, HF synthesis Détection MHz Total {lasers+détection} 5,0 6, (Evaluation of noise sources for T=50 ms) J. Le Gouët et al., Appl. Phys. B 9, (008)

43 Vibration noise A fluctuation δz of the lasers equiphase induces a change δφ=k eff δz As S ( ) = k S ( ) = k eff z eff Sa( ) 4 the contribution to the stability can be expressed as T=100 ms Transfer function for acceleration noise Sensitivity to low frequencies

44 Vibration isolation 1 s g ( t ) = t k = 1 sin( kf kf c c T T) 4 S a (kf c ) Passive isolation platform : Natural frequency 0.5 Hz Acoustic + air flow isolation Corresponding 1s :, g when OFF (day) 7, g when ON (day) => Gain : factor 40

45 Residual vibration corrections Mirror Seismometer Interferometer Measure vibrations with a seismometer at the same time Convert the seismometer signal into an interferometer phase shift s vib = k eff K T s g s (t) U s (t) dt T Passive platform Good correlations with the calculated phase shift the seismometer is used to correct the atomic measurement

46 Residual vibration corrections Seismometer PC k eff gt² Post correction v(t) φ vib S Interferometer k eff gt² + φ vib S Gain : from to ~10 Typical sensitivity σ g /g = at 1s Resolution ~ 10-9 g after s

47 Phase (degrés) Seismometer transfer function High pass filter : 30 s (0.03 Hz) Low pass filter (mechanical resonances) : f c = 50 Hz Phase shift between seismometer signal and mirror vibrations Rejection at highfrequency will be limited Mesure fabricant Mesure interféromètre Correction : F ( ) = F( ) H( ) F ( ) = (1 H( )) F( ) c f 100 c =50 Hz Fréquence (Hz) Gain : G( ) F( ) 1 = ( ) = F 1 ( ) c H

48 Probabilité de transition Réjection (db) Non linear filtering Implement a digital filter Goal : compensate the phase shift of the seismometer F( f ) = 1 1 jf jf / / f f ( f 1 / f c ) 0.6 Aucune correction Post-correction sans filtrage Post-correction avec filtrage 10 0 Sans filtrage Avec filtrage Temps (s) Fréquence (Hz) Expected gain of a factor of ~ 3 => σ g < 10-8 g Hz -1/

49 Filtre NL, results Best short term sensitivity : s Modest gain (<expected 3 ) D correction 3D correction Self noise of the seismometer : g.hz -1/ (according specs) Cross-couplings : Acquisition of 3 axes is necessary s g /g Averaging Time (s) Alternative technique (simpler) : compensate for the delay Same results when implementing a delay of 4.6 ms

50 Acquisition without isolation platform Seismometer PC k eff gt² Post corrections v(t) φ vib S Interferometer k eff gt² + φ vib S Influence of the filtering much larger in the presence of large vibration noise Makes measurements feasible in noisy environment: outside the lab in mobile vehicule S. Merlet, et al., Metrologia 46, 87 (009)

51 Fringe fitting Post correction of mirror vibrations with Fringe fitting s vib P = a b cos( and mod ± / = k eff K s T T gs (t) Us (t) dt j vibs, j ) j=x, y,z Night Transition probability Transition probability Day s (rad) vib s Gain : S 5 (rad) vib s Gain : 30 In the presence of high anthropic noise, we have reached gains as high as 100!!

52 Systematics 1- Some effects are k eff orientation dependent DF int = k eff g T DF LS DF Coriolis DF Ab DF RF DF LS1 DF Zeeman k eff Dependent of k eff orientation Independent f,p g 5

53 Systematics 1- Some effects are k eff orientation dependent DF int = k eff g T DF LS DF Coriolis DF Ab DF RF DF LS1 DF Zeeman k eff Dependent of k eff orientation Independent f,p g DF DF = k eff gt DF dependent k eff Reject independent effects by switching between k eff / : need two measurements 53

54 Systematics 1- Some effects are k eff orientation dependent DF int = k eff g T DF LS DF Coriolis DF Ab DF RF DF LS1 DF Zeeman k eff Dependent of k eff orientation Independent f,p g DF DF = k eff gt DF dependent k eff - DF Reject DF LS eff LS bias alternating measurements eff and eff / DF, / DF, / DF, DF, = k eff gt DF Coriolis DF Ab The algorithm degrades the sensitivity by 10 54

55 1 days of continuous measurement Gal? 1 µgal = 10-8 m.s g Gray: 400 drops (170 s) Black: s 55

56 Long term sensitivity g (4 conf) (-)/ (+)/ Sensitivity flickers at g Limited by tidal model? Water table? Soil moisture? Instrument? 56

57 Coriolis acceleration Non zero transverse velocity sensitivity to the Sagnac effect Δg = 10-9 g for v 0 = 100 µm.s -1 Ω k eff v For T = µk, σ v ~ 1 cm.s -1 = 100 v 0!!! g Average shift is null if 1) velocity distribution symmetric ) detection symmetric 3) mean velocity is zero Solutions Control v 0 (CCD imaging, Raman velocimetry/selection) Colder atoms Alternate ±v 0 (rotate the experiment by 180 )

58 g (µgal) Coriolis acceleration Handle on the mean velocity : power imbalance EO molasses beams Alternate two opposite orientations within hours ORIENTATION N ORIENTATION S Opposite trends for the two orientations signature of Coriolis shift Trend is not so linear changes in the aberration shift? why linear anyway? Imbalance in the molasses beams i=(p-p1)/(p+p1) At the crossing point : Null (mean) Coriolis shift

59 Dg (µgal) Coriolis acceleration Changes in Coriolis Vs changes in the wavefront distortions shift? Half difference : Coriolis Half sum : changes in the aberration shift 30 0 Half difference Null Coriolis bias Half sum Imbalance in the molasses beams i=(p-p1)/(p+p1) Uncertainty in the correction of the Coriolis shift : 0.4 µgal

60 Wavefront aberrations Wavefronts are not flat : gaussian beams, flatness of the optics Case of a curvature δφ = K.r (with K = k 1 /R) t = 0 t = T 1 =(v r = 0) v r 0 > 1 R (v = 0) Δg < 10-9 g with T = µk R > 10 km! flatness better than λ/300!!! t = T 3 > D 0 D = 0 (v = 0) Measure aberrations with wavefront sensor + excellent optics + colder atoms

61 Characterization of the optics Mirror 40mm diameter PV= l/10 RMS =l/100 Simulation : T =.5mK s = 1.5mm g/g = PV l/4 g/g =

62 Mirror + l/4 plate under vacuum

63 Dg (µgal) Dg (µgal) Accuracy Exploration of the wavefronts : Differential measurements for different cloud temperatures and extrapolation to zero Analysis with a set of Zernike polynomials => No reliable extrapolation n= n= T at (µk) T at (µk) Need to limit the expansion of the cloud: colder atoms and/or use horizontal Raman selection

64 Self gravity effect Dg = (1.3 ± 0.1) 10-8 m.s - G. D Agostino et al, Metrologia 48 (011) 64

65 Accuracy budget 65

Construction of an absolute gravimeter using atom interferometry with cold 87. Rb atoms

Construction of an absolute gravimeter using atom interferometry with cold 87. Rb atoms Construction of an absolute gravimeter using atom interferometry with cold 87 Rb atoms Patrick Cheinet Julien Le Gouët Kasper Therkildsen Franck Pereira Dos Santos Arnaud Landragin David Holleville André

More information

Absolute gravity measurements with a cold atom gravimeter

Absolute gravity measurements with a cold atom gravimeter Absolute gravity measurements with a cold atom gravimeter Anne Louchet-Chauvet, Sébastien Merlet, Quentin Bodart, Tristan Farah, Arnaud Landragin, Franck Pereira Dos Santos LNE-SYRTE Observatoire de Paris

More information

Travaux en gravimétrie au SYRTE

Travaux en gravimétrie au SYRTE Travaux en gravimétrie au SYRTE F. Pereira Dos Santos LNE-SYRTE (OP, LNE, UPMC, CNRS) https://syrte.obspm.fr/spip/science/iaci/ CNFGG, 1er Février 2017 1 Outline 1. Principle of Atom Interferometry 2.

More information

Cold atom interferometers for inertial measurements. Arnaud Landragin

Cold atom interferometers for inertial measurements. Arnaud Landragin Cold atom interferometers for inertial measurements Arnaud Landragin Atom interferometry as Inertial sensors long term stability and accuracy Inertial navigation satellite, submarine Fundamental physics

More information

SYRTE - IACI. AtoM Interferometry dual Gravi- GradiOmeter AMIGGO. from capability demonstrations in laboratory to space missions

SYRTE - IACI. AtoM Interferometry dual Gravi- GradiOmeter AMIGGO. from capability demonstrations in laboratory to space missions SYRTE - IACI AtoM Interferometry dual Gravi- GradiOmeter AMIGGO from capability demonstrations in laboratory to space missions A. Trimeche, R. Caldani, M. Langlois, S. Merlet, C. Garrido Alzar and F. Pereira

More information

Towards compact transportable atom-interferometric inertial sensors

Towards compact transportable atom-interferometric inertial sensors Towards compact transportable atom-interferometric inertial sensors G. Stern (SYRTE/LCFIO) Increasing the interrogation time T is often the limiting parameter for the sensitivity. Different solutions:

More information

Atom interferometry in microgravity: the ICE project

Atom interferometry in microgravity: the ICE project Atom interferometry in microgravity: the ICE project (4) G. Stern 1,2, R. Geiger 1, V. Ménoret 1,B. Battelier 1, R. Charrière 3, N. Zahzam 3, Y. Bidel 3, L. Mondin 4, F. Pereira 2, A. Bresson 3, A. Landragin

More information

Characterization and limits of a cold atom Sagnac interferometer

Characterization and limits of a cold atom Sagnac interferometer Characterization and limits of a cold atom Sagnac interferometer A. Gauguet, Benjamin Canuel, Thomas Lévèque, Walid Chaibi, Arnaud Landragin To cite this version: A. Gauguet, Benjamin Canuel, Thomas Lévèque,

More information

Sensitivity limits of atom interferometry gravity gradiometers and strainmeters. Fiodor Sorrentino INFN Genova

Sensitivity limits of atom interferometry gravity gradiometers and strainmeters. Fiodor Sorrentino INFN Genova Sensitivity limits of atom interferometry gravity gradiometers and strainmeters Fiodor Sorrentino INFN Genova 1 Outline AI sensors, state of the art performance Main noise sources Potential improvements

More information

State of the art cold atom gyroscope without dead times

State of the art cold atom gyroscope without dead times State of the art cold atom gyroscope without dead times Remi Geiger SYRTE, Observatoire de Paris GDR IQFA Telecom Paris November 18 th, 2016 I. Dutta, D. Savoie, B. Fang, B. Venon, C. L. Garrido Alzar,

More information

Gravimètre Quantique Absolu : une utilisation opérationnelle des atomes froids pour la mesure de gravité. Dr. Jean Lautier-Gaud Journée CNFGG

Gravimètre Quantique Absolu : une utilisation opérationnelle des atomes froids pour la mesure de gravité. Dr. Jean Lautier-Gaud Journée CNFGG Gravimètre Quantique Absolu : une utilisation opérationnelle des atomes froids pour la mesure de gravité Dr. Jean Lautier-Gaud Journée CNFGG Outline Brief overview of Muquans Absolute gravimetry with cold

More information

Large Momentum Beamsplitter using Bloch Oscillations

Large Momentum Beamsplitter using Bloch Oscillations Large Momentum Beamsplitter using Bloch Oscillations Pierre Cladé, Saïda Guellati-Khélifa, François Nez, and François Biraben Laboratoire Kastler Brossel, UPMC, Ecole Normale Supérieure, CNRS, 4 place

More information

Advanced accelerometer/gradiometer concepts based on atom interferometry

Advanced accelerometer/gradiometer concepts based on atom interferometry Advanced accelerometer/gradiometer concepts based on atom interferometry Malte Schmidt, Alexander Senger, Matthias Hauth, Sebastian Grede, Christian Freier, Achim Peters Humboldt-Universität zu Berlin

More information

Atom Quantum Sensors on ground and in space

Atom Quantum Sensors on ground and in space Atom Quantum Sensors on ground and in space Ernst M. Rasel AG Wolfgang Ertmer Quantum Sensors Division Institut für Quantenoptik Leibniz Universität Hannover IQ - Quantum Sensors Inertial Quantum Probes

More information

Bloch oscillations of ultracold-atoms and Determination of the fine structure constant

Bloch oscillations of ultracold-atoms and Determination of the fine structure constant Bloch oscillations of ultracold-atoms and Determination of the fine structure constant Pierre Cladé P. Cladé Bloch oscillations and atom interferometry Sept., 2013 1 / 28 Outlook Bloch oscillations of

More information

Characterization of an Atom Interferometer Gravimeter with Classical Sensors for the Use in Geodesy and Geophysics

Characterization of an Atom Interferometer Gravimeter with Classical Sensors for the Use in Geodesy and Geophysics Characterization of an Atom Interferometer Gravimeter with Classical Sensors for the Use in Geodesy and Geophysics M. Schilling C. Freier V. Schkolnik M. Hauth H. Wziontek H.-G. Scherneck A. Peters and

More information

Shau-Yu Lan 藍劭宇. University of California, Berkeley Department of Physics

Shau-Yu Lan 藍劭宇. University of California, Berkeley Department of Physics Atom Interferometry Experiments for Precision Measurement of Fundamental Physics Shau-Yu Lan 藍劭宇 University of California, Berkeley Department of Physics Contents Principle of Light-Pulse Atom Interferometer

More information

Atom Interferometry I. F. Pereira Dos Santos

Atom Interferometry I. F. Pereira Dos Santos Atom Interferometry I F. Pereira Dos Santos SYRTE SYRTE is one of the 4 Departments of Paris Obs. SYRTE research activities : - Time and Frequency Metrology (LNE-SYRTE) - Fundamental Astronomy - History

More information

Precision atom interferometry in a 10 meter tower

Precision atom interferometry in a 10 meter tower Precision atom interferometry in a 10 meter tower Leibniz Universität Hannover RTG 1729, Lecture 1 Jason Hogan Stanford University January 23, 2014 Cold Atom Inertial Sensors Cold atom sensors: Laser cooling;

More information

Atomic Quantum Sensors and Fundamental Tests

Atomic Quantum Sensors and Fundamental Tests Atomic Quantum Sensors and Fundamental Tests C. Salomon Laboratoire Kastler Brossel, Ecole Normale Supérieure, Paris ESA- ESTEC-FPRAT, January 21th, 2010 Fundamental Questions 1) Missing mass in the Universe

More information

Gravitational tests using simultaneous atom interferometers

Gravitational tests using simultaneous atom interferometers Gravitational tests using simultaneous atom interferometers Gabriele Rosi Quantum gases, fundamental interactions and cosmology conference 5-7 October 017, Pisa Outline Introduction to atom interferometry

More information

Experimental AMO eets meets M odel Model Building: Part I (Precision Atom Interferometry)

Experimental AMO eets meets M odel Model Building: Part I (Precision Atom Interferometry) Experimental AMO meets Model Building: Part I (Precision Atom Interferometry) Interference of Rb atoms Chiow, et. al, PRL, 2011 Young s double slit with atoms Young s 2 slit with Helium atoms Interference

More information

Hybrid Atom-Optical Interferometry for Gravitational Wave Detection and Geophysics

Hybrid Atom-Optical Interferometry for Gravitational Wave Detection and Geophysics Hybrid Atom-Optical Interferometry for Gravitational Wave Detection and Geophysics Remi Geiger, SYRTE for the MIGA consortium EGAS 46, July 3rd 2014, Lille, France http://syrte.obspm.fr/tfc/capteurs_inertiels

More information

Point source atom interferometry with a cloud of finite size

Point source atom interferometry with a cloud of finite size Point source atom interferometry with a cloud of finite size Gregory W. Hoth, 1, a) Bruno Pelle, 1 Stefan Riedl, 1 John Kitching, 1 and Elizabeth A. Donley 1 National Institute of Standards and Technology,

More information

Forca-G: A trapped atom interferometer for the measurement of short range forces

Forca-G: A trapped atom interferometer for the measurement of short range forces Forca-G: A trapped atom interferometer for the measurement of short range forces Bruno Pelle, Quentin Beaufils, Gunnar Tackmann, Xiaolong Wang, Adèle Hilico and Franck Pereira dos Santos Sophie Pelisson,

More information

arxiv: v1 [physics.atom-ph] 19 Jun 2014

arxiv: v1 [physics.atom-ph] 19 Jun 2014 arxiv:1406.5134v1 [physics.atom-ph] 19 Jun 2014 Stability comparison of two absolute gravimeters: optical versus atomic interferometers P. Gillot 1, O. Francis 2, A. Landragin 1, F. Pereira Dos Santos

More information

Atom interferometry. Quantum metrology and fundamental constants. Laboratoire de physique des lasers, CNRS-Université Paris Nord

Atom interferometry. Quantum metrology and fundamental constants. Laboratoire de physique des lasers, CNRS-Université Paris Nord Diffraction Interferometry Conclusion Laboratoire de physique des lasers, CNRS-Université Paris Nord Quantum metrology and fundamental constants Diffraction Interferometry Conclusion Introduction Why using

More information

arxiv: v3 [physics.atom-ph] 16 Oct 2015

arxiv: v3 [physics.atom-ph] 16 Oct 2015 Influence of chirping the Raman lasers in an atom gravimeter: phase shifts due to the Raman light shift and to the finite speed of light B. Cheng, P. Gillot, S. Merlet, F. Pereira Dos Santos arxiv:1506.03207v3

More information

Atom interferometry applications in gravimetry

Atom interferometry applications in gravimetry Prof. Achim Peters, Ph.D. Atom interferometry applications in gravimetry and some thoughts on current sensitivity limitations and concepts for future improvements International Workshop on Gravitational

More information

arxiv: v1 [physics.ins-det] 25 May 2017

arxiv: v1 [physics.ins-det] 25 May 2017 Prepared for submission to JINST arxiv:1705.09376v1 [physics.ins-det] 25 May 2017 Atom Interferometry for Dark Contents of the Vacuum Searches O. Burrow, a,1 A. Carroll, a S. Chattopadhyay, b,c,2 J. Coleman,

More information

Comparison of 3 absolute gravimeters based on different methods for the e-mass project

Comparison of 3 absolute gravimeters based on different methods for the e-mass project 1 Comparison of 3 absolute gravimeters based on different methods for the e-mass project Anne Louchet-Chauvet, Sébastien Merlet, Quentin Bodart, Arnaud Landragin and Franck Pereira Dos Santos, Henri Baumann,

More information

arxiv:physics/ v2 [physics.atom-ph] 12 Dec 2005

arxiv:physics/ v2 [physics.atom-ph] 12 Dec 2005 A new determination of the fine structure constant based on Bloch oscillations of ultracold atoms in a vertical optical lattice arxiv:physics/0510101v2 [physics.atom-ph] 12 Dec 2005 Pierre Cladé, 1 Estefania

More information

Atom Interferometric Gravity Wave Detectors. Mark Kasevich Dept. of Physics and Applied Physics Stanford University, Stanford CA

Atom Interferometric Gravity Wave Detectors. Mark Kasevich Dept. of Physics and Applied Physics Stanford University, Stanford CA Atom Interferometric Gravity Wave Detectors Mark Kasevich Dept. of Physics and Applied Physics Stanford University, Stanford CA Outline Basic concepts Current instrumentation AGIS detectors Space-based/LEO

More information

Atomic Physics (Phys 551) Final Exam Solutions

Atomic Physics (Phys 551) Final Exam Solutions Atomic Physics (Phys 551) Final Exam Solutions Problem 1. For a Rydberg atom in n = 50, l = 49 state estimate within an order of magnitude the numerical value of a) Decay lifetime A = 1 τ = 4αω3 3c D (1)

More information

EYLSA laser for atom cooling

EYLSA laser for atom cooling 1/7 For decades, cold atom system and Bose-Einstein condensates (obtained from ultra-cold atoms) have been two of the most studied topics in fundamental physics. Several Nobel prizes have been awarded

More information

TOWARDS DEMONSTRATION OF A MOT-BASED CONTINUOUS COLD CS-BEAM ATOMIC CLOCK

TOWARDS DEMONSTRATION OF A MOT-BASED CONTINUOUS COLD CS-BEAM ATOMIC CLOCK TOWARDS DEMONSTRATION OF A MOT-BASED CONTINUOUS COLD CS-BEAM ATOMIC CLOCK H. Wang, J. C. Camparo, and G. Iyanu The Aerospace Corporation PO Box 92957, MS 2-253 Los Angeles, California 90009-2957, USA Phone:

More information

Frequency Tunable Atomic Magnetometer based on an Atom Interferometer

Frequency Tunable Atomic Magnetometer based on an Atom Interferometer Frequency Tunable Atomic Magnetometer based on an Atom Interferometer D.A. Braje 1, J.P. Davis 2, C.L. Adler 2,3, and F.A. Narducci 2 Blaubeuren Quantum Optics Summer School 29 July 2013 1 MIT Lincoln

More information

Reviewers' comments: Reviewer #1 (Remarks to the Author):

Reviewers' comments: Reviewer #1 (Remarks to the Author): Reviewers' comments: Reviewer #1 (Remarks to the Author): In their manuscript Dual Matter-Wave Inertial Sensors in Weightlessness Brynle Barrett et al. describe an dual species atom interferometer experiment

More information

Cold atom gyroscope with 1 nrad.s -1 rotation stability

Cold atom gyroscope with 1 nrad.s -1 rotation stability Cold atom gyroscope with 1 nrad.s -1 rotation stability D. Savoie, I. Dutta, B. Fang, B. Venon, N. Miélec, R. Sapam, C. Garrido Alzar, R. Geiger and A. Landragin LNE-SYRTE, Observatoire de Paris IACI team

More information

Multipath Interferometer on an AtomChip. Francesco Saverio Cataliotti

Multipath Interferometer on an AtomChip. Francesco Saverio Cataliotti Multipath Interferometer on an AtomChip Francesco Saverio Cataliotti Outlook Bose-Einstein condensates on a microchip Atom Interferometry Multipath Interferometry on an AtomChip Results and Conclusions

More information

Ultracold atoms and molecules

Ultracold atoms and molecules Advanced Experimental Techniques Ultracold atoms and molecules Steven Knoop s.knoop@vu.nl VU, June 014 1 Ultracold atoms laser cooling evaporative cooling BEC Bose-Einstein condensation atom trap: magnetic

More information

David McIntyre. A slow beam of laser cooled rubidium atoms will be used as the matter-wave source. The atom

David McIntyre. A slow beam of laser cooled rubidium atoms will be used as the matter-wave source. The atom AD-A282 483 R&T 3124128 MATTER-WAVE INTERFEROMETRY WITH LASER COOLED ATOMS David McIntyre Department of Physics, Oregon State University, Corvallis, OR 97331-6507 Grant No: N00014-91-J-1198 DTIC Annual

More information

Pioneer anomaly: Implications for LISA?

Pioneer anomaly: Implications for LISA? Pioneer anomaly: Implications for LISA? Denis Defrère Astrophysics and Geophysics Institute of Liege (Belgium) Andreas Rathke EADS Astrium GmbH Friedrichshafen (Germany) ISSI Meeting - Bern November 10th

More information

Primary Frequency Standards at NIST. S.R. Jefferts NIST Time and Frequency Division

Primary Frequency Standards at NIST. S.R. Jefferts NIST Time and Frequency Division Primary Frequency Standards at NIST S.R. Jefferts NIST Time and Frequency Division Outline Atomic Clocks - general Primary Frequency Standard Beam Standards Laser-Cooled Primary Standards Systematic Frequency

More information

An Overview of Advanced LIGO Interferometry

An Overview of Advanced LIGO Interferometry An Overview of Advanced LIGO Interferometry Luca Matone Columbia Experimental Gravity group (GECo) Jul 16-20, 2012 LIGO-G1200743 Day Topic References 1 2 3 4 5 Gravitational Waves, Michelson IFO, Fabry-Perot

More information

Phase-Referencing and the Atmosphere

Phase-Referencing and the Atmosphere Phase-Referencing and the Atmosphere Francoise Delplancke Outline: Basic principle of phase-referencing Atmospheric / astrophysical limitations Phase-referencing requirements: Practical problems: dispersion

More information

arxiv: v1 [physics.atom-ph] 31 Aug 2008

arxiv: v1 [physics.atom-ph] 31 Aug 2008 Off-resonant Raman transitions impact in an atom interferometer A. Gauguet, T. E. Mehlstäubler, T. Lévèque, J. Le Gouët, W. Chaibi, B. Canuel, A. Clairon, F. Pereira os Santos, and A. Landragin LNE-SYRTE,

More information

Progress on Atom Interferometer (AI) in BUAA

Progress on Atom Interferometer (AI) in BUAA Progress on Atom Interferometer (AI) in BUAA Group of Prof. FANG Jiancheng Beihang University ZHANG Yuchi, Hu Zhaohui, QI Lu, WANG Tongyu, WANG Tao 01.09.2011 7 th UK-China Workshop on Space Science and

More information

Atom Interferometry for Detection of Gravitational Waves. Mark Kasevich Stanford University

Atom Interferometry for Detection of Gravitational Waves. Mark Kasevich Stanford University Atom Interferometry for Detection of Gravitational Waves Mark Kasevich Stanford University kasevich@stanford.edu Atom-based Gravitational Wave Detection Why consider atoms? 1) Neutral atoms are excellent

More information

FG5 Absolute Gravimeter

FG5 Absolute Gravimeter FG5 Absolute Gravimeter Micro-g LaCoste Derek van Westrum, Ph.D. www.microglacoste.com derek@microglacoste.com FG5 Specifications Accuracy: 2 μgal (observed agreement between FG5 instruments) Precision:

More information

Fundamental Physics with Atomic Interferometry

Fundamental Physics with Atomic Interferometry Fundamental Physics with Atomic Interferometry Peter Graham Stanford with Savas Dimopoulos Jason Hogan Mark Kasevich Surjeet Rajendran PRL 98 (2007) PRD 78 (2008) PRD 78 (2008) PLB 678 (2009) arxiv:1009.2702

More information

Cold Atom Navigation Sensors. Atom Interferometry Group Stanford Center for Position, Navigation and Time Mark Kasevich

Cold Atom Navigation Sensors. Atom Interferometry Group Stanford Center for Position, Navigation and Time Mark Kasevich Cold Atom Navigation Sensors Atom Interferometry Group Stanford Center for Position, Navigation and Time Mark Kasevich Navigation strategies Radio navigation Radio reference signals allow trajectory determination

More information

arxiv: v2 [gr-qc] 6 Jan 2009

arxiv: v2 [gr-qc] 6 Jan 2009 An Atomic Gravitational Wave Interferometric Sensor (AGIS) arxiv:0806.15v [gr-qc] 6 Jan 009 Savas Dimopoulos, 1, Peter W. Graham,, Jason M. Hogan, 1, Mark A. Kasevich, 1, and Surjeet Rajendran,1, 1 Department

More information

arxiv: v1 [physics.atom-ph] 23 Jun 2017

arxiv: v1 [physics.atom-ph] 23 Jun 2017 Characteristics of a magneto-optical trap of molecules arxiv:176.7848v1 [physics.atom-ph] 23 Jun 217 H J Williams, S Truppe, M Hambach, L Caldwell, N J Fitch, E A Hinds, B E Sauer and M R Tarbutt Centre

More information

Limits of the separated-path Ramsey atom interferometer

Limits of the separated-path Ramsey atom interferometer J. Phys. B: At. Mol. Opt. Phys. 3 (1999) 5033 5045. Printed in the UK PII: S0953-4075(99)06844-3 Limits of the separated-path Ramsey atom interferometer R M Godun,CLWebb, P D Featonby, M B d Arcy, M K

More information

National Physical Laboratory, UK

National Physical Laboratory, UK Patrick Gill Geoff Barwood, Hugh Klein, Kazu Hosaka, Guilong Huang, Stephen Lea, Helen Margolis, Krzysztof Szymaniec, Stephen Webster, Adrian Stannard & Barney Walton National Physical Laboratory, UK Advances

More information

New Searches for Subgravitational Forces

New Searches for Subgravitational Forces New Searches for Subgravitational Forces Jay Wacker SLAC University of California, Davis November 26, 2007 with Peter Graham Mark Kasevich 1 New Era in Fundamental Physics Energy Frontier LHC Nature of

More information

New generation of a mobile primary frequency standard based on cold atoms

New generation of a mobile primary frequency standard based on cold atoms Journal of Physics: Conference Series OPEN ACCESS New generation of a mobile primary frequency standard based on cold atoms To cite this article: S T Müller et al 015 J. Phys.: Conf. Ser. 575 01030 Related

More information

Gravity measurements below 10 9 g with a transportable absolute quantum gravimeter

Gravity measurements below 10 9 g with a transportable absolute quantum gravimeter www.nature.com/scientificreports Received: 19 February 018 Accepted: 5 July 018 Published: xx xx xxxx OPEN Gravity measurements below 10 9 g with a transportable absolute quantum gravimeter Vincent Ménoret

More information

High Accuracy Strontium Ion Optical Clock

High Accuracy Strontium Ion Optical Clock High Accuracy Strontium Ion Optical Clock Helen Margolis, Geoff Barwood, Hugh Klein, Guilong Huang, Stephen Lea, Krzysztof Szymaniec and Patrick Gill T&F Club 15 th April 2005 Outline Optical frequency

More information

SUBJECT: Atom Interferometry Test Of The Weak Equivalence Principle Executive Summary. No. of Volumes: 2 This is Volume No: 2

SUBJECT: Atom Interferometry Test Of The Weak Equivalence Principle Executive Summary. No. of Volumes: 2 This is Volume No: 2 ESA STUDY CONTRACT REPORT No ESA Study Contract Report will be accepted unless this sheet is inserted at the beginning of each volume of the Report. ESA Contract No: 4000105593/12/ NL/CO * ESA CR( )No:

More information

Metrology and Sensing

Metrology and Sensing Metrology and Sensing Lecture 5: Interferometry I 06--09 Herbert Gross Winter term 06 www.iap.uni-jena.de Preliminary Schedule No Date Subject Detailed Content 8.0. Introduction Introduction, optical measurements,

More information

Magnetic Field measurements with Csmagnetometers

Magnetic Field measurements with Csmagnetometers Magnetic Field measurements with Csmagnetometers in nedm project at PSI A.Pazgalev *, M.Cvijovic, P.Knowles, and A.Weis FRAP, Fribourg University, CH-1700 FRIOURG * on leave from IOFFE Phys.-Tech. Instit.,

More information

Vibration-Free Pulse Tube Cryocooler System for Gravitational Wave Detectors I

Vibration-Free Pulse Tube Cryocooler System for Gravitational Wave Detectors I 1 Vibration-Free Pulse Tube Cryocooler System for Gravitational Wave Detectors I - Vibration-Reduction Method and Measurement - T. Tomaru A, T. Suzuki A, T. Haruyama A, T. Shintomi A, N. Sato A, A. Yamamoto

More information

Transportable optical clocks: Towards gravimetry based on the gravitational redshift

Transportable optical clocks: Towards gravimetry based on the gravitational redshift Transportable optical clocks: Towards gravimetry based on the gravitational redshift A.A. Görlitz, P. Lemonde, C. Salomon, B.S. Schiller, U. Sterr and G. Tino C.Towards a Roadmap for Future Satellite Gravity

More information

Optoelectronic Applications. Injection Locked Oscillators. Injection Locked Oscillators. Q 2, ω 2. Q 1, ω 1

Optoelectronic Applications. Injection Locked Oscillators. Injection Locked Oscillators. Q 2, ω 2. Q 1, ω 1 Injection Locked Oscillators Injection Locked Oscillators Optoelectronic Applications Q, ω Q, ω E. Shumakher, J. Lasri,, B. Sheinman, G. Eisenstein, D. Ritter Electrical Engineering Dept. TECHNION Haifa

More information

Uncertainty evaluation of the caesium fountain clock PTB-CSF2

Uncertainty evaluation of the caesium fountain clock PTB-CSF2 Uncertainty evaluation of the caesium fountain clock PTB-CSF2 V. Gerginov, N. Nemitz, S. Weyers, R. Schröder, D. Griebsch and R. Wynands Physikalisch-Technische Bundesanstalt (PTB) Bundesallee 100, 38116

More information

Trapped atom interferometry for the study of Casimir forces and Gravitation at short range

Trapped atom interferometry for the study of Casimir forces and Gravitation at short range Trapped atom interferometry for the study of Casimir forces and Gravitation at short range F. Pereira Dos Santos LNE-SYRTE (OP, LNE, UPMC, CNRS) Les Rencontres de Moriond, Gravitation, 2017 1 log 10 Searching

More information

Development of a compact Yb optical lattice clock

Development of a compact Yb optical lattice clock Development of a compact Yb optical lattice clock A. A. Görlitz, C. Abou-Jaoudeh, C. Bruni, B. I. Ernsting, A. Nevsky, S. Schiller C. ESA Workshop on Optical Atomic Clocks D. Frascati, 14 th 16 th of October

More information

Atom interferometry test of short range gravity : recent progress in the ForCa-G experiment

Atom interferometry test of short range gravity : recent progress in the ForCa-G experiment Atom interferometry test of short range gravity : recent progress in the ForCa-G experiment Experiment : Matthias Lopez, Obs Cyrille Solaro, Obs Franck Pereira, Obs Theory : Astrid Lambrecht, LKB Axel

More information

arxiv: v1 [physics.atom-ph] 17 Dec 2015

arxiv: v1 [physics.atom-ph] 17 Dec 2015 arxiv:1512.566v1 [physics.atom-ph] 17 Dec 215 Mobile quantum gravity sensor with unprecedented stability C. Freier, 1 M. Hauth, 1 V. Schkolnik, 1 B. Leykauf, 1 M. Schilling 2,H. Wziontek 3, H.-G. Scherneck

More information

Long-wave infrared imaging spectroscopy from small satellite and UAV platforms

Long-wave infrared imaging spectroscopy from small satellite and UAV platforms Long-wave infrared imaging spectroscopy from small satellite and UAV platforms Robert Wright, Paul Lucey, Sarah Crites, Mark Wood, Harold Garbeil, Eric Pilger Hawai'i Institute of Geophysics and Planetology,

More information

CESIUM ATOMIC FOUNTAIN CLOCKS AT NMIJ

CESIUM ATOMIC FOUNTAIN CLOCKS AT NMIJ CESIUM ATOMIC FOUNTAIN CLOCKS AT NMIJ A. Takamizawa 1, S. Yanagimachi 1, Y. Shirakawa 2, K. Watabe 1, K. Hagimoto 1, and T. Ikegami 1 1 National Metrology Institute of Japan (NMIJ), AIST 2 Tokyo University

More information

(Noise) correlations in optical lattices

(Noise) correlations in optical lattices (Noise) correlations in optical lattices Dries van Oosten WA QUANTUM http://www.quantum.physik.uni mainz.de/bec The Teams The Fermions: Christoph Clausen Thorsten Best Ulrich Schneider Sebastian Will Lucia

More information

Supported by NIST, the Packard Foundation, the NSF, ARO. Penn State

Supported by NIST, the Packard Foundation, the NSF, ARO. Penn State Measuring the electron edm using Cs and Rb atoms in optical lattices (and other experiments) Fang Fang Osama Kassis Xiao Li Dr. Karl Nelson Trevor Wenger Josh Albert Dr. Toshiya Kinoshita DSW Penn State

More information

Cold Metastable Neon Atoms Towards Degenerated Ne*- Ensembles

Cold Metastable Neon Atoms Towards Degenerated Ne*- Ensembles Cold Metastable Neon Atoms Towards Degenerated Ne*- Ensembles Supported by the DFG Schwerpunktprogramm SPP 1116 and the European Research Training Network Cold Quantum Gases Peter Spoden, Martin Zinner,

More information

arxiv:physics/ v1 [physics.atom-ph] 25 May 2001

arxiv:physics/ v1 [physics.atom-ph] 25 May 2001 Sensitive Absolute Gravity Gradiometry Using Atom Interferometry J. M. McGuirk, G. T. Foster, J. B. Fixler, M.J. Snadden, and M. A. Kasevich Physics Department, Yale University, New Haven CT, 06520 (May

More information

Precision Interferometry with a Bose-Einstein Condensate. Cass Sackett. Research Talk 17 October 2008

Precision Interferometry with a Bose-Einstein Condensate. Cass Sackett. Research Talk 17 October 2008 Precision Interferometry with a Bose-Einstein Condensate Cass Sackett Research Talk 17 October 2008 Outline Atom interferometry Bose condensates Our interferometer One application What is atom interferometry?

More information

Optical Metrology Applications at TAS-I in support of Gravity and Fundamental Physics

Optical Metrology Applications at TAS-I in support of Gravity and Fundamental Physics Optical Metrology Applications at TAS-I in support of Gravity and Fundamental Physics Template reference : 100181670S-EN Stefano Cesare, Thales Alenia Space Italia, Torino Workshop GG/GGG: state of the

More information

Squeezed Light for Gravitational Wave Interferometers

Squeezed Light for Gravitational Wave Interferometers Squeezed Light for Gravitational Wave Interferometers R. Schnabel, S. Chelkowski, H. Vahlbruch, B. Hage, A. Franzen, and K. Danzmann. Institut für Atom- und Molekülphysik, Universität Hannover Max-Planck-Institut

More information

All-Optical Delay with Large Dynamic Range Using Atomic Dispersion

All-Optical Delay with Large Dynamic Range Using Atomic Dispersion All-Optical Delay with Large Dynamic Range Using Atomic Dispersion M. R. Vanner, R. J. McLean, P. Hannaford and A. M. Akulshin Centre for Atom Optics and Ultrafast Spectroscopy February 2008 Motivation

More information

LISA Technology: A Status Report

LISA Technology: A Status Report LISA Technology: A Status Report Guido Mueller University of Florida Minnesota 2010 1 Content LISA Concept Gravitational Reference Sensor Interferometry Measurement System Status/Outlook 2 LISA Concept

More information

Nonequilibrium issues in macroscopic experiments

Nonequilibrium issues in macroscopic experiments Nonequilibrium issues in macroscopic experiments L. Conti, M. Bonaldi, L. Rondoni www.rarenoise.lnl.infn.it European Research Council Gravitational Wave detector Motivation: GWs will provide new and unique

More information

Lecture 32. Lidar Error and Sensitivity Analysis

Lecture 32. Lidar Error and Sensitivity Analysis Lecture 3. Lidar Error and Sensitivity Analysis Introduction Accuracy in lidar measurements Precision in lidar measurements Error analysis for Na Doppler lidar Sensitivity analysis Summary 1 Errors vs.

More information

Temperature and Pressure Sensor Interfaces for the ATTA Experiment. Ashleigh Lonis Columbia University REU 2012

Temperature and Pressure Sensor Interfaces for the ATTA Experiment. Ashleigh Lonis Columbia University REU 2012 Temperature and Pressure Sensor Interfaces for the ATTA Experiment Ashleigh Lonis Columbia University REU 2012 Summary Introduction to Dark Matter and Detection What is Dark Matter? Xenon Experiment Introduction

More information

Metrology and Sensing

Metrology and Sensing Metrology and Sensing Lecture 5: Interferometry I 017-11-16 Herbert Gross Winter term 017 www.iap.uni-jena.de Preliminary Schedule No Date Subject Detailed Content 1 19.10. Introduction Introduction, optical

More information

arxiv: v1 [physics.atom-ph] 22 Jun 2016

arxiv: v1 [physics.atom-ph] 22 Jun 2016 Article Prospects for Precise Measurements with Echo Atom Interferometry Brynle Barrett, Adam Carew, Hermina C. Beica, Andrejs Vorozcovs, Alexander Pouliot, and A. Kumarakrishnan arxiv:1606.06831v1 [physics.atom-ph]

More information

Self-Phase Modulation in Optical Fiber Communications: Good or Bad?

Self-Phase Modulation in Optical Fiber Communications: Good or Bad? 1/100 Self-Phase Modulation in Optical Fiber Communications: Good or Bad? Govind P. Agrawal Institute of Optics University of Rochester Rochester, NY 14627 c 2007 G. P. Agrawal Outline Historical Introduction

More information

A Miniature Cold-Atom Frequency Standard

A Miniature Cold-Atom Frequency Standard A Miniature Cold-Atom Frequency Standard 1 V.Shah, 2 M. Mescher, 2 R. Stoner, 3 V. Vuletic, 1 R. Lutwak 1 Symmetricom Technology Realization Centre, Beverly, MA, 01915 2 The Charles Stark Draper Laboratory,

More information

Coulomb crystal extraction from an ion trap for application to nano-beam source"

Coulomb crystal extraction from an ion trap for application to nano-beam source Coulomb crystal extraction from an ion trap for application to nano-beam source" K. Ito, K. Izawa, H. Higaki and H. Okamoto,! Aadvanced Sciences of Matter, Hiroshima University,! 1-3-1 Kagamiyama, Higashi-Hiroshima,

More information

1. Introduction. 2. New approaches

1. Introduction. 2. New approaches New Approaches To An Indium Ion Optical Frequency Standard Kazuhiro HAYASAKA National Institute of Information and Communications Technology(NICT) e-mail:hayasaka@nict.go.jp ECTI200 . Introduction Outline

More information

Dr. Jean Lautier-Gaud October, 14 th 2016

Dr. Jean Lautier-Gaud October, 14 th 2016 New generation of operational atomic clock: what perspectives for radio-astronomy & VLBI? Dr. Jean Lautier-Gaud October, 14 th 2016 Courtesy of Noel Dimarcq, SYRTE Content 1. Why is Muquans here? 2. What

More information

Compensation of gravity gradients and rotations in precision atom interferometry

Compensation of gravity gradients and rotations in precision atom interferometry Compensation of gravity gradients and rotations in precision atom interferometry Albert Roura partly based on Phys. Rev. Lett. 118, 160401 (2017) Vienna, 11 April 2018 Motivation Tests of universality

More information

OPTI510R: Photonics. Khanh Kieu College of Optical Sciences, University of Arizona Meinel building R.626

OPTI510R: Photonics. Khanh Kieu College of Optical Sciences, University of Arizona Meinel building R.626 OPTI510R: Photonics Khanh Kieu College of Optical Sciences, University of Arizona kkieu@optics.arizona.edu Meinel building R.626 Important announcements Homework #1 is due. Homework #2 is assigned, due

More information

Quantum enhanced magnetometer and squeezed state of light tunable filter

Quantum enhanced magnetometer and squeezed state of light tunable filter Quantum enhanced magnetometer and squeezed state of light tunable filter Eugeniy E. Mikhailov The College of William & Mary October 5, 22 Eugeniy E. Mikhailov (W&M) Squeezed light October 5, 22 / 42 Transition

More information

Conference on Research Frontiers in Ultra-Cold Atoms. 4-8 May Generation of a synthetic vector potential in ultracold neutral Rubidium

Conference on Research Frontiers in Ultra-Cold Atoms. 4-8 May Generation of a synthetic vector potential in ultracold neutral Rubidium 3-8 Conference on Research Frontiers in Ultra-Cold Atoms 4-8 May 9 Generation of a synthetic vector potential in ultracold neutral Rubidium SPIELMAN Ian National Institute of Standards and Technology Laser

More information

Atom Interferometry and Precision Tests in Gravitational Physics

Atom Interferometry and Precision Tests in Gravitational Physics Atom Interferometry and Precision Tests in Gravitational Physics Lecture III Precision measurements of gravity Determination of the gravitational constant G Experiments on gravity at small spatial scale

More information

Next Generation Interferometers

Next Generation Interferometers Next Generation Interferometers TeV 06 Madison Rana Adhikari Caltech 1 Advanced LIGO LIGO mission: detect gravitational waves and initiate GW astronomy Next detector» Should have assured detectability

More information

Recent Advances in High Resolution Rotation Sensing

Recent Advances in High Resolution Rotation Sensing Recent Advances in High Resolution Rotation Sensing U. Schreiber 1,2, A. Gebauer 1, R. Hurst 2, J.-P. Wells 2 1 Forschungseinrichtung Satellitengeodäsie, Technische Universität München, Germany 2 Department

More information

Coherent Combining and Phase Locking of Fiber Lasers

Coherent Combining and Phase Locking of Fiber Lasers Coherent Combining and Phase Locking of Fiber Lasers Moti Fridman, Micha Nixon, Nir Davidson and Asher A. Friesem Weizmann Institute of Science, Dept. of Physics of Complex Systems, Rehovot 76100, Israel.

More information