Atom Interferometry and Precision Tests in Gravitational Physics

Size: px
Start display at page:

Download "Atom Interferometry and Precision Tests in Gravitational Physics"

Transcription

1 Atom Interferometry and Precision Tests in Gravitational Physics Lecture III Precision measurements of gravity Determination of the gravitational constant G Experiments on gravity at small spatial scale Tests of the equivalence principle Towards gravitational waves detection with atom interferometry Main references - A. D. Cronin, J. Schmiedmayer, D. E. Pritchard, Optics and interferometry with atoms and molecules, Rev. Mod. Phys. 81, 1051 (2009). - C. Cohen-Tannoudji, D. Guery-Odelin, Advances in Atomic Physics: An Overview, World Scientific (2011) - Lectures at the E. Fermi School on Atom Interferometry, Varenna (2013) G. M. Tino, M. A. Kasevich (eds). Atom Interferometry. Proc. International School of Physics Enrico Fermi, Course CLXXXVIII, Varenna 2013, SIF and IOS (2014).

2 (1 Gal = 1 cm/s 2 1 µgal 10-9 g) from A. Peters, E. Fermi School on Atom Interferometry, Varenna 2013

3 from A. Peters, E. Fermi School on Atom Interferometry, Varenna 2013

4

5 Stanford atom gravimeter Resolution: 3x10-9 g after 1 minute Absolute accuracy: Δg/g<3x10-9 A. Peters, K.Y. Chung and S. Chu, Nature 400, 849 (1999)

6 from A. Peters, E. Fermi School on Atom Interferometry, Varenna 2013

7 from A. Peters, E. Fermi School on Atom Interferometry, Varenna 2013

8 from A. Peters, E. Fermi School on Atom Interferometry, Varenna 2013

9 from A. Landragin, E. Fermi School on Atom Interferometry, Varenna 2013

10 Stability of the gravimeter Comparison with state of the art falling corner cube gravimeter FG5 (measurement in Walferdange - Luxembourg) Earth quake Time evolution Standard Allan deviation 10-1/2 1 6!Gal/"! / s Atomic gravimeter better immune to vibrations than FG5X Long term stability 0.2!Gal From A. Landragin, 2014

11

12

13 Precision gravity measurement at µm scale with Bloch oscillations of Sr atoms in an optical lattice ν = m g λ /2 h G. Ferrari, N. Poli, F. Sorrentino, G. M. Tino, Long-Lived Bloch Oscillations with Bosonic Sr Atoms and Application to Gravity Measurement at the Micrometer Scale, Phys. Rev. Lett. 97, (2006) G.M. Tino, School on Ultracold Atoms Precision Les Houches, September 2014 G.M. Tino, E. and Fermi SchoolMeasurements, on Atom Interferometry, Varenna, July 2013

14 Stanford/Yale gravity gradiometer from M.A. Kasevich M.J. Snadden et al., Phys. Rev. Lett. 81, 971 (1998)

15 Firenze gravity-gradiometer Source masses and support Laser and optical system F. Sorrentino, Q. Bodart, L. Cacciapuoti, Y.-H. Lien, M. Prevedelli, G. Rosi, L. Salvi, and G. M. Tino, Sensitivity limits of a Raman atom interferometer as a gravity gradiometer, Phys. Rev. A 89, (2014)

16 compact From M. Kasevich, Stanford University Talk at the International Workshop on Advances in Precision Tests and Experimental Gravitation in Space, Firenze, September 2006

17 isense Integrated Quantum Sensors

18 Measurement of the Newtonian gravitational constant G by atom interferometry

19 Measurements of the Newtonian gravitational constant G Cavendish 1798 G = (80) m 3 kg -1 s -2 [ ] P.J. Mohr, B. N. Taylor, and D. B. Newell, CODATA recommended values of the fundamental physical constants: 2010, Rev. Mod. Phys., Vol. 84, No. 4, (2012) Quinn 2001 G.M. Tino, School on Ultracold G.M. Tino, Atoms E. and Fermi Precision School Measurements, on Atom Interferometry, Les Houches, Varenna, September July

20 Measurements of the Newtonian gravitational constant G NIST-82 torsion balance TR&D-96 torsion balance LANL-97 torsion balance CODATA 1998 UWash-00 BIPM-01 UWup-02 torsion balance torsion balance simple pendulum CODATA 2002 MSL-03 HUST-05 UZur-06 torsion balance torsion balance beam balance CODATA 2006 HUST-09 JILA-10 torsion balance simple pendulum CODATA 2010 BIPM-13 torsion balance THIS WORK atom interferometry G (10-11 m 3 kg -1 s -2 )

21 Terry Quinn. Measuring big G, NATURE VOL /28 DECEMBER 2000 G.M. Tino, School on Ultracold G.M. Tino, Atoms E. and Fermi Precision School Measurements, on Atom Interferometry, Les Houches, Varenna, September July

22 Why atoms? Extremely small size Well known and reproducible properties Quantum systems Precision gravity measurement by atom interferometry Potential immunity from stray fields effects Different states, isotopes,

23 MAGIA (MISURA ACCURATA di G MEDIANTE INTERFEROMETRIA ATOMICA) Measure g by atom interferometry Add source mass Measure change of g am g Precision measurement of G

24 MAGIA (MISURA ACCURATA di G MEDIANTE INTERFEROMETRIA ATOMICA) Measure g by atom interferometry Add source masses Measure change of g am g Precision measurement of G Test of Newtonian law G.M. Tino, School on Ultracold G.M. Tino, Atoms E. and Fermi Precision School Measurements, on Atom Interferometry, Les Houches, Varenna, September July

25 MAGIA: atom gravimeter + source mass Sensitivity 10-9 g/shot 500 kg tungsten mass Peak mass acceleration a G 10-7 g one shot ΔG/G shots ΔG/G 10-4

26 MAGIA apparatus Manipulate 87Rb atoms Transport light Long interaction times Gravitational field LASER SYSTEM OPTICAL FIBERS Ti VACUUM SYSTEM W SOURCE MASSES L. Cacciapuoti, M. de Angelis, M. Fattori, G. Lamporesi, T. Petelski, M. Prevedelli, J. Stuhler, G.M. Tino, Analog+digital phase and frequency detector for phase locking of diode lasers, Rev. Scient. Instr. 76, (2005) G. Lamporesi, A. Bertoldi, A. Cecchetti, B. Dulach, M. Fattori, A. Malengo,, S. Pettorruso, M. Prevedelli, G.M. Tino, Source Masses and Positioning System for an Accurate Measurement of G, Rev. Scient. Instr. 78, (2007)

27 MAGIA apparatus Laser system 6 frequency stabilized ECDL 780 nm (Reference, Cooling 2D-MOT, Cooling 3D-MOT, Repumper master, Raman master, Raman slave) 3 optically injected diode 780 nm (Repumper 2D-MOT, Repumper 3D-MOT, Probe) 4 Tapered 780 nm (Cooling 2D-MOT, Cooling 3D-MOT, Raman master, Raman ~20 AOMs ~20 PM optical fibres Active stabilization loops Intensity of 3D-MOT Cooling up and down laser beams, master and slave Raman laser beams and Probe laser tilt of Raman retro-reflection mirror Earth rotation compensation with tilt-tip Raman mirror Vacuum system 2D-MOT chamber, steel, 10-7 torr Rb pressure main chambers and interferometer tube, titanium, ~10-10 torr Electronic control system real-time system for analog I/O and TTL signals, <5 μs jitter ~20 shutter drivers ~10 DDS for AOM and OPLL driving 6 low-noise coil drivers Laboratory environment temperature stability 0.1 C humidity stability 5%

28 Double launch and juggling TRAPPING/COOLING N=5 x 10 8 T=2 µk z LAUNCH JUGGLING sample 1 rapid double launch! 30 cm sample 0 sample 2 t 28

29 Triple velocity selection Goal: reduce background of thermal atoms from off-resonant scattering during VS pulse Initial state after launch: F=2, unpolarized, 2.5 µk (3.5 v rec ) Raman + blow-away pulses Final state: F=1, m F =0, v z =v rec /3

30 Raman interferometry

31 Detection In upper chamber, atoms interact with two horizontal laser beams resonant with the F=2 >F =3 transition rectangular shape, 15 mm width 4 mm height intensity ~3.5 I S retro-reflected in upper half (blow-away in lower half) Additional F=1 >F =2 laser beam in the middle to repump atoms in F=2 upper (lower) detector counts atom in F=2 (F=1) Fluorescence collected on two independent photodiodes solid angle ~0.01 sterad transimpedance 1 GOhm, conversion ~5 µv/atom

32 Experimental sequence Trapping N=5x Rb Laser cooling - MOT Cooling T=4 µk Laser cooling - Optical molasses Launch h= cm Moving opt. mol. - Atomic fountain Double launch Selection Interferometer Δt=80 ms Δz=30 cm F=1 m F =0 Δv z =v rec /2 Δφ Juggling Two-photon Raman transition π/2 π π/2 Raman sequence with phase locked lasers Detection N 1, N 2 Fluorescence detection

33 Gravity gradiometer T=5 ms resol. = g/shot T=50 ms resol. = g/shot T=150 ms resol. = g/shot = k e gt 2 G. T. Foster et al., Opt. Lett 27, 951 (2002)

34

35 A. Bertoldi G.Lamporesi, L. Cacciapuoti, M. deangelis, M.Fattori, T.Petelski, A. Peters, M. Prevedelli, J. Stuhler, G.M. Tino, Atom interferometry gravity-gradiometer for the determination of the Newtonian gravitational constant G, Eur. Phys. J. D 40, 271 (2006) J. B. Fixler, G. T. Foster, J. M. McGuirk and M. A. Kasevich, Atom Interferometer Measurement of the Newtonian Constant of Gravity, Science 315, 74 (2007)

36 Source mass COMPOSITION PROPERTIES REALIZATION INTERMET IT 180 (PLANSEE) W 95.3% Ni 3.2% Cu 1.5% Density 18 kg/m 3 Resistivity 12x10-8 Ωm Amagnetic CTE 5x10-6 K -1 Roughness 3 µm SINTERING T=1500 C - P=1 bar Hot Isostatic Pressing T=1200 C - P=1000 bar MICROSCOPE ANALYSIS ULTRASONIC TEST Before HIP holes: Ø ~ 100 µ m After HIP DENSITY TEST (INRIM, Torino) ρ = kg/m 3 res: 10 mg/m 3 σ ρ = 12 kg/m 3 ( ) Δρ =47 kg/m 3 ( ) G. Lamporesi, A. Bertoldi, A. Cecchetti, B. Dulach, M. Fattori, A. Malengo,, S. Pettorruso, M. Prevedelli, G.M. Tino, Source Masses and Positioning System for an Accurate Measurement of G, Rev. Scient. Instr. 78, (2007)

37 Optimized trajectories atoms Masses separation in the two configurations and atomic clouds initial position have been chosen in order to minimize the dependence on atomic initial parameters and reach the accuracy on G of the interferometer is realized around an acceleration max/min the Earth s gravity gradient must be over-compensated only high density material can be used L E A D T U N G S T E N G.M. Tino, School on Ultracold G.M. Tino, Atoms E. and Fermi Precision School Measurements, on Atom Interferometry, Les Houches, Varenna, September July

38 2007 Results from MAGIA G = (11) (3) m 3 kg -1 s -2 G. Lamporesi, A. Bertoldi, L. Cacciapuoti, M. Prevedelli, G. M. Tino Determination of the Newtonian Gravitational Constant Using Atom Interferometry Phys. Rev. Lett. 100, (2008)

39 MAGIA: From proof-of-principle to the measurement of G Sensitivity 15-fold improvement of the instrument sensitivity from 2008 to 2013 integration time for the target 100 ppm reduced by more than a factor 200 Accuracy systematic uncertainty reduced by a factor ~10 since 2008, mostly due to better characterization of source masses control & mitigation of Coriolis acceleration excellent control of atomic trajectories Data analysis we developed a reliable model accounting for all of the relevant effects gravitational potential generated by source masses along atomic path quantum mechanical phase shift of atomic probes detection efficiency measured data are compared with a Montecarlo simulation

40 Improving the sensitivity Larger number of atoms: 2D-MOT and higher power Raman lasers Lower detection noise: minimize stray light and use ultra-low noise electronics Larger contrast: remove thermal atoms with better velocity selection Lower fluctuations of main experimental parameters...

41 MAGIA: increasing sensitivity Current sensitivity to differential acceleration: 3x10-9 1s (=QPN for 4x10 5 atoms) [1] G. Lamporesi et al., Phys. Rev. Lett 100, (2008) [2] F. Sorrentino et al., New J. Phys. 12, (2010) [3] F. Sorrentino et al., Phys. Rev. A 89, (2014)

42 MAGIA: Sensitivity Repetition period of experimental cycle: 1.9 s Number of points per ellipse: 720 (23 min) Number of launched atoms: ~10 9 per cloud Number of detected atoms: ~4x10 5 per cloud Sensitivity to ellipse angle: ~ 9 mrad/shot Sensitivity to differential gravity: 3x10-9 g / Hz Sensitivity in G measurements: 5.7x10-2 / Hz Integration time to G at 10-4 : 100 hours

43 MAGIA: Systematics Precise characterization of source masses (weight, density homogeneity, shape, position) Precise characterization of atomic trajectories Calibration of relative detection efficiency in the two interferometer outputs Removal of k-independent biases (Zeeman shift) Removal of k-dependent biases (Coriolis acceleration)

44 Sensitivity to experimental parameters We acquire a value of G every 2t ell 1 hour fluctuations of ellipse angle, bias and contrast will limit the sensitivity only if they occur over time scales shorter than t ell reproducibility and accuracy on G are only limited by fluctuations of differential ellipse angle We constantly monitor the most relevant experimental parameters cooling, probe, repumper, Raman laser intensity current in magnetic coils (MOT, compensation, bias) temperatures external magnetic fields We experimentally determine the sensitivity of ellipse contrast, bias and angle ellipse angle is measured for the two configuration of source masses calculate average and differential ellipse angle

45 Atomic trajectories Given the curvature of gravitational potential, density distribution of atomic clouds must be centered on the symmetry axis of the source masses, and known within 1 mm in order to keep systematic error on G below 10-4 Vertical coordinates of clouds are measured within 0.1 mm from TOF + double diffraction Transverse density distribution measured by 2D scanning of a thin portion of Raman laser beams (barycenter and width measured within 0.1 mm) T = 0 ms T = 62.5 ms T = 125 ms

46 Use of k-reversal to improve systematics Interferometer phase is affected by systematic shifts, which can be sorted into k eff -dependent: Coriolis (dominating), wave-front distortions, two-photon light shift (negligible in our case) k eff -independent: magnetic gradients, one-photon light shift Alternating measurements with k eff directed upward and downwards allows to cancel out systematic errors from k eff -independent terms; e.g. tiny changes in magnetic fields when moving the source masses Need good overlap of trajectories for direct-k eff and reverse-k eff interferometers A. Louchet-Chauvet et al., The influence of transverse motion within an atomic gravimeter, New J. Phys. 13, (2011)

47 Measurement protocol Ellipse phase is the sum of gravitationally induced phase, the k eff -independent spurious shift and the k eff -dependent spurious phase shift: For each configuration of source masses, we acquire two (interleaved) ellipses with direct and reversed k eff We combine the four ellipse angles the differential phase shift contains the gravitational effect of source masses plus twice the Close-Far change of k eff -dependent terms the other linear combination provides a measurement of twice the Close-Far change of independent phase shift

48 Ellipse fitting Optimal number of points to fit an ellipse is estimated by varying the number of points and computing the Allan deviation Since the fit is heavily nonlinear the Allan variance per point drops sharply at first, then it reaches a plateau, and finally rises due to long-term drifts of center and contrast Ellipse angle is more stable than bias and contrast: optimal sensitivity is obtained by choosing the number of points per ellipse within the plateau 0.11 "(n) (rad) !(n) (rad) number of points per ellipse

49 Data analysis Calculation of gravitational potential produced by source masses Calculation of phase shift for a single atom along the symmetry axis Calculation for tilted and off-axis trajectories Monte Carlo simulation of atomic cloud

50 Phase shift for a single atom Integration of the classical action along the solution of Lagrange equation (classical path) Perturbative method: split the Lagrangian into L 0 =mgz and L 1 including all other contributions (Earth gradient and source masses) phase shift due to L 1 is calculated from integration over the unperturbed path, which is given by the solution of Lagrange eq. for L 0 corrections are order L 12 ; the approximation is valid whatever the form of L 1, only requiring L 1 << L 0 We compared this method with Bordé s prescription [1] in the case of the uniform gravity gradient, for which the solution for L 1 +L 0 is known integration of action over classical path agrees with Bordé s method up to II order perturbative method provides correct results up to I order [1] C. Antoine and C. J. Bordé, Exact phase shifts for atom interferometry, Phys. Lett. A 306, 277 (2003)

51 G measurement (July 2013) Relative uncertainty ~ 116 ppm (statistical)

52 (99) x m 3 kg 1 s 2 Relative uncertainty: 150 ppm G. Rosi, F. Sorrentino, L. Cacciapuoti, M. Prevedelli & G. M. Tino, Precision Measurement of the Newtonian Gravitational Constant Using Cold Atoms NATURE vol. 510, p. 518 (2014)

53 Determination of G NIST-82 torsion balance TR&D-96 torsion balance LANL-97 torsion balance CODATA 1998 UWash-00 BIPM-01 UWup-02 torsion balance torsion balance simple pendulum CODATA 2002 MSL-03 HUST-05 UZur-06 torsion balance torsion balance beam balance CODATA 2006 HUST-09 JILA-10 torsion balance simple pendulum CODATA 2010 BIPM-13 torsion balance THIS WORK atom interferometry G (10-11 m 3 kg -1 s -2 ) G. Rosi, F. Sorrentino, L. Cacciapuoti, M. Prevedelli & G. M. Tino, Precision Measurement of the Newtonian Gravitational Constant Using Cold Atoms NATURE vol. 510, p. 518 (2014)

54 MAGIA error budget E ect Uncertainty Correction Relative uncertainty to G (ppm) G/G (ppm) Air density 10 % 60 6 Apogee time 30 µs 6 Atomic clouds horizontal size 0.5 mm 24 Atomic clouds vertical size 0.1 mm 56 Atomic clouds horizontal position 1 mm 37 Atomic clouds vertical position 0.1 mm 5 Atoms launch direction change C/F 8 µrad 36 Cylinders density inhomogeneity Cylinders radial position 10 µm 38 Ellipse fitting Size of detection region 1 mm 13 Support platforms mass 10 g 5 Translation stages position 0.5 mm 6 Other e ects <2 1 Systematic uncertainty 92 Statistical uncertainty 116 Total M. Prevedelli, L. Cacciapuoti, G. Rosi, F. Sorrentino and G. M. Tino, Measuring the Newtonian constant of gravitation G with an atomic interferometer, in Newtonian constant of gravitation Theme Issue of Philosophical Transactions A, 372, (2014)

55 From M. Kasevich

56 Project of Measuring G with AI in HUST HUST: Huazhong University of Science & Technology Source masses 24 10Kg spheres Gravitational signal!g = 120µGal Differential gravity sensitivity! "g = 4 s Project target 1

57 Future prospects to improve the measurement of G with atom interferometry Highly homogeneous (lower-density, e.g. silicon) source mass Higher sensitivity atom interferometer Different scheme with better definition of atomic velocities Smaller size of the atomic sensor Atom with lower sensitivity to magnetic fields

58 Possible scheme for MAGIA Advanced Ultracold Sr atoms in optical lattice ν = m g λ /2 h ΔG/G 10-5 ΔG/G 10-6?

Sensitivity limits of atom interferometry gravity gradiometers and strainmeters. Fiodor Sorrentino INFN Genova

Sensitivity limits of atom interferometry gravity gradiometers and strainmeters. Fiodor Sorrentino INFN Genova Sensitivity limits of atom interferometry gravity gradiometers and strainmeters Fiodor Sorrentino INFN Genova 1 Outline AI sensors, state of the art performance Main noise sources Potential improvements

More information

Gravitational tests using simultaneous atom interferometers

Gravitational tests using simultaneous atom interferometers Gravitational tests using simultaneous atom interferometers Gabriele Rosi Quantum gases, fundamental interactions and cosmology conference 5-7 October 017, Pisa Outline Introduction to atom interferometry

More information

LETTER. Precision measurement of the Newtonian gravitational constant using cold atoms

LETTER. Precision measurement of the Newtonian gravitational constant using cold atoms doi:10.1038/nature13433 Precision measurement of the Newtonian gravitational constant using cold atoms G. Rosi 1, F. Sorrentino 1, L. Cacciapuoti 2, M. Prevedelli 3 & G. M. Tino 1 About 300 experiments

More information

arxiv:physics/ v1 [physics.atom-ph] 14 Jun 2006

arxiv:physics/ v1 [physics.atom-ph] 14 Jun 2006 EPJ manuscript No. (will be inserted by the editor) arxiv:physics/66126v1 [physics.atom-ph] 14 Jun 26 Atom interferometry gravity-gradiometer for the determination of the Newtonian gravitational constant

More information

Compensation of gravity gradients and rotations in precision atom interferometry

Compensation of gravity gradients and rotations in precision atom interferometry Compensation of gravity gradients and rotations in precision atom interferometry Albert Roura partly based on Phys. Rev. Lett. 118, 160401 (2017) Vienna, 11 April 2018 Motivation Tests of universality

More information

Absolute gravity measurements with a cold atom gravimeter

Absolute gravity measurements with a cold atom gravimeter Absolute gravity measurements with a cold atom gravimeter Anne Louchet-Chauvet, Sébastien Merlet, Quentin Bodart, Tristan Farah, Arnaud Landragin, Franck Pereira Dos Santos LNE-SYRTE Observatoire de Paris

More information

SYRTE - IACI. AtoM Interferometry dual Gravi- GradiOmeter AMIGGO. from capability demonstrations in laboratory to space missions

SYRTE - IACI. AtoM Interferometry dual Gravi- GradiOmeter AMIGGO. from capability demonstrations in laboratory to space missions SYRTE - IACI AtoM Interferometry dual Gravi- GradiOmeter AMIGGO from capability demonstrations in laboratory to space missions A. Trimeche, R. Caldani, M. Langlois, S. Merlet, C. Garrido Alzar and F. Pereira

More information

Atom interferometry applications in gravimetry

Atom interferometry applications in gravimetry Prof. Achim Peters, Ph.D. Atom interferometry applications in gravimetry and some thoughts on current sensitivity limitations and concepts for future improvements International Workshop on Gravitational

More information

Construction of an absolute gravimeter using atom interferometry with cold 87. Rb atoms

Construction of an absolute gravimeter using atom interferometry with cold 87. Rb atoms Construction of an absolute gravimeter using atom interferometry with cold 87 Rb atoms Patrick Cheinet Julien Le Gouët Kasper Therkildsen Franck Pereira Dos Santos Arnaud Landragin David Holleville André

More information

Towards compact transportable atom-interferometric inertial sensors

Towards compact transportable atom-interferometric inertial sensors Towards compact transportable atom-interferometric inertial sensors G. Stern (SYRTE/LCFIO) Increasing the interrogation time T is often the limiting parameter for the sensitivity. Different solutions:

More information

Travaux en gravimétrie au SYRTE

Travaux en gravimétrie au SYRTE Travaux en gravimétrie au SYRTE F. Pereira Dos Santos LNE-SYRTE (OP, LNE, UPMC, CNRS) https://syrte.obspm.fr/spip/science/iaci/ CNFGG, 1er Février 2017 1 Outline 1. Principle of Atom Interferometry 2.

More information

Precision atom interferometry in a 10 meter tower

Precision atom interferometry in a 10 meter tower Precision atom interferometry in a 10 meter tower Leibniz Universität Hannover RTG 1729, Lecture 1 Jason Hogan Stanford University January 23, 2014 Cold Atom Inertial Sensors Cold atom sensors: Laser cooling;

More information

Atom Interferometry for Detection of Gravitational Waves. Mark Kasevich Stanford University

Atom Interferometry for Detection of Gravitational Waves. Mark Kasevich Stanford University Atom Interferometry for Detection of Gravitational Waves Mark Kasevich Stanford University kasevich@stanford.edu Atom-based Gravitational Wave Detection Why consider atoms? 1) Neutral atoms are excellent

More information

Lecture 21 Search for Spin-Mass Interaction and Precision Measurement of G

Lecture 21 Search for Spin-Mass Interaction and Precision Measurement of G Physics 798G Spring 2007 Lecture 21 Search for Spin-Mass Interaction and Precision Measurement of G Ho Jung Paik University of Maryland May 10, 2007 Paik-1 Search for spin-mass interaction The Standard

More information

Bloch oscillations of ultracold-atoms and Determination of the fine structure constant

Bloch oscillations of ultracold-atoms and Determination of the fine structure constant Bloch oscillations of ultracold-atoms and Determination of the fine structure constant Pierre Cladé P. Cladé Bloch oscillations and atom interferometry Sept., 2013 1 / 28 Outlook Bloch oscillations of

More information

Large Momentum Beamsplitter using Bloch Oscillations

Large Momentum Beamsplitter using Bloch Oscillations Large Momentum Beamsplitter using Bloch Oscillations Pierre Cladé, Saïda Guellati-Khélifa, François Nez, and François Biraben Laboratoire Kastler Brossel, UPMC, Ecole Normale Supérieure, CNRS, 4 place

More information

Atom Interferometry II. F. Pereira Dos Santos

Atom Interferometry II. F. Pereira Dos Santos Atom Interferometry II F. Pereira Dos Santos Organization of the lecture 1 : Applications of inertial sensors/gravimetry : A case study : the SYRTE atom gravimeter 3 : Towards more compact sensors 4 :

More information

arxiv: v1 [physics.ins-det] 25 May 2017

arxiv: v1 [physics.ins-det] 25 May 2017 Prepared for submission to JINST arxiv:1705.09376v1 [physics.ins-det] 25 May 2017 Atom Interferometry for Dark Contents of the Vacuum Searches O. Burrow, a,1 A. Carroll, a S. Chattopadhyay, b,c,2 J. Coleman,

More information

Shau-Yu Lan 藍劭宇. University of California, Berkeley Department of Physics

Shau-Yu Lan 藍劭宇. University of California, Berkeley Department of Physics Atom Interferometry Experiments for Precision Measurement of Fundamental Physics Shau-Yu Lan 藍劭宇 University of California, Berkeley Department of Physics Contents Principle of Light-Pulse Atom Interferometer

More information

ATOM INTERFEROMETERS WITH BEC A theoretical analysis based on mean-field approximation CHIEN-NAN LIU FU-JEN CATHOLIC UNIVERSITY TAIPEI, TAIWAN

ATOM INTERFEROMETERS WITH BEC A theoretical analysis based on mean-field approximation CHIEN-NAN LIU FU-JEN CATHOLIC UNIVERSITY TAIPEI, TAIWAN 1 ATOM INTERFEROMETERS WITH BEC A theoretical analysis based on mean-field approximation CHIEN-NAN LIU FU-JEN CATHOLIC UNIVERSITY TAIPEI, TAIWAN Collaborators 2 Prof. Shinichi Watanabe G. Gopi Krishna

More information

Atom interferometry in microgravity: the ICE project

Atom interferometry in microgravity: the ICE project Atom interferometry in microgravity: the ICE project (4) G. Stern 1,2, R. Geiger 1, V. Ménoret 1,B. Battelier 1, R. Charrière 3, N. Zahzam 3, Y. Bidel 3, L. Mondin 4, F. Pereira 2, A. Bresson 3, A. Landragin

More information

Experimental AMO eets meets M odel Model Building: Part I (Precision Atom Interferometry)

Experimental AMO eets meets M odel Model Building: Part I (Precision Atom Interferometry) Experimental AMO meets Model Building: Part I (Precision Atom Interferometry) Interference of Rb atoms Chiow, et. al, PRL, 2011 Young s double slit with atoms Young s 2 slit with Helium atoms Interference

More information

State of the art cold atom gyroscope without dead times

State of the art cold atom gyroscope without dead times State of the art cold atom gyroscope without dead times Remi Geiger SYRTE, Observatoire de Paris GDR IQFA Telecom Paris November 18 th, 2016 I. Dutta, D. Savoie, B. Fang, B. Venon, C. L. Garrido Alzar,

More information

Atomic Quantum Sensors and Fundamental Tests

Atomic Quantum Sensors and Fundamental Tests Atomic Quantum Sensors and Fundamental Tests C. Salomon Laboratoire Kastler Brossel, Ecole Normale Supérieure, Paris ESA- ESTEC-FPRAT, January 21th, 2010 Fundamental Questions 1) Missing mass in the Universe

More information

Characterization and limits of a cold atom Sagnac interferometer

Characterization and limits of a cold atom Sagnac interferometer Characterization and limits of a cold atom Sagnac interferometer A. Gauguet, Benjamin Canuel, Thomas Lévèque, Walid Chaibi, Arnaud Landragin To cite this version: A. Gauguet, Benjamin Canuel, Thomas Lévèque,

More information

Advanced accelerometer/gradiometer concepts based on atom interferometry

Advanced accelerometer/gradiometer concepts based on atom interferometry Advanced accelerometer/gradiometer concepts based on atom interferometry Malte Schmidt, Alexander Senger, Matthias Hauth, Sebastian Grede, Christian Freier, Achim Peters Humboldt-Universität zu Berlin

More information

Coherent manipulation of atomic wavefunctions in an optical lattice. V. V. Ivanov & A. Alberti, M. Schioppo, G. Ferrari and G. M.

Coherent manipulation of atomic wavefunctions in an optical lattice. V. V. Ivanov & A. Alberti, M. Schioppo, G. Ferrari and G. M. Coherent manipulation of atomic wavefunctions in an optical lattice V. V. Ivanov & A. Alberti, M. Schioppo, G. Ferrari and G. M. Tino Group Andrea Alberti Marco Schioppo Guglielmo M. Tino me Gabriele Ferarri

More information

CESIUM ATOMIC FOUNTAIN CLOCKS AT NMIJ

CESIUM ATOMIC FOUNTAIN CLOCKS AT NMIJ CESIUM ATOMIC FOUNTAIN CLOCKS AT NMIJ A. Takamizawa 1, S. Yanagimachi 1, Y. Shirakawa 2, K. Watabe 1, K. Hagimoto 1, and T. Ikegami 1 1 National Metrology Institute of Japan (NMIJ), AIST 2 Tokyo University

More information

arxiv: v1 [physics.atom-ph] 19 Jun 2014

arxiv: v1 [physics.atom-ph] 19 Jun 2014 arxiv:1406.5134v1 [physics.atom-ph] 19 Jun 2014 Stability comparison of two absolute gravimeters: optical versus atomic interferometers P. Gillot 1, O. Francis 2, A. Landragin 1, F. Pereira Dos Santos

More information

Hybrid Atom-Optical Interferometry for Gravitational Wave Detection and Geophysics

Hybrid Atom-Optical Interferometry for Gravitational Wave Detection and Geophysics Hybrid Atom-Optical Interferometry for Gravitational Wave Detection and Geophysics Remi Geiger, SYRTE for the MIGA consortium EGAS 46, July 3rd 2014, Lille, France http://syrte.obspm.fr/tfc/capteurs_inertiels

More information

arxiv: v3 [physics.atom-ph] 16 Oct 2015

arxiv: v3 [physics.atom-ph] 16 Oct 2015 Influence of chirping the Raman lasers in an atom gravimeter: phase shifts due to the Raman light shift and to the finite speed of light B. Cheng, P. Gillot, S. Merlet, F. Pereira Dos Santos arxiv:1506.03207v3

More information

A novel 2-D + magneto-optical trap configuration for cold atoms

A novel 2-D + magneto-optical trap configuration for cold atoms A novel 2-D + magneto-optical trap configuration for cold atoms M. Semonyo 1, S. Dlamini 1, M. J. Morrissey 1 and F. Petruccione 1,2 1 Quantum Research Group, School of Chemistry & Physics, University

More information

Transportable optical clocks: Towards gravimetry based on the gravitational redshift

Transportable optical clocks: Towards gravimetry based on the gravitational redshift Transportable optical clocks: Towards gravimetry based on the gravitational redshift A.A. Görlitz, P. Lemonde, C. Salomon, B.S. Schiller, U. Sterr and G. Tino C.Towards a Roadmap for Future Satellite Gravity

More information

arxiv:physics/ v2 [physics.atom-ph] 12 Dec 2005

arxiv:physics/ v2 [physics.atom-ph] 12 Dec 2005 A new determination of the fine structure constant based on Bloch oscillations of ultracold atoms in a vertical optical lattice arxiv:physics/0510101v2 [physics.atom-ph] 12 Dec 2005 Pierre Cladé, 1 Estefania

More information

Development of a compact Yb optical lattice clock

Development of a compact Yb optical lattice clock Development of a compact Yb optical lattice clock A. A. Görlitz, C. Abou-Jaoudeh, C. Bruni, B. I. Ernsting, A. Nevsky, S. Schiller C. ESA Workshop on Optical Atomic Clocks D. Frascati, 14 th 16 th of October

More information

Atom Interferometric Gravity Wave Detectors. Mark Kasevich Dept. of Physics and Applied Physics Stanford University, Stanford CA

Atom Interferometric Gravity Wave Detectors. Mark Kasevich Dept. of Physics and Applied Physics Stanford University, Stanford CA Atom Interferometric Gravity Wave Detectors Mark Kasevich Dept. of Physics and Applied Physics Stanford University, Stanford CA Outline Basic concepts Current instrumentation AGIS detectors Space-based/LEO

More information

Les Houches 2009: Metastable Helium Atom Laser

Les Houches 2009: Metastable Helium Atom Laser Les Houches 2009: Metastable Helium Atom Laser Les Houches, Chamonix, February 2005 Australian Research Council Centre of Excellence for Quantum-Atom Optics UQ Brisbane SUT Melbourne ANU Canberra Snowy

More information

Atom interferometry. Quantum metrology and fundamental constants. Laboratoire de physique des lasers, CNRS-Université Paris Nord

Atom interferometry. Quantum metrology and fundamental constants. Laboratoire de physique des lasers, CNRS-Université Paris Nord Diffraction Interferometry Conclusion Laboratoire de physique des lasers, CNRS-Université Paris Nord Quantum metrology and fundamental constants Diffraction Interferometry Conclusion Introduction Why using

More information

Atom Quantum Sensors on ground and in space

Atom Quantum Sensors on ground and in space Atom Quantum Sensors on ground and in space Ernst M. Rasel AG Wolfgang Ertmer Quantum Sensors Division Institut für Quantenoptik Leibniz Universität Hannover IQ - Quantum Sensors Inertial Quantum Probes

More information

MEASUREMENT OF SHORT RANGE FORCES USING COLD ATOMS

MEASUREMENT OF SHORT RANGE FORCES USING COLD ATOMS 1 MEASUREMENT OF SHORT RANGE FORCES USING COLD ATOMS F. PEREIRA DOS SANTOS, P. WOLF, A. LANDRAGIN, M.-C. ANGONIN, P. LEMONDE, S. BIZE, and A. CLAIRON LNE-SYRTE, CNRS UMR 8630, UPMC, Observatoire de Paris,

More information

Progress on Atom Interferometer (AI) in BUAA

Progress on Atom Interferometer (AI) in BUAA Progress on Atom Interferometer (AI) in BUAA Group of Prof. FANG Jiancheng Beihang University ZHANG Yuchi, Hu Zhaohui, QI Lu, WANG Tongyu, WANG Tao 01.09.2011 7 th UK-China Workshop on Space Science and

More information

Looking For Dark Energy On Earth: A New Experiment Using Atom Interferometry That Galileo Would Understand

Looking For Dark Energy On Earth: A New Experiment Using Atom Interferometry That Galileo Would Understand Looking For Dark Energy On Earth: A New Experiment Using Atom Interferometry That Galileo Would Understand Martin Perl Kavli Institute For Particle Astrophysics And Cosmology SLAC Linear Accelerator Laboratory

More information

Forca-G: A trapped atom interferometer for the measurement of short range forces

Forca-G: A trapped atom interferometer for the measurement of short range forces Forca-G: A trapped atom interferometer for the measurement of short range forces Bruno Pelle, Quentin Beaufils, Gunnar Tackmann, Xiaolong Wang, Adèle Hilico and Franck Pereira dos Santos Sophie Pelisson,

More information

THE SPACE OPTICAL CLOCKS PROJECT

THE SPACE OPTICAL CLOCKS PROJECT THE SPACE OPTICAL CLOCKS PROJECT S. Schiller (1), G. M. Tino (2), P. Lemonde (3), U. Sterr (4), A. Görlitz (1), N. Poli (2), A. Nevsky (1), C. Salomon (5) and the SOC team (1,2,3,4) (1) Heinrich-Heine-Universität

More information

Lecture 32. Lidar Error and Sensitivity Analysis

Lecture 32. Lidar Error and Sensitivity Analysis Lecture 3. Lidar Error and Sensitivity Analysis Introduction Accuracy in lidar measurements Precision in lidar measurements Error analysis for Na Doppler lidar Sensitivity analysis Summary 1 Errors vs.

More information

PROGRESS TOWARDS CONSTRUCTION OF A FERMIONIC ATOMIC CLOCK FOR NASA S DEEP SPACE NETWORK

PROGRESS TOWARDS CONSTRUCTION OF A FERMIONIC ATOMIC CLOCK FOR NASA S DEEP SPACE NETWORK PROGRESS TOWARDS CONSTRUCTION OF A FERMIONIC ATOMIC CLOCK FOR NASA S DEEP SPACE NETWORK Megan K. Ivory Advisor: Dr. Seth A. Aubin College of William and Mary Atomic clocks are the most accurate time and

More information

arxiv:physics/ v1 [physics.atom-ph] 25 May 2001

arxiv:physics/ v1 [physics.atom-ph] 25 May 2001 Sensitive Absolute Gravity Gradiometry Using Atom Interferometry J. M. McGuirk, G. T. Foster, J. B. Fixler, M.J. Snadden, and M. A. Kasevich Physics Department, Yale University, New Haven CT, 06520 (May

More information

Characterization of an Atom Interferometer Gravimeter with Classical Sensors for the Use in Geodesy and Geophysics

Characterization of an Atom Interferometer Gravimeter with Classical Sensors for the Use in Geodesy and Geophysics Characterization of an Atom Interferometer Gravimeter with Classical Sensors for the Use in Geodesy and Geophysics M. Schilling C. Freier V. Schkolnik M. Hauth H. Wziontek H.-G. Scherneck A. Peters and

More information

Ultracold atoms and molecules

Ultracold atoms and molecules Advanced Experimental Techniques Ultracold atoms and molecules Steven Knoop s.knoop@vu.nl VU, June 014 1 Ultracold atoms laser cooling evaporative cooling BEC Bose-Einstein condensation atom trap: magnetic

More information

Gravimètre Quantique Absolu : une utilisation opérationnelle des atomes froids pour la mesure de gravité. Dr. Jean Lautier-Gaud Journée CNFGG

Gravimètre Quantique Absolu : une utilisation opérationnelle des atomes froids pour la mesure de gravité. Dr. Jean Lautier-Gaud Journée CNFGG Gravimètre Quantique Absolu : une utilisation opérationnelle des atomes froids pour la mesure de gravité Dr. Jean Lautier-Gaud Journée CNFGG Outline Brief overview of Muquans Absolute gravimetry with cold

More information

Point source atom interferometry with a cloud of finite size

Point source atom interferometry with a cloud of finite size Point source atom interferometry with a cloud of finite size Gregory W. Hoth, 1, a) Bruno Pelle, 1 Stefan Riedl, 1 John Kitching, 1 and Elizabeth A. Donley 1 National Institute of Standards and Technology,

More information

Optical Lattice Clock with Spin-1/2 Ytterbium Atoms. Nathan D. Lemke

Optical Lattice Clock with Spin-1/2 Ytterbium Atoms. Nathan D. Lemke Optical Lattice Clock with Spin-1/2 Ytterbium Atoms Nathan D. Lemke number of seconds to gain/lose one second Clocks, past & present 10 18 10 15 one second per billion years one second per million years

More information

Atom-Based Test of the Equivalence Principle

Atom-Based Test of the Equivalence Principle Space Sci Rev (2009) 148: 225 232 DOI 10.1007/s11214-009-9566-x Atom-Based Test of the Equivalence Principle Sebastian Fray Martin Weitz Received: 3 April 2009 / Accepted: 7 July 2009 / Published online:

More information

EYLSA laser for atom cooling

EYLSA laser for atom cooling 1/7 For decades, cold atom system and Bose-Einstein condensates (obtained from ultra-cold atoms) have been two of the most studied topics in fundamental physics. Several Nobel prizes have been awarded

More information

LASER COOLING AND TRAPPING OF ATOMIC STRONTIUM FOR ULTRACOLD ATOMS PHYSICS, HIGH-PRECISION SPECTROSCOPY AND QUANTUM SENSORS

LASER COOLING AND TRAPPING OF ATOMIC STRONTIUM FOR ULTRACOLD ATOMS PHYSICS, HIGH-PRECISION SPECTROSCOPY AND QUANTUM SENSORS Brief Review Modern Physics Letters B, Vol. 20, No. 21 (2006) 1287 1320 c World Scientific Publishing Company LASER COOLING AND TRAPPING OF ATOMIC STRONTIUM FOR ULTRACOLD ATOMS PHYSICS, HIGH-PRECISION

More information

arxiv: v1 [physics.atom-ph] 31 Aug 2008

arxiv: v1 [physics.atom-ph] 31 Aug 2008 Off-resonant Raman transitions impact in an atom interferometer A. Gauguet, T. E. Mehlstäubler, T. Lévèque, J. Le Gouët, W. Chaibi, B. Canuel, A. Clairon, F. Pereira os Santos, and A. Landragin LNE-SYRTE,

More information

Lecture 2:Matter. Wave Interferometry

Lecture 2:Matter. Wave Interferometry Lecture :Matter Wave Interferometry Matter wave interferometry: as old as Quantum Mechanics Neutron diffraction and electron diffraction are standard investigation tools in solid state physics Cold atoms:

More information

Fold optics path: an improvement for an atomic fountain

Fold optics path: an improvement for an atomic fountain Fold optics path: an improvement for an atomic fountain Wei Rong( ) a)b), Zhou Zi-Chao( ) a)b), Shi Chun-Yan( ) a)b), Zhao Jian-Bo( ) a)b), Li Tang( ) a)b), and Wang Yu-Zhu( ) a)b) a) Key Laboratory for

More information

A preliminary measurement of the fine structure constant based on atom interferometry

A preliminary measurement of the fine structure constant based on atom interferometry A preliminary measurement of the fine structure constant based on atom interferometry Andreas Wicht, Joel M. Hensley, Edina Sarajlic and Steven Chu Physics Department, Stanford University, Stanford, CA

More information

Precision Measurement of Gravity at Micrometer Scale using Ultracold Atoms

Precision Measurement of Gravity at Micrometer Scale using Ultracold Atoms Precision Measurement of Gravity at Micrometer Scale using Ultracold Atoms Guglielmo M. Tino Università degli Studi di Firenze - Dipartimento di Fisica, LENS Istituto Nazionale di Fisica Nucleare - Sezione

More information

FG5 Absolute Gravimeter

FG5 Absolute Gravimeter FG5 Absolute Gravimeter Micro-g LaCoste Derek van Westrum, Ph.D. www.microglacoste.com derek@microglacoste.com FG5 Specifications Accuracy: 2 μgal (observed agreement between FG5 instruments) Precision:

More information

New Searches for Subgravitational Forces

New Searches for Subgravitational Forces New Searches for Subgravitational Forces Jay Wacker SLAC University of California, Davis November 26, 2007 with Peter Graham Mark Kasevich 1 New Era in Fundamental Physics Energy Frontier LHC Nature of

More information

Atomic clocks. Clocks

Atomic clocks. Clocks Atomic clocks Clocks 1 Ingredients for a clock 1. Need a system with periodic behavior: it cycles occur at constant frequency 2. Count the cycles to produce time interval 3. Agree on the origin of time

More information

Reviewers' comments: Reviewer #1 (Remarks to the Author):

Reviewers' comments: Reviewer #1 (Remarks to the Author): Reviewers' comments: Reviewer #1 (Remarks to the Author): In their manuscript Dual Matter-Wave Inertial Sensors in Weightlessness Brynle Barrett et al. describe an dual species atom interferometer experiment

More information

RDECOM. Optimal pulse schemes for high-precision atom interferometry U.S.ARMY. Michael Goerz 1, Paul Kunz 1, Mark Kasevich 2, Vladimir Malinovsky 1

RDECOM. Optimal pulse schemes for high-precision atom interferometry U.S.ARMY. Michael Goerz 1, Paul Kunz 1, Mark Kasevich 2, Vladimir Malinovsky 1 U.S.ARMY U.S. ARMY RDCOM AH.L RSARCH LABORATORY Optimal pulse schemes for high-precision atom interferometry Michael Goerz 1, Paul Kunz 1, Mark Kasevich 2, Vladimir Malinovsky 1 1 U.S. Army Research Lab,

More information

High Accuracy Strontium Ion Optical Clock

High Accuracy Strontium Ion Optical Clock High Accuracy Strontium Ion Optical Clock Helen Margolis, Geoff Barwood, Hugh Klein, Guilong Huang, Stephen Lea, Krzysztof Szymaniec and Patrick Gill T&F Club 15 th April 2005 Outline Optical frequency

More information

Supported by NIST, the Packard Foundation, the NSF, ARO. Penn State

Supported by NIST, the Packard Foundation, the NSF, ARO. Penn State Measuring the electron edm using Cs and Rb atoms in optical lattices (and other experiments) Fang Fang Osama Kassis Xiao Li Dr. Karl Nelson Trevor Wenger Josh Albert Dr. Toshiya Kinoshita DSW Penn State

More information

High sensitivity probe absorption technique for time-of-flight measurements on cold atoms

High sensitivity probe absorption technique for time-of-flight measurements on cold atoms PRAMANA c Indian Academy of Sciences Vol. 66, No. 6 journal of June 006 physics pp. 107 1035 High sensitivity probe absorption technique for time-of-flight measurements on cold atoms A K MOHAPATRA and

More information

Cold atom interferometers for inertial measurements. Arnaud Landragin

Cold atom interferometers for inertial measurements. Arnaud Landragin Cold atom interferometers for inertial measurements Arnaud Landragin Atom interferometry as Inertial sensors long term stability and accuracy Inertial navigation satellite, submarine Fundamental physics

More information

Mapping the absolute magnetic field and evaluating the quadratic Zeeman effect induced systematic error in an atom interferometer gravimeter

Mapping the absolute magnetic field and evaluating the quadratic Zeeman effect induced systematic error in an atom interferometer gravimeter Mapping the absolute magnetic field evaluating the quadratic Zeeman effect induced systematic error in an atom interferometer gravimeter Qing-Qing Hu 1,, Christian reier 1, astian Leykauf 1, Vladimir Schkolnik

More information

Cold Atom Navigation Sensors. Atom Interferometry Group Stanford Center for Position, Navigation and Time Mark Kasevich

Cold Atom Navigation Sensors. Atom Interferometry Group Stanford Center for Position, Navigation and Time Mark Kasevich Cold Atom Navigation Sensors Atom Interferometry Group Stanford Center for Position, Navigation and Time Mark Kasevich Navigation strategies Radio navigation Radio reference signals allow trajectory determination

More information

STE-QUEST (Space-Time Explorer and Quantum Test of the Equivalence Principle): the mission concept test of gravitational time dilation

STE-QUEST (Space-Time Explorer and Quantum Test of the Equivalence Principle): the mission concept test of gravitational time dilation 13th ICATPP Conference on Astroparticle, Particle, Space Physics and Detectors for Physics Applications Como, 3. -7. 10. 2011 STE-QUEST (Space-Time Explorer and Quantum Test of the Equivalence Principle):

More information

1. Introduction. 2. New approaches

1. Introduction. 2. New approaches New Approaches To An Indium Ion Optical Frequency Standard Kazuhiro HAYASAKA National Institute of Information and Communications Technology(NICT) e-mail:hayasaka@nict.go.jp ECTI200 . Introduction Outline

More information

arxiv: v1 [quant-ph] 6 Jul 2012

arxiv: v1 [quant-ph] 6 Jul 2012 Precision atomic gravimeter based on Bragg diffraction P. A. Altin, M. T. Johnsson, V. Negnevitsky, G. R. Dennis, R. P. Anderson, J. E. Debs, S. S. Szigeti, K. S. Hardman, S. Bennetts, G. D. McDonald,

More information

Squeezed Light for Gravitational Wave Interferometers

Squeezed Light for Gravitational Wave Interferometers Squeezed Light for Gravitational Wave Interferometers R. Schnabel, S. Chelkowski, H. Vahlbruch, B. Hage, A. Franzen, and K. Danzmann. Institut für Atom- und Molekülphysik, Universität Hannover Max-Planck-Institut

More information

Stationary 87 Sr optical lattice clock at PTB ( Accuracy, Instability, and Applications)

Stationary 87 Sr optical lattice clock at PTB ( Accuracy, Instability, and Applications) Stationary 87 Sr optical lattice clock at PTB ( Accuracy, Instability, and Applications) Ali Al-Masoudi, Sören Dörscher, Roman Schwarz, Sebastian Häfner, Uwe Sterr, and Christian Lisdat Outline Introduction

More information

Tests of fundamental physics using atom interferometry

Tests of fundamental physics using atom interferometry Tests of fundamental physics using atom interferometry Leibniz Universität Hannover RTG 1729, Lecture 3 Jason Hogan Stanford University January 30, 2014 Large wavepacket separation Long interferometer

More information

Cold atom gyroscope with 1 nrad.s -1 rotation stability

Cold atom gyroscope with 1 nrad.s -1 rotation stability Cold atom gyroscope with 1 nrad.s -1 rotation stability D. Savoie, I. Dutta, B. Fang, B. Venon, N. Miélec, R. Sapam, C. Garrido Alzar, R. Geiger and A. Landragin LNE-SYRTE, Observatoire de Paris IACI team

More information

arxiv:physics/ v1 [physics.atom-ph] 7 Nov 2006

arxiv:physics/ v1 [physics.atom-ph] 7 Nov 2006 87 Sr lattice clock with inaccuracy below 5 Martin M. Boyd, Andrew D. Ludlow, Sebastian Blatt, Seth M. Foreman, Tetsuya Ido, Tanya Zelevinsky, and Jun Ye JILA, National Institute of Standards and Technology

More information

arxiv: v1 [physics.atom-ph] 11 May 2011

arxiv: v1 [physics.atom-ph] 11 May 2011 arxiv:1105.2173v1 [physics.atom-ph] 11 May 2011 Perturbations of the local gravity field due to mass distribution on precise measuring instruments: a numerical method applied to a cold atom gravimeter

More information

Temperature and Pressure Sensor Interfaces for the ATTA Experiment. Ashleigh Lonis Columbia University REU 2012

Temperature and Pressure Sensor Interfaces for the ATTA Experiment. Ashleigh Lonis Columbia University REU 2012 Temperature and Pressure Sensor Interfaces for the ATTA Experiment Ashleigh Lonis Columbia University REU 2012 Summary Introduction to Dark Matter and Detection What is Dark Matter? Xenon Experiment Introduction

More information

Atom lasers. FOMO summer school 2016 Florian Schreck, University of Amsterdam MIT 1997 NIST Munich Yale 1998

Atom lasers. FOMO summer school 2016 Florian Schreck, University of Amsterdam MIT 1997 NIST Munich Yale 1998 Atom lasers MIT 1997 Yale 1998 NIST 1999 Munich 1999 FOMO summer school 2016 Florian Schreck, University of Amsterdam Overview What? Why? Pulsed atom lasers Experiments with atom lasers Continuous atom

More information

Multipath Interferometer on an AtomChip. Francesco Saverio Cataliotti

Multipath Interferometer on an AtomChip. Francesco Saverio Cataliotti Multipath Interferometer on an AtomChip Francesco Saverio Cataliotti Outlook Bose-Einstein condensates on a microchip Atom Interferometry Multipath Interferometry on an AtomChip Results and Conclusions

More information

Laser cooling and trapping

Laser cooling and trapping Laser cooling and trapping William D. Phillips wdp@umd.edu Physics 623 14 April 2016 Why Cool and Trap Atoms? Original motivation and most practical current application: ATOMIC CLOCKS Current scientific

More information

Quantum Gases. Subhadeep Gupta. UW REU Seminar, 11 July 2011

Quantum Gases. Subhadeep Gupta. UW REU Seminar, 11 July 2011 Quantum Gases Subhadeep Gupta UW REU Seminar, 11 July 2011 Ultracold Atoms, Mixtures, and Molecules Subhadeep Gupta UW REU Seminar, 11 July 2011 Ultracold Atoms High sensitivity (large signal to noise,

More information

Time Reversal and the electron electric dipole moment. Ben Sauer

Time Reversal and the electron electric dipole moment. Ben Sauer Time Reversal and the electron electric dipole moment Ben Sauer Mysteries of physics Mysteries of physics Baryon asymmetry Why is there more matter than antimatter in the observable universe? Breaking

More information

Uncertainty evaluation of the caesium fountain clock PTB-CSF2

Uncertainty evaluation of the caesium fountain clock PTB-CSF2 Uncertainty evaluation of the caesium fountain clock PTB-CSF2 V. Gerginov, N. Nemitz, S. Weyers, R. Schröder, D. Griebsch and R. Wynands Physikalisch-Technische Bundesanstalt (PTB) Bundesallee 100, 38116

More information

Primary Frequency Standards at NIST. S.R. Jefferts NIST Time and Frequency Division

Primary Frequency Standards at NIST. S.R. Jefferts NIST Time and Frequency Division Primary Frequency Standards at NIST S.R. Jefferts NIST Time and Frequency Division Outline Atomic Clocks - general Primary Frequency Standard Beam Standards Laser-Cooled Primary Standards Systematic Frequency

More information

Cold Magnesium Atoms for an Optical Clock

Cold Magnesium Atoms for an Optical Clock Cold Magnesium Atoms for an Optical Clock Tanja Mehlstäubler Jan Friebe Volker Michels Karsten Moldenhauer Nils Rehbein Dr. Hardo Stöhr Dr. Ernst-Maria Rasel Prof. Dr. Wolfgang Ertmer Institute of Quantum

More information

Gravitational Waves and LIGO: A Technical History

Gravitational Waves and LIGO: A Technical History Gravitational Waves and LIGO: A Technical History Stan Whitcomb IEEE SV Tech History Committee Event 11 October 2018 LIGO-G180195-v3 Goal of Talk Review a few of the technical developments that enabled

More information

Limits of the separated-path Ramsey atom interferometer

Limits of the separated-path Ramsey atom interferometer J. Phys. B: At. Mol. Opt. Phys. 3 (1999) 5033 5045. Printed in the UK PII: S0953-4075(99)06844-3 Limits of the separated-path Ramsey atom interferometer R M Godun,CLWebb, P D Featonby, M B d Arcy, M K

More information

(Noise) correlations in optical lattices

(Noise) correlations in optical lattices (Noise) correlations in optical lattices Dries van Oosten WA QUANTUM http://www.quantum.physik.uni mainz.de/bec The Teams The Fermions: Christoph Clausen Thorsten Best Ulrich Schneider Sebastian Will Lucia

More information

arxiv:physics/ v1 [physics.atom-ph] 2 Jul 2004

arxiv:physics/ v1 [physics.atom-ph] 2 Jul 2004 Narrow Line Cooling and Momentum-Space Crystals Thomas H. Loftus, Tetsuya Ido, Martin M. Boyd, Andrew D. Ludlow, and Jun Ye JILA, National Institute of Standards and Technology and University of Colorado,

More information

Differential phase extraction in dual interferometers exploiting the correlation between classical and quantum sensors

Differential phase extraction in dual interferometers exploiting the correlation between classical and quantum sensors Differential phase extraction in dual interferometers exploiting the correlation between classical and quantum sensors M. Langlois, R. Caldani, A. Trimeche, S. Merlet, Franck Pereira dos Santos To cite

More information

Optical Lattice Clock with Neutral Mercury

Optical Lattice Clock with Neutral Mercury Optical Lattice Clock with Neutral Mercury R. Tyumenev, Z. Xu, J.J. McFerran, Y. Le Coq and S. Bize SYRTE, Observatoire de Paris 61 avenue de l Observatoire, 75014 Paris, France rinat.tyumenev@obspm.fr

More information

Squeezed Light and Quantum Imaging with Four-Wave Mixing in Hot Atoms

Squeezed Light and Quantum Imaging with Four-Wave Mixing in Hot Atoms Squeezed Light and Quantum Imaging with Four-Wave Mixing in Hot Atoms Squeezed Light and Quantum Imaging with Four-Wave Mixing in Hot Atoms Alberto Marino Ulrich Vogl Jeremy Clark (U Maryland) Quentin

More information

Lecture 30. Lidar Error and Sensitivity Analysis

Lecture 30. Lidar Error and Sensitivity Analysis Lecture 30. Lidar Error and Sensitivity Analysis q Introduction q Accuracy versus Precision q Accuracy in lidar measurements q Precision in lidar measurements q Propagation of errors vs. differential method

More information

Laser cooling of 173 Yb for isotope separation and precision hyperfine spectroscopy

Laser cooling of 173 Yb for isotope separation and precision hyperfine spectroscopy Laser cooling of 173 Yb for isotope separation and precision hyperfine spectroscopy Dipankar Das and Vasant Natarajan* Department of Physics, Indian Institute of Science, Bangalore 560 012, India Received

More information

Supplemental material for Bound electron nonlinearity beyond the ionization threshold

Supplemental material for Bound electron nonlinearity beyond the ionization threshold Supplemental material for Bound electron nonlinearity beyond the ionization threshold 1. Experimental setup The laser used in the experiments is a λ=800 nm Ti:Sapphire amplifier producing 42 fs, 10 mj

More information

Micromechanical Instruments for Ferromagnetic Measurements

Micromechanical Instruments for Ferromagnetic Measurements Micromechanical Instruments for Ferromagnetic Measurements John Moreland NIST 325 Broadway, Boulder, CO, 80305 Phone:+1-303-497-3641 FAX: +1-303-497-3725 E-mail: moreland@boulder.nist.gov Presented at

More information