arxiv:hep-ph/ v2 13 Mar 2001

Size: px
Start display at page:

Download "arxiv:hep-ph/ v2 13 Mar 2001"

Transcription

1 TTP00-13 NIKHEF Some higher moments o deep inelastic structure unctions at next-to-next-to leading order o perturbative QCD arxiv:hep-ph/ v2 13 Mar 2001 A. Rétey a and J.A.M. Vermaseren b a Institut ür Theoretische Teilchenphysik, Universität Karlsruhe, D Karlsruhe, Germany b NIKHEF Theory Group Kruislaan 409, 1098 SJ Amsterdam, The Netherlands Abstract We present the analytic next-to-next-to-leading QCD calculation o some higher moments o deep inelastic structure unctions in the leading twist approximation. We give results or the moments N=1,3,5,7,9,11,13 o the structure unction F 3. Similarly we present the moments N=10,12 or the lavour singlet and N=12,14 or the non-singlet structure unctions F 2 and F L. We have calculated both the three-loop anomalous dimensions o the corresponding operators and the three-loop coeicient unctions o the moments o these structure unctions. 1

2 1 Introduction The determination o the next-to-next-to-leading NNL) order QCD approximation or the structure unctions o deep inelastic scattering has become important or the understanding o perturbative QCD and necessary or an accurate comparison o perturbative QCD with the increasing precision o experiments. Such calculations however are rather complicated and hence a complete NNL result does not exist as o yet. The one-loop anomalous dimensions were calculated in 1, 2. In 3 see also the reerences therein) the complete one-loop coeicient unctions were obtained. Anomalous dimensions at 2-loop order were obtained in 4, 5, 6, 7, 8, 9, 10, 11, 12. The 2-loop coeicient unctions were calculated in 13, 14, 15, 16, 17, 18, 19, 20, 21. Analytical results o the 3-loop anomalous dimensions and coeicient unctions o the moments o F 2 and F L are only known or the moments N=2,4,6,8 in both the singlet and non-singlet case and additionally or N =10 in the non-singlet case rom 22 and 23. In addition the Gross- Llevellyn Smith sum rule, which corresponds to the irst moment o F νp+ νp 3 has been calculated at this order 24. For a complete reconstruction o the x-dependence o the structure unctions via an inverse Mellin-transormation one would need the moments or all N that is either all even or all odd integer values). Additionally one needs them both or F 2 and F 3 in order to untangle the various quark and gluon contributions. The determination o the NNL approximation or generic N is work in progress 25, but probably will not be inished in the near uture. The available moments o F 2 have been used by a number o authors to make a reconstruction o the complete structure unctions at NNL by a variety o means 23, 26, 27, 28. Additionally they can be used to obtain a better value o α S 29 It should be clear that it is important to have as large a number o moments as possible. First, these results can be immediately used to increase the precision o phenomenological investigations o deep inelastic scattering 30. Second, the moments will be a very important check or the new methods and programs needed or the determination o the 3-loop results or arbitrary N. Unortunately it is not very easy to increase the number o moments, because each new moment requires roughly ive times the computer resources that its predecessor needs. With the advent o better computers this means that by now it has been possible to obtain two more moments or the singlet case and one additional moment or the non singlet F 2 case. This should allow or instance a somewhat better determination o α S. More important however is the determination o the irst seven odd moments o F νp+ νp 3 to three loops. To this end we used the the same programs as in 23, state o the art computers and a new version o the symbolic manipulation program FORM 31 that supports now 64-bit architectures and to some extend parallel computers see also 32). We could push the limit in these calculations to include two new moments N =10,12) in the calculation o the lavour singlet structure unctions F L and F 2, and two new moments N = 12,14) or the lavour nonsinglet structure unctions F L and F 2. Additionally we have computed the moments N=3,5,7,9,11,13 o the structure unction F 3. We do not expect more moments to become available beore the complete results or all N will be presented. 2 The ormalism This calculation ollows the one presented in 23 see also 21) in every detail, so we only will give a very short review on the methods used. We need to calculate the hadronic part o the amplitude or unpolarized deep inelastic scattering 2

3 which is given by the hadronic tensor W µν x, Q 2 ) = 1 d 4 ze iq z p, nucl J µ z)j ν 0) nucl, p 4π = g µν q µ q ν ) 1 2x F Lx, Q 2 ) 4x + g 2 µν p µ p ν q 2 p µq ν + p ν q µ ) 2x ) 1 q 2 2x F 2x, Q 2 ) +iǫ µνρσ p ρ q σ p q F 3x, Q 2 ) 1) where the J µ are either electromagnetic or weak hadronic currents and x = Q 2 /2 p q) is the Bjorken scaling variable with 0 < x 1. Q 2 = q 2 is the transered momentum and p, nucl is the nucleon state with momentum p. In these equations spin averaging is assumed. The longitudinal structure unction F L is related to the structure unction F 1 by F L = F 2 2xF 1. For electronnucleon scattering J µ is the electromagnetic quark current and F 3 vanishes. For neutrino-nucleon scattering J µ is an electroweak quark current which has an axial vector contribution and F 3, which describes parity violating eects that arise rom vector and axial-vector intererence, will not vanish. Using the dispersion relation technique one can relate the hadronic tensor to the ollowing 4-point Green unctions: W µν p, q) = 1 2π ImT µν p, q), T µν p, q) = i d 4 ze iq z p, nucl T J µ z)j ν 0) nucl, p. Applying a ormal operator product expansion in terms o local operators to the time-ordered product o two quark currents leads to: i d 4 ze iq z T J ν1 z)j ν2 0) = ) N 1 Q 2 g ν1ν 2 q ) ν 1 q ν2 q 2 q µ1 q µ2 C jl,n Q2 µ 2, a s) N,j g ν1µ 1 g µ2ν 2 q 2 ) g ν1µ 1 q ν2 q µ2 g ν2µ 2 q ν1 q µ1 + g ν1ν 2 q µ1 q µ2 C j 2,N Q2 µ 2, a s) +i ǫ ν1ν 2µ 1ν 3 g ν3ν4 q ν4 q µ2 C j 3,N Q2 µ 2, a s) q µ3...q µn O j,{µ1,...µn } 0) + higher twists, j = α, ψ, G 2) Here we have introduced the notation a s = α s /4π) = g 2 /4π) 2 and everything is assumed to be renormalized. The sum over N runs over the standard set o the spin-n twist-2 irreducible lavour non-singlet quark operators and the singlet quark and gluon operators: O α,{µ1,...,µn } = ψλ α γ {µ1 D µ2 D µn } ψ, α = 1, 2,...,n 2 1) O Ψ,{µ1,...,µN } = ψγ {µ1 D µ2 D µn } ψ O G,{µ1,...,µN } = G {µµ1 D µ2 D µn 1 G µnµ} Application o this OPE to Eq. 1) leads to an expansion or the unphysical values x. From the proper analytical continuation to the physical region 0 < x 1 one inds or the moments o the structure unctions F 2, F L and F 3 : M k,n 2 = M 3,N 1 = dxx N 2 F k x, Q 2 ) = dxx N 1 F 3 x, Q 2 ) = i=α i=α,ψ,g C i k,n Q2 µ 2, a s)a i nucl,n, k = 2, L 3) C i,n Q2 µ 2, a s)a i nucl,n 4) 3

4 with the spin averaged matrix elements p, nucl O j,{µ1 µn } p, nucl = p {µ1 p µn } A j nucl,n p2 µ 2 ) 5) In the derivation o 3) one needs the symmetry properties o T µν under x x. This is why one can only ind either even or odd moments rom these equations, dependent on the process under consideration. For F 3 we will only consider the lavor non-singlet contributions, due to the properties o the operators O ψ and O G under charge conjugation there should not be a singlet contribution see e.g. 33). The scale-dependence o the coeicient unctions is then covered by the renormalization group equations: k=ψ,g µ 2 µ 2 + βa s) { µ 2 µ 2 + βa s) a s γn ns a s } δ jk γ jk N Q Ci,N ns 2 Q 2 C k i,n ) µ 2, a s = 0, i = 2, 3, L 6) ) µ 2, a s = 0, i = 2, L; j = ψ, G 7) The non-singlet coeicient unctions and anomalous dimensions don t depend on the index α, and we have adopted the conventional collective denotation ns or them. 3 The even moments o F 2 and F L Equation 2) is a relation between operators and does not depend on the hadronic states to which the OPE is applied. Using the method o projectors 34 one can ind both the coeicient unctions and the anomalous dimensions or the even moments o F 2 and F L as deined in Eq. 6) rom the ollowing 4-point Green unctions: Tµν qγqγ = i d 4 ze iq z p, quark T J µ z)j ν 0) quark, p 8) Tµν gγgγ = i d 4 ze iq z p, gluon T J µ z)j ν 0) gluon, p 9) Applying to Eqs. 8) the projectors q {µ1 q µn } N P N N! p µ1 p µn and, to project out the dierent Lorentz projections these projectors are valid in D = 4 2ǫ and or the leading twist approximation): p=0 10) q2 P L = p q) 2 pµ p ν 3 2ǫ q 2 P 2 = 2 2ǫ p q) 2 pµ p ν + 1 ) 2 2ǫ gµν, as well as the corresponding lavour projections results in the equations: T qγqγ,s k,n Q2 µ 2, a s, ǫ) = C ψk,n Q2 µ 2, a s, ǫ)z ψψ N a s, 1 ǫ ) + CG k,n Q2 µ 2, a s, ǫ)z Gψ N a s, 1 ) ǫ ) T gγgγ,s k,n Q2 µ 2, a s, ǫ) = C ψk,n Q2 µ 2, a s, ǫ)z ψg N a s, 1 ǫ ) + CG k,n Q2 µ 2, a s, ǫ)zn GG a s, 1 ) ǫ ) T qγqγ,ns k,n Q2 µ 2, a s, ǫ) = Ck,N ns Q2 µ 2, a s, ǫ)zn ns a s, 1 ǫ )Ans,tree quark,n ǫ) A ψ,tree quark,n ǫ) A G,tree gluon,n ǫ) k = 2, L 11) 4

5 From these equations the coeicient unctions and rom the Z ij N the anomalous dimensions can be calculated in the usual way. It should be mentioned that in the Eqs. 11) on the let hand side ater applying the projectors 10) we are let with only diagrams o the massless propagator type, a problem solved at 3-loop order long ago 35 and implemented in an eicient way in the FORM package MINCER 36. On the right hand side only the tree level diagrams contributing to the Matrix elements survive. It turns out that much computing time can be saved when calculating additionally Green unctions with external ghosts to get rid o the unphysical polarization states o the external gluons instead o using the very complicated projection onto physical states. Also, rom Eqs. 11) one can determine the ZN GG and ZGψ N only to order α2 s. To obtain the α3 s-contributions one can calculate additionally Greens unctions with external scalar ields φ that couple to gluons only at tree level. Altogether, to obtain the coeicient unctions and anomalous dimensions or the even moments with N=10,12 o F 2 and F L the ollowing diagrams had to be calculated q=quark, g=gluon, γ=photon, h=ghost, φ=scalar ield): tree 1-loop 2-loops 3-loops Lorentz projections qγqγ qφqφ gγgγ hγhγ gφgφ hφhφ Total The q {µ1 q µn } in Eq. 10) are the harmonic i.e. symmetrical and traceless) part o the tensor q µ1 q µn. The number o terms in these harmonic tensors explodes as N increases and this is the real limitation in these calculations considering the computing time as well as disk-space usage. In spite o a very eicient implementation o these tensors see 37) or N = 12, singlet and N = 14, nonsinglet, individual diagrams had a disk space usage up to and over 100 GB. Altogether the calculation o all the above diagrams or N = 10, 12 took approximately 5 weeks on a Compaq Server with 8 Alpha processors running at 700 MHz, 4 GB o RAM and GB o disk-space. The N = 14 nonsinglet calculation took comparable resources. 4 The odd moments o F 3 The coeicient unctions and anomalous dimensions o the odd moments o the structure unction F 3 can be obtained in the same way as the non-singlet part o F 2 and F L but now considering the time-ordered product o one vector current V µ and one axial vector current A ν. The axial current introduces the appearance o a γ 5 and some care has to be taken to treat it correctly within the ramework o dimensional regularization. We adopt the deinition used in 24: γ µ γ 5 = i 1 6 ǫ µνρσγ µ γ ν γ ρ γ σ Projecting out the lavour non-singlet part and the corresponding Lorentz structure with: 1 P 3 = i p αq β 1 2ǫ)2 2ǫ) ǫµναβ p q one inds products o metric tensors which have to be considered as D-dimensional objects. Since this deinition o γ 5 in D dimensions violates the axial Ward identity one needs to renormalize A µ with a renormalization constant Z A and additionally apply a inite renormalization with Z 5, both o these constants are given to 3-loop order in 24. Combining all this inally leads to Z A a s, 1 ǫ )Z 5a s, ǫ)t ns 3,N Q2 µ 2, a s, ǫ) = C 3,N Q2 µ 2, a s, ǫ)z 1 N a s, 1 ǫ )Ans N,tree ǫ) 5

6 Due to the γ 5 insertion at one o the vertices, some o the symmetries that were used to minimize the number o diagrams could not be applied in this case and to determine the T3,N ns 1076 = ) diagrams had to be evaluated, which took about 6 weeks or the moments N =1,3,5,7,9,11,13. 5 Results Using the strategies sketched in the previous section we ind the ollowing results or the coeicient unctions and anomalous dimensions. Again ollowing Re. 23, we present the combined singlet and non-singlet results or F 2 and F L in terms o lavour actors which are deined in the ollowing table or n number o lavours: l 2 l 11 l 02 l g 2 l g 11 non-singlet 1 3 n n =1 e singlet 1 1 =1 e ) 2 n n n =1 e =1 e ) 2 n n n =1 e2 The numerical values o the anomalous dimensions or the spin-even operators contributing to F 2 and F L that now are known to NNL order are: γ ψψ 2 = a s + a 2 s n l 02 n ) s n n 2 +l n n 2 )) γ ψψ 4 = a s + a 2 s n l 02 n ) s n n 2 +l n n 2 )) γ ψψ 6 = a s + a 2 s n l 02 n ) s n n 2 +l n n 2 )) γ ψψ 8 = a s + a 2 s n l 02 n ) s n n 2 +l n n 2 )) γ ψψ 10 = a s + a 2 s n l 02 n ) s n n 2 +l n n 2 )) γ ψψ γ ψψ,ns 12 = a s + a 2 s n l 02 n ) s n n 2 +l n n 2 )) 14 = a s + a 2 s n ) s n n 2 ) 6

7 γ ψg 2 = a s n a 2 s n s n n 2 ) γ ψg 4 = a s n a 2 s n s n n 2 ) γ ψg 6 = a s n a 2 s n s n n 2 ) γ ψg 8 = a s n a 2 s n s n n 2 ) γ ψg 10 = a sn a 2 s n s n n 2 ) γ ψg 12 = a sn a 2 s n s n n 2 ) γ Gψ 2 = a s + a 2 s n ) s n n 2 ) γ Gψ 4 = a s + a 2 s n ) s n n 2 ) γ Gψ 6 = a s + a 2 s n ) s n n 2 ) γ Gψ 8 = a s + a 2 s n ) s n n 2 ) γ Gψ 10 = a s + a 2 s n ) s n n 2 ) γ Gψ 12 = a s + a 2 s n ) s n n 2 ) γ GG 2 = a s n a 2 s n s n n 2 ) γ GG 4 = a 2 s n ) + a s n ) s n n 2 ) γ GG 6 = a 2 s n ) + a s n ) s n n 2 ) γ GG 8 = a 2 s n ) + a s n ) s n n 2 ) γ GG 10 = a 2 s n ) + a s n ) s n n 2 ) γ GG 12 = a 2 s n ) + a s n ) s n n 2 ) The corresponding coeicient unctions read: 7

8 C ψ 2,2 = a s + a 2 s n l 02 n ) s n l 11 n n 2 +l n n 2 )) C ψ 2,4 = a s + a 2 s n l 02 n ) s n l 11 n n 2 +l n n 2 )) C ψ 2,6 = a s + a 2 s n l 02 n ) s n l 11 n n 2 +l n n 2 )) C ψ 2,8 = a s + a 2 s n l 02 n ) s n l 11 n n 2 +l n n 2 )) C ψ 2,10 = a s + a 2 s n l 02 n ) s n l 11 n n 2 +l n n 2 )) C ψ 2,12 = a s + a 2 s n l 02 n ) s n l 11 n n 2 +l n n 2 )) C ψ,ns 2,14 = a s + a 2 s n ) s n l 11 n n 2 ) C2,2 G = 0.5 a s n a 2 s n s n n l g 11 ) n2 C2,4 G = a s n a 2 s n s n n l g 11 ) n2 C2,6 G = a s n a 2 s n s n n lg 11 ) n2 C2,8 G = a sn a 2 s n s n n lg 11 ) n2 C2,10 G = a sn a 2 s n s n n l g 11 ) n2 C2,12 G = a s n a 2 s n s n n l g 11 ) n2 8

9 C ψ L,2 = a s + a 2 s n l 02 n ) s n l 11 n n 2 +l n n 2 )) C ψ L,4 = a s + a 2 s n l 02 n ) s n l 11 n n 2 +l n n 2 )) C ψ L,6 = a s + a 2 s n l 02 n ) s n l 11 n n 2 +l n n 2 )) C ψ L,8 = a s + a 2 s n l 02 n ) s n l 11 n n 2 +l n n 2 )) C ψ L,10 = a s + a 2 s n l 02 n ) s n l 11 n n 2 +l n n 2 )) C ψ L,12 = a s + a 2 s n l 02 n ) s n l 11 n n 2 +l n n 2 )) C ψ,ns L,14 = a s + a 2 s n ) s n l 11 n n 2 ) CL,2 G = a sn a 2 s n s n n l g 11 ) n2 CL,4 G = a s n a 2 s n s n n l g 11 ) n2 CL,6 G = a s n a 2 s n s n n lg 11 ) n2 CL,8 G = a s n a 2 s n s n n lg 11 ) n2 CL,10 G = a sn a 2 s n s n n lg 11 ) n2 CL,12 G = a sn a 2 s n s n n l g 11 ) n2 The numerical values o the anomalous dimensions or the odd moments o F 3 read: 9

10 γ1 ns = 0 γ3 ns = a s + a 2 s n ) s n n 2 ) γ ns 5 = a s + a 2 s n ) s n n 2 ) γ ns 7 = a s + a 2 s n ) s n n 2 ) γ ns 9 = a s + a 2 s n ) s n n 2 ) γ ns 11 = a s + a 2 s n ) s n n 2 ) γ ns 13 = a s + a 2 s n ) s n n 2 ) and the coeicient unctions are: C ns 3,1 = 1 4 a s + a 2 s n ) s n n 2 ) C ns 3,3 = a s + a 2 s n ) s n n 2 ) C ns 3,5 = a s + a 2 s n ) s n n 2 ) C ns 3,7 = a s + a 2 s n ) s n n 2 ) C ns C ns 3,9 = a s + a 2 s n ) s n n 2 ) 3,11 = a s + a 2 s n ) s n n 2 ) C ns 3,13 = a s + a 2 s n ) s n n 2 ) 6 Acknowledgements A.R. would like to thank Sven Moch, Timo van Ritbergen and Thomas Gehrmann or many useul discussions and Denny Fliegner or technical support. J.V. would like to thank the University o Karlsruhe and the DFG or repeated hospitality. This work was supported by the DFG under Contract Ku 502/8-1 DFG-Forschergruppe Quanteneldtheorie, Computeralgebra und Monte-Carlo-Simulationen ) and the Graduiertenkolleg Elementarteilchenphysik an Beschleunigern at the Univerität Karlsruhe. 10

11 Reerences 1 D. J. Gross and F. Wilczek, Phys. Rev. D8, ). 2 D. J. Gross and F. Wilczek, Phys. Rev. D9, ). 3 W. A. Bardeen, A. J. Buras, D. W. Duke, and T. Muta, Phys. Rev. D18, ). 4 E. G. Floratos, D. A. Ross, and C. T. Sachrajda, Nucl. Phys. B129, ). 5 Nucl. Phys. B139, ). 6 E. G. Floratos, D. A. Ross, and C. T. Sachrajda, Nucl. Phys. B152, ). 7 A. Gonzalez-Arroyo, C. Lopez, and F. J. Yndurain, Nucl. Phys. B153, ). 8 A. Gonzalez-Arroyo and C. Lopez, Nucl. Phys. B166, ). 9 C. Lopez and F. J. Yndurain, Nucl. Phys. B183, ). 10 W. Furmanski and R. Petronzio, Phys. Lett. B97, ). 11 G. Curci, W. Furmanski, and R. Petronzio, Nucl. Phys. B175, ). 12 R. Hamberg and W. L. van Neerven, Nucl. Phys. B379, ). 13 D. W. Duke, J. D. Kimel, and G. A. Sowell, Phys. Rev. D25, ). 14 A. Devoto, D. W. Duke, J. D. Kimel, and G. A. Sowell, Phys. Rev. D30, ). 15 D. I. Kazakov and A. V. Kotikov, Nucl. Phys. B307, ). 16 D. I. Kazakov and A. V. Kotikov, Phys. Lett. B291, ). 17 D. I. Kazakov, A. V. Kotikov, G. Parente, O. A. Sampayo, and J. S. Guillen, Santiago de Compostela Univ. - US-FT ,rec.Jul.) 6 p. 18 W. L. van Neerven and E. B. Zijlstra, Phys. Lett. B272, ). 19 E. B. Zijlstra and W. L. van Neerven, Phys. Lett. B273, ). 20 E. B. Zijlstra and W. L. van Neerven, Nucl. Phys. B383, ). 21 S. Moch and J. A. M. Vermaseren, Nucl. Phys. B573, ), hep-ph/ S. A. Larin, T. van Ritbergen, and J. A. M. Vermaseren, Nucl. Phys. B427, ). 23 S. A. Larin, P. Nogueira, T. van Ritbergen, and J. A. M. Vermaseren, Nucl. Phys. B492, ), hep-ph/ S. A. Larin and J. A. M. Vermaseren, Phys. Lett. B259, ). 25 J. A. M. Vermaseren and S. Moch, 2000), hep-ph/ G. Parente, A. V. Kotikov, and V. G. Krivokhizhin, Phys. Lett. B333, ), hepph/ A. Kataev, A. V.Kotikov, G. Parente and A. V. Sidorov, Phys. Lett. B388, ), hep-ph/ W. L. van Neerven and A. Vogt, Nucl. Phys. B568, ), hep-ph/ J. Santiago and F. J. Yndurain, Nucl. Phys. B563, ). 11

12 30 W. L. van Neerven and A. Vogt 2000), hep-ph/ J. A. M. Vermaseren, Symbolic Manipulation with Form version 2, Tutorial and Reerence Manual Computer Algebra Nederland, Amsterdam, 1991). 32 D. Fliegner, A. Retey, and J. A. M. Vermaseren, 1999), hep-ph/ A. J. Buras, Rev. Mod. Phys. 52, ). 34 S. G. Gorishnii and S. A. Larin, Nucl. Phys. B283, ). 35 K. G. Chetyrkin and F. V. Tkachev, Nucl. Phys. B192, ). 36 S. A. Larin, F. V. Tkachev, and J. A. M. Vermaseren, NIKHEF-H S. A. Larin, T. van Ritbergen, and J. A. M. Vermaseren, Prepared or 3rd International Workshop on Sotware Engineering, Artiicial Intelligence and Expert systems or High-energy and Nuclear Physics, Oberammergau, Germany, 4-8 Oct J. A. Gracey, Phys. Lett. B322, ), hep-ph/ A Conventions Here we give the complete expressions or the newly computed moments and coeicient unctions. The notation o the color actors is as usual: The Casimir operators o the undamental and adjoint representation are denoted by C F and C A and their values or the color group SU3) are 4 3 and 3, respectively. Additionally we are using the symmetric structure constants o SU3) or which d abc d abc = For the trace normalization o the undamental representation we have inserted T F = 1 2. For a generic SUn) group the number o generators equals N A = n 2 1. The values o the Riemann ζ unction are written as ζ n = ζn). The only check or the newly computed 3-loop results is rom a large n -expansion o 38 where the n 2 terms are calculated. These terms are in agreement with ours. To test the new parallel version o FORM we have also recalculated the lower moments or F 2 and F L and ound complete agreement with 23 except or one missing term. In C G 2,2 there should be the extra term a3 s n C 2 F ζ 5). The numerical values given in this reerence are correct. It should be noted that the terms in d abc d abc enter or the irst time at the three loop level and help in the determination o P S qq P S qq. B Results or the moments o F 2 and F L γ10 GG = a s C A a s n a 2 sca a 2sC F n a 3 s C3 A a 3 sc F C A n a 3 s C2 F n ζ ζ 3 + a 3 sc 2 An a 3 s C Fn ζ a 3 s C An a 2sC A n

13 γ12 GG = a s C A a s n a 2 s C An a 3 s C3 A a 2 3 sca 2 + a 2s C F n a 3 sc F C A n ζ ζ 3 + a 3 s C2 F n + a 3 scan ζ 3 + a 3 s C F n a 3 sc A n γ Gψ 10 = a s C F a 2 sc F C A a 3 s C FC 2 A + a 2 sc 2 F ζ 3 + a 3 sc 2 FC A a 3 s C3 F ζ ζ 3 + a 3 sc F C A n a 3 s C2 F n ζ ζ 3 + a 3 s C F n 2 + a 2sC F n

14 γ Gψ 12 = a s C F 79 + a 2sC F C A a 2 s C Fn a 3 s C FC 2 A a 2 sc 2 F ζ 3 + a 3 sc 2 FC A a 3 s C3 F ζ ζ 3 + a 3 sc F C A n ζ 3 + a 3 s C2 F n ζ 3 + a 3 sc F n γ ψg 10 = a s n 28 + a 2s 165 C F n a 2s C An + a 3 sc F C A n ζ 3 + a 3 s C2 F n a 3 sc 2 An a 3 s C F n ζ ζ a 3 s C An γ ψg 12 = a s n a 2 s C Fn a 2s C An a 3 sc F C A n ζ ζ 3 + a 3 s C2 F n + a 3 scan ζ 3 + a 3 s C Fn a 3 sc A n

15 γ ψψ 10 = a s C F a 2 s C FC A a 2 s C2 F a 2 s C Fn a 2s l 02C F n a 3 sc F CA ζ 3 + a 3 s C2 F C A ζ 3 + a 3 scf ζ 3 + a 3 s C FC A n ζ 3 + a 3 scfn ζ 3 + a 3 s C Fn a 3 sl 02 C F C A n ζ 3 + a 3 s l 02CF 2 n ζ 3 + a 3 sl 02 C F n

16 γ ψψ 12 = a s C F a 2 s C F C A a 2 s C2 F a 2 s C F n a 2s l 02C F n a 3 sc F C 2 A + a 3 s C2 F C A + a 3 sc 3 F ζ ζ ζ 3 + a 3 s C F C A n ζ ζ a 3 sc 2 F n a 3 s C F n 2 + a 3 sl 02 C F C A n ζ 3 + a 3 s l 02CF 2 n ζ 3 + a 3 sl 02 C F n γ14 ns = a s C F a 2 sc F C A a 2 s C F n a 2 scf a 3 s C F C A n ζ 3 + a 3 sc F C 2 A + a 3 s C F n ζ 3 + a 3 scf 2 C A ζ 3 + a 3 scf 2 n ζ 3 + a 3 s C3 F ζ 3 16

17 C ψ 2,10 = 1 + a s C F a 2sC F C A a 2 s C F n a 2 sl 02 C F n a 3 s C F C A n a 3 sc F C 2 A ζ ζ 5 + a 3 sc F n ζ 3 + a 3 s C2 F C A ζ 3 + a 2 s C2 F ζ ζ ζ ζ ζ ζ ζ 5 + a 3 s C2 F n ζ ζ 4 + a 3 scf ζ ζ ζ 5 + a 3 s l 02C F C A n ζ ζ 4 + a 3 sl 02 C F n ζ 3 + a 3 s l 02CF 2 n ζ a 3 s l 11n d abc d abc n ζ ζ ζ 4 17

18 C ψ 2,12 = 1 + a s C F a 2 s C F C A ζ 3 + a 2 s C2 F ζ 3 + a 2 sc F n a 2sl 02 C F n a 3 s C F C A n ζ 4 + a 3 sc F C 2 A ζ ζ ζ ζ 5 + a 3 sc F n ζ 3 + a 3 s C2 F C A a 3 s C2 F n ζ ζ ζ ζ 4 + a 3 sc 3 F ζ ζ ζ ζ 5 + a 3 sl 02 C F C A n ζ ζ 4 + a 3 s l 02C F n ζ 3 + a 3 sl 02 CF 2 n ζ ζ 4 + a 3 d abc d abc sl 11 n n ζ ζ 5 18

19 C2,14 ns = 1 + a s C F a 2 s C FC A ζ 3 + a 2 s C Fn a 2 scf ζ 3 + a 3 s C FC A n ζ a 3 s C FC 2 A + a 3 s C Fn ζ ζ ζ ζ 3 + a 3 scfc 2 A ζ ζ 5 + a 3 scfn a 3 s C3 F ζ ζ 5 + a 3 s l 11n d abc d abc n ζ ζ ζ ζ ζ ζ ζ 5 19

20 C ψ L,10 = a s C F a 2 s C F C A ζ 3 + a 2 s C F n a 2 scf a 2 s l 02C F n ζ 3 + a 3 sc F C A n ζ 3 + a 3 s C F CA ζ ζ 5 + a 3 sc F n a 3 s C2 F C A ζ ζ 5 + a 3 scf 2 n ζ 3 + a 3 s C3 F ζ ζ 5 + a 3 sl 02 C F C A n ζ 3 + a 3 s l 02C F n a 3 sl 02 CFn ζ 3 + a 3 s l d abc d abc 11n n ζ ζ 5 20

21 C ψ L,12 = a s C F a 2sC F C A 13 + a 2 s C Fn ζ a 2 s C2 F + a 2 s l 02C F n a 3 s C Fn ζ 3 + a 3 sc F C A n ζ 3 + a 3 s C FC 2 A ζ ζ 5 + a 3 sc 2 FC A a 3 s C2 F n ζ ζ ζ a 3 scf ζ ζ 5 + a 3 s l 02C F C A n ζ 3 + a 3 sl 02 C F n a 3 s l 02CF 2 n ζ 3 + a 3 d abc d abc sl 11 n n ζ ζ 5 CL,14 ns = a s C F a 2 sc F C A ζ 3 + a 2 s C Fn a 2 scf ζ 3 + a 3 s C FC A n ζ 3 + a 3 s C FCA ζ ζ 5 + a 3 sc F n a 3 s C2 F C A ζ ζ 5 + a 3 scfn ζ 3 + a 3 s C3 F ζ ζ 5 + a 3 s l d abc d abc 11n n ζ ζ 5 21

22 C2,10 G = a s n a 2 s C An ζ 3 + a 2 s C F n ζ 3 + a 3 sc A n ζ 3 + a 3 s C2 A n ζ ζ ζ 5 + a 3 s C F C A n ζ ζ ζ 5 + a 3 s C F n ζ 3 + a 3 scf 2 n ζ ζ a 3 sl g d abc d abc 11 n2 N A 33 ζ ζ ζ 5 22

23 C2,12 G = a s n a 2 s C An a 2 s C F n a 3 sc A n 2 + a 3 s C2 A n 13 ζ ζ ζ ζ ζ ζ 3 + a 3 s C F C A n ζ ζ ζ 5 + a 3 s C F n ζ 3 + a 3 scf 2 n ζ ζ a 3 sl g d abc d abc 11 n2 N A CL,10 G = a s n a 2 s C An a 2 s C Fn a 3 sc A n ζ 3 + a 3 s C2 A n 91 ζ ζ ζ ζ ζ ζ ζ 5 + a 3 sc F C A n ζ 3 + a 3 s C Fn 2 + a 3 scfn ζ ζ 5 + a 3 sl g d abc d abc 11 n N A ζ ζ 5 23

24 CL,12 G = a s n a 2sC A n a 2sC F n a 3 s C An ζ 3 + a 3 s C2 A n ζ ζ 5 + a 3 sc F C A n ζ ζ 5 + a 3 s C F n ζ 3 + a 3 scf 2 n ζ ζ 5 + a 3 sl g d abc d abc 11 n N A ζ ζ 5 C Results or the moments o F 3 γ3 ns = a s C F a 2sC F C A a 2sC F n a scf a 3 s C FC A n ζ 3 + a 3 s C F CA ζ 3 + a 3 sc F n a 3sC 2FC A ζ 3 + a 3 s C2 F n ζ 3 + a 3 s C3 F ζ 3 + a 3 d abc d abc sn n 288 γ5 ns = a s C F a 2s 15 C F C A a 3 sc F C A n ζ 3 + a 3 s C F n a 3 sc 2 F n a 3 sn d abc d abc n ζ 3 + a 2s C F n a 2 s C2 F + a 3 sc F CA ζ 3 + a 3 s C2 F C A ζ 3 + a 3 scf ζ

25 γ7 ns = a s C F a 2 s C2 F + a 3 s C FC 2 A + a 2sC F C A a 3 sc 2 FC A a 3 sc 3 F γ9 ns = a s C F a 2sC F n a 3s C FC A n ζ ζ 3 + a 3 s C F n ζ 3 + a 3sC 2F n ζ ζ 3 + a 3sn d abc d abc n a 2s C F C A a 2s C F n a 3sC F C A n a 2 scf ζ 3 + a 3 s C F CA ζ 3 + a 3 s C F n a 3 scf 2 C A ζ 3 + a 3sC 2F n ζ 3 + a 3 s C3 F ζ 3 + a 3 s n d abc d abc n γ11 ns = a s C F a 2 s C2 F + a 3 sc F C 2 A + a 3 s C2 F C A + a 2s C F C A a 3s C FC A n + a 2s C Fn ζ ζ 3 + a 3 sc F n ζ ζ 3 + a 3 sc 2 Fn a 3 s C3 F + a 3 s n d abc d abc n ζ

26 γ13 ns = a s C F a 2sC F C A a 2 s C2 F + a 3 s C FC A n ζ 3 + a 3 sc F CA ζ 3 + a 3 s C Fn a 3 scfc 2 A ζ 3 + a 3 s C2 F n ζ 3 + a 3 scf ζ 3 + a 3 d abc d abc sn n a 2sC F n C ns 1 = 1 + a s C F 3 + a 2 s C FC A 23 + a 2 s C Fn +4 + a 2 s C2 F a 3 sc F C A n ζ ζ 5 + a 3 sc F CA 2 + a 3 s C Fn 2 + a 3 sc 3 F a 3 s C2 F C A + a 3sn d abc d abc n ζ ζ 3 C3 ns = 1 + a s C F a 2 sc F C A ζ 3 + a 2sC F n a 3 s C F C A n ζ ζ 4 + a 3 sc F C 2 A + a 3 s C F n 2 + a 3 sc 2 F n a 3 s C3 F a 3 s C2 F n + a 2 sc 2 F ζ ζ ζ ζ 3 + a 3 s C2 F C A ζ ζ ζ ζ 4 40ζ ζ ζ ζ ζ ζ 4 260ζ 5 + a 3 s n d abc d abc n ζ 3 26

27 C5 ns = 1 + a s C F a 2 s C FC A ζ 3 + a 2s C F n a 2 s C2 F ζ 3 + a 3 sc F C A n ζ ζ 4 + a 3 s C FCA ζ ζ ζ 5 + a 3 sc F n ζ 3 + a 3 s C2 F C A ζ ζ 4 180ζ 5 + a 3 scfn ζ ζ 4 + a 3 s C3 F ζ ζ 4 376ζ 5 + a 3 s n d abc d abc n ζ 3 C7 ns = 1 + a s C F a 2 s C FC A a 2 sc 2 F ζ 3 + a 2s C Fn ζ 3 + a 3 s C FC A n a 3 s C FCA a 3 sc F n ζ 3 + a 3 s C2 F C A ζ ζ a 3 scfn a 3 s C3 F + a 3 s n d abc d abc n ζ ζ ζ ζ ζ ζ ζ ζ ζ ζ ζ ζ 5 27

28 C9 ns = 1 + a s C F a 2 s C F C A a 2 s C2 F ζ ζ 3 + a 3 sc F C A n a 2s C F n ζ ζ 4 + a 3 s C F CA ζ ζ ζ 5 + a 3 sc F n ζ 3 + a 3 s C2 F C A ζ ζ ζ 5 + a 3 scf 2 n ζ ζ 4 + a 3 s C3 F ζ ζ ζ 5 + a 3 s n d abc d abc n ζ 3 C11 ns = 1 + a s C F a 2 sc F C A a 2 s C2 F ζ 3 + a 2sC F n ζ 3 + a 3 sc F C A n a 3 s C FC 2 A ζ 5 + a 3 s C Fn ζ 3 + a 3 s C2 F C A a 3 s C2 F n + a 3 sc 3 F ζ ζ ζ ζ ζ ζ ζ ζ ζ ζ 5 + a 3 s n d abc d abc n ζ ζ ζ 4

29 C13 ns = 1 + a s C F a 2 s C F C A ζ 3 + a 2 s C F n a 2 sc 2 F ζ 3 + a 3 s C F C A n a 3 sc F C 2 A ζ ζ 5 + a 3 sc F n ζ 3 + a 3 s C2 F C A ζ ζ ζ ζ ζ ζ 5 + a 3 s C2 F n ζ ζ 4 + a 3 scf ζ ζ ζ 5 + a 3 d abc d abc sn n ζ 3 29

Computing of Charged Current DIS at three loops

Computing of Charged Current DIS at three loops Computing of Charged Current DIS at three loops Mikhail Rogal Mikhail.Rogal@desy.de DESY, Zeuthen, Germany ACAT 2007, Amsterdam, Netherlands, April 23-28, 2007 Computing of Charged CurrentDIS at three

More information

arxiv:hep-ph/ v1 12 Sep 1995

arxiv:hep-ph/ v1 12 Sep 1995 1 LTH-346 Large N f methods for computing the perturbative structure of deep inelastic scattering arxiv:hep-ph/9509276v1 12 Sep 1995 J.A. Gracey, Department of Mathematical Sciences, University of Durham,

More information

Large-n f Contributions to the Four-Loop Splitting Functions in QCD

Large-n f Contributions to the Four-Loop Splitting Functions in QCD Large-n Contributions to the Four-Loop Splitting Functions in QCD Nucl. Phys. B915 (2017) 335-362, arxiv:1610.07477 Joshua Davies Department o Mathematical Sciences University o Liverpool Collaborators:

More information

arxiv:hep-ph/ v2 11 Jan 2007

arxiv:hep-ph/ v2 11 Jan 2007 IPM School and Conference on Hadrn and Lepton Physics, Tehran, 5-2 May 26 An approach to NNLO analysis of non-singlet structure function Ali N. Khorramian Physics Department, Semnan University, Semnan,

More information

The 4-loop quark mass anomalous dimension and the invariant quark mass.

The 4-loop quark mass anomalous dimension and the invariant quark mass. arxiv:hep-ph/9703284v1 10 Mar 1997 UM-TH-97-03 NIKHEF-97-012 The 4-loop quark mass anomalous dimension and the invariant quark mass. J.A.M. Vermaseren a, S.A. Larin b, T. van Ritbergen c a NIKHEF, P.O.

More information

PoS(DIS 2010)139. On higher-order flavour-singlet splitting functions and coefficient functions at large x

PoS(DIS 2010)139. On higher-order flavour-singlet splitting functions and coefficient functions at large x On higher-order flavour-singlet splitting functions and coefficient functions at large x Department of Mathematical Sciences, University of Liverpool, UK E-mail: G.N.Soar@liv.ac.uk A. Vogt Department of

More information

The Three-Loop Splitting Functions in QCD: The Non-Singlet Case

The Three-Loop Splitting Functions in QCD: The Non-Singlet Case The Three-Loop Splitting Functions in QCD: The Non-Singlet Case Sven-Olaf Moch DESY Zeuthen 1. The Calculation. The Result 3. The Summary in collaboration with J.A.M. Vermaseren and A. Vogt, hep-ph/040319

More information

PoS(DIS2017)295. Hadronic Higgs boson decay at order α 4 s and α 5 s

PoS(DIS2017)295. Hadronic Higgs boson decay at order α 4 s and α 5 s Institut für Theoretische Teilchenphysik, Karlsruhe Institute of Technology (KIT) 7618 Karlsruhe, Germany E-mail: joshua.davies@kit.edu Matthias Steinhauser Institut für Theoretische Teilchenphysik, Karlsruhe

More information

arxiv:hep-ph/ v1 29 Aug 2006

arxiv:hep-ph/ v1 29 Aug 2006 IPPP/6/59 August 26 arxiv:hep-ph/6837v1 29 Aug 26 Third-order QCD results on form factors and coefficient functions A. Vogt a, S. Moch b and J.A.M. Vermaseren c a IPPP, Physics Department, Durham University,

More information

Large-n f Contributions to the Four-Loop Splitting Functions in QCD

Large-n f Contributions to the Four-Loop Splitting Functions in QCD Large-n Contributio to the Four-Loop Splitting Functio in QCD Nucl. Phys. B915 (2017) 335-362 [arxiv:1711.05267] [arxiv:1610.07477], Joshua Davies Collaborators: A. Vogt (University o Liverpool), B. Ruijl

More information

arxiv: v1 [hep-lat] 26 Dec 2014

arxiv: v1 [hep-lat] 26 Dec 2014 arxiv:42.7928v [hep-lat] 26 Dec 204 A perturbative sty o the chirally rotated Schrödinger Functional in QCD Stean Sint School o Mathematics, Trinity College, Dublin 2, Ireland E-mail: sint@maths.tcd.ie

More information

The Three-Loop Splitting Functions in QCD: The Helicity-Dependent Case

The Three-Loop Splitting Functions in QCD: The Helicity-Dependent Case DESY 14 157, NIKHEF 14-033 LTH 1023 arxiv:1409.5131 The Three-Loop Splitting Functions in QCD: The Helicity-Dependent Case S. Moch a, J.A.M. Vermaseren b and A. Vogt c b II. Institute for Theoretical Physics,

More information

Higgs boson production at the LHC: NNLO partonic cross sections through order ǫ and convolutions with splitting functions to N 3 LO

Higgs boson production at the LHC: NNLO partonic cross sections through order ǫ and convolutions with splitting functions to N 3 LO SFB/CPP-12-93 TTP12-45 LPN12-127 Higgs boson production at the LHC: NNLO partonic cross sections through order ǫ and convolutions with splitting functions to N 3 LO Maik Höschele, Jens Hoff, Aleey Pak,

More information

Anomalous dimensions and splitting functions beyond the next-to-next-to-leading order

Anomalous dimensions and splitting functions beyond the next-to-next-to-leading order Anomalous dimensions and splitting functions beyond the next-to-next-to-leading order Department of Mathematical Sciences, University of Liverpool, Liverpool L69 3BX, UK E-mail: Andreas.Vogt@liverpool.ac.uk

More information

arxiv:hep-ph/ v1 21 Jan 1998

arxiv:hep-ph/ v1 21 Jan 1998 TARCER - A Mathematica program for the reduction of two-loop propagator integrals R. Mertig arxiv:hep-ph/980383v Jan 998 Abstract Mertig Research & Consulting, Kruislaan 49, NL-098 VA Amsterdam, The Netherlands

More information

Deep inelastic scattering and the OPE in lattice QCD

Deep inelastic scattering and the OPE in lattice QCD Deep inelastic scattering and the OPE in lattice QCD William Detmold [WD & CJD Lin PRD 73, 014501 (2006)] DIS structure of hadrons Deep-inelastic scattering process critical to development of QCD k, E

More information

Johannes Blümlein, DESY [in collaboration with I. Bierenbaum and S. Klein]

Johannes Blümlein, DESY [in collaboration with I. Bierenbaum and S. Klein] Oα 3 1 s Heavy Flavor Wilson Coefficients in DIS @ Q m Johannes Blümlein, DESY [in collaboration with I. Bierenbaum and S. Klein Introduction Theory Status The Method Asymptotic Loop Results all N Asymptotic

More information

arxiv:hep-ph/ v1 5 Jan 1996

arxiv:hep-ph/ v1 5 Jan 1996 SLAC PUB 95 763 December 1995 Renormalization Scale Setting for Evolution Equation of Non-Singlet Structure Functions and Their Moments Wing Kai Wong arxiv:hep-ph/961215v1 5 Jan 1996 Stanford Linear Accelerator

More information

THE PROPERTY OF MAXIMAL TRANSCENDENTALITY IN THE N =4SYM A. V. Kotikov

THE PROPERTY OF MAXIMAL TRANSCENDENTALITY IN THE N =4SYM A. V. Kotikov ˆ ˆŠ Œ ˆ ˆ Œ ƒ Ÿ 200.. 4.. 6 THE PROPERTY OF MAXIMAL TRANSCENDENTALITY IN THE N =4SYM A. V. Kotikov Joint Institute for Nuclear Research, Dubna We show results for the versal anomalous dimension γ j of

More information

arxiv:hep-ph/ v2 2 Sep 1996

arxiv:hep-ph/ v2 2 Sep 1996 arxiv:hep-ph/960927v2 2 Sep 996 DESY 96 72 INLO-PUB-7/96 WUE-ITP-96-07 August 996 Theoretical Uncertainties in the QCD Evolution of Structure Functions and their Impact on α s (M 2 Z ) J. Blümlein, S.

More information

arxiv:hep-ph/ v1 18 Nov 1996

arxiv:hep-ph/ v1 18 Nov 1996 TTP96-55 1 MPI/PhT/96-122 hep-ph/9611354 November 1996 arxiv:hep-ph/9611354v1 18 Nov 1996 AUTOMATIC COMPUTATION OF THREE-LOOP TWO-POINT FUNCTIONS IN LARGE MOMENTUM EXPANSION K.G. Chetyrkin a,b, R. Harlander

More information

arxiv:hep-ph/ v3 16 Jan 2008

arxiv:hep-ph/ v3 16 Jan 2008 Alberta Thy 11-06 Large mass expansion in two-loop QCD corrections of paracharmonium decay K. Hasegawa and Alexey Pak Department of Physics, University of Alberta, Edmonton, Alberta T6G 2J1, Canada (Dated:

More information

arxiv: v1 [hep-ph] 8 Dec 2010

arxiv: v1 [hep-ph] 8 Dec 2010 arxiv:02.806v [hep-ph] 8 Dec 200 Charged Higgs production via vector-boson fusion at NN in QCD Université Catholique de Louvain - CP3 E-mail: marco.zaro@uclouvain.be Paolo Bolzoni Institut für Theoretische

More information

Two and Three Loop Heavy Flavor Corrections in DIS

Two and Three Loop Heavy Flavor Corrections in DIS Two and Three Loop Heavy Flavor Corrections in DIS 1 Johannes Blümlein, DESY in collaboration with I. Bierenbaum and S. Klein based on: Introduction Renormalization of the OME s to 3 Loops Oǫ terms at

More information

arxiv: v1 [hep-ph] 20 Jan 2010

arxiv: v1 [hep-ph] 20 Jan 2010 LTH 862, DESY 10-007, arxiv:1001.3554 [hep-ph] January 2010 Higher-order predictions for splitting functions and coefficient functions from physical evolution kernels arxiv:1001.3554v1 [hep-ph] 20 Jan

More information

QCD Precision Tests in Deeply Inelastic Scattering

QCD Precision Tests in Deeply Inelastic Scattering QCD Precision Tests in Deeply Inelastic Scattering Johannes Blümlein DESY Introduction and Method QCD Analysis of Unpolarized Structure Functions Λ QCD and α s (M 2 Z ) What would we like to know? J. Blümlein

More information

PSEUDO SCALAR FORM FACTORS AT 3-LOOP QCD. Taushif Ahmed Institute of Mathematical Sciences, India March 22, 2016

PSEUDO SCALAR FORM FACTORS AT 3-LOOP QCD. Taushif Ahmed Institute of Mathematical Sciences, India March 22, 2016 PSEUDO SCALAR FORM FACTORS AT 3-LOOP QCD Taushif Ahmed Institute of Mathematical Sciences, India March, 016 PROLOGUE: SM & MSSM SM Complex scalar doublet (4 DOF) 3 DOF transform into longitudinal modes

More information

Feynman Rules of Non-Abelian Gauge Theory

Feynman Rules of Non-Abelian Gauge Theory Feynman Rules o Non-belian Gauge Theory.06.0 0. The Lorenz gauge In the Lorenz gauge, the constraint on the connection ields is a ( µ ) = 0 = µ a µ For every group index a, there is one such equation,

More information

arxiv:hep-ph/ v2 30 Mar 2001

arxiv:hep-ph/ v2 30 Mar 2001 . FTUAM 1-1 UG-FT-126/ hep-ph/12247 January, 21 Improved Calculation of F 2 in Electroproduction and xf 3 in Neutrino Scattering to NNLO and Determination of ff s ariv:hep-ph/12247 v2 3 Mar 21 Abstract

More information

arxiv:hep-ph/ v1 12 Oct 1994

arxiv:hep-ph/ v1 12 Oct 1994 A QCD ANALYSIS OF THE MASS STRUCTURE OF THE NUCLEON arxiv:hep-ph/9410274v1 12 Oct 1994 Xiangdong Ji Center for Theoretical Physics Laboratory for Nuclear Science and Department of Physics Massachusetts

More information

A. Mitov 3-loop time-like splitting functions in Mellin space and NNLO fragmentation

A. Mitov 3-loop time-like splitting functions in Mellin space and NNLO fragmentation Three-loop time-like splitting functions in Mellin space and NNLO fragmentation Alexander Mitov DESY Work in progress with: M. Cacciari; Lance Dixon; S-O. Moch Also based on: hep-ph/0604160 (with Sven

More information

light-cone (LC) variables

light-cone (LC) variables light-cone (LC) variables 4-vector a µ scalar product metric LC basis : transverse metric 24-Apr-13 1 hadron target at rest inclusive DIS target absorbes momentum from γ * ; for example, if q z P z =0

More information

PUBLISHED VERSION.

PUBLISHED VERSION. PUBLISHED VERSION Bietenholz, W.; Cundy, N.; Göckeler, Meinulf; Horsley, Roger; Perlt, Holger; Pleiter, Dirk; Rakow, Paul E. L.; Schierholz, Gerrit; Schiller, Arwed; Streuer, Thomas; Zanotti, James Michael

More information

TARGET MASS CORRECTIONS IN QCD* W. R. Fraser? and J. F. Gunion 9 Stanford Linear Accelerator Center Stanford University, Stanford, California 94305

TARGET MASS CORRECTIONS IN QCD* W. R. Fraser? and J. F. Gunion 9 Stanford Linear Accelerator Center Stanford University, Stanford, California 94305 SLAC-PUB-2489 March 1980 (T/E) TARGET MASS CORRECTIONS IN QCD* W. R. Fraser? and J. F. Gunion 9 Stanford Linear Accelerator Center Stanford University, Stanford, California 94305 ABSTRACT We employ the

More information

CP VIOLATION AND CKM PHASES FROM TIME-DEPENDENCES OF UNTAGGED B s DECAYS a ROBERT FLEISCHER

CP VIOLATION AND CKM PHASES FROM TIME-DEPENDENCES OF UNTAGGED B s DECAYS a ROBERT FLEISCHER hep-ph/9609332 September 1996 CP VIOATION AND CKM PASES FROM TIME-DEPENDENCES OF UNTAGGED B s DECAYS a ROBERT FEISCER Institut ür Theoretische Teilchenphysik, Universität Karlsruhe, D 76128 Karlsruhe,

More information

Thermomagnetic Effects in an External Magnetic Field in the Logarithmic-Quark Sigma Model

Thermomagnetic Effects in an External Magnetic Field in the Logarithmic-Quark Sigma Model International Journal o Modern Physics and Application 017; (6): 9-5 http://www.aascit.org/journal/ijmpa ISSN: 375-3870 hermomagnetic Eects in an External Magnetic Field in the Logarithmic-Quark Sigma

More information

Higher-Order Corrections in Threshold Resummation

Higher-Order Corrections in Threshold Resummation DESY 5-5, SFB/CPP-5-5 DCPT/5/6, IPPP/5/3 NIKHEF 5- June 5 hep-ph/5688 Higher-Order Corrections in Threshold Resummation S. Moch a, J.A.M. Vermaseren b and A. Vogt c a Deutsches Elektronensynchrotron DESY

More information

Applicability of Parametrized Form of Fully Dressed Quark Propagator

Applicability of Parametrized Form of Fully Dressed Quark Propagator Commun. Theor. Phys. (Beijing, China) 45 (2006) pp. 675 680 c International Academic Publishers Vol. 45, No. 4, April 15, 2006 Applicability o Parametrized Form o Fully Dressed Quark Propagator ZHOU Li-Juan

More information

Two-loop massive fermionic operator matrix elements and intial state QED corrections to e + e γ /Z

Two-loop massive fermionic operator matrix elements and intial state QED corrections to e + e γ /Z Two-loop massive fermionic operator matrix elements and intial state QED corrections to e + e γ /Z J. Blümlein, a ab and W. van Neerven c a DESY, Zeuthen, Platanenalle 6, D-173 Zeuthen, Germany. b Departamento

More information

Richard Williams C. S. Fischer, W. Heupel, H. Sanchis-Alepuz

Richard Williams C. S. Fischer, W. Heupel, H. Sanchis-Alepuz Richard Williams C. S. Fischer, W. Heupel, H. Sanchis-Alepuz Overview 2 1.Motivation and Introduction 4. 3PI DSE results 2. DSEs and BSEs 3. npi effective action 6. Outlook and conclusion 5. 3PI meson

More information

High energy scattering in QCD

High energy scattering in QCD High energy scattering in QCD I Parton model, Bjorken scaling, François Gelis and CEA/Saclay General introduction IR & Coll. divergences Multiple scatterings Heavy Ion Collisions General introduction François

More information

Calculating four-loop massless propagators with Forcer

Calculating four-loop massless propagators with Forcer Calculating four-loop massless propagators with Forcer Takahiro Ueda Nikhef, The Netherlands Collaboration with: Ben Ruijl and Jos Vermaseren 18 Jan. 2016 ACAT2016, UTFSM, Valparaíso 1 / 30 Contents Introduction

More information

Large spin systematics in CFT

Large spin systematics in CFT University of Oxford Holography, Strings and Higher Spins at Swansea with A. Bissi and T. Lukowski Introduction The problem In this talk we will consider operators with higher spin: T rϕ µ1 µl ϕ, T rϕϕ

More information

NNLO antenna subtraction with one hadronic initial state

NNLO antenna subtraction with one hadronic initial state antenna subtraction with one hadronic initial state Alejandro Daleo, Aude Gehrmann-De Ridder Institute for Theoretical Physics, ETH Zürich E-mail: adaleo@phys.ethz.ch, gehra@phys.ethz.ch Thomas Gehrmann,

More information

Three loop MS renormalization of the Curci Ferrari model and the dimension two BRST invariant composite operator in QCD

Three loop MS renormalization of the Curci Ferrari model and the dimension two BRST invariant composite operator in QCD Physics Letters B 55 00 101 110 www.elsevier.com/locate/npe Three loop MS renormalization of the Curci Ferrari model and the dimension two BRST invariant composite operator in QCD J.A. Gracey Theoretical

More information

RunDec: a Mathematica package for running and decoupling of the strong coupling and quark masses

RunDec: a Mathematica package for running and decoupling of the strong coupling and quark masses DESY 00 034 TTP00 05 hep-ph/0004189 March 000 RunDec: a Mathematica package for running and decoupling of the strong coupling and quark masses arxiv:hep-ph/0004189v1 19 Apr 000 K.G. Chetyrkin a,, J.H.

More information

Consistent Perturba.ve Fixed Point Calcula.ons in Gauge Theories

Consistent Perturba.ve Fixed Point Calcula.ons in Gauge Theories Consistent Perturba.ve Fixed Point Calcula.ons in Gauge Theories DESY, Hamburg March 0, 018 Thomas A. RyIov CP-Origins QCD in conormal window I will discuss QCD in a phase in which it is conormal in the

More information

Perturbative QCD. Chul Kim. Seoultech. Part I : Introduction to QCD Structure functions for DIS

Perturbative QCD. Chul Kim. Seoultech. Part I : Introduction to QCD Structure functions for DIS Perturbative QCD Part I : Introduction to QCD Structure functions for DIS Chul Kim Seoultech Open KIAS, Pyeong-Chang Summer Institute 2013 Pyeong-Chang, Alpensia Resort, July 8, 2013 QCD QCD Lagrangian

More information

arxiv: v1 [hep-ph] 3 Jul 2007

arxiv: v1 [hep-ph] 3 Jul 2007 Target mass corrections and twist-3 in the nucleon spin structure functions Y. B. Dong Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 149, P. R. China arxiv:77.331v1 [hep-ph] 3

More information

Higher moments of PDFs in lattice QCD. William Detmold The College of William and Mary & Thomas Jefferson National Accelerator Facility

Higher moments of PDFs in lattice QCD. William Detmold The College of William and Mary & Thomas Jefferson National Accelerator Facility Higher moments of PDFs in lattice QCD William Detmold The College of William and Mary & Thomas Jefferson National Accelerator Facility Lattice QCD and hadron structure The problem with higher moments (~

More information

The Drell Levy Yan Relation: ep vs e + e Scattering to O(ff 2 s ) Johannes Blümlein DESY 1. The DLY Relation 2. Structure and Fragmentation Functions

The Drell Levy Yan Relation: ep vs e + e Scattering to O(ff 2 s ) Johannes Blümlein DESY 1. The DLY Relation 2. Structure and Fragmentation Functions The DrellLevyYan Relation: ep vs e e Scattering to O(ff s ) Johannes Blümlein DESY. The Relation. Structure and Fragmentation Functions. Scheme Invariant Combinations 4. DrellYanLevy Relations for Evolution

More information

S.I.Alekhin IMPACT OF THE THREE-LOOP CORRECTIONS ON THE QCD ANALYSIS OF THE DEEP-INELASTIC-SCATTERING DATA

S.I.Alekhin IMPACT OF THE THREE-LOOP CORRECTIONS ON THE QCD ANALYSIS OF THE DEEP-INELASTIC-SCATTERING DATA ; STATE RESEARCH CENTER OF RUSSIA INSTITUTE FOR HIGH ENERGY PHYSICS IHEP 2001-30 S.I.Alekhin IMPACT OF THE THREE-LOOP CORRECTIONS ON THE QCD ANALYSIS OF THE DEEP-INELASTIC-SCATTERING DATA Protvino 2001

More information

Forcer: a FORM program for 4-loop massless propagators

Forcer: a FORM program for 4-loop massless propagators Forcer: a FORM program for 4-loop massless propagators, a B. Ruijl ab and J.A.M. Vermaseren a a Nikhef Theory Group, Science Park 105, 1098 XG Amsterdam, The Netherlands b Leiden Centre of Data Science,

More information

arxiv:hep-ph/ v1 4 Nov 1998

arxiv:hep-ph/ v1 4 Nov 1998 Gluon- vs. Sea quark-shadowing N. Hammon, H. Stöcker, W. Greiner 1 arxiv:hep-ph/9811242v1 4 Nov 1998 Institut Für Theoretische Physik Robert-Mayer Str. 10 Johann Wolfgang Goethe-Universität 60054 Frankfurt

More information

Kern- und Teilchenphysik II Lecture 1: QCD

Kern- und Teilchenphysik II Lecture 1: QCD Kern- und Teilchenphysik II Lecture 1: QCD (adapted from the Handout of Prof. Mark Thomson) Prof. Nico Serra Dr. Marcin Chrzaszcz Dr. Annapaola De Cosa (guest lecturer) www.physik.uzh.ch/de/lehre/phy213/fs2017.html

More information

Colour octet potential to three loops

Colour octet potential to three loops SFB/CPP-13-54 TTP13-8 Colour octet potential to three loops Chihaya Anzai a), Mario Prausa a), Alexander V. Smirnov b), Vladimir A. Smirnov c), Matthias Steinhauser a) a) Institut für Theoretische Teilchenphysik,

More information

TF 2 -Contributions to 3-Loop Deep-Inelastic Wilson Coefficients and the Asymptotic Representation of Charged Current DIS

TF 2 -Contributions to 3-Loop Deep-Inelastic Wilson Coefficients and the Asymptotic Representation of Charged Current DIS 1/30 TF 2 -Contributions to 3-Loop Deep-Inelastic Wilson Coefficients and the Asymptotic Representation of Charged Current DIS Alexander Hasselhuhn RISC (LHCPhenonet) 26.9.2013 in collaboration with: J.

More information

TOPICS IN THE QCD PHENOMENOLOGY OF DEEP- INELASTIC SCATTERING

TOPICS IN THE QCD PHENOMENOLOGY OF DEEP- INELASTIC SCATTERING SLAC-PUB-2296 March 1979 (T/E) TOPICS IN THE QCD PHENOMENOLOGY OF DEEP- INELASTIC SCATTERING L. F. Abbott Stanford Linear Accelerator Center Stanford University, Stanford, California 94305 ABSTRACT I review

More information

Electric Dipole Moments and the strong CP problem

Electric Dipole Moments and the strong CP problem Electric Dipole Moments and the strong CP problem We finally understand CP viola3on.. QCD theta term Jordy de Vries, Nikhef, Amsterdam Topical Lectures on electric dipole moments, Dec. 14-16 Introductory

More information

Radiative Corrections in Free Neutron Decays

Radiative Corrections in Free Neutron Decays Radiative Corrections in Free Neutron Decays Chien-Yeah Seng Helmholtz-Institut für Strahlen- und Kernphysik and Bethe Center for Theoretical Physics, Universität Bonn Beta Decay as a Probe of New Physics

More information

OKHEP The Bjorken Sum Rule in the Analytic Approach to Perturbative QCD

OKHEP The Bjorken Sum Rule in the Analytic Approach to Perturbative QCD OKHEP 98 03 The Bjorken Sum Rule in the Analytic Approach to Perturbative QCD K.A. Milton a, I.L. Solovtsov a,b, O.P. Solovtsova a,b arxiv:hep-ph/9809510v1 23 Sep 1998 a Department of Physics and Astronomy,

More information

Introduction to Perturbative QCD

Introduction to Perturbative QCD Introduction to Perturbative QCD Lecture 1 Jianwei Qiu Iowa State University/Argonne National Laboratory PHENIX Sinest at RIKEN 007 June 11 - July 7, 007 RIKEN Wako Camus, Wako, Jaan June 5, 007 1 The

More information

Progress on QCD evolution equations

Progress on QCD evolution equations Rome, 8 September 08 Progress on QCD evolution equations Guido Altarelli Roma Tre/CERN In honour of Giorgio Parisi for his 60th birthday In the years 1976-78 I have done a few papers on QCD with Giorgio

More information

NTNU Trondheim, Institutt for fysikk

NTNU Trondheim, Institutt for fysikk NTNU Trondheim, Institutt for fysikk Examination for FY3464 Quantum Field Theory I Contact: Michael Kachelrieß, tel. 998971 Allowed tools: mathematical tables 1. Spin zero. Consider a real, scalar field

More information

COMPLETE DESCRIPTION OF POLARIZATION EFFECTS IN TOP QUARK DECAYS INCLUDING HIGHER ORDER QCD CORRECTIONS a

COMPLETE DESCRIPTION OF POLARIZATION EFFECTS IN TOP QUARK DECAYS INCLUDING HIGHER ORDER QCD CORRECTIONS a COMPLETE DESCRIPTION OF POLARIZATION EFFECTS IN TOP QUARK DECAYS INCLUDING HIGHER ORDER QCD CORRECTIONS a BODO LAMPE Department o Physics, University o Munich, Theresienstrasse 37, D 80333 Munich E-mail:

More information

Research in QCD factorization

Research in QCD factorization Research in QCD factorization Bowen Wang Southern Methodist University (Dallas TX) Jefferson Lab Newport News VA 1/1/015 My research at SMU in 011-015 Ph. D. advisor: Pavel Nadolsky Ph. D. thesis: The

More information

QCD al tempo di LHC. Vittorio Del Duca INFN LNF

QCD al tempo di LHC. Vittorio Del Duca INFN LNF QCD al tempo di LHC Vittorio Del Duca INFN LNF Roma3 maggio 2009 Strong interactions High-energy collisions Fixed-target experiments (pn, πn, γn) DIS (HERA) Hadron colliders (Tevatron, LHC) Hadron properties

More information

Light-Front Current Algebra: The Good, the Bad, and the Terrible 1. A. Harindranath. Saha Institute of Nuclear Physics. Abstract

Light-Front Current Algebra: The Good, the Bad, and the Terrible 1. A. Harindranath. Saha Institute of Nuclear Physics. Abstract Parton Model From Field Theory via Light-Front Current Algebra: The Good, the Bad, and the Terrible 1 A. Harindranath Saha Institute of Nuclear Physics 1/AF Bidhannagar, Calcutta 70006 India Abstract The

More information

m f f unchanged under the field redefinition (1), the complex mass matrix m should transform into

m f f unchanged under the field redefinition (1), the complex mass matrix m should transform into PHY 396 T: SUSY Solutions or problem set #8. Problem (a): To keep the net quark mass term L QCD L mass = ψ α c m ψ c α + hermitian conjugate (S.) unchanged under the ield redeinition (), the complex mass

More information

Donoghue, Golowich, Holstein Chapter 4, 6

Donoghue, Golowich, Holstein Chapter 4, 6 1 Week 7: Non linear sigma models and pion lagrangians Reading material from the books Burgess-Moore, Chapter 9.3 Donoghue, Golowich, Holstein Chapter 4, 6 Weinberg, Chap. 19 1 Goldstone boson lagrangians

More information

Matthias Strohmaier. given at QCD Evolution , JLAB. University of Regensburg. Introduction Method Analysis Conclusion

Matthias Strohmaier. given at QCD Evolution , JLAB. University of Regensburg. Introduction Method Analysis Conclusion Three-loop evolution equation for non-singlet leading-twist operator based on: V. M. Braun, A. N. Manashov, S. Moch, M. S., not yet published, arxiv:1703.09532 Matthias Strohmaier University of Regensburg

More information

arxiv: v1 [hep-lat] 4 Oct 2016

arxiv: v1 [hep-lat] 4 Oct 2016 arxiv:60.0093v [hep-lat] 4 Oct 06 Leptonic decay-constant ratio / rom clover-improved N = + QCD Universität Regensburg, Institut ür Theoretische Physik, D-93040 Regensburg, Germany E-mail: enno.scholz@physik.uni-regensburg.de

More information

arxiv:hep-ph/ v1 19 Dec 2002

arxiv:hep-ph/ v1 19 Dec 2002 Towards Order ff 4 s Accuracy in fi -decays P.A. Baikov Λ Institute of Nuclear Physics, Moscow State University Moscow 11999, Russia K.G. Chetyrkin y Fakultät für Physik Albert-Ludwigs-Universität Freiburg,

More information

arxiv:hep-th/ v1 2 Jul 1998

arxiv:hep-th/ v1 2 Jul 1998 α-representation for QCD Richard Hong Tuan arxiv:hep-th/9807021v1 2 Jul 1998 Laboratoire de Physique Théorique et Hautes Energies 1 Université de Paris XI, Bâtiment 210, F-91405 Orsay Cedex, France Abstract

More information

Flavour Physics Lecture 1

Flavour Physics Lecture 1 Flavour Physics Lecture 1 Chris Sachrajda School of Physics and Astronomy University of Southampton Southampton SO17 1BJ UK New Horizons in Lattice Field Theory, Natal, Rio Grande do Norte, Brazil March

More information

Asymptotic Expansions of Feynman Integrals on the Mass Shell in Momenta and Masses

Asymptotic Expansions of Feynman Integrals on the Mass Shell in Momenta and Masses Asymptotic Expansions of Feynman Integrals on the Mass Shell in Momenta and Masses arxiv:hep-ph/9708423v 2 Aug 997 V.A. Smirnov Nuclear Physics Institute of Moscow State University Moscow 9899, Russia

More information

Three-loop evolution equation for (non-singlet) leading-twist operators

Three-loop evolution equation for (non-singlet) leading-twist operators Three-loop evolution equation for non-singlet) leading-twist operators Institut für Theoretische Physik, Universität Regensburg, D-93040 Regensburg, Germany E-mail: matthias.strohmaier@ur.de We present

More information

How does the proton spin?

How does the proton spin? How does the proton spin? Steven Bass Proton spin problem: Where does the spin of the nucleon (proton and neutron) come from? E.g. The key difference between 3 He and 4 He in low temperature physics comes

More information

arxiv: v2 [hep-ph] 17 May 2010

arxiv: v2 [hep-ph] 17 May 2010 Heavy χ Q tensor mesons in QCD arxiv:00.767v [hep-ph] 7 May 00 T. M. Aliev a, K. Azizi b, M. Savcı a a Physics Department, Middle East Technical University, 0653 Ankara, Turkey b Physics Division, Faculty

More information

Theory of Elementary Particles homework XI (July??)

Theory of Elementary Particles homework XI (July??) Theory of Elementary Particles homework XI (July??) At the head of your report, please write your name, student ID number and a list of problems that you worked on in a report (like II-1, II-3, IV- ).

More information

Where is SUSY? Institut für Experimentelle Kernphysik

Where is SUSY?   Institut für Experimentelle Kernphysik Where is SUSY? Institut ür Experimentelle Kernphysik KIT Universität des Landes Baden-Württemberg und nationales Forschungszentrum in der Helmholtz-Gemeinschat www.kit.edu I supersymmetric particles exist,

More information

Faddeev equations: a view of baryon properties

Faddeev equations: a view of baryon properties E-mail: diana.nicmorus@uni-graz.at G. Eichmann E-mail: ge.eichmann@uni-graz.at A. Krassnigg E-mail: andreas.krassnigg@uni-graz.at R. Alkofer E-mail: reinhard.alkofer@uni-graz.at We present a calculation

More information

BROOKHAVEN NATIONAL LABORATORY. Fermion Masses and Anomalous Dipole Moments* William J. Marciano

BROOKHAVEN NATIONAL LABORATORY. Fermion Masses and Anomalous Dipole Moments* William J. Marciano BROOKHAVEN NATIONAL LABORATORY August 1995 BNL-62122 RECEIVED MAR 1 9 1996 OSTI Fermion Masses and Anomalous Dipole Moments* William J. Marciano Physics Depaxt ment Brookhaven National Laboratory Upton,

More information

Twist-3 approach to hyperon polarization in unpolarized proton-proton collision

Twist-3 approach to hyperon polarization in unpolarized proton-proton collision Twist-3 approach to hyperon polarization in unpolarized proton-proton collision Graduate School of Science and Technology, Niigata University, Ikarashi, Niigata 950-2181, Japan E-mail: yabe.niigata.hadron0127@gmail.com

More information

Scale dependence of Twist-3 correlation functions

Scale dependence of Twist-3 correlation functions Scale dependence of Twist-3 correlation functions Jianwei Qiu Brookhaven National Laboratory Based on work with Z. Kang QCD Evolution Workshop: from collinear to non collinear case Thomas Jefferson National

More information

arxiv:hep-ph/ v1 17 Jun 1999

arxiv:hep-ph/ v1 17 Jun 1999 Exclusive evolution kernels in two-loop order: parity even sector. A.V. Belitsky 1, D. Müller arxiv:hep-ph/9906409v1 17 Jun 1999 Institut für Theoretische Physik, Universität Regensburg D-9040 Regensburg,

More information

Loop integrals, integration-by-parts and MATAD

Loop integrals, integration-by-parts and MATAD Loop integrals, integration-by-parts and MATAD Matthias Steinhauser TTP, University of Karlsruhe CAPP 009, March/April 009, DESY, Zeuthen Matthias Steinhauser p. Outline I. Integration-by-parts II. MATAD

More information

Relativistic Corrections to the Neutron Electric. Dipole Moment in Valence Quark Models. Abstract

Relativistic Corrections to the Neutron Electric. Dipole Moment in Valence Quark Models. Abstract UM P 92/42 Relativistic Corrections to the Neutron Electric Dipole Moment in Valence Quark Models John P. Costella and Bruce H. J. McKellar School of Physics, The University of Melbourne, Parkville 3052,

More information

Two-loop Remainder Functions in N = 4 SYM

Two-loop Remainder Functions in N = 4 SYM Two-loop Remainder Functions in N = 4 SYM Claude Duhr Institut für theoretische Physik, ETH Zürich, Wolfgang-Paulistr. 27, CH-8093, Switzerland E-mail: duhrc@itp.phys.ethz.ch 1 Introduction Over the last

More information

arxiv: v1 [hep-ph] 18 Aug 2011

arxiv: v1 [hep-ph] 18 Aug 2011 GPD and PDF modeling in terms of effective light-cone wave functions Dieter Mueller 1 and Dae Sung Hwang ariv:1108.3869v1 [hep-ph] 18 Aug 011 Nuclear Science Division, Lawrence Berkeley National Laboratory,

More information

Lattice QCD with Dynamical up, down and Strange Quarks with the Earth Simulator

Lattice QCD with Dynamical up, down and Strange Quarks with the Earth Simulator Lattice with Dynamical up, down and Strange Quarks with the Earth Simulator Project Representative Akira Ukawa Center or Computational Sciences, University o Tsukuba, Proessor Authors Tomomi Ishikawa,

More information

arxiv:hep-ph/ v2 2 Feb 1998

arxiv:hep-ph/ v2 2 Feb 1998 BI-TP 97/53, hep-ph/9711487 to appear in 15 March 1998 issue of Phys. Rev. D (Rapid Comm.) Improvement of the method of diagonal Padé approximants for perturbative series in gauge theories arxiv:hep-ph/9711487v2

More information

arxiv: v2 [hep-ph] 11 Mar 2015

arxiv: v2 [hep-ph] 11 Mar 2015 Justifying the Naive Partonic Sum Rule for Proton Spin Xiangdong Ji a,b,c, Jian-Hui Zhang a, Yong Zhao c arxiv:1409.6329v2 [hep-ph] 11 Mar 2015 a INPAC, Department of Physics and Astronomy, Shanghai Jiao

More information

Evaluation of Triangle Diagrams

Evaluation of Triangle Diagrams Evaluation of Triangle Diagrams R. Abe, T. Fujita, N. Kanda, H. Kato, and H. Tsuda Department of Physics, Faculty of Science and Technology, Nihon University, Tokyo, Japan E-mail: csru11002@g.nihon-u.ac.jp

More information

The Deutsch-Jozsa Problem: De-quantization and entanglement

The Deutsch-Jozsa Problem: De-quantization and entanglement The Deutsch-Jozsa Problem: De-quantization and entanglement Alastair A. Abbott Department o Computer Science University o Auckland, New Zealand May 31, 009 Abstract The Deustch-Jozsa problem is one o the

More information

arxiv: v1 [hep-lat] 15 Nov 2016

arxiv: v1 [hep-lat] 15 Nov 2016 Few-Body Systems manuscript No. (will be inserted by the editor) arxiv:6.966v [hep-lat] Nov 6 P. J. Silva O. Oliveira D. Dudal P. Bicudo N. Cardoso Gluons at finite temperature Received: date / Accepted:

More information

arxiv:hep-th/ v1 26 Sep 2003 THE 2PPI EXPANSION: DYNAMICAL MASS GENERATION AND VACUUM ENERGY

arxiv:hep-th/ v1 26 Sep 2003 THE 2PPI EXPANSION: DYNAMICAL MASS GENERATION AND VACUUM ENERGY LTH 601 November 16, 2016 21:26 WSPC/Trim Size: 9in x 6in for Proceedings arxiv:hep-th/0309241v1 26 Sep 2003 THE 2PPI EXPANSION: DYNAMICAL MASS GENERATION AND VACUUM ENERGY D. DUDAL AND H. VERSCHELDE Ghent

More information

An Introduction to the Standard Model of Particle Physics

An Introduction to the Standard Model of Particle Physics An Introduction to the Standard Model of Particle Physics W. N. COTTINGHAM and D. A. GREENWOOD Ж CAMBRIDGE UNIVERSITY PRESS Contents Preface. page xiii Notation xv 1 The particle physicist's view of Nature

More information

Derivation of Electro Weak Unification and Final Form of Standard Model with QCD and Gluons 1 W W W 3

Derivation of Electro Weak Unification and Final Form of Standard Model with QCD and Gluons 1 W W W 3 Derivation of Electro Weak Unification and Final Form of Standard Model with QCD and Gluons 1 W 1 + 2 W 2 + 3 W 3 Substitute B = cos W A + sin W Z 0 Sum over first generation particles. up down Left handed

More information

The Strong Interaction and LHC phenomenology

The Strong Interaction and LHC phenomenology The Strong Interaction and LHC phenomenology Juan Rojo STFC Rutherford Fellow University of Oxford Theoretical Physics Graduate School course Lecture 2: The QCD Lagrangian, Symmetries and Feynman Rules

More information