Electrochemical Cells

Size: px
Start display at page:

Download "Electrochemical Cells"

Transcription

1 Electrchemistry invlves redx rectins. Terminlgy: Electrchemicl Cells Red-x rectin chemicl rectin where ne species underges lss f electrns nther species gins electrns. e - Cu(II)+ Cu(II) + (II) xidnt reductnt Further, the rectin cn be crried ut s tht xidtin nd reductin ccur t physiclly different lctins electrdes - in electrchemicl set-ups. The electrde rectins re, (II) + 2e 2e + Cu(II) Cu Tw electrdes, cupled, cnstitute n electrchemicl. The electrn mvement; q = quntity f chrge, i = rte f mvement f chrge. The electricl ptentils f the electrdes, E el nd the ptentil difference f the electrdes E tht re invlved nd cn be mesured.

2 Tw types f s re studied:. Glvnic (Vltic) : Glvnic uses spntneus red-x chemicl rectins t prduce electricl energy; tht wuld result in flw f electrns. G <. b. Electrlytic : An electrlytic decmpses chemicl cmpunds by red-x prcesses using electricl energy frm n utside surce - electrlysis. This is n energy demnding prcess nn-spntneus. G >. In ny type f : Ande xidtin ccurs Cthde reductin ccurs Hlf Cell M(s) immersed in n queus slutin f M +2 (q) estblishes n equilibrium between n the tw phses. Depending n the psitin f equilibrium there wuld be n ccumultin r depletin f electrns frm the metl(s), e.g. / 2 (q) system (hlf-), electrns ccumulte (stndrd stte) n the electrde. A negtive chrge builds up n the electrde nd psitive chrge builds up in the surrunding slutin. This chrging seprtin leds t difference in the electricl ptentil difference between the metl (electrde) nd the slutin (~1V); hlf- ptentil, electrde ptentil. Cupling tw hlf-s give n electrchemicl. Hlf Cell 2 ()() s 2 q e Psitin f equilibrium determines the vlue f. 2 ()() s 2 q e 2 Cu()() s 2Cu q e 2 Difference in electrsttic ptentil = The electricl ptentil,, develped ffects the chemicl ptentil (energy) f the chrged species. The ptentil energy f the chrged species wuld hve n dditinl term in dditin t the nrml chemicl ptentil, ; electrchemicl (energy) ptentil. () z F fr = nd/r z =.

3 Electrchemicl ptentil is thermdynmic mesure f chemicl ptentil tht tht tkes int ccunt the energy cntributin frm the electricl ptentil. Fr n electrchemicl rectin; G = R i i i Fr n electrchemicl equilibrium; G = R i i i In this exmple the (II) in d nt exist in isltin, but with cunter in. Tht will be true fr ll cmpunds in slutin. Therefre fr electrchemicl rectin ; G = [()] z F R i i i i i i i i () z F F z i i i i i i i i i i i i i i i Therefre cnsidering ll species present in the slutin; we cn set =, nd s result. Fr ny inic cmpund in slutin The ffects ll ins, in the slutin, regrdless f their prticiptin in the redx equilibrium hlf rectin. Nte: The verll rectin include the nn-prticipting cunter ins s well. Hlf Cell 2 F fr electrns in metl. e 2 () q 2() e s At equilibrium the chemicl/electrchemicl ptentils f the rectnt side nd prduct side re equl. 2 z e e F per electrn in metl / 2 cnsidering the cunter ins z e 2 fr (); ( q2 ) 2e s z ln 2 ln 2/ / ln 2 E E 2/ 2/ 2 el el el ln E E ln Q Electrde Ptentil

4 2 2 cnsidering the cunter ins z e fr () q 2e (); s z 2 ln / ln 2 2 2/ 2/ 2/ ln ln 2 1 E E ln E E ln Q 2/ 2/ el el el 2 Electrde Ptentil, Nernst Equtin Primry Reference Electrde: Stndrd Hydrgen Electrde Hwever the bslute electricl ptentil f n individul hlf cnnt be mesured. Therefre, it is cnvenient t chse ne hlf- s reference nd rbitrrily ssign n electricl ptentil f zer t this hlf-. Cupling with the reference electrde the electricl ptentil sscited with ny ther hlf, the new ptentil difference cn be determined. The stndrd hydrgen electrde fulfills the rle f reference hlf- f zer ptentil. The rectin in the stndrd hydrgen electrde is, Stndrd Hydrgen Electrde: SHE Setting unit ctivities fr ll species; E SHE 25 C by definitin.

5 Ptentimeter Circuit Stndrd electrde: All ctivities f rectin cmpnents is unity. Reference Electrde Test Electrde ph meter is very clse t n idel vltmeter. Impednce Drws negligible current. Negtive terminl - reference electrde slt. - BNC uter cnnectr Fr Cell: +2 ( 1 ) Cu +2 ( 2 ) Cu Q rxn 2 Cu 2 Cu2 Cu2 E E ln Qrxn Cell Ptentil, Nernst Equtin

6 Electrde ptentil E el : Clcultin f (hlf ) electrde ptentil E el s reductin ptentil (cnventin).. Write chrged nd mss blnced hlf rectin s reductin rectin, nte the # electrns n b. Write the rectin qutient (Q el ), sscited with n c. Obtin the Stndrd Electrde Ptentil fr the hlf rectin E el i.e. E M+n/M. E n E n ln Q M / M M / M el If Q =, i.e. ll ctivities t stndrd sttes = 1 E E n n M / M M / M Using Nernst equtin - electrdes. Fe + e = Fe MnO + 8H + 5e = Mn + 4H O E = E ln +2 Fe Fe / Fe Fe / Fe F +3 Fe E = E ln +2 Mn MnO 4 / Mn MnO 8 4 / Mn 5F -1 + MnO4 H reduced xidized By cnventin hlf rectins re written s reductin rectins. Lrger the electrde ptentil clculted (determined) fr the reductin prcess higher the prpensity fr tht t ccur. Then the reverse f the rectin hs less r n prpensity t ccur. Tht is the xidtin f the is unlikely if reductin Is the nturlly preferred prcess. And vice vers. Stndrd (reductin) ptentil vlues cmpre the inherent prpensity (spntneity) f reductin t ccur. Lrge nd psitive fvrs (spntneus) the reductin prcess; lrge nd negtive vlues indictive f nn-spntneus prcess, but reverse prcess, xidtin is spntneus. Cell ptentil (EMF) E : Clcultin f (hlf ) electrde ptentil E s reductin ptentil (cnventin).. Write chrged nd mss blnced full rectin s reductin rectin, nte the # electrns n, fr the full rectin. b. Write the rectin qutient (Q rxn ), sscited with n electrns. c. Obtin the Stndrd Cell Ptentil fr the rectin E i.e. E reductin rectin E xidtin rectin E E E ln Q ; E E ln Q If Q =, i.e. ll ctivities t stndrd sttes = 1 cthde nde rxn rxn E E

7 Using Nernst equtin Electrchemicl. MnO() 8H() 5Fe() Mn() 5Fe() 4H O E = E - ln 5 Mn+2 Fe F MnO4H+ Fe+2 E = E - ln F 1 23 E = E - ln 2 1 Mn+2 CO F MnO4H+ H2C2O4 E =( ) - ln 2 1 Mn+2 CO F MnO4H+ H2C2O4 E E E el, reductin _ prcess el, xidtin _ prcess E E ln Qrxn.591 E E lg Qrxn Vlts n Slpe =1/3 =1/2 =1 E E ln Q rxn E E 1 ln Q / F n rxn Experimentl determintin f n.

8 Lrger nd psitive the ptentil indictive f higher the prpensity (spntneus) fr the rectin t ccur. Then the reverse f the rectin hs less r n prpensity (nn-spntneus) t ccur. Stndrd ptentil vlues cmpre the inherent prpensity (spntneity) f rectin t ccur. Lrge nd psitive fvrs (spntneus) the rectin; lrge nd negtive vlues indictive f nn-spntneus rectin, but reverse rectin is spntneus. Energetics: G R G E ln Q R rxn At equilibrium G nd Q = K ln Ec ell ln K spntneity predictin, rectin E R E K G E G E el el Stndrd Gibbs Energy nd Entrpy Chnge f rectins G H TS G E G H () TS T T T () E T P P P S T P P E S Determintin f E el nd Activity Cefficients f Electrlytes: Stndrd electrde by definitin hs the ctivities f ll rectin cmpnents s unity. Unlike mst ther slutins electrlyte ctivities re devites cncentrtin even t lw cncentrtins. Cnstructin f stndrd electrde is nt s direct s expected. Experimentl determintin f stndrd electrde ptentils much difficult nd nn direct experimentl pprch is required.

9 Exmple Fr Cell: Pt H 2 (p=1tm) HCl(=1) AgNO 3 (m) Ag(s) Cell Rectin: Ag ( q,) m 1/ 2(1)()( H 2 tm, 1) Ag s H q Q rxn H Ag ; n 1 E E ln Qrxn E ln F E E ln E ln H F F m Ag Ag Ag H Ag 1 Men ctivity is define s; 2 Ag NO3 m nd m = γ γ m m = γ m m γ m ± ± + - ± m nt pssible t determine by expt. 1 E E ln E ln F F m H Ag E E.5916lg m.5916lg EMF f : Pt H 2 (p=1tm) HCl(=1) AgNO 3 (m) Ag(s) E m E m.5916lg.311 lg.592 z z I.592 z z m :DHE E E.5916lg m.5916(.592 z z ) m E.5916lg m E.311 m E E.5916lg m.5916lg

10 Applictins:. Slubility prduct f springly sluble slts, e.g. AgBr Use hlf-s invlving the slubility equilibrium. Bth f knwn stndrd electrde ptentil. Clculte stndrd ptentil. G E G E el Ptentils re nt dditive except in specil situtins, intensive prperty. Energy vlues re dditive extensive prperty. PbSO ()()() s Pb q SO q K sp 2 2 Pb SO4 PbSO () s 2()() e Pb s SO q 2 E G FE Pb()() s 2 Pb q e ( 2) E G FE Deceptive becuse n=1 is the sme fr hlf rectins. PbSO ()()() s Pb q SO q G 2FE ln K K sp 2FE sp G G G G 2() F E E Alternte pprch. Ag(s) AgNO 3 () Ag(NO 3 ) () Ag(s) Add Cl - s tht precipitte Ag +. At end pint EMF, E ; AgCl()()() s Ag q Cl q ; K K ; K 2 Ag sp Ag, LHS sp Ag LHS ClLHS Ag Cl sp Cnsidering bth electrdes s Ag(s) Ag + (q) electrdes. 1 1 E ERHS ln ELHS ln F Ag, RHS F Ag, LHS Ag, RHS Ag, RHS E ln ln F F K Ag, LHS sp Reference Electrdes secndry stndrd electrdes The SHE is cumbersme t cnstruct. Other hlf-s re being used s secndry stndrds. Silver/silver chlride: AgCl(s) +e - = Ag(s) + Cl - (q) 25 vs. SHE vs. SCE Ag/AgCl, KCl (.1M) Ag/AgCl, KCl (3M) Ag/AgCl, KCl (3.5M) Ag/AgCl, KCl (st'd) Ag/AgCl, NCl (3M) Ag/AgCl, NCl (st'd)

University Chemistry Quiz /04/21 1. (10%) Consider the oxidation of ammonia:

University Chemistry Quiz /04/21 1. (10%) Consider the oxidation of ammonia: University Chemistry Quiz 3 2015/04/21 1. (10%) Cnsider the xidatin f ammnia: 4NH 3 (g) + 3O 2 (g) 2N 2 (g) + 6H 2 O(l) (a) Calculate the ΔG fr the reactin. (b) If this reactin were used in a fuel cell,

More information

In the half reaction I 2 2 I the iodine is (a) reduced (b) oxidized (c) neither of the above

In the half reaction I 2 2 I the iodine is (a) reduced (b) oxidized (c) neither of the above 6.3-110 In the half reactin I 2 2 I the idine is (a) reduced (b) xidized (c) neither f the abve 6.3-120 Vitamin C is an "antixidant". This is because it (a) xidizes readily (b) is an xidizing agent (c)

More information

CHAPTER 6 / HARVEY A. CHEMICAL EQUILIBRIUM B. THERMODYNAMICS AND EQUILIBRIUM C. MANUPULATING EQUILIBRIUM CONSTANTS

CHAPTER 6 / HARVEY A. CHEMICAL EQUILIBRIUM B. THERMODYNAMICS AND EQUILIBRIUM C. MANUPULATING EQUILIBRIUM CONSTANTS CHPTER 6 / HRVEY. CHEMICL B. THERMODYNMICS ND C. MNUPULTING CONSTNTS D. CONSTNTS FOR CHEMICL RECTIONS 1. Precipitatin Reactins 2. cid-base Reactins 3. Cmplexatin Reactins 4. Oxidatin-Reductin Reactins

More information

Chapter 19. Electrochemistry. Dr. Al Saadi. Electrochemistry

Chapter 19. Electrochemistry. Dr. Al Saadi. Electrochemistry Chapter 19 lectrchemistry Part I Dr. Al Saadi 1 lectrchemistry What is electrchemistry? It is a branch f chemistry that studies chemical reactins called redx reactins which invlve electrn transfer. 19.1

More information

Chemistry 132 NT. Electrochemistry. Review

Chemistry 132 NT. Electrochemistry. Review Chemistry 132 NT If yu g flying back thrugh time, and yu see smebdy else flying frward int the future, it s prbably best t avid eye cntact. Jack Handey 1 Chem 132 NT Electrchemistry Mdule 3 Vltaic Cells

More information

CHEM 2400/2480. Lecture 19

CHEM 2400/2480. Lecture 19 Lecture 19 Metal In Indicatr - a cmpund whse clur changes when it binds t a metal in - t be useful, it must bind the metal less strngly than EDTA e.g. titratin f Mg 2+ with EDTA using erichrme black T

More information

CHEM Thermodynamics. Change in Gibbs Free Energy, G. Review. Gibbs Free Energy, G. Review

CHEM Thermodynamics. Change in Gibbs Free Energy, G. Review. Gibbs Free Energy, G. Review Review Accrding t the nd law f Thermdynamics, a prcess is spntaneus if S universe = S system + S surrundings > 0 Even thugh S system

More information

CHEMISTRY 16 HOUR EXAM IV KEY April 23, 1998 Dr. Finklea. 1. The anti-cancer drug cis-platin is the complex: cis-[pt(nh ) (Cl) ]. In this complex, the

CHEMISTRY 16 HOUR EXAM IV KEY April 23, 1998 Dr. Finklea. 1. The anti-cancer drug cis-platin is the complex: cis-[pt(nh ) (Cl) ]. In this complex, the CHEMISTRY 16 HOUR EXAM IV KEY April 23, 1998 Dr. Finklea Sme useful cnstants: ln(10) = 2.303, R = 8.314 J/ml@K, F = 96,00 cul/ml, 2.303RT/F = 0.0916 V at 2EC. Assume a temperature f 2EC unless tld therwise.

More information

Chem 163 Section: Team Number: ALE 24. Voltaic Cells and Standard Cell Potentials. (Reference: 21.2 and 21.3 Silberberg 5 th edition)

Chem 163 Section: Team Number: ALE 24. Voltaic Cells and Standard Cell Potentials. (Reference: 21.2 and 21.3 Silberberg 5 th edition) Name Chem 163 Sectin: Team Number: ALE 24. Vltaic Cells and Standard Cell Ptentials (Reference: 21.2 and 21.3 Silberberg 5 th editin) What des a vltmeter reading tell us? The Mdel: Standard Reductin and

More information

2004 AP CHEMISTRY FREE-RESPONSE QUESTIONS

2004 AP CHEMISTRY FREE-RESPONSE QUESTIONS 2004 AP CHEMISTRY FREE-RESPONSE QUESTIONS 6. An electrchemical cell is cnstructed with an pen switch, as shwn in the diagram abve. A strip f Sn and a strip f an unknwn metal, X, are used as electrdes.

More information

2-July-2016 Chemsheets A Page 1

2-July-2016 Chemsheets A Page 1 www.chemsheets.c.uk 2-July-2016 Chemsheets A2 1076 Page 1 SECTION 1 AS REDOX REVISION 1) Oxidatin states When using xidatin states, we effectively imagine everything t be an in the xidatin state is the

More information

Electrochemistry. Reduction: the gaining of electrons. Reducing agent (reductant): species that donates electrons to reduce another reagent.

Electrochemistry. Reduction: the gaining of electrons. Reducing agent (reductant): species that donates electrons to reduce another reagent. Electrchemistry Review: Reductin: the gaining f electrns Oxidatin: the lss f electrns Reducing agent (reductant): species that dnates electrns t reduce anther reagent. Oxidizing agent (xidant): species

More information

AP CHEMISTRY CHAPTER 6 NOTES THERMOCHEMISTRY

AP CHEMISTRY CHAPTER 6 NOTES THERMOCHEMISTRY AP CHEMISTRY CHAPTER 6 NOTES THERMOCHEMISTRY Energy- the capacity t d wrk r t prduce heat 1 st Law f Thermdynamics: Law f Cnservatin f Energy- energy can be cnverted frm ne frm t anther but it can be neither

More information

Chapter 8 Reduction and oxidation

Chapter 8 Reduction and oxidation Chapter 8 Reductin and xidatin Redx reactins and xidatin states Reductin ptentials and Gibbs energy Nernst equatin Disprprtinatin Ptential diagrams Frst-Ebswrth diagrams Ellingham diagrams Oxidatin refers

More information

PH2200 Practice Exam I Summer 2003

PH2200 Practice Exam I Summer 2003 PH00 Prctice Exm I Summer 003 INSTRUCTIONS. Write yur nme nd student identifictin number n the nswer sheet.. Plese cver yur nswer sheet t ll times. 3. This is clsed bk exm. Yu my use the PH00 frmul sheet

More information

Find this material useful? You can help our team to keep this site up and bring you even more content consider donating via the link on our site.

Find this material useful? You can help our team to keep this site up and bring you even more content consider donating via the link on our site. Find this material useful? Yu can help ur team t keep this site up and bring yu even mre cntent cnsider dnating via the link n ur site. Still having truble understanding the material? Check ut ur Tutring

More information

CHAPTER 21 ELECTROCHEMISTRY: CHEMICAL CHANGE AND ELECTRICAL WORK

CHAPTER 21 ELECTROCHEMISTRY: CHEMICAL CHANGE AND ELECTRICAL WORK CHAPTR 1 LCTROCHMISTRY: CHMICAL CHANG AND LCTRICAL WORK 1.1 Oxidatin is the lss f electrns (resulting in a higher xidatin number), while reductin is the gain f electrns (resulting in a lwer xidatin number).

More information

Electrochemical Reactions

Electrochemical Reactions Electrchemical Reactins The first chemical prcess t prduce electricity was described in 1800 by the Italian scientist Alessandr Vlta, a frmer high schl teacher. Acting n the hypthesis that tw dissimilar

More information

Electrochemistry for analytical purposes. Examples for water analysis Dr Riikka Lahtinen

Electrochemistry for analytical purposes. Examples for water analysis Dr Riikka Lahtinen Electrchemistry fr analytical purpses Examples fr water analysis Dr Riikka Lahtinen Electrchemistry Based n RedOx-reactins: Reductin: receive electrn(s) Oxidatin: give away electrn(s) Electrchemistry is

More information

ALGEBRA 2/TRIGONMETRY TOPIC REVIEW QUARTER 3 LOGS

ALGEBRA 2/TRIGONMETRY TOPIC REVIEW QUARTER 3 LOGS ALGEBRA /TRIGONMETRY TOPIC REVIEW QUARTER LOGS Cnverting frm Epnentil frm t Lgrithmic frm: E B N Lg BN E Americn Ben t French Lg Ben-n Lg Prperties: Lg Prperties lg (y) lg + lg y lg y lg lg y lg () lg

More information

Strategy Write the two half-cell reactions and identify the oxidation and reduction reactions. Pt H2 (g) H + (aq)

Strategy Write the two half-cell reactions and identify the oxidation and reduction reactions. Pt H2 (g) H + (aq) Slutins manual fr Burrws et.al. Chemistry 3 Third editin 16 Electrchemistry Answers t wrked examples WE 16.1 Drawing a cell diagram (n p. 739 in Chemistry 3 ) Draw a cell diagram fr an electrchemical cell

More information

19 Applications of Standard Electrode Potentials

19 Applications of Standard Electrode Potentials 9 Applicatins f Standard lectrde Ptentials ( Calculating thermdynamic cell ptentials ( Calculating equilibrium cnstants fr redx reactins ( Cnstructing redx titratin curves 9A Calculating Ptentials f lectrchemical

More information

CHM 152 Practice Final

CHM 152 Practice Final CM 152 Practice Final 1. Of the fllwing, the ne that wuld have the greatest entrpy (if cmpared at the same temperature) is, [a] 2 O (s) [b] 2 O (l) [c] 2 O (g) [d] All wuld have the same entrpy at the

More information

DIRECT CURRENT CIRCUITS

DIRECT CURRENT CIRCUITS DRECT CURRENT CUTS ELECTRC POWER Consider the circuit shown in the Figure where bttery is connected to resistor R. A positive chrge dq will gin potentil energy s it moves from point to point b through

More information

Electrochemistry. Half-Reactions 1. Balancing Oxidation Reduction Reactions in Acidic and Basic Solutions

Electrochemistry. Half-Reactions 1. Balancing Oxidation Reduction Reactions in Acidic and Basic Solutions Electrchemistry Half-Reactins 1. Balancing Oxidatin Reductin Reactins in Acidic and Basic Slutins Vltaic Cells 2. Cnstructin f Vltaic Cells 3. Ntatin fr Vltaic Cells 4. Cell Ptential 5. Standard Cell Ptentials

More information

Electrochemistry. Learning Objectives. Half-Reactions 1. Balancing Oxidation Reduction Reactions in Acidic and Basic Solutions

Electrochemistry. Learning Objectives. Half-Reactions 1. Balancing Oxidation Reduction Reactions in Acidic and Basic Solutions Electrchemistry 1 Learning Objectives Electrchemistry Balancing Oxidatin Reductin Reactins in Acidic and Basic Slutins a. Learn the steps fr balancing xidatin reductin reactins using the half-reactin methd.

More information

Find this material useful? You can help our team to keep this site up and bring you even more content consider donating via the link on our site.

Find this material useful? You can help our team to keep this site up and bring you even more content consider donating via the link on our site. Find this material useful? Yu can help ur team t keep this site up and bring yu even mre cntent cnsider dnating via the link n ur site. Still having truble understanding the material? Check ut ur Tutring

More information

Fe = Fe + e MnO + 8H + 5e = Mn

Fe = Fe + e MnO + 8H + 5e = Mn Redox Titrtions Net trnsfer of electrons during the rection. xidtion numbers of two/more species chnge. Stisfies requirements for rections in quntittion;. lrge K b. fst rection Blncing redox rections:

More information

Thermodynamics and Equilibrium

Thermodynamics and Equilibrium Thermdynamics and Equilibrium Thermdynamics Thermdynamics is the study f the relatinship between heat and ther frms f energy in a chemical r physical prcess. We intrduced the thermdynamic prperty f enthalpy,

More information

Chapter 17: Thermodynamics: Spontaneous and Nonspontaneous Reactions and Processes

Chapter 17: Thermodynamics: Spontaneous and Nonspontaneous Reactions and Processes Chapter 17: hermdynamics: Spntaneus and Nnspntaneus Reactins and Prcesses Learning Objectives 17.1: Spntaneus Prcesses Cmparing and Cntrasting the hree Laws f hermdynamics (1 st Law: Chap. 5; 2 nd & 3

More information

takes place; the cathode is the Ag electrode with the reduction reaction (b) The anode is the Ag electrode where the oxidation reaction

takes place; the cathode is the Ag electrode with the reduction reaction (b) The anode is the Ag electrode where the oxidation reaction hpter. By cnventin, we describe n electrchemicl cell frm lefttright nd frm ndetcthde; thus () The nde is the Pt electrde where the xidtin rectin ( q)? ( q) e 3 hpter Electrchemicl Methds 8 tkes plce; the

More information

Types of Energy COMMON MISCONCEPTIONS CHEMICAL REACTIONS INVOLVE ENERGY

Types of Energy COMMON MISCONCEPTIONS CHEMICAL REACTIONS INVOLVE ENERGY CHEMICAL REACTIONS INVOLVE ENERGY The study energy and its transrmatins is knwn as thermdynamics. The discussin thermdynamics invlve the cncepts energy, wrk, and heat. Types Energy Ptential energy is stred

More information

Introduction to Three-phase Circuits. Balanced 3-phase systems Unbalanced 3-phase systems

Introduction to Three-phase Circuits. Balanced 3-phase systems Unbalanced 3-phase systems Intrductin t Three-hse Circuits Blnced 3-hse systems Unblnced 3-hse systems 1 Intrductin t 3-hse systems Single-hse tw-wire system: Single surce cnnected t ld using tw-wire system Single-hse three-wire

More information

Supporting information

Supporting information Electrnic Supplementary Material (ESI) fr Physical Chemistry Chemical Physics This jurnal is The wner Scieties 01 ydrgen perxide electrchemistry n platinum: twards understanding the xygen reductin reactin

More information

Find this material useful? You can help our team to keep this site up and bring you even more content consider donating via the link on our site.

Find this material useful? You can help our team to keep this site up and bring you even more content consider donating via the link on our site. Find this material useful? Yu can help ur team t keep this site up and bring yu even mre cntent cnsider dnating via the link n ur site. Still having truble understanding the material? Check ut ur Tutring

More information

5.1 Properties of Inverse Trigonometric Functions.

5.1 Properties of Inverse Trigonometric Functions. Inverse Trignmetricl Functins The inverse f functin f( ) f ( ) f : A B eists if f is ne-ne nt ie, ijectin nd is given Cnsider the e functin with dmin R nd rnge [, ] Clerl this functin is nt ijectin nd

More information

Measurement and Instrumentation Lecture Note: Strain Measurement

Measurement and Instrumentation Lecture Note: Strain Measurement 0-60 Meurement nd Intrumenttin Lecture Nte: Strin Meurement eview f Stre nd Strin Figure : Structure under tenin Frm Fig., xil tre σ, xil trin, trnvere trin t, Pin' rti ν, nd Yung mdulu E re σ F A, dl

More information

BIT Chapters = =

BIT Chapters = = BIT Chapters 17-0 1. K w = [H + ][OH ] = 9.5 10 14 [H + ] = [OH ] =.1 10 7 ph = 6.51 The slutin is neither acidic nr basic because the cncentratin f the hydrnium in equals the cncentratin f the hydride

More information

Physics 102. Final Examination. Spring Semester ( ) P M. Fundamental constants. n = 10P

Physics 102. Final Examination. Spring Semester ( ) P M. Fundamental constants. n = 10P ε µ0 N mp M G T Kuwit University hysics Deprtment hysics 0 Finl Exmintin Spring Semester (0-0) My, 0 Time: 5:00 M :00 M Nme.Student N Sectin N nstructrs: Drs. bdelkrim, frsheh, Dvis, Kkj, Ljk, Mrfi, ichler,

More information

7/19/2011. Models of Solution Chemistry- III Acids and Bases

7/19/2011. Models of Solution Chemistry- III Acids and Bases Models of Solution Chemistry- III Acids nd Bses Ionic Atmosphere Model : Revisiting Ionic Strength Ionic strength - mesure of totl concentrtion of ions in the solution Chpter 8 1 2 i μ ( ) 2 c i z c concentrtion

More information

Lecture 13: Electrochemical Equilibria

Lecture 13: Electrochemical Equilibria 3.012 Fundamentals f Materials Science Fall 2005 Lecture 13: 10.21.05 Electrchemical Equilibria Tday: LAST TIME...2 An example calculatin...3 THE ELECTROCHEMICAL POTENTIAL...4 Electrstatic energy cntributins

More information

11.2. Infinite Series

11.2. Infinite Series .2 Infinite Series 76.2 Infinite Series An infinite series is the sum f n infinite seuence f numbers + 2 + 3 + Á + n + Á The gl f this sectin is t understnd the mening f such n infinite sum nd t develp

More information

Making and Experimenting with Voltaic Cells. I. Basic Concepts and Definitions (some ideas discussed in class are omitted here)

Making and Experimenting with Voltaic Cells. I. Basic Concepts and Definitions (some ideas discussed in class are omitted here) Making xperimenting with Vltaic Cells I. Basic Cncepts Definitins (sme ideas discussed in class are mitted here) A. Directin f electrn flw psitiveness f electrdes. If ne electrde is mre psitive than anther,

More information

Find this material useful? You can help our team to keep this site up and bring you even more content consider donating via the link on our site.

Find this material useful? You can help our team to keep this site up and bring you even more content consider donating via the link on our site. Find this material useful? Yu can help ur team t keep this site up and bring yu even mre cntent cnsider dnating via the link n ur site. Still having truble understanding the material? Check ut ur Tutring

More information

Part One: Heat Changes and Thermochemistry. This aspect of Thermodynamics was dealt with in Chapter 6. (Review)

Part One: Heat Changes and Thermochemistry. This aspect of Thermodynamics was dealt with in Chapter 6. (Review) CHAPTER 18: THERMODYNAMICS AND EQUILIBRIUM Part One: Heat Changes and Thermchemistry This aspect f Thermdynamics was dealt with in Chapter 6. (Review) A. Statement f First Law. (Sectin 18.1) 1. U ttal

More information

WYSE Academic Challenge Regional Physics 2008 SOLUTION SET

WYSE Academic Challenge Regional Physics 2008 SOLUTION SET WYSE cdemic Chllenge eginl 008 SOLUTION SET. Crrect nswer: E. Since the blck is mving lng circulr rc when it is t pint Y, it hs centripetl ccelertin which is in the directin lbeled c. Hwever, the blck

More information

CHEM 1032 FALL 2017 Practice Exam 4 1. Which of the following reactions is spontaneous under normal and standard conditions?

CHEM 1032 FALL 2017 Practice Exam 4 1. Which of the following reactions is spontaneous under normal and standard conditions? 1 CHEM 1032 FALL 2017 Practice Exam 4 1. Which f the fllwing reactins is spntaneus under nrmal and standard cnditins? A. 2 NaCl(aq) 2 Na(s) + Cl2(g) B. CaBr2(aq) + 2 H2O(aq) Ca(OH)2(aq) + 2 HBr(aq) C.

More information

Physical Chemistry I for Biochemists Chem340. Lecture 38 (4/20/11) Yoshitaka Ishii. Announcement

Physical Chemistry I for Biochemists Chem340. Lecture 38 (4/20/11) Yoshitaka Ishii. Announcement Physicl Chemistry I for Biochemists Chem34 Lecture 38 (4//11) Yoshitk Ishii Ch. 9.7 9.1 9.1 Announcement HW1 due dte is 4/7 (Wed) Exm 3 will be returned probbly this Fridy Finl Exm 5/4 (Wed) 1 3 pm Quiz

More information

Semester 2 AP Chemistry Unit 12

Semester 2 AP Chemistry Unit 12 Cmmn In Effect and Buffers PwerPint The cmmn in effect The shift in equilibrium caused by the additin f a cmpund having an in in cmmn with the disslved substance The presence f the excess ins frm the disslved

More information

Chapters 29 and 35 Thermochemistry and Chemical Thermodynamics

Chapters 29 and 35 Thermochemistry and Chemical Thermodynamics Chapters 9 and 35 Thermchemistry and Chemical Thermdynamics 1 Cpyright (c) 011 by Michael A. Janusa, PhD. All rights reserved. Thermchemistry Thermchemistry is the study f the energy effects that accmpany

More information

Lecture 16 Thermodynamics II

Lecture 16 Thermodynamics II Lecture 16 Thermdynamics II Calrimetry Hess s Law Enthalpy r Frmatin Cpyright 2013, 2011, 2009, 2008 AP Chem Slutins. All rights reserved. Fur Methds fr Finding H 1) Calculate it using average bnd enthalpies

More information

Edexcel GCSE Physics

Edexcel GCSE Physics Edexcel GCSE Physics Tpic 10: Electricity and circuits Ntes (Cntent in bld is fr Higher Tier nly) www.pmt.educatin The Structure f the Atm Psitively charged nucleus surrunded by negatively charged electrns

More information

The Thermodynamics of Aqueous Electrolyte Solutions

The Thermodynamics of Aqueous Electrolyte Solutions 18 The Thermodynmics of Aqueous Electrolyte Solutions As discussed in Chpter 10, when slt is dissolved in wter or in other pproprite solvent, the molecules dissocite into ions. In queous solutions, strong

More information

Lecture 17: Free Energy of Multi-phase Solutions at Equilibrium

Lecture 17: Free Energy of Multi-phase Solutions at Equilibrium Lecture 17: 11.07.05 Free Energy f Multi-phase Slutins at Equilibrium Tday: LAST TIME...2 FREE ENERGY DIAGRAMS OF MULTI-PHASE SOLUTIONS 1...3 The cmmn tangent cnstructin and the lever rule...3 Practical

More information

Chapter 4 Thermodynamics and Equilibrium

Chapter 4 Thermodynamics and Equilibrium Chapter Thermdynamics and Equilibrium Refer t the fllwing figures fr Exercises 1-6. Each represents the energies f fur mlecules at a given instant, and the dtted lines represent the allwed energies. Assume

More information

Potential Changes Around a Circuit. You must be able to calculate potential changes around a closed loop.

Potential Changes Around a Circuit. You must be able to calculate potential changes around a closed loop. Tody s gend: Potentil Chnges Around Circuit. You must e le to clculte potentil chnges round closed loop. Electromotive force (EMF), Terminl Voltge, nd Internl Resistnce. You must e le to incorporte ll

More information

Chemistry 20 Lesson 11 Electronegativity, Polarity and Shapes

Chemistry 20 Lesson 11 Electronegativity, Polarity and Shapes Chemistry 20 Lessn 11 Electrnegativity, Plarity and Shapes In ur previus wrk we learned why atms frm cvalent bnds and hw t draw the resulting rganizatin f atms. In this lessn we will learn (a) hw the cmbinatin

More information

A Chemical Reaction occurs when the of a substance changes.

A Chemical Reaction occurs when the of a substance changes. Perid: Unit 8 Chemical Reactin- Guided Ntes Chemical Reactins A Chemical Reactin ccurs when the f a substance changes. Chemical Reactin: ne r mre substances are changed int ne r mre new substances by the

More information

Unit 11 Solutions- Guided Notes. What are alloys? What is the difference between heterogeneous and homogeneous mixtures?

Unit 11 Solutions- Guided Notes. What are alloys? What is the difference between heterogeneous and homogeneous mixtures? Name: Perid: Unit 11 Slutins- Guided Ntes Mixtures: What is a mixture and give examples? What is a pure substance? What are allys? What is the difference between hetergeneus and hmgeneus mixtures? Slutins:

More information

Downloaded from

Downloaded from ELECTROCHEMISTRY ONE Mark Each 1. The difference between the electrde ptentials f tw electrdes when n current is drawn thrugh the cell is called.. Under what cnditin an electrchemical cell can behave like

More information

Chapter 17 Free Energy and Thermodynamics

Chapter 17 Free Energy and Thermodynamics Chemistry: A Mlecular Apprach, 1 st Ed. Nivald Tr Chapter 17 Free Energy and Thermdynamics Ry Kennedy Massachusetts Bay Cmmunity Cllege Wellesley Hills, MA 2008, Prentice Hall First Law f Thermdynamics

More information

CHEM 116 Electrochemistry at Non-Standard Conditions, and Intro to Thermodynamics

CHEM 116 Electrochemistry at Non-Standard Conditions, and Intro to Thermodynamics CHEM 116 Electrchemistry at Nn-Standard Cnditins, and Intr t Thermdynamics Imprtant annuncement: If yu brrwed a clicker frm me this semester, return it t me at the end f next lecture r at the final exam

More information

Spontaneous Processes, Entropy and the Second Law of Thermodynamics

Spontaneous Processes, Entropy and the Second Law of Thermodynamics Chemical Thermdynamics Spntaneus Prcesses, Entrpy and the Secnd Law f Thermdynamics Review Reactin Rates, Energies, and Equilibrium Althugh a reactin may be energetically favrable (i.e. prducts have lwer

More information

Sixth Form Algebra Induction Booklet

Sixth Form Algebra Induction Booklet Sith Frm Algebr Inductin Bklet Mthemtics Deprtment St. Olve s Grmmr Schl Cntents Intrductin... A. Epnding brckets... 5 B. Fctrising epressins... 6 Cmmn fctrs... 6 Fur-term epressins... 6 Qudrtics... 6

More information

Entropy, Free Energy, and Equilibrium

Entropy, Free Energy, and Equilibrium Nv. 26 Chapter 19 Chemical Thermdynamics Entrpy, Free Energy, and Equilibrium Nv. 26 Spntaneus Physical and Chemical Prcesses Thermdynamics: cncerned with the questin: can a reactin ccur? A waterfall runs

More information

Interference is when two (or more) sets of waves meet and combine to produce a new pattern.

Interference is when two (or more) sets of waves meet and combine to produce a new pattern. Interference Interference is when tw (r mre) sets f waves meet and cmbine t prduce a new pattern. This pattern can vary depending n the riginal wave directin, wavelength, amplitude, etc. The tw mst extreme

More information

Unit 14 Thermochemistry Notes

Unit 14 Thermochemistry Notes Name KEY Perid CRHS Academic Chemistry Unit 14 Thermchemistry Ntes Quiz Date Exam Date Lab Dates Ntes, Hmewrk, Exam Reviews and Their KEYS lcated n CRHS Academic Chemistry Website: https://cincchem.pbwrks.cm

More information

Unit 3. Electrochemistry

Unit 3. Electrochemistry Unit 3 Electrcheistry One ark questins 1. What is an electrlyte? An electrlyte is a cpund which cnducts electricity either in its aqueus slutin r in its lten state. e.g Acids HCl, CH 3 COOH, HNO 3 Bases

More information

NUPOC STUDY GUIDE ANSWER KEY. Navy Recruiting Command

NUPOC STUDY GUIDE ANSWER KEY. Navy Recruiting Command NUPOC SUDY GUIDE ANSWER KEY Navy Recruiting Cmmand CHEMISRY. ph represents the cncentratin f H ins in a slutin, [H ]. ph is a lg scale base and equal t lg[h ]. A ph f 7 is a neutral slutin. PH < 7 is acidic

More information

Thermodynamics Partial Outline of Topics

Thermodynamics Partial Outline of Topics Thermdynamics Partial Outline f Tpics I. The secnd law f thermdynamics addresses the issue f spntaneity and invlves a functin called entrpy (S): If a prcess is spntaneus, then Suniverse > 0 (2 nd Law!)

More information

GUC (Dr. Hany Hammad) 9/19/2016

GUC (Dr. Hany Hammad) 9/19/2016 UC (Dr. Hny Hmmd) 9/9/6 ecture # ignl flw grph: Defitin. Rule f Reductin. Mn Rule. ignl-flw grph repreenttin f : ltge urce. ive gle-prt device. ignl Flw rph A ignl-flw grph i grphicl men f prtryg the reltinhip

More information

Chemistry: Electrochemistry-1

Chemistry: Electrochemistry-1 Chemistry: Electrchemistry-1 Slved Prblems Objective Prblem 1: Slutin: Prblem : Slutin: In the electrlysis f CuCl slutin using Cu electrdes, the weight f Cu ande increased by gram at cathde. In the ande.

More information

In other words, atoms are not created nor destroyed in chemical reaction.

In other words, atoms are not created nor destroyed in chemical reaction. CUNTING Physcisal Methds Chemical Methds by numbers 1 pr = 2 1 dz = 12 1 case = 12 r 24 1 hand = 5 fingers 1 ft = 12 inches Avgadr's number = 6.02x10 +23 anything anything by weighing 1 gummy bear = 1

More information

Materials Engineering 272-C Fall 2001, Lecture 7 & 8 Fundamentals of Diffusion

Materials Engineering 272-C Fall 2001, Lecture 7 & 8 Fundamentals of Diffusion Materials Engineering 272-C Fall 2001, Lecture 7 & 8 Fundamentals f Diffusin Diffusin: Transprt in a slid, liquid, r gas driven by a cncentratin gradient (r, in the case f mass transprt, a chemical ptential

More information

9-1 (a) A weak electrolyte only partially ionizes when dissolved in water. NaHCO 3 is an

9-1 (a) A weak electrolyte only partially ionizes when dissolved in water. NaHCO 3 is an Chpter 9 9- ( A ek electrolyte only prtilly ionizes hen dissolved in ter. NC is n exmple of ek electrolyte. (b A Brønsted-ory cid is cule tht dontes proton hen it encounters bse (proton cceptor. By this

More information

Name: Period: Date: BONDING NOTES HONORS CHEMISTRY

Name: Period: Date: BONDING NOTES HONORS CHEMISTRY Name: Perid: Date: BONDING NOTES HONORS CHEMISTRY Directins: This packet will serve as yur ntes fr this chapter. Fllw alng with the PwerPint presentatin and fill in the missing infrmatin. Imprtant terms

More information

200 points 5 Problems on 4 Pages and 20 Multiple Choice/Short Answer Questions on 5 pages 1 hour, 48 minutes

200 points 5 Problems on 4 Pages and 20 Multiple Choice/Short Answer Questions on 5 pages 1 hour, 48 minutes PHYSICS 132 Smple Finl 200 points 5 Problems on 4 Pges nd 20 Multiple Choice/Short Answer Questions on 5 pges 1 hour, 48 minutes Student Nme: Recittion Instructor (circle one): nme1 nme2 nme3 nme4 Write

More information

Chapter 2 GAUSS LAW Recommended Problems:

Chapter 2 GAUSS LAW Recommended Problems: Chapter GAUSS LAW Recmmended Prblems: 1,4,5,6,7,9,11,13,15,18,19,1,7,9,31,35,37,39,41,43,45,47,49,51,55,57,61,6,69. LCTRIC FLUX lectric flux is a measure f the number f electric filed lines penetrating

More information

CHAPTER Read Chapter 17, sections 1,2,3. End of Chapter problems: 25

CHAPTER Read Chapter 17, sections 1,2,3. End of Chapter problems: 25 CHAPTER 17 1. Read Chapter 17, sectins 1,2,3. End f Chapter prblems: 25 2. Suppse yu are playing a game that uses tw dice. If yu cunt the dts n the dice, yu culd have anywhere frm 2 t 12. The ways f prducing

More information

General Chemistry II, Unit II: Study Guide (part 1)

General Chemistry II, Unit II: Study Guide (part 1) General Chemistry II, Unit II: Study Guide (part 1) CDS Chapter 21: Reactin Equilibrium in the Gas Phase General Chemistry II Unit II Part 1 1 Intrductin Sme chemical reactins have a significant amunt

More information

Chapter 9 Chemical Reactions NOTES

Chapter 9 Chemical Reactions NOTES Chapter 9 Chemical Reactins NOTES Chemical Reactins Chemical reactin: Chemical change 4 Indicatrs f Chemical Change: (1) (2) (3) (4) Cnsist f reactants (starting materials) and prducts (substances frmed)

More information

Matter Content from State Frameworks and Other State Documents

Matter Content from State Frameworks and Other State Documents Atms and Mlecules Mlecules are made f smaller entities (atms) which are bnded tgether. Therefre mlecules are divisible. Miscnceptin: Element and atm are synnyms. Prper cnceptin: Elements are atms with

More information

PRINCE SULTAN UNIVERSITY Department of Mathematical Sciences Final Examination First Semester ( ) STAT 271.

PRINCE SULTAN UNIVERSITY Department of Mathematical Sciences Final Examination First Semester ( ) STAT 271. PRINCE SULTAN UNIVERSITY Deprtment f Mthemticl Sciences Finl Exmintin First Semester (007 008) STAT 71 Student Nme: Mrk Student Number: Sectin Number: Techer Nme: Time llwed is ½ hurs. Attendnce Number:

More information

Higher Checklist (Unit 3) Higher Checklist (Unit 3) Vectors

Higher Checklist (Unit 3) Higher Checklist (Unit 3) Vectors Vectors Skill Achieved? Know tht sclr is quntity tht hs only size (no direction) Identify rel-life exmples of sclrs such s, temperture, mss, distnce, time, speed, energy nd electric chrge Know tht vector

More information

SUMMER KNOWHOW STUDY AND LEARNING CENTRE

SUMMER KNOWHOW STUDY AND LEARNING CENTRE SUMMER KNOWHOW STUDY AND LEARNING CENTRE Indices & Logrithms 2 Contents Indices.2 Frctionl Indices.4 Logrithms 6 Exponentil equtions. Simplifying Surds 13 Opertions on Surds..16 Scientific Nottion..18

More information

REVIEW OF ENGINEERING THERMODYNAMICS

REVIEW OF ENGINEERING THERMODYNAMICS Deprtment f Mnng nd Mterls Engneerng REVIEW OF ENINEERIN HERMODYNMICS Ferrus pplctns Engneerng hermdynmcs 1 bbs energy = H S; : bbs Energy, H: Enthlpy, S: Entrpy 1. Fr pure elements r pure cmpunds (l,

More information

An Introduction to Symmetrical Components, System Modeling and Fault Calculation

An Introduction to Symmetrical Components, System Modeling and Fault Calculation An ntrductin t Symmetricl Cmpnents, System Mdeling nd Fult Clcultin Presented t the 35 th Annul HANDS-ON Rely Schl Mrch - 6, 8 Wshingtn Stte University Pullmn, Wshingtn By Stephen Mrx, nd Den Bender Bnneville

More information

Modern Physics. Unit 6: Hydrogen Atom - Radiation Lecture 6.1: The Radial Probability Density. Ron Reifenberger Professor of Physics Purdue University

Modern Physics. Unit 6: Hydrogen Atom - Radiation Lecture 6.1: The Radial Probability Density. Ron Reifenberger Professor of Physics Purdue University Mdern Physics Unit 6: Hydrgen Atm - Rditin Lecture 6.1: The Rdil Prbbility Density Rn Reifenberger Prfessr f Physics Purdue University 1 Prbbility Density Prbbility Density * ΨΨ = Ψ In 1-D, the prbbility

More information

( ) kt. Solution. From kinetic theory (visualized in Figure 1Q9-1), 1 2 rms = 2. = 1368 m/s

( ) kt. Solution. From kinetic theory (visualized in Figure 1Q9-1), 1 2 rms = 2. = 1368 m/s .9 Kinetic Mlecular Thery Calculate the effective (rms) speeds f the He and Ne atms in the He-Ne gas laser tube at rm temperature (300 K). Slutin T find the rt mean square velcity (v rms ) f He atms at

More information

In the spaces provided, explain the meanings of the following terms. You may use an equation or diagram where appropriate.

In the spaces provided, explain the meanings of the following terms. You may use an equation or diagram where appropriate. CEM1405 2007-J-2 June 2007 In the spaces prvided, explain the meanings f the fllwing terms. Yu may use an equatin r diagram where apprpriate. 5 (a) hydrgen bnding An unusually strng diple-diple interactin

More information

Electronic Supplementary Information. Low-cost industrially available molybdenum boride and carbide as platinum-like catalysts

Electronic Supplementary Information. Low-cost industrially available molybdenum boride and carbide as platinum-like catalysts Electrnic Supplementary Infrmatin Lw-cst industrially available mlybdenum bride and carbide as platinum-like catalysts fr the hydrgen evlutin reactin in biphasic liquid systems Micheál D. Scanln, a Xiajun

More information

Module 4: General Formulation of Electric Circuit Theory

Module 4: General Formulation of Electric Circuit Theory Mdule 4: General Frmulatin f Electric Circuit Thery 4. General Frmulatin f Electric Circuit Thery All electrmagnetic phenmena are described at a fundamental level by Maxwell's equatins and the assciated

More information

1.0 Fundamentals. Fig Schematic diagram of an electrochemical cell.

1.0 Fundamentals. Fig Schematic diagram of an electrochemical cell. 1 1.0 Fundamentals This chapter intrduces the electrchemical cell, its cmpnents, basic definitins, and the prcesses that take place during electrlysis. The difference between thermdynamics and kinetics

More information

POLYPHASE CIRCUITS. Introduction:

POLYPHASE CIRCUITS. Introduction: POLYPHASE CIRCUITS Introduction: Three-phse systems re commonly used in genertion, trnsmission nd distribution of electric power. Power in three-phse system is constnt rther thn pulsting nd three-phse

More information

Acids and Bases Lesson 3

Acids and Bases Lesson 3 Acids and Bases Lessn 3 The ph f a slutin is defined as the negative lgarithm, t the base ten, f the hydrnium in cncentratin. In a neutral slutin at 25 C, the hydrnium in and the hydrxide in cncentratins

More information

ALE 21. Gibbs Free Energy. At what temperature does the spontaneity of a reaction change?

ALE 21. Gibbs Free Energy. At what temperature does the spontaneity of a reaction change? Name Chem 163 Sectin: Team Number: ALE 21. Gibbs Free Energy (Reference: 20.3 Silberberg 5 th editin) At what temperature des the spntaneity f a reactin change? The Mdel: The Definitin f Free Energy S

More information

Antibodies and Antigens

Antibodies and Antigens Antibdies nd Antigens Yur bdy s s nturl defense system Antibdies The frml chemicl nme fr ntibdies is immunglbulins. Immunglbulins re prtein mlecules which defend yur bdy frm freign txins knwn s ntigens.

More information

Electronic Supplementary Information (ESI) Structure-Property Relationships in Protic Ionic Liquids: A. Thermochemical Study

Electronic Supplementary Information (ESI) Structure-Property Relationships in Protic Ionic Liquids: A. Thermochemical Study Electrnic Supplementry Mteril (ESI) fr Physicl Chemistry Chemicl Physics. This jurnl is the Owner Scieties 2017 Electrnic Supplementry Infrmtin (ESI) Structure-Prperty Reltinships in Prtic Inic Liquids:

More information

Chemistry Department. The Islamic University of Gaza. General Chemistry B.(CHEMB 1301) Time:2 hours الرقم الجامعي... اسم المدرس...

Chemistry Department. The Islamic University of Gaza. General Chemistry B.(CHEMB 1301) Time:2 hours الرقم الجامعي... اسم المدرس... The Islmic University of Gz Chemistry Deprtment Generl Chemistry B.(CHEMB 1301) Time:2 hours 60 اسم الطالب... الرقم الجامعي... اسم المدرس... R = 8.314 J/mol.K, or = 0.0821 L.tm/mol.K Q1- True ( ) or flse(

More information