Asynchronous Sequen<al Circuits

Size: px
Start display at page:

Download "Asynchronous Sequen<al Circuits"

Transcription

1 Asynchrnus Sequen<l Circuits A type f circuit withut clcks (therefre NO flip- flps), ut with the cncept f memry. n The cncept f memry is tined thrugh the use f: ltches nd/r circuit dely nd cmin<nl lps. Asynchrnus sequen<l circuits resemle cmintril circuits with feedck pths. ECE24 Digitl Circuits nd Systems Pge

2 Blck digrm f n synchrnus circuit Nte difference in likle y secndry vriles nd cpitl Y excit<n vriles. Dely elements re hypthe<cl, nd typiclly re result f gte delys. Nte: When inputs chnge, excit<n vriles Y chnge. It tkes ddi<nl dely fr the secndry vriles (current stte) t ssume the vlues f the excit<n vriles (next stte). circuit inputs x current stte (secndry vriles) y n k cmintril lgic dely m k circuit utputs z Y next stte (excittin vriles) ECE24 Digitl Circuits nd Systems Pge 2

3 Defini<ns imprtnt fr synchrnus circuits Stility: n Fr given set f inputs (i.e., vlues), the system is stle if the circuit eventully reches stedy stte nd the excit<n vriles nd secndry vriles re equl nd unchnging (likle y = cpitl Y), therwise the circuit is unstle. Fundmentl Mde Oper4n: n A circuit is per<ng in fundmentl mde if we ssume/frce the fllwing restric<ns n hw the inputs cn chnge: Only ne input is llwed t chnge t <me, The input chnges nly Yer the circuit is stle. ECE24 Digitl Circuits nd Systems Pge 3

4 Asynchrnus circuit nlysis We iden<fy synchrnus circuits y () the presence f ltches (un- clcked strge elements) nd/r (2) cmin<nl feedck pths (lps thrugh lgic gtes). Anlysis invlves tining tle r digrm tht descries the sequence f internl sttes nd utputs s func<n f chnges in the circuit inputs. The tles we will try t tin re trnsi;n tles nd flw tles (mre r less the sme thing s stte tle in synchrnus circuit design). We cn ls use stte digrms t descrie synchrnus circuits. ECE24 Digitl Circuits nd Systems Pge 4

5 Exmple f n synchrnus circuit Cnsider the fllwing circuit tht hs cmintril feedck pths (nd is therefre iden<fied s synchrnus). N pprent ltches in the circuit: Feedck pth is ne in which n utput feeds ck t its wn input (it cretes lp in the circuit thrugh cmintinl lgic) x y2 y Y Y2 z Circuit hs ne input (x), ne utput (z), tw secndry vriles (y, y2) nd tw excit<n vriles (Y, Y2). ECE24 Digitl Circuits nd Systems Pge 5

6 Anlysis (wri<ng lgic equ<ns) Write lgic equ<ns fr the excit<n vriles in terms f the circuit inputs nd secndry vriles: Write lgic equ<ns fr circuit utputs in terms f the circuit inputs nd secndry vriles: ECE24 Digitl Circuits nd Systems Pge 6

7 Anlysis (trnsi<n tle) Using these equ<ns, we cn write trnsi;n tle tht shws excit<n vriles nd utputs s func<n f inputs nd secndry vriles: curr stte y2y next stte x= x= Y2Y Y2Y utput x= x= z z Nte tht stle sttes (secndry vriles equl t excit;n vriles) re circled. ECE24 Digitl Circuits nd Systems Pge 7

8 Anlysis (flw tle) We cn ls crete flw tle, which is just the trnsi<n tle with inry numers replced with symls (e.g., let =, =, c = nd d = ): curr stte y2y c d next stte x= x= Y2Y Y2Y c d c d utput x= x= z z We culd prceed t drw smething like stte digrm frm this infrm<n, if we chse ECE24 Digitl Circuits nd Systems Pge 8

9 Anlysis (flw tle ltern<ve) Anther wy t drw flw tle: x= x= c d,, d, d, c,, c,, LeY- mst clumn shws current stte (secndry vriles), nd the inputs re listed crss the tp. Entries in the mtrix shw the next stte (excit<n vriles) nd utput vlues. ECE24 Digitl Circuits nd Systems Pge 9

10 Primi<ve flw tle Flw tle with nly ne stle stte per rw is clled primi;ve flw tle. x xx2 c c c d d d Primitive Nt primitive ECE24 Digitl Circuits nd Systems Pge

11 Summry f nlysis Prcedure t determine trnsi<n tle nd/r flw tle frm circuit with cmintril feedck pths: n n n n n Iden<fy feedck pths. Lel Y (excit<n vriles) t utput nd y (secndry vriles t input). Derive lgic expressins fr Y (excit<n vriles) in terms f circuit inputs nd secndry vriles. D the sme fr circuit utputs. Crete trnsi<n tle nd flw tle. Circle stle sttes where Y (excit<n vriles) re equl t y (secndry vriles). ECE24 Digitl Circuits nd Systems Pge

12 Revisi<ng ltches Ltches re simply synchrnus circuits. We cn use the previus nlysis technique t see hw ltches wrk. ECE24 Digitl Circuits nd Systems Pge 2

13 Anlysis f n SR ltch () We cn nlyze n SR ltch using the previus technique: R S Y Q y Equ<ns derived fr secndry vrile (sme equ<n fr utput): Since we wnt t vid the SR= situ<n, we cn write: ECE24 Digitl Circuits nd Systems Pge 3

14 Anlysis f n SR ltch (2) Cn derive the trnsi<n tle nd the flw tle: curr stte next stte SR= utput curr stte next stte SR= utput y Y Y Y Y y Y Y Y Y ECE24 Digitl Circuits nd Systems Pge 4

15 Anlysis f n SR ltch (3) Nte: We cn see the undesirle cse when SR= nd inputs chnge. Depending n the vrius delys nd ssuming SR= chnges t SR= n If SR= - > SR= - > SR=, we get stle stte with utput f. n If SR= - > SR= - > SR=, we get stle stte with utput f. S the stle stte is unpredictle. Cnclusin is tht we need t e creful if we (pssily) need t trnsi<n frm ne stte t nther nd we (smehw) pss thrugh stte. ECE24 Digitl Circuits nd Systems Pge 5

16 Anlysis f n S R ltch () We cn nlyze n S R ltch using the previus technique: S R Y Q y Equ<ns derived fr secndry vrile (sme equ<n fr utput): Since we wnt t vid the SR= situ<n, we cn write: ECE24 Digitl Circuits nd Systems Pge 6

17 Anlysis f n S R ltch (2) Cn derive the trnsi<n tle nd the flw tle: curr stte next stte SR= utput curr stte next stte SR= utput y Y Y Y Y y Y Y Y Y ECE24 Digitl Circuits nd Systems Pge 7

18 Anlysis f n S R ltch (3) Nte: We cn see the undesirle cse when SR= nd inputs chnge. Depending n the vrius delys nd ssuming SR=! SR= n If SR= - > SR= - > SR=, we get stle stte with utput f. n If SR= - > SR= - > SR=, we get stle stte with utput f. S the stle stte is unpredictle. ECE24 Digitl Circuits nd Systems Pge 8

19 Asynchrnus nlysis with ltches present () We might hve synchrnus circuits with ltches in them: x R Y y2 S y R2 Y2 x2 S2 We iden<fy tw inputs (x,x2), tw excit<n vriles (Y,Y2), tw secndry vriles (y,y2) nd tw ltches. ECE24 Digitl Circuits nd Systems Pge 9

20 Asynchrnus nlysis with ltches present (2) Since we see ltches, we tin lgic equ<ns fr the ltch inputs: Since we re wrking with ltches, we shuld cnfirm tht the ltches d nt ever enter the undesirle stte (SR= fr NOR, SR= fr NAND). In ur circuit, we hve NOR ltches, s we find: ECE24 Digitl Circuits nd Systems Pge 2

21 Asynchrnus nlysis with ltches present (3) Derive the trnsi<n tle. We need t find the excit<n equ<ns in terms f secndry vriles nd the circuit inputs. T d this, we need t use the ltch equ<ns: ECE24 Digitl Circuits nd Systems Pge 2

22 Asynchrnus nlysis with ltches present (4) Finlly, use equ<ns t derive trnsi<n tle (culd ls find the flw tle): curr stte yy2 xx2 YY2 ECE24 Digitl Circuits nd Systems Pge 22

23 Summry f nlysis when ltches re present Prcedure: n Lel ech ltch utput with Y j nd its feedck pth with y j. n Derive lgic equ<ns fr ltch inputs S j nd R j. n Check f SR= fr NOR Ltches nd S R = fr NAND Ltches. If nt s<sfied, the circuit my nt wrk crrectly. n Crete lgic equ<ns fr ltch utputs Y j using the knwn ehvir f ltch (Y=S+R y fr NOR Ltches nd Y=S +Ry fr NAND Ltches). n n Cnstruct trnsi<n tle using the lgic equ<ns fr the ltch utputs nd circuit stle sttes. Otin flw tle, if desired. ECE24 Digitl Circuits nd Systems Pge 23

24 Asynchrnus circuit design Similr prcedure t synchrnus circuit design, ut with sme dded cmplexi<es due t the synchrnus prt Given verl prlem descrip<n: n Otin primi;ve flw tle (ne stle stte per rw) frm prlem descrip<n. n Reduce the flw tle t get smller flw tle with less sttes. n Perfrm stte ssignment (need t vid rce cndi;ns) t tin trnsi<n tle. n Otin next stte nd utput equ<ns (need t vid hzrds nd glitches). n Drw circuit (with r withut ltches). ECE24 Digitl Circuits nd Systems Pge 24

25 Asynchrnus design exmple Cnsider circuit with tw inputs, D nd G nd ne utput, Q. Output Q fllws D with G=, therwise Q hlds its vlue. n Assume fundmentl mde per<n nly ne input chnges t <me. ECE24 Digitl Circuits nd Systems Pge 25

26 Asynchrnus design exmple (primi<ve flw tle) Nte: Outputs depend nly ne stte (Mre- like): curr stte c d DG= c - c c DG= - next stte DG= DG= e f - e f f e - - e d d - utput Q Nte: Sme unspecified entries due t the fundmentl mde ssump<n (e.g., in stte, DG=, s we never g frm DG= - > DG=) ECE24 Digitl Circuits nd Systems Pge 26

27 Asynchrnus design exmple (reduced flw tle) Fr the mment, ssume tht the fllwing flw tle will ls wrk fr the verl prlem descrip<n ssume (,c,d) nd (,e,f) cn e merged. Originl flw tle: curr stte DG= DG= next stte DG= DG= utput Q c - - e c c d - d c - d e f - e f f e - Reduced flw tle: curr stte DG= next stte DG= DG= DG= utput Q ECE24 Digitl Circuits nd Systems Pge 27

28 Asynchrnus design exmple (stte ssignment nd trnsi<n tle) We nly hve tw sttes, s we cn let =, nd =. Our trnsi<n tle ecmes: curr stte (y) DG= next stte (Y) DG= DG= DG= utput Q ECE24 Digitl Circuits nd Systems Pge 28

29 Asynchrnus design exmple (lgic equ<ns) We cn mke K- Mps t determine excit<n vriles (Y) nd utput (Z) in terms f circuit inputs nd secndry vriles (y): y DG Output equl t the secndry (stte) vrile. ECE24 Digitl Circuits nd Systems Pge 29

30 Asynchrnus design exmple (circuit) Cn finlly drw the circuit: D G Y Q y ECE24 Digitl Circuits nd Systems Pge 3

31 Design with ltches We cn ls implement synchrnus circuits using ltches t the utputs. Given the mp fr ech excit<n vrile Y, derive necessry equ<ns fr S nd R f ltch t prduce Y. Derive Blen equ<ns fr S nd R. n Need t mke sure the S nd R never hve equl (pten<l prlem in Ltch). ECE24 Digitl Circuits nd Systems Pge 3

32 Revisi<ng SR ltches (excit<n tle) Recll hw SR Ltch (NOR) wrks: R (reset) Q S (set)!q Assuming we never hve the SR= cse. Cn write excit;n tle: ECE24 Digitl Circuits nd Systems Pge 32

33 Revisi<ng S R ltches (excit<n tle) Recll n S R Ltch (NAND) wrks: S (set) Q R (reset)!q Assuming we never hve the SR= cse. Cn write excit;n tle: ECE24 Digitl Circuits nd Systems Pge 33

34 Implement<n using ltches Cnsider ur exmple gin, nd ssume we wnt t use S R ltch: y DG Need t figure ut hw t select S nd R fr the NAND Ltch (while mking sure never t sme <me): y DG X X X y DG X X X ECE24 Digitl Circuits nd Systems Pge 34

35 Implement<n using ltches Cn drw the circuit: D G ECE24 Digitl Circuits nd Systems Pge 35

OVERVIEW Using Similarity and Proving Triangle Theorems G.SRT.4

OVERVIEW Using Similarity and Proving Triangle Theorems G.SRT.4 OVRVIW Using Similrity nd Prving Tringle Therems G.SRT.4 G.SRT.4 Prve therems ut tringles. Therems include: line prllel t ne side f tringle divides the ther tw prprtinlly, nd cnversely; the Pythgren Therem

More information

CS12N: The Coming Revolution in Computer Architecture Laboratory 2 Preparation

CS12N: The Coming Revolution in Computer Architecture Laboratory 2 Preparation CS2N: The Coming Revolution in Computer Architecture Lortory 2 Preprtion Ojectives:. Understnd the principle of sttic CMOS gte circuits 2. Build simple logic gtes from MOS trnsistors 3. Evlute these gtes

More information

Department of Electrical Engineering, University of Waterloo. Introduction

Department of Electrical Engineering, University of Waterloo. Introduction Sectin 4: Sequential Circuits Majr Tpics Types f sequential circuits Flip-flps Analysis f clcked sequential circuits Mre and Mealy machines Design f clcked sequential circuits State transitin design methd

More information

MAT 1275: Introduction to Mathematical Analysis

MAT 1275: Introduction to Mathematical Analysis MAT 75: Intrdutin t Mthemtil Anlysis Dr. A. Rzenlyum Trignmetri Funtins fr Aute Angles Definitin f six trignmetri funtins Cnsider the fllwing girffe prlem: A girffe s shdw is 8 meters. Hw tll is the girffe

More information

z TRANSFORMS z Transform Basics z Transform Basics Transfer Functions Back to the Time Domain Transfer Function and Stability

z TRANSFORMS z Transform Basics z Transform Basics Transfer Functions Back to the Time Domain Transfer Function and Stability TRASFORS Trnsform Bsics Trnsfer Functions Bck to the Time Domin Trnsfer Function nd Stility DSP-G 6. Trnsform Bsics The definition of the trnsform for digitl signl is: -n X x[ n is complex vrile The trnsform

More information

ENG2410 Digital Design Sequential Circuits: Part B

ENG2410 Digital Design Sequential Circuits: Part B ENG24 Digital Design Sequential Circuits: Part B Fall 27 S. Areibi Schl f Engineering University f Guelph Analysis f Sequential Circuits Earlier we learned hw t analyze cmbinatinal circuits We will extend

More information

SMARANDACHE GROUPOIDS

SMARANDACHE GROUPOIDS SMARANDACHE GROUPOIDS W. B. Vsnth Kndsmy Deprtment f Mthemtics Indin Institute f Technlgy Mdrs Chenni - 6 6 Indi. E-mil: vsntk@md.vsnl.net.in Astrct: In this pper we study the cncept f Smrndche Grupids

More information

Differentiation Applications 1: Related Rates

Differentiation Applications 1: Related Rates Differentiatin Applicatins 1: Related Rates 151 Differentiatin Applicatins 1: Related Rates Mdel 1: Sliding Ladder 10 ladder y 10 ladder 10 ladder A 10 ft ladder is leaning against a wall when the bttm

More information

Linear Inequalities. Work Sheet 1

Linear Inequalities. Work Sheet 1 Work Sheet 1 Liner Inequlities Rent--Hep, cr rentl compny,chrges $ 15 per week plus $ 0.0 per mile to rent one of their crs. Suppose you re limited y how much money you cn spend for the week : You cn spend

More information

EECS 141 Due 04/19/02, 5pm, in 558 Cory

EECS 141 Due 04/19/02, 5pm, in 558 Cory UIVERSITY OF CALIFORIA College of Engineering Deprtment of Electricl Engineering nd Computer Sciences Lst modified on April 8, 2002 y Tufn Krlr (tufn@eecs.erkeley.edu) Jn M. Rey, Andrei Vldemirescu Homework

More information

ALGEBRA 2/TRIGONMETRY TOPIC REVIEW QUARTER 3 LOGS

ALGEBRA 2/TRIGONMETRY TOPIC REVIEW QUARTER 3 LOGS ALGEBRA /TRIGONMETRY TOPIC REVIEW QUARTER LOGS Cnverting frm Epnentil frm t Lgrithmic frm: E B N Lg BN E Americn Ben t French Lg Ben-n Lg Prperties: Lg Prperties lg (y) lg + lg y lg y lg lg y lg () lg

More information

Bridging the gap: GCSE AS Level

Bridging the gap: GCSE AS Level Bridging the gp: GCSE AS Level CONTENTS Chpter Removing rckets pge Chpter Liner equtions Chpter Simultneous equtions 8 Chpter Fctors 0 Chpter Chnge the suject of the formul Chpter 6 Solving qudrtic equtions

More information

Lecture 3. In this lecture, we will discuss algorithms for solving systems of linear equations.

Lecture 3. In this lecture, we will discuss algorithms for solving systems of linear equations. Lecture 3 3 Solving liner equtions In this lecture we will discuss lgorithms for solving systems of liner equtions Multiplictive identity Let us restrict ourselves to considering squre mtrices since one

More information

Overview of Today s Lecture:

Overview of Today s Lecture: CPS 4 Computer Orgniztion nd Progrmming Lecture : Boolen Alger & gtes. Roert Wgner CPS4 BA. RW Fll 2 Overview of Tody s Lecture: Truth tles, Boolen functions, Gtes nd Circuits Krnugh mps for simplifying

More information

Intermediate Math Circles Wednesday, November 14, 2018 Finite Automata II. Nickolas Rollick a b b. a b 4

Intermediate Math Circles Wednesday, November 14, 2018 Finite Automata II. Nickolas Rollick a b b. a b 4 Intermedite Mth Circles Wednesdy, Novemer 14, 2018 Finite Automt II Nickols Rollick nrollick@uwterloo.c Regulr Lnguges Lst time, we were introduced to the ide of DFA (deterministic finite utomton), one

More information

MAT 1275: Introduction to Mathematical Analysis

MAT 1275: Introduction to Mathematical Analysis 1 MT 1275: Intrdutin t Mtemtil nlysis Dr Rzenlyum Slving Olique Tringles Lw f Sines Olique tringles tringles tt re nt neessry rigt tringles We re ging t slve tem It mens t find its si elements sides nd

More information

Minimal DFA. minimal DFA for L starting from any other

Minimal DFA. minimal DFA for L starting from any other Miniml DFA Among the mny DFAs ccepting the sme regulr lnguge L, there is exctly one (up to renming of sttes) which hs the smllest possile numer of sttes. Moreover, it is possile to otin tht miniml DFA

More information

How do we solve these things, especially when they get complicated? How do we know when a system has a solution, and when is it unique?

How do we solve these things, especially when they get complicated? How do we know when a system has a solution, and when is it unique? XII. LINEAR ALGEBRA: SOLVING SYSTEMS OF EQUATIONS Tody we re going to tlk out solving systems of liner equtions. These re prolems tht give couple of equtions with couple of unknowns, like: 6= x + x 7=

More information

ELE B7 Power System Engineering. Unbalanced Fault Analysis

ELE B7 Power System Engineering. Unbalanced Fault Analysis Power System Engineering Unblnced Fult Anlysis Anlysis of Unblnced Systems Except for the blnced three-phse fult, fults result in n unblnced system. The most common types of fults re single lineground

More information

ENG2410 Digital Design Sequential Circuits: Part A

ENG2410 Digital Design Sequential Circuits: Part A ENG2410 Digital Design Sequential Circuits: Part A Fall 2017 S. Areibi Schl f Engineering University f Guelph Week #6 Tpics Sequential Circuit Definitins Latches Flip-Flps Delays in Sequential Circuits

More information

ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT, OAKLAND UNIVERSITY ECE-2700: Digital Logic Design Fall Notes - Unit 1

ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT, OAKLAND UNIVERSITY ECE-2700: Digital Logic Design Fall Notes - Unit 1 INTRODUTION TO LOGI IRUITS Notes - Unit 1 OOLEN LGER This is the oundtion or designing nd nlyzing digitl systems. It dels with the cse where vriles ssume only one o two vlues: TRUE (usully represented

More information

Convert the NFA into DFA

Convert the NFA into DFA Convert the NF into F For ech NF we cn find F ccepting the sme lnguge. The numer of sttes of the F could e exponentil in the numer of sttes of the NF, ut in prctice this worst cse occurs rrely. lgorithm:

More information

Coalgebra, Lecture 15: Equations for Deterministic Automata

Coalgebra, Lecture 15: Equations for Deterministic Automata Colger, Lecture 15: Equtions for Deterministic Automt Julin Slmnc (nd Jurrin Rot) Decemer 19, 2016 In this lecture, we will study the concept of equtions for deterministic utomt. The notes re self contined

More information

Finite Automata-cont d

Finite Automata-cont d Automt Theory nd Forml Lnguges Professor Leslie Lnder Lecture # 6 Finite Automt-cont d The Pumping Lemm WEB SITE: http://ingwe.inghmton.edu/ ~lnder/cs573.html Septemer 18, 2000 Exmple 1 Consider L = {ww

More information

***SECTION 12.1*** Tests about a Population Mean

***SECTION 12.1*** Tests about a Population Mean ***SECTION 12.1*** Tests but Ppultin Men CHAPTER 12 ~ Significnce Tests in Prctice We begin by drpping the ssumptin tht we knw the ppultin stndrd devitin when testing clims but ppultin men. As with cnfidence

More information

State space systems analysis (continued) Stability. A. Definitions A system is said to be Asymptotically Stable (AS) when it satisfies

State space systems analysis (continued) Stability. A. Definitions A system is said to be Asymptotically Stable (AS) when it satisfies Stte spce systems nlysis (continued) Stbility A. Definitions A system is sid to be Asymptoticlly Stble (AS) when it stisfies ut () = 0, t > 0 lim xt () 0. t A system is AS if nd only if the impulse response

More information

Introduction to Electrical & Electronic Engineering ENGG1203

Introduction to Electrical & Electronic Engineering ENGG1203 Introduction to Electricl & Electronic Engineering ENGG23 2 nd Semester, 27-8 Dr. Hden Kwok-H So Deprtment of Electricl nd Electronic Engineering Astrction DIGITAL LOGIC 2 Digitl Astrction n Astrct ll

More information

Note 12. Introduction to Digital Control Systems

Note 12. Introduction to Digital Control Systems Note Introduction to Digitl Control Systems Deprtment of Mechnicl Engineering, University Of Ssktchewn, 57 Cmpus Drive, Ssktoon, SK S7N 5A9, Cnd . Introduction A digitl control system is one in which the

More information

ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT, OAKLAND UNIVERSITY ECE-378: Computer Hardware Design Winter Notes - Unit 1

ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT, OAKLAND UNIVERSITY ECE-378: Computer Hardware Design Winter Notes - Unit 1 ELETRIL ND OMPUTER ENGINEERING DEPRTMENT, OKLND UNIVERSIT EE-78: omputer Hrdwre Design Winter 016 INTRODUTION TO LOGI IRUITS Notes - Unit 1 OOLEN LGER This is the oundtion or designing nd nlyzing digitl

More information

Designing Information Devices and Systems I Discussion 8B

Designing Information Devices and Systems I Discussion 8B Lst Updted: 2018-10-17 19:40 1 EECS 16A Fll 2018 Designing Informtion Devices nd Systems I Discussion 8B 1. Why Bother With Thévenin Anywy? () Find Thévenin eqiuvlent for the circuit shown elow. 2kΩ 5V

More information

STRAND F: GEOMETRY F1 Angles and Symmetry

STRAND F: GEOMETRY F1 Angles and Symmetry PRIMRY Mthemtis SKE, Strn F UNIT F1 ngles n Symmetry: Text STRND F: GEOMETRY F1 ngles n Symmetry Text ntents Setin F1.1 Mesuring ngles F1.2 Line n Rttinl Symmetry F1.3 ngle Gemetry F1.4 ngles with Prllel

More information

Quadratic Forms. Quadratic Forms

Quadratic Forms. Quadratic Forms Qudrtic Forms Recll the Simon & Blume excerpt from n erlier lecture which sid tht the min tsk of clculus is to pproximte nonliner functions with liner functions. It s ctully more ccurte to sy tht we pproximte

More information

Homework Solution - Set 5 Due: Friday 10/03/08

Homework Solution - Set 5 Due: Friday 10/03/08 CE 96 Introduction to the Theory of Computtion ll 2008 Homework olution - et 5 Due: ridy 10/0/08 1. Textook, Pge 86, Exercise 1.21. () 1 2 Add new strt stte nd finl stte. Mke originl finl stte non-finl.

More information

GUC (Dr. Hany Hammad) 9/19/2016

GUC (Dr. Hany Hammad) 9/19/2016 UC (Dr. Hny Hmmd) 9/9/6 ecture # ignl flw grph: Defitin. Rule f Reductin. Mn Rule. ignl-flw grph repreenttin f : ltge urce. ive gle-prt device. ignl Flw rph A ignl-flw grph i grphicl men f prtryg the reltinhip

More information

1 PYTHAGORAS THEOREM 1. Given a right angled triangle, the square of the hypotenuse is equal to the sum of the squares of the other two sides.

1 PYTHAGORAS THEOREM 1. Given a right angled triangle, the square of the hypotenuse is equal to the sum of the squares of the other two sides. 1 PYTHAGORAS THEOREM 1 1 Pythgors Theorem In this setion we will present geometri proof of the fmous theorem of Pythgors. Given right ngled tringle, the squre of the hypotenuse is equl to the sum of the

More information

11.2. Infinite Series

11.2. Infinite Series .2 Infinite Series 76.2 Infinite Series An infinite series is the sum f n infinite seuence f numbers + 2 + 3 + Á + n + Á The gl f this sectin is t understnd the mening f such n infinite sum nd t develp

More information

Boolean algebra.

Boolean algebra. http://en.wikipedi.org/wiki/elementry_boolen_lger Boolen lger www.tudorgir.com Computer science is not out computers, it is out computtion nd informtion. computtion informtion computer informtion Turing

More information

Calculus Module C21. Areas by Integration. Copyright This publication The Northern Alberta Institute of Technology All Rights Reserved.

Calculus Module C21. Areas by Integration. Copyright This publication The Northern Alberta Institute of Technology All Rights Reserved. Clculus Module C Ares Integrtion Copright This puliction The Northern Alert Institute of Technolog 7. All Rights Reserved. LAST REVISED Mrch, 9 Introduction to Ares Integrtion Sttement of Prerequisite

More information

CS 311 Homework 3 due 16:30, Thursday, 14 th October 2010

CS 311 Homework 3 due 16:30, Thursday, 14 th October 2010 CS 311 Homework 3 due 16:30, Thursdy, 14 th Octoer 2010 Homework must e sumitted on pper, in clss. Question 1. [15 pts.; 5 pts. ech] Drw stte digrms for NFAs recognizing the following lnguges:. L = {w

More information

Lecture 7 notes Nodal Analysis

Lecture 7 notes Nodal Analysis Lecture 7 notes Nodl Anlysis Generl Network Anlysis In mny cses you hve multiple unknowns in circuit, sy the voltges cross multiple resistors. Network nlysis is systemtic wy to generte multiple equtions

More information

p-adic Egyptian Fractions

p-adic Egyptian Fractions p-adic Egyptin Frctions Contents 1 Introduction 1 2 Trditionl Egyptin Frctions nd Greedy Algorithm 2 3 Set-up 3 4 p-greedy Algorithm 5 5 p-egyptin Trditionl 10 6 Conclusion 1 Introduction An Egyptin frction

More information

Combinational Logic. Precedence. Quick Quiz 25/9/12. Schematics à Boolean Expression. 3 Representations of Logic Functions. Dr. Hayden So.

Combinational Logic. Precedence. Quick Quiz 25/9/12. Schematics à Boolean Expression. 3 Representations of Logic Functions. Dr. Hayden So. 5/9/ Comintionl Logic ENGG05 st Semester, 0 Dr. Hyden So Representtions of Logic Functions Recll tht ny complex logic function cn e expressed in wys: Truth Tle, Boolen Expression, Schemtics Only Truth

More information

Lecture 08: Feb. 08, 2019

Lecture 08: Feb. 08, 2019 4CS4-6:Theory of Computtion(Closure on Reg. Lngs., regex to NDFA, DFA to regex) Prof. K.R. Chowdhry Lecture 08: Fe. 08, 2019 : Professor of CS Disclimer: These notes hve not een sujected to the usul scrutiny

More information

Good Review book ( ) ( ) ( )

Good Review book ( ) ( ) ( ) 7/31/2011 34 Boolen (Switching) Algebr Review Good Review book BeBop to the Boolen Boogie: An Unconventionl Guide to Electronics, 2 nd ed. by Clive Mxwell Hightext Publictions Inc. from Amzon.com for pprox.

More information

Homework 4. 0 ε 0. (00) ε 0 ε 0 (00) (11) CS 341: Foundations of Computer Science II Prof. Marvin Nakayama

Homework 4. 0 ε 0. (00) ε 0 ε 0 (00) (11) CS 341: Foundations of Computer Science II Prof. Marvin Nakayama CS 341: Foundtions of Computer Science II Prof. Mrvin Nkym Homework 4 1. UsetheproceduredescriedinLemm1.55toconverttheregulrexpression(((00) (11)) 01) into n NFA. Answer: 0 0 1 1 00 0 0 11 1 1 01 0 1 (00)

More information

How do we solve these things, especially when they get complicated? How do we know when a system has a solution, and when is it unique?

How do we solve these things, especially when they get complicated? How do we know when a system has a solution, and when is it unique? XII. LINEAR ALGEBRA: SOLVING SYSTEMS OF EQUATIONS Tody we re going to tlk bout solving systems of liner equtions. These re problems tht give couple of equtions with couple of unknowns, like: 6 2 3 7 4

More information

3 Regular expressions

3 Regular expressions 3 Regulr expressions Given n lphet Σ lnguge is set of words L Σ. So fr we were le to descrie lnguges either y using set theory (i.e. enumertion or comprehension) or y n utomton. In this section we shll

More information

Regular Language. Nonregular Languages The Pumping Lemma. The pumping lemma. Regular Language. The pumping lemma. Infinitely long words 3/17/15

Regular Language. Nonregular Languages The Pumping Lemma. The pumping lemma. Regular Language. The pumping lemma. Infinitely long words 3/17/15 Regulr Lnguge Nonregulr Lnguges The Pumping Lemm Models of Comput=on Chpter 10 Recll, tht ny lnguge tht cn e descried y regulr expression is clled regulr lnguge In this lecture we will prove tht not ll

More information

Summary: Method of Separation of Variables

Summary: Method of Separation of Variables Physics 246 Electricity nd Mgnetism I, Fll 26, Lecture 22 1 Summry: Method of Seprtion of Vribles 1. Seprtion of Vribles in Crtesin Coordintes 2. Fourier Series Suggested Reding: Griffiths: Chpter 3, Section

More information

Linear Systems with Constant Coefficients

Linear Systems with Constant Coefficients Liner Systems with Constnt Coefficients 4-3-05 Here is system of n differentil equtions in n unknowns: x x + + n x n, x x + + n x n, x n n x + + nn x n This is constnt coefficient liner homogeneous system

More information

STRAND J: TRANSFORMATIONS, VECTORS and MATRICES

STRAND J: TRANSFORMATIONS, VECTORS and MATRICES Mthemtics SKE: STRN J STRN J: TRNSFORMTIONS, VETORS nd MTRIES J3 Vectors Text ontents Section J3.1 Vectors nd Sclrs * J3. Vectors nd Geometry Mthemtics SKE: STRN J J3 Vectors J3.1 Vectors nd Sclrs Vectors

More information

Regular expressions, Finite Automata, transition graphs are all the same!!

Regular expressions, Finite Automata, transition graphs are all the same!! CSI 3104 /Winter 2011: Introduction to Forml Lnguges Chpter 7: Kleene s Theorem Chpter 7: Kleene s Theorem Regulr expressions, Finite Automt, trnsition grphs re ll the sme!! Dr. Neji Zgui CSI3104-W11 1

More information

2.4 Linear Inequalities and Interval Notation

2.4 Linear Inequalities and Interval Notation .4 Liner Inequlities nd Intervl Nottion We wnt to solve equtions tht hve n inequlity symol insted of n equl sign. There re four inequlity symols tht we will look t: Less thn , Less thn or

More information

Vectors , (0,0). 5. A vector is commonly denoted by putting an arrow above its symbol, as in the picture above. Here are some 3-dimensional vectors:

Vectors , (0,0). 5. A vector is commonly denoted by putting an arrow above its symbol, as in the picture above. Here are some 3-dimensional vectors: Vectors 1-23-2018 I ll look t vectors from n lgeric point of view nd geometric point of view. Algericlly, vector is n ordered list of (usully) rel numers. Here re some 2-dimensionl vectors: (2, 3), ( )

More information

First Midterm Examination

First Midterm Examination 24-25 Fll Semester First Midterm Exmintion ) Give the stte digrm of DFA tht recognizes the lnguge A over lphet Σ = {, } where A = {w w contins or } 2) The following DFA recognizes the lnguge B over lphet

More information

Chapter 8.2: The Integral

Chapter 8.2: The Integral Chpter 8.: The Integrl You cn think of Clculus s doule-wide triler. In one width of it lives differentil clculus. In the other hlf lives wht is clled integrl clculus. We hve lredy eplored few rooms in

More information

READING STATECHART DIAGRAMS

READING STATECHART DIAGRAMS READING STATECHART DIAGRAMS Figure 4.48 A Statechart diagram with events The diagram in Figure 4.48 shws all states that the bject plane can be in during the curse f its life. Furthermre, it shws the pssible

More information

Chapter 6 Techniques of Integration

Chapter 6 Techniques of Integration MA Techniques of Integrtion Asst.Prof.Dr.Suprnee Liswdi Chpter 6 Techniques of Integrtion Recll: Some importnt integrls tht we hve lernt so fr. Tle of Integrls n+ n d = + C n + e d = e + C ( n ) d = ln

More information

ECEN 4872/5827 Lecture Notes

ECEN 4872/5827 Lecture Notes ECEN 4872/5827 Lecture Ntes Lecture #5 Objectives fr lecture #5: 1. Analysis f precisin current reference 2. Appraches fr evaluating tlerances 3. Temperature Cefficients evaluatin technique 4. Fundamentals

More information

Chapter 14. Matrix Representations of Linear Transformations

Chapter 14. Matrix Representations of Linear Transformations Chpter 4 Mtrix Representtions of Liner Trnsformtions When considering the Het Stte Evolution, we found tht we could describe this process using multipliction by mtrix. This ws nice becuse computers cn

More information

Designing Information Devices and Systems I Spring 2018 Homework 8

Designing Information Devices and Systems I Spring 2018 Homework 8 EECS 16A Designing Informtion Devices nd Systems I Spring 2018 Homework 8 This homework is due Mrch 19, 2018, t 23:59. Self-grdes re due Mrch 22, 2018, t 23:59. Sumission Formt Your homework sumission

More information

8Similarity UNCORRECTED PAGE PROOFS. 8.1 Kick off with CAS 8.2 Similar objects 8.3 Linear scale factors. 8.4 Area and volume scale factors 8.

8Similarity UNCORRECTED PAGE PROOFS. 8.1 Kick off with CAS 8.2 Similar objects 8.3 Linear scale factors. 8.4 Area and volume scale factors 8. 8.1 Kick off with S 8. Similr ojects 8. Liner scle fctors 8Similrity 8. re nd volume scle fctors 8. Review U N O R R E TE D P G E PR O O FS 8.1 Kick off with S Plese refer to the Resources t in the Prelims

More information

CS 373, Spring Solutions to Mock midterm 1 (Based on first midterm in CS 273, Fall 2008.)

CS 373, Spring Solutions to Mock midterm 1 (Based on first midterm in CS 273, Fall 2008.) CS 373, Spring 29. Solutions to Mock midterm (sed on first midterm in CS 273, Fll 28.) Prolem : Short nswer (8 points) The nswers to these prolems should e short nd not complicted. () If n NF M ccepts

More information

Resistive Network Analysis

Resistive Network Analysis C H A P T E R 3 Resistive Network Anlysis his chpter will illustrte the fundmentl techniques for the nlysis of resistive circuits. The methods introduced re sed on the circuit lws presented in Chpter 2:

More information

5.1 Estimating with Finite Sums Calculus

5.1 Estimating with Finite Sums Calculus 5.1 ESTIMATING WITH FINITE SUMS Emple: Suppose from the nd to 4 th hour of our rod trip, ou trvel with the cruise control set to ectl 70 miles per hour for tht two hour stretch. How fr hve ou trveled during

More information

Section 6.1 Definite Integral

Section 6.1 Definite Integral Section 6.1 Definite Integrl Suppose we wnt to find the re of region tht is not so nicely shped. For exmple, consider the function shown elow. The re elow the curve nd ove the x xis cnnot e determined

More information

expression simply by forming an OR of the ANDs of all input variables for which the output is

expression simply by forming an OR of the ANDs of all input variables for which the output is 2.4 Logic Minimiztion nd Krnugh Mps As we found ove, given truth tle, it is lwys possile to write down correct logic expression simply y forming n OR of the ANDs of ll input vriles for which the output

More information

Suppose we want to find the area under the parabola and above the x axis, between the lines x = 2 and x = -2.

Suppose we want to find the area under the parabola and above the x axis, between the lines x = 2 and x = -2. Mth 43 Section 6. Section 6.: Definite Integrl Suppose we wnt to find the re of region tht is not so nicely shped. For exmple, consider the function shown elow. The re elow the curve nd ove the x xis cnnot

More information

First Midterm Examination

First Midterm Examination Çnky University Deprtment of Computer Engineering 203-204 Fll Semester First Midterm Exmintion ) Design DFA for ll strings over the lphet Σ = {,, c} in which there is no, no nd no cc. 2) Wht lnguge does

More information

Math 259 Winter Solutions to Homework #9

Math 259 Winter Solutions to Homework #9 Mth 59 Winter 9 Solutions to Homework #9 Prolems from Pges 658-659 (Section.8). Given f(, y, z) = + y + z nd the constrint g(, y, z) = + y + z =, the three equtions tht we get y setting up the Lgrnge multiplier

More information

Fast Boolean Algebra

Fast Boolean Algebra Fst Boolen Alger ELEC 267 notes with the overurden removed A fst wy to lern enough to get the prel done honorly Printed; 3//5 Slide Modified; Jnury 3, 25 John Knight Digitl Circuits p. Fst Boolen Alger

More information

DIRECT CURRENT CIRCUITS

DIRECT CURRENT CIRCUITS DRECT CURRENT CUTS ELECTRC POWER Consider the circuit shown in the Figure where bttery is connected to resistor R. A positive chrge dq will gin potentil energy s it moves from point to point b through

More information

Shape and measurement

Shape and measurement C H A P T E R 5 Shpe nd mesurement Wht is Pythgors theorem? How do we use Pythgors theorem? How do we find the perimeter of shpe? How do we find the re of shpe? How do we find the volume of shpe? How do

More information

We partition C into n small arcs by forming a partition of [a, b] by picking s i as follows: a = s 0 < s 1 < < s n = b.

We partition C into n small arcs by forming a partition of [a, b] by picking s i as follows: a = s 0 < s 1 < < s n = b. Mth 255 - Vector lculus II Notes 4.2 Pth nd Line Integrls We begin with discussion of pth integrls (the book clls them sclr line integrls). We will do this for function of two vribles, but these ides cn

More information

, which yields. where z1. and z2

, which yields. where z1. and z2 The Gaussian r Nrmal PDF, Page 1 The Gaussian r Nrmal Prbability Density Functin Authr: Jhn M Cimbala, Penn State University Latest revisin: 11 September 13 The Gaussian r Nrmal Prbability Density Functin

More information

2. Caryn needs to ship a box that is 14 high, 12 inches deep and 24 inches long. After sealing the box, she tied it with twine as shown:

2. Caryn needs to ship a box that is 14 high, 12 inches deep and 24 inches long. After sealing the box, she tied it with twine as shown: Perimeter Mtters 1. Mrt wnts t tie rin rund the sides f hexgnl x nd then tie w. ch side f the x is 4 inches lng. She needs 14 inches fr the w. Is ne yrd f rin enugh? xlin. hen stte exctly hw lng the rin

More information

Introduction to Three-phase Circuits. Balanced 3-phase systems Unbalanced 3-phase systems

Introduction to Three-phase Circuits. Balanced 3-phase systems Unbalanced 3-phase systems Intrductin t Three-hse Circuits Blnced 3-hse systems Unblnced 3-hse systems 1 Intrductin t 3-hse systems Single-hse tw-wire system: Single surce cnnected t ld using tw-wire system Single-hse three-wire

More information

Worked out examples Finite Automata

Worked out examples Finite Automata Worked out exmples Finite Automt Exmple Design Finite Stte Automton which reds inry string nd ccepts only those tht end with. Since we re in the topic of Non Deterministic Finite Automt (NFA), we will

More information

Designing Information Devices and Systems I Spring 2018 Homework 7

Designing Information Devices and Systems I Spring 2018 Homework 7 EECS 16A Designing Informtion Devices nd Systems I Spring 2018 omework 7 This homework is due Mrch 12, 2018, t 23:59. Self-grdes re due Mrch 15, 2018, t 23:59. Sumission Formt Your homework sumission should

More information

Section 6-2: Simplex Method: Maximization with Problem Constraints of the Form ~

Section 6-2: Simplex Method: Maximization with Problem Constraints of the Form ~ Sectin 6-2: Simplex Methd: Maximizatin with Prblem Cnstraints f the Frm ~ Nte: This methd was develped by Gerge B. Dantzig in 1947 while n assignment t the U.S. Department f the Air Frce. Definitin: Standard

More information

DA 3: The Mean Value Theorem

DA 3: The Mean Value Theorem Differentition pplictions 3: The Men Vlue Theorem 169 D 3: The Men Vlue Theorem Model 1: Pennslvni Turnpike You re trveling est on the Pennslvni Turnpike You note the time s ou pss the Lenon/Lncster Eit

More information

5.1 Properties of Inverse Trigonometric Functions.

5.1 Properties of Inverse Trigonometric Functions. Inverse Trignmetricl Functins The inverse f functin f( ) f ( ) f : A B eists if f is ne-ne nt ie, ijectin nd is given Cnsider the e functin with dmin R nd rnge [, ] Clerl this functin is nt ijectin nd

More information

Lecture 3. Introduction digital logic. Notes. Notes. Notes. Representations. February Bern University of Applied Sciences.

Lecture 3. Introduction digital logic. Notes. Notes. Notes. Representations. February Bern University of Applied Sciences. Lecture 3 Ferury 6 ern University of pplied ciences ev. f57fc 3. We hve seen tht circuit cn hve multiple (n) inputs, e.g.,, C, We hve lso seen tht circuit cn hve multiple (m) outputs, e.g. X, Y,, ; or

More information

Improper Integrals. The First Fundamental Theorem of Calculus, as we ve discussed in class, goes as follows:

Improper Integrals. The First Fundamental Theorem of Calculus, as we ve discussed in class, goes as follows: Improper Integrls The First Fundmentl Theorem of Clculus, s we ve discussed in clss, goes s follows: If f is continuous on the intervl [, ] nd F is function for which F t = ft, then ftdt = F F. An integrl

More information

Five Whys How To Do It Better

Five Whys How To Do It Better Five Whys Definitin. As explained in the previus article, we define rt cause as simply the uncvering f hw the current prblem came int being. Fr a simple causal chain, it is the entire chain. Fr a cmplex

More information

September 13 Homework Solutions

September 13 Homework Solutions College of Engineering nd Computer Science Mechnicl Engineering Deprtment Mechnicl Engineering 5A Seminr in Engineering Anlysis Fll Ticket: 5966 Instructor: Lrry Cretto Septemer Homework Solutions. Are

More information

u( t) + K 2 ( ) = 1 t > 0 Analyzing Damped Oscillations Problem (Meador, example 2-18, pp 44-48): Determine the equation of the following graph.

u( t) + K 2 ( ) = 1 t > 0 Analyzing Damped Oscillations Problem (Meador, example 2-18, pp 44-48): Determine the equation of the following graph. nlyzing Dmped Oscilltions Prolem (Medor, exmple 2-18, pp 44-48): Determine the eqution of the following grph. The eqution is ssumed to e of the following form f ( t) = K 1 u( t) + K 2 e!"t sin (#t + $

More information

Interpreting Integrals and the Fundamental Theorem

Interpreting Integrals and the Fundamental Theorem Interpreting Integrls nd the Fundmentl Theorem Tody, we go further in interpreting the mening of the definite integrl. Using Units to Aid Interprettion We lredy know tht if f(t) is the rte of chnge of

More information

Line Integrals. Partitioning the Curve. Estimating the Mass

Line Integrals. Partitioning the Curve. Estimating the Mass Line Integrls Suppose we hve curve in the xy plne nd ssocite density δ(p ) = δ(x, y) t ech point on the curve. urves, of course, do not hve density or mss, but it my sometimes be convenient or useful to

More information

1 Error Analysis of Simple Rules for Numerical Integration

1 Error Analysis of Simple Rules for Numerical Integration cs41: introduction to numericl nlysis 11/16/10 Lecture 19: Numericl Integrtion II Instructor: Professor Amos Ron Scries: Mrk Cowlishw, Nthnel Fillmore 1 Error Anlysis of Simple Rules for Numericl Integrtion

More information

CSCI 340: Computational Models. Kleene s Theorem. Department of Computer Science

CSCI 340: Computational Models. Kleene s Theorem. Department of Computer Science CSCI 340: Computtionl Models Kleene s Theorem Chpter 7 Deprtment of Computer Science Unifiction In 1954, Kleene presented (nd proved) theorem which (in our version) sttes tht if lnguge cn e defined y ny

More information

Section 6: Area, Volume, and Average Value

Section 6: Area, Volume, and Average Value Chpter The Integrl Applied Clculus Section 6: Are, Volume, nd Averge Vlue Are We hve lredy used integrls to find the re etween the grph of function nd the horizontl xis. Integrls cn lso e used to find

More information

Physics 102. Final Examination. Spring Semester ( ) P M. Fundamental constants. n = 10P

Physics 102. Final Examination. Spring Semester ( ) P M. Fundamental constants. n = 10P ε µ0 N mp M G T Kuwit University hysics Deprtment hysics 0 Finl Exmintin Spring Semester (0-0) My, 0 Time: 5:00 M :00 M Nme.Student N Sectin N nstructrs: Drs. bdelkrim, frsheh, Dvis, Kkj, Ljk, Mrfi, ichler,

More information

Lecture 3: Equivalence Relations

Lecture 3: Equivalence Relations Mthcmp Crsh Course Instructor: Pdric Brtlett Lecture 3: Equivlence Reltions Week 1 Mthcmp 2014 In our lst three tlks of this clss, we shift the focus of our tlks from proof techniques to proof concepts

More information

Let's start with an example:

Let's start with an example: Finite Automt Let's strt with n exmple: Here you see leled circles tht re sttes, nd leled rrows tht re trnsitions. One of the sttes is mrked "strt". One of the sttes hs doule circle; this is terminl stte

More information

Properties of Integrals, Indefinite Integrals. Goals: Definition of the Definite Integral Integral Calculations using Antiderivatives

Properties of Integrals, Indefinite Integrals. Goals: Definition of the Definite Integral Integral Calculations using Antiderivatives Block #6: Properties of Integrls, Indefinite Integrls Gols: Definition of the Definite Integrl Integrl Clcultions using Antiderivtives Properties of Integrls The Indefinite Integrl 1 Riemnn Sums - 1 Riemnn

More information

Math 61CM - Solutions to homework 9

Math 61CM - Solutions to homework 9 Mth 61CM - Solutions to homework 9 Cédric De Groote November 30 th, 2018 Problem 1: Recll tht the left limit of function f t point c is defined s follows: lim f(x) = l x c if for ny > 0 there exists δ

More information

CMSC 330: Organization of Programming Languages

CMSC 330: Organization of Programming Languages CMSC 330: Orgniztion of Progrmming Lnguges Finite Automt 2 CMSC 330 1 Types of Finite Automt Deterministic Finite Automt (DFA) Exctly one sequence of steps for ech string All exmples so fr Nondeterministic

More information

Using Pisarenko Harmonic Decomposition for the design of 2-D IIR Notch filters

Using Pisarenko Harmonic Decomposition for the design of 2-D IIR Notch filters WSEAS RANSACIONS on SIGNAL PROCESSING Using Prenko Hrmonic Decomposition for the design of -D IIR Notch filters Astrct In th pper, the Prenko Hrmonic Decomposition used for the design of -D (wo- Dimensionl

More information

S56 (5.3) Vectors.notebook January 29, 2016

S56 (5.3) Vectors.notebook January 29, 2016 Dily Prctice 15.1.16 Q1. The roots of the eqution (x 1)(x + k) = 4 re equl. Find the vlues of k. Q2. Find the rte of chnge of 剹 x when x = 1 / 8 Tody we will e lerning out vectors. Q3. Find the eqution

More information