B D ( ) form factors from QCD sum rules

Size: px
Start display at page:

Download "B D ( ) form factors from QCD sum rules"

Transcription

1 B D ( ) form factors from QCD sum rules (Master Thesis, June 2008) Christoph Klein in collaboration with Sven Faller Alexander Khodjamirian Thomas Mannel Nils Offen Theoretische Physik 1 Universität Siegen Theorieseminar Christoph Klein (Univ. Siegen) B D ( ) formf. from QCD sum rules / 52

2 Outline 1 Theory of B D ( ) decays Introduction: Determination of V cb Use of Heavy Quark Symmetry 2 QCD Sum rules Basic idea of QCD sum rules Light cone sum rules Distribution amplitudes 3 Results and Discussion Numerical results Summary and Outlook Christoph Klein (Univ. Siegen) B D ( ) formf. from QCD sum rules / 52

3 Outline 1 Theory of B D ( ) decays Introduction: Determination of V cb Use of Heavy Quark Symmetry 2 QCD Sum rules Basic idea of QCD sum rules Light cone sum rules Distribution amplitudes 3 Results and Discussion Numerical results Summary and Outlook Christoph Klein (Univ. Siegen) B D ( ) formf. from QCD sum rules / 52

4 Determination of V cb Current status of the determination of V cb [Kowalewski, Mannel 2008] Independent considerations of exclusive and inclusive decays (important cross-checking): Exclusive decays: Inclusive decays: V cb excl = (38,6 ± 1,3) 10 3 V cb incl = (41,6 ± 0,6) 10 3 Average: V cb = (41,2 ± 1,1) 10 3 Christoph Klein (Univ. Siegen) B D ( ) formf. from QCD sum rules / 52

5 Determination of V cb from exclusive decays Determination from exclusive decays Relative precision at about 3%. Consideration of the semileptonic decays B D and B D. B D more difficult to measure than B D in that edge of phase space (small rate, high background). Subject of this talk. See also talk by N. Uraltsev. Christoph Klein (Univ. Siegen) B D ( ) formf. from QCD sum rules / 52

6 Determination of V cb from inclusive decays Determination from inclusive decays Relative precision at below 2%. Most precise determination at the moment. Theoretical tool used here: Heavy Quark Expansion Uncertainty mainly comes from theoretical ignorance of higher order and nonperturbative corrections. Christoph Klein (Univ. Siegen) B D ( ) formf. from QCD sum rules / 52

7 Determination of V cb from inclusive decays Determination from inclusive decays Relative precision at below 2%. Most precise determination at the moment. Theoretical tool used here: Heavy Quark Expansion Uncertainty mainly comes from theoretical ignorance of higher order and nonperturbative corrections. Work in our group by B. Dassinger, R. Feger, Th. Mannel, S. Turczyk, N. Uraltsev,... See talk by S. Turczyk for more details. Christoph Klein (Univ. Siegen) B D ( ) formf. from QCD sum rules / 52

8 Exclusive decay B D ( ) Exclusive decay B D ( ) b B q W(q) V cb D ( ) ν l l c Christoph Klein (Univ. Siegen) B D ( ) formf. from QCD sum rules / 52

9 Exclusive decay B D ( ) Exclusive decay B D ( ) b B q W(q) V cb D ( ) ν l l c Determination of V cb from the experimental measured spectrum: dγ (B Dlνl )(q 2 ) dq 2 V cb 2 D c γ µ (1 γ 5)b B 2 Here the important dynamics comes from the transition matrix elements beside V cb and kinematical factors. Christoph Klein (Univ. Siegen) B D ( ) formf. from QCD sum rules / 52

10 Form factors These are parametrized by form factors: D(p ) c γ µ b B(p) = (p µ + p µ ) f +(q 2 ) + (p µ p µ ) f (q 2 ) D (p,ɛ) c γ µ b B(p) = 2V (q2 ) ɛ µναβ ɛ ν p αp β (q µ = p µ p µ ) m B + m D D (p,ɛ) c γ µ γ 5 b B(p) = iɛ µ (m B + m D ) A 1 (q 2 ) i(ɛ q) (p µ + p µ A 2 (q 2 ) ) m B + m D i(ɛ q) (p µ p µ ) 2 m D q 2 (A 3 (q 2 ) A 0 (q 2 )) The complete expression for the decay rate (m l = 0): dγ (B Dlνl )(q 2 ) dq 2 = G2 F V cb 2 192π 3 m 3 B f +(q 2 ) 2 (q 2 m 2 B m2 D )2 4 m 2 3/2 B m2 D Christoph Klein (Univ. Siegen) B D ( ) formf. from QCD sum rules / 52

11 Form factors and nonperturbative methods dγ (B Dlνl )(q 2 ) dq 2 = G2 F V cb 2 192π 3 m 3 B f +(q 2 ) 2 (q 2 m 2 B m2 D )2 4 m 2 3/2 B m2 D V cb and form factors always appear together. A theoretical determination of the form factors is necessary. Christoph Klein (Univ. Siegen) B D ( ) formf. from QCD sum rules / 52

12 Form factors and nonperturbative methods dγ (B Dlνl )(q 2 ) dq 2 = G2 F V cb 2 192π 3 m 3 B f +(q 2 ) 2 (q 2 m 2 B m2 D )2 4 m 2 3/2 B m2 D V cb and form factors always appear together. A theoretical determination of the form factors is necessary. B,D-Mesons are bound states of heavy b,c-quarks and light antiquarks (strong quark-gluon-interactions, confinement): Matrix elements are not perturbatively calculable! Christoph Klein (Univ. Siegen) B D ( ) formf. from QCD sum rules / 52

13 Form factors and nonperturbative methods dγ (B Dlνl )(q 2 ) dq 2 = G2 F V cb 2 192π 3 m 3 B f +(q 2 ) 2 (q 2 m 2 B m2 D )2 4 m 2 3/2 B m2 D V cb and form factors always appear together. A theoretical determination of the form factors is necessary. B,D-Mesons are bound states of heavy b,c-quarks and light antiquarks (strong quark-gluon-interactions, confinement): Matrix elements are not perturbatively calculable! Use of nonperturbative methods: QCD-Sum rules, Lattice-QCD and Use of symmetries: Heavy Quark Symmetry (HQS) Christoph Klein (Univ. Siegen) B D ( ) formf. from QCD sum rules / 52

14 Outline 1 Theory of B D ( ) decays Introduction: Determination of V cb Use of Heavy Quark Symmetry 2 QCD Sum rules Basic idea of QCD sum rules Light cone sum rules Distribution amplitudes 3 Results and Discussion Numerical results Summary and Outlook Christoph Klein (Univ. Siegen) B D ( ) formf. from QCD sum rules / 52

15 Heavy Quark Effective Theory (HQET) Important tool for handling heavy quarks: Heavy Quark Effective Theory (HQET) Formulation of QCD as an effective theory for heavy quarks: m Q Λ QCD Definition: Meson has four-velocity v µ = pµ M mq Heavy Quark carries momentum p µ Q = m Qv µ + O(Λ QCD ) Parametrization and integrating out of the heavy degrees of freedom m Q of the meson = Expansion of the QCD-Lagrangian and the meson states as series in 1 : m Q Operators: Q(x) = e im Q v x h v (x) + O( 1 Meson-states: M = Hv + O( 1 m Q ) m Q ) Christoph Klein (Univ. Siegen) B D ( ) formf. from QCD sum rules / 52

16 Spin-flavour-symmetry for heavy quarks The light degrees of freedom in the meson interact with the heavy quark only at momentum scales Λ QCD m Q. 1 Beside of corrections of order O the spin-flavour-symmetry holds: m Q The light degrees of freedom in the meson neither notice the flavour nor the spin of the heavy quark. Christoph Klein (Univ. Siegen) B D ( ) formf. from QCD sum rules / 52

17 Spin-flavour-symmetry for heavy quarks The light degrees of freedom in the meson interact with the heavy quark only at momentum scales Λ QCD m Q. 1 Beside of corrections of order O the spin-flavour-symmetry holds: m Q The light degrees of freedom in the meson neither notice the flavour nor the spin of the heavy quark. In their dynamics the mesons B, B, D, D are not different. All form factors can be expressed by a single function, the Isgur-Wise-function ξ(w) w = v v = m2 B +m2 D ( ) q2 2 m B m D ( ) Normalization: ξ(1) = 1 Christoph Klein (Univ. Siegen) B D ( ) formf. from QCD sum rules / 52

18 Spin-flavour-symmetry for heavy quarks Alternative definition of the form factors more useful in HQET: D(v ) V µ B(v) p = h + (w)(v + v ) µ + h (w)(v v ) µ D (v,ɛ) V µ B(v) q mb m D m B m D = h V (w)ɛ µναβ ɛ ν v α v β D (v,ɛ) A µ B(v) q m B m D = iɛ µ (w + 1)h A1 (w) + i(ɛ q) v µ h A2 (w) + i(ɛ q) v µ h A3 (w) Christoph Klein (Univ. Siegen) B D ( ) formf. from QCD sum rules / 52

19 Spin-flavour-symmetry for heavy quarks Alternative definition of the form factors more useful in HQET: D(v ) V µ B(v) p = h + (w)(v + v ) µ + h (w)(v v ) µ D (v,ɛ) V µ B(v) q mb m D m B m D = h V (w)ɛ µναβ ɛ ν v α v β D (v,ɛ) A µ B(v) q m B m D = iɛ µ (w + 1)h A1 (w) + i(ɛ q) v µ h A2 (w) + i(ɛ q) v µ h A3 (w) The heavy-quark-symmetry now predicts at w = 1: «h +(1) = h V (1) = h A1 (1) = h A3 (1) = 1 + O ( 1mc 1mb ) 2 1 h (1) = h A2 (1) = 0 + O, 1 «m c m b Luke s theorem High theoretical precision for determination of V cb at w = 1. Christoph Klein (Univ. Siegen) B D ( ) formf. from QCD sum rules / 52

20 Determination of V cb But: phase space vanishes at w = 1 more difficult to compare to experiment. extrapolation of experimental data to w = 1 is done. It is important to know the shape of the form factor. Christoph Klein (Univ. Siegen) B D ( ) formf. from QCD sum rules / 52

21 Determination of V cb But: phase space vanishes at w = 1 more difficult to compare to experiment. extrapolation of experimental data to w = 1 is done. It is important to know the shape of the form factor. Certain parametrizations can be derived from fundamental principles. A widely used one is: [Caprini, Lellouch, Neubert 97] h A1 (w) = η A η QED 1 + δ 1/m ρ 2 z(w) + (53ρ 2 15)z(w) 2 (231ρ 2 91)z(w) 3 with: η A,η QED calculable QCD- and QED-radiative corrections δ 1/m 2 nonperturbative 1 -corrections estimated from HQET and inclusive decays m 2 w+1 z(w) = 2 w+1+ 2 ρ 2 a free parameter. Christoph Klein (Univ. Siegen) B D ( ) formf. from QCD sum rules / 52

22 Determination of V cb As alternative approaches, the form factor is also calculated in lattice QCD and with QCD sum rules. From experimental results, one gets: B D decays B D decays Most precise from B D V cb = (38,6 ± 0,9 exp ± 1,0 theo ) 10 3 V cb = (39,4 ± 4,2 exp ± 1,3 theo ) 10 3 V cb excl = (38,6 ± 1,3) 10 3 Christoph Klein (Univ. Siegen) B D ( ) formf. from QCD sum rules / 52

23 Discussion Good determination of V cb excl with the help of heavy quark symmetry. As it has been shown, the shape (esp. the slope) of the form factor is important for the evaluation. Lattice QCD and heavy quark symmetry only relyable in the region around w = 1. Christoph Klein (Univ. Siegen) B D ( ) formf. from QCD sum rules / 52

24 Discussion Good determination of V cb excl with the help of heavy quark symmetry. As it has been shown, the shape (esp. the slope) of the form factor is important for the evaluation. Lattice QCD and heavy quark symmetry only relyable in the region around w = 1. The QCD sum rule approach allows the calculation in other kinematical regions and determination of the shape. The light cone sum rule calculation done in this work gives the form factor in the region around w = w max. Christoph Klein (Univ. Siegen) B D ( ) formf. from QCD sum rules / 52

25 Outline 1 Theory of B D ( ) decays Introduction: Determination of V cb Use of Heavy Quark Symmetry 2 QCD Sum rules Basic idea of QCD sum rules Light cone sum rules Distribution amplitudes 3 Results and Discussion Numerical results Summary and Outlook Christoph Klein (Univ. Siegen) B D ( ) formf. from QCD sum rules / 52

26 Method of QCD Sum rules Nonperturbative method developed by Shifman, Vainshtein and Zakharov ( SVZ sum rules ) in 1979 Widely used since then for treatment of nonperturbative hadron physics. Main principle: Usage of the analytical structure of QCD correlation functions, to relate nonperturbative quantities to calculable and/or observable quantities. Christoph Klein (Univ. Siegen) B D ( ) formf. from QCD sum rules / 52

27 Method of QCD Sum rules Nonperturbative method developed by Shifman, Vainshtein and Zakharov ( SVZ sum rules ) in 1979 Widely used since then for treatment of nonperturbative hadron physics. Main principle: Usage of the analytical structure of QCD correlation functions, to relate nonperturbative quantities to calculable and/or observable quantities. Method with in principle good, but in the end limited accuracy (as perturbation series is). today lattice QCD gets competitable results (thanks to modern computers and more elaborate theoretical methods). Christoph Klein (Univ. Siegen) B D ( ) formf. from QCD sum rules / 52

28 Outline 1 Theory of B D ( ) decays Introduction: Determination of V cb Use of Heavy Quark Symmetry 2 QCD Sum rules Basic idea of QCD sum rules Light cone sum rules Distribution amplitudes 3 Results and Discussion Numerical results Summary and Outlook Christoph Klein (Univ. Siegen) B D ( ) formf. from QCD sum rules / 52

29 Calculation of the B-Meson decay constant Starting-point of QCD sum rules: Consideration of a correlation function. Christoph Klein (Univ. Siegen) B D ( ) formf. from QCD sum rules / 52

30 Calculation of the B-Meson decay constant Starting-point of QCD sum rules: Consideration of a correlation function. Example: Calculation of the B-Meson decay constant f B defined by: m b 0 q i γ 5 b B(q) = m 2 B f B 0 q γ µ γ 5 b B(q) = i q µ f B Here we consider the (two-point) correlation function: Z Π(q 2 ) = i q q x 0 d 4 x e iqx 0 T q(x) i γ5 b(x), b(0) i γ 5 q(0) 0 Christoph Klein (Univ. Siegen) B D ( ) formf. from QCD sum rules / 52

31 Quark-hadron duality Now this can be evaluated in two different languages : Perturbative calculation Hadronic representation Christoph Klein (Univ. Siegen) B D ( ) formf. from QCD sum rules / 52

32 Quark-hadron duality Now this can be evaluated in two different languages : Perturbative calculation Hadronic representation This refers to the quark-hadron duality: Each hadronic quantity (like a correlation function) is determined by quark interactions, but can only be seen from outside in the different Hilbert-space of hadrons. These descriptions have to be equal. Christoph Klein (Univ. Siegen) B D ( ) formf. from QCD sum rules / 52

33 Quark-hadron duality Now this can be evaluated in two different languages : Perturbative calculation Hadronic representation This refers to the quark-hadron duality: Each hadronic quantity (like a correlation function) is determined by quark interactions, but can only be seen from outside in the different Hilbert-space of hadrons. These descriptions have to be equal. In practice this is limited by the truncation of the perturbative series (as well as general problems with its large order behaviour...). But a certain estimate can be made. That will be used below: semi-local quark-hadron duality More to come on the next slides... Christoph Klein (Univ. Siegen) B D ( ) formf. from QCD sum rules / 52

34 Hadronic representation Consider the correlation function: Z Π(q 2 ) = i d 4 x e iqx 0 T q(x) i γ5 b(x), b(0) i γ 5 q(0) 0 Christoph Klein (Univ. Siegen) B D ( ) formf. from QCD sum rules / 52

35 Hadronic representation Consider the correlation function: Z Π(q 2 ) = i d 4 x e iqx 0 T q(x) i γ5 b(x), b(0) i γ 5 q(0) 0 and put in a complete sum over hadronic intermediate states 1 = P h h h : Π(q 2 ) = X h Z i d 4 x e iqx 0 Z q(x) i γ 5 b(x) h h b(0) i γ5 q(0) 0 =... = ds ρ(s) s q 2 m 2 B Christoph Klein (Univ. Siegen) B D ( ) formf. from QCD sum rules / 52

36 Hadronic representation Consider the correlation function: Z Π(q 2 ) = i d 4 x e iqx 0 T q(x) i γ5 b(x), b(0) i γ 5 q(0) 0 and put in a complete sum over hadronic intermediate states 1 = P h h : h Π(q 2 ) = X Z i d 4 x e iqx 0 Z q(x) i γ 5 b(x) h h b(0) i γ5 q(0) 0 =... = ds ρ(s) s q 2 h m B 2 Use the definition of the decay constant f B to write the first term seperately: Π (hadr) (q 2 m 4 B ) = f 2 Z B mb 2(m2 B q2 ) + ds ρ(s) s q 2 s h 0 Hadronic spectral density: ρ(s) B ρ(s) This is the hadronic dispersion relation. m 2 B s h 0 Christoph Klein (Univ. Siegen) B D ( ) formf. from QCD sum rules / 52

37 Perturbative calculation q q x 0 The correlation function can be evaluated perturbatively, by calculating the corresponding loop diagrams: One gets an expression with the known two-point-functions: Π (pert) (q 2 ) = 3 8π 2 `B0 (0,m 2 b,m 2 b)m 2 b + m 2 b B 0 (q 2,0,m 2 b)(m 2 b q 2 ) + O (α s) Christoph Klein (Univ. Siegen) B D ( ) formf. from QCD sum rules / 52

38 Perturbative calculation q q x 0 The correlation function can be evaluated perturbatively, by calculating the corresponding loop diagrams: One gets an expression with the known two-point-functions: Π (pert) (q 2 ) = 3 8π 2 `B0 (0,m 2 b,m 2 b)m 2 b + m 2 b B 0 (q 2,0,m 2 b)(m 2 b q 2 ) + O (α s) But this is not the whole part of the calculation. Since we re in QCD, we have to take into account nonperturbative effects occuring from small internal loop momenta. The above part is the first order of an operator-product-expansion, which takes into acount these contributions in form of the so-called vacuum condensates. Christoph Klein (Univ. Siegen) B D ( ) formf. from QCD sum rules / 52

39 OPE and vacuum condensates Π(q 2 ) = X d C d (q 2 ) 0 Od 0 with: = Π (pert) (q 2 ) + m b qq +... q 2 mb 2 O d Operators with the quantum numbers of the vacuum and dimension d 0 O d 0 The corresponding condensates, which are nonperturbative quantities, derivable by other sum rules and methods C d (q 2 ) Perturbatively calculable Wilson-coefficients qq The quark-condensate (next-leading term) The first terms in the OPE are: Christoph Klein (Univ. Siegen) B D ( ) formf. from QCD sum rules / 52

40 Calculation of the B-Meson decay constant One can derive a dispersion form for Π (pert) (q 2 ) and show: Π (pert) (q 2 ) = 1 π Z m 2 b ds Im`Π (pert) (s) s q 2 Christoph Klein (Univ. Siegen) B D ( ) formf. from QCD sum rules / 52

41 Calculation of the B-Meson decay constant One can derive a dispersion form for Π (pert) (q 2 ) and show: Π (pert) (q 2 ) = 1 π Z m 2 b ds Im`Π (pert) (s) s q 2 Now we can in principle compare the hadronic part and the perturbative part, to get: mb 4 f B 2 Z mb 2(m2 B q2 ) + ds ρ(s) s q 2 = 1 Z ds Im`Π (pert) (s) π s q 2 + m b qq +... q 2 mb 2 s h 0 m 2 b Christoph Klein (Univ. Siegen) B D ( ) formf. from QCD sum rules / 52

42 Calculation of the B-Meson decay constant One can derive a dispersion form for Π (pert) (q 2 ) and show: Π (pert) (q 2 ) = 1 π Z m 2 b ds Im`Π (pert) (s) s q 2 Now we can in principle compare the hadronic part and the perturbative part, to get: mb 4 f B 2 Z mb 2(m2 B q2 ) + ds ρ(s) s q 2 = 1 Z ds Im`Π (pert) (s) π s q 2 + m b qq +... q 2 mb 2 s h 0 m 2 b Here we make use of the semi-local quark-hadron duality: ρ(s) Z ρ(s) ds s 0 h s q 2 1 Z ds Im`Π (pert) (s) π s 0 B s q B ρ(s) 1 π Im Π(pert) (s) New method-inherent parameter s 0 m 2 b s h 0 s B 0 s Christoph Klein (Univ. Siegen) B D ( ) formf. from QCD sum rules / 52

43 Calculation of the B-Meson decay constant We get the result: mb 4 f B 2 mb 2(m2 B q2 ) 1 π Z sb 0 m 2 b ds Im`Π (pert) (s) s q 2 + m b qq q 2 mb 2 Christoph Klein (Univ. Siegen) B D ( ) formf. from QCD sum rules / 52

44 Calculation of the B-Meson decay constant We get the result: mb 4 f B 2 mb 2(m2 B q2 ) 1 π Z sb 0 m 2 b ds Im`Π (pert) (s) s q 2 + m b qq q 2 mb 2 To improve the convergence of the series and suppress higher order condensates, we apply a Borel transformation: Π(M 2 ) = B M 2 Π(q 2 ) = lim q 2,n, q2 n = M2 ( q 2 ) (n+1) n! «d n dq 2 Π(q )! 2 where the momentum q 2 is transformed to the ( method-inherent ) Borel-parameter M 2. Christoph Klein (Univ. Siegen) B D ( ) formf. from QCD sum rules / 52

45 Calculation of the B-Meson decay constant In the end, we get the final sum rule: fb 2 = 3m2 b 8π 2 mb 4 Z sb 0 m 2 b ds (s m2 b )2 m B 2 s e M 2 s m2 m B b `mb qq e 2 m2 b mb 4 M 2 Christoph Klein (Univ. Siegen) B D ( ) formf. from QCD sum rules / 52

46 Calculation of the B-Meson decay constant In the end, we get the final sum rule: fb 2 = 3m2 b 8π 2 mb 4 Z sb 0 m 2 b ds (s m2 b )2 m B 2 s e M 2 s m2 m B b `mb qq e 2 m2 b mb 4 M In dependence of M 2 one gets with the corresponding input values: f B GeV Christoph Klein (Univ. Siegen) B D ( ) formf. from QCD sum rules / 52

47 Calculation of the B-Meson decay constant In the end, we get the final sum rule: fb 2 = 3m2 b 8π 2 mb 4 Z sb 0 m 2 b ds (s m2 b )2 m B 2 s e M 2 s m2 m B b `mb qq e 2 m2 b mb 4 M In dependence of M 2 one gets with the corresponding input values: f B GeV We get an estimate of f B 150 MeV. More elaborate studies calculate: [Jamin, Lange 2001] f B = (210 ± 19) MeV Christoph Klein (Univ. Siegen) B D ( ) formf. from QCD sum rules / 52

48 Summary Here have a method to translate perturbative calculations and universal nonperturbative parameters (condensates) into hadronic observables. Christoph Klein (Univ. Siegen) B D ( ) formf. from QCD sum rules / 52

49 Summary Here have a method to translate perturbative calculations and universal nonperturbative parameters (condensates) into hadronic observables. This is the main method of the QCD sum rule approach. All other calculations go the same way. Christoph Klein (Univ. Siegen) B D ( ) formf. from QCD sum rules / 52

50 Summary Here have a method to translate perturbative calculations and universal nonperturbative parameters (condensates) into hadronic observables. This is the main method of the QCD sum rule approach. All other calculations go the same way. Now the method shall be applied to B D ( ) decays in the framework of light cone sum rules (LCSR). This work is based on the corresponding approach to the B π decay, done by A. Khodjamirian, Th. Mannel and N. Offen. Christoph Klein (Univ. Siegen) B D ( ) formf. from QCD sum rules / 52

51 Outline 1 Theory of B D ( ) decays Introduction: Determination of V cb Use of Heavy Quark Symmetry 2 QCD Sum rules Basic idea of QCD sum rules Light cone sum rules Distribution amplitudes 3 Results and Discussion Numerical results Summary and Outlook Christoph Klein (Univ. Siegen) B D ( ) formf. from QCD sum rules / 52

52 Three point sum rules Three point sum rules in principle can be used to calculate meson decay form factors: q b c Consider a correlator of three currents. Nonperturbative contributions in form of vacuum condensates. Disadvantage/uncertainty: Difficult theoretical treatment Double dispersion relation / hadronic spectral density Problems with applicability of OPE... Christoph Klein (Univ. Siegen) B D ( ) formf. from QCD sum rules / 52

53 Method of light cone sum rules Description of heavy-meson decays: 90 s: Three-point sum rules [Ball,Colangelo,Ovchinnikov, Slobodenyuk,Radyushkin et. al.] Today more advanced method: light cone sum rules q b c Christoph Klein (Univ. Siegen) B D ( ) formf. from QCD sum rules / 52

54 Method of light cone sum rules Description of heavy-meson decays: 90 s: Three-point sum rules [Ball,Colangelo,Ovchinnikov, Slobodenyuk,Radyushkin et. al.] Today more advanced method: light cone sum rules q b c Considered correlation function ν l B(p+q) b B q W(q) l b V cb c D ( ) q Γ b c q Γ a p F ab (p,q) = i d 4 x e ipx 0 T { q(x)γ a c(x), c(0)γ b b(0)} B Christoph Klein (Univ. Siegen) B D ( ) formf. from QCD sum rules / 52

55 Hadronic representation Choose e.g. Γ a = iγ 5, Γ b = γ µ: Z F µ(p,q) = i d 4 x e ipx 0 T { q(x)iγ 5 c(x), c(0)γ µ b(0)} B Christoph Klein (Univ. Siegen) B D ( ) formf. from QCD sum rules / 52

56 Hadronic representation Choose e.g. Γ a = iγ 5, Γ b = γ µ: Z F µ(p,q) = i d 4 x e ipx 0 T { q(x)iγ 5 c(x), c(0)γ µ b(0)} B Put in a complete sum over hadronic intermediate states 1 = P h F µ(p,q) = Hadronic spectral density h h : 0 qiγ5 c D D cγµ b B m 2 D p2 + Z s h 0 ds ρ(s) s p 2 Christoph Klein (Univ. Siegen) B D ( ) formf. from QCD sum rules / 52

57 Hadronic representation Choose e.g. Γ a = iγ 5, Γ b = γ µ: Z F µ(p,q) = i d 4 x e ipx 0 T { q(x)iγ 5 c(x), c(0)γ µ b(0)} B Put in a complete sum over hadronic intermediate states 1 = P h F µ(p,q) = Hadronic spectral density h h : 0 qiγ5 c D D cγµ b B m 2 D p2 + Z s h 0 ds ρ(s) s p 2 Access to form factor-definition: F µ(p,q) f D `(2 p µ + q µ)f + (q 2 ) + q µf (q 2 ) m 2 D p2 + Christoph Klein (Univ. Siegen) B D ( ) formf. from QCD sum rules / 52

58 Calculation of the correlation function The correlation function can by evaluated using the operator-product-expansion (OPE): Z F ab (p,q) = i d 4 x e ipx 0 T { q(x)γ a c(x), c(0)γ b b(0)} B B(p+q) b q c Γb Γa q p Christoph Klein (Univ. Siegen) B D ( ) formf. from QCD sum rules / 52

59 Calculation of the correlation function The correlation function can by evaluated using the operator-product-expansion (OPE): Z F ab (p,q) = i d 4 x e ipx 0 T { q(x)γ a c(x), c(0)γ b b(0)} B b Γb q B(p+q) B-meson: Transition to HQET: B(p + q)> B v > +O(1/m b ), b(0) h v (0) + O(1/m b ) m b -dependence is neglected, but later comes in with kinematic m B -terms c q Γa p Christoph Klein (Univ. Siegen) B D ( ) formf. from QCD sum rules / 52

60 Calculation of the correlation function The correlation function can by evaluated using the operator-product-expansion (OPE): Z F ab (p,q) = i d 4 x e ipx 0 T { q(x)γ a c(x), c(0)γ b b(0)} B b Γb q B(p+q) B-meson: Transition to HQET: B(p + q)> B v > +O(1/m b ), b(0) h v (0) + O(1/m b ) m b -dependence is neglected, but later comes in with kinematic m B -terms One can prove light-cone-dominance: Only contributions from x 2 0 Contraction of c(x) c(0) to the free quark-propagator (OPE: light-cone-expansion for q 2, p 2 m 2 b ) The last is only valid for q 2 far enough from q 2 max = (m B m D ) 2, i.e. w far enough from w = 1. c q Γa p Christoph Klein (Univ. Siegen) B D ( ) formf. from QCD sum rules / 52

61 Calculation of the correlation function The correlation function can by evaluated using the operator-product-expansion (OPE): Z F ab (p,q) = i d 4 x e ipx 0 T { q(x)γ a c(x), c(0)γ b b(0)} B b Γb q B(p+q) B-meson: Transition to HQET: B(p + q)> B v > +O(1/m b ), b(0) h v (0) + O(1/m b ) m b -dependence is neglected, but later comes in with kinematic m B -terms One can prove light-cone-dominance: Only contributions from x 2 0 Contraction of c(x) c(0) to the free quark-propagator (OPE: light-cone-expansion for q 2, p 2 m 2 b ) The last is only valid for q 2 far enough from q 2 max = (m B m D ) 2, i.e. w far enough from w = 1. c q Γa p Z F ab (p,q) = i Z d 4 x d 4» k (2π) 4 ei(p k)x (/k + m c) Γ a k 2 mc 2 Γ b 0 T q α(x)h vβ (0) B v βα Christoph Klein (Univ. Siegen) B D ( ) formf. from QCD sum rules / 52

62 Perturbative calculation Z F ab (p,q) = i Z d 4 x d 4» k (2π) 4 ei(p k)x The residual matrix element is the nonperturbative quantity. (/k + m c) Γ a k 2 mc 2 Γ b 0 T q α(x)h vβ (0) B v βα It is parametrized by two B-meson light-cone distribution amplitudes φ +(ω), φ (ω): Christoph Klein (Univ. Siegen) B D ( ) formf. from QCD sum rules / 52

63 Perturbative calculation Z F ab (p,q) = i Z d 4 x d 4» k (2π) 4 ei(p k)x The residual matrix element is the nonperturbative quantity. (/k + m c) Γ a k 2 mc 2 Γ b 0 T q α(x)h vβ (0) B v βα It is parametrized by two B-meson light-cone distribution amplitudes φ +(ω), φ (ω): D 0 qα(x) h vβ (0) Bv E = if B m Z ( B dωe "(1 iω v x + /v ) 4 0 φ + (ω) φ + (ω) φ (ω) ) # /x γ5 2 v x βα These are dependent of a dimensionful variable ω: Projection of light-quark momentum onto the light-cone. Christoph Klein (Univ. Siegen) B D ( ) formf. from QCD sum rules / 52

64 Perturbative calculation Z F ab (p,q) = i Z d 4 x d 4» k (2π) 4 ei(p k)x The residual matrix element is the nonperturbative quantity. (/k + m c) Γ a k 2 mc 2 Γ b 0 T q α(x)h vβ (0) B v βα It is parametrized by two B-meson light-cone distribution amplitudes φ +(ω), φ (ω): D 0 qα(x) h vβ (0) Bv E = if B m Z ( B dωe "(1 iω v x + /v ) 4 0 φ + (ω) φ + (ω) φ (ω) ) # /x γ5 2 v x βα These are dependent of a dimensionful variable ω: Projection of light-quark momentum onto the light-cone. F ab (p,q) = f [ φ + (ω),φ (ω), p, q ] Christoph Klein (Univ. Siegen) B D ( ) formf. from QCD sum rules / 52

65 Summary Z F ab (p,q) = i Correlation function: d 4 x e ipx 0 T { q(x)γ a c(x), c(0)γ b b(0)} B hadronic dispersion relation F ab (p,q) = 0 qγa c D D cγ b b B m 2 D p2 + OPE & light-cone-expansion F ab (p,q) 0 q(x) b(0) B f +, f form factors φ +, φ distribution amplitudes quark-hadron-duality (parameter s 0 ) Borel-transformation (parameter M 2 ) = Sum rule: f +(q 2 ), f (q 2 ) = fˆφ +(ω),φ (ω), q 2,... Christoph Klein (Univ. Siegen) B D ( ) formf. from QCD sum rules / 52

66 Outline 1 Theory of B D ( ) decays Introduction: Determination of V cb Use of Heavy Quark Symmetry 2 QCD Sum rules Basic idea of QCD sum rules Light cone sum rules Distribution amplitudes 3 Results and Discussion Numerical results Summary and Outlook Christoph Klein (Univ. Siegen) B D ( ) formf. from QCD sum rules / 52

67 Distribution amplitudes (DAs) The important nonperturbative input parameters are the light-cone distribution amplitudes (DAs) φ +(ω), φ (ω). Generally: Light-cone distribution amplitudes are important (universal) quantities in the description of heavy meson decays and describe the momentum distribution of the quarks/gluons in the meson. (Here in the 2-particle Fock state.) Central role in factorization theorems of hadronic decays. Christoph Klein (Univ. Siegen) B D ( ) formf. from QCD sum rules / 52

68 Distribution amplitudes (DAs) The important nonperturbative input parameters are the light-cone distribution amplitudes (DAs) φ +(ω), φ (ω). Generally: Light-cone distribution amplitudes are important (universal) quantities in the description of heavy meson decays and describe the momentum distribution of the quarks/gluons in the meson. (Here in the 2-particle Fock state.) Central role in factorization theorems of hadronic decays. In principle one has access to the DAs with two-point sum rules. But: Theoretical problems in the condensate expansion. No direct calculation of the DAs, but constraints and implications. Use of models. Christoph Klein (Univ. Siegen) B D ( ) formf. from QCD sum rules / 52

69 Models for distribution amplitudes The models are suggested under some general aspects: Consistent behaviour of the momentum distribution with respect to QCD equations of motion. Right behaviour under renormalization. Christoph Klein (Univ. Siegen) B D ( ) formf. from QCD sum rules / 52

70 Models for distribution amplitudes The models are suggested under some general aspects: Consistent behaviour of the momentum distribution with respect to QCD equations of motion. Example: Right behaviour under renormalization. The light meson distribution amplitudes (Pion DAs) can be modelled as an expansion in orthogonal Gegenbauer-polynomials. For example the leading DA of the corresponding OPE (twist expansion) has the form: 0 1 φ π(u,µ) = 6u(1 + X a n(µ)c 3/2 n (u (1 u)) A n=2,4,... The coefficients a n(µ) can be determined from two-point sum rules. Christoph Klein (Univ. Siegen) B D ( ) formf. from QCD sum rules / 52

71 LCSR with light meson DAs The pion DAs are very well studied and know in a good accuracy. The B π - form factors have been studied extensively with these DAs and light cone sum rules. Correlation functions B(p+q) π(q) b q u d Γ b c Γ a iγ 5 b γ µ q p p+q p Contributions by A. Khodjamirian, N. Offen, R. Rückl, P. Ball and many others... Determination of V ub from exclusive B π decays. Christoph Klein (Univ. Siegen) B D ( ) formf. from QCD sum rules / 52

72 B-meson-2-particle-distribution amplitudes The B-meson DAs cannot be expanded in that way... But: Two-point sum rules suggest a behaviour: φ +(ω 0) ω, φ (ω 0) const Christoph Klein (Univ. Siegen) B D ( ) formf. from QCD sum rules / 52

73 B-meson-2-particle-distribution amplitudes The B-meson DAs cannot be expanded in that way... But: Two-point sum rules suggest a behaviour: φ +(ω 0) ω, φ (ω 0) const We use an exponential model: [Grozin and Neubert (1997)] φ +(ω) = ω e ω ω 0 ω λ B = φ (ω) = 1 ω 0 e ω ω 0 Z 0 dω φ+(ω) ω ω 0 = λ B = (460 ± 110) MeV [Braun, Ivanov, Korchemsky (2003)] Φ Ω Φ Ω Yet the knowlegde about these DAs is much less precise than the light meson DAs. Christoph Klein (Univ. Siegen) B D ( ) formf. from QCD sum rules / 52

74 B-meson-3-particle-distribution amplitudes Additional: Consideration of the 3-particle-contribution 0 q 2α (x) G λρ (ux)h vβ (0) Bv = f Bm B 4 Z Z dω dξe "(1 i(ω+uξ) v x + /v) 0 0 j (v λ γ ρ v ργ λ )(Ψ A (ω, ξ) Ψ V (ω, ξ)) iσ λρ Ψ V (ω, ξ) «# xλ v ρ x ρv λ xλ v ρ x ρv λ X A (ω,ξ) Y A (ω,ξ) «ffγ 5 v x v x B(p+q) q Γ b c Γ a q βα b p Christoph Klein (Univ. Siegen) B D ( ) formf. from QCD sum rules / 52

75 B-meson-3-particle-distribution amplitudes Additional: Consideration of the 3-particle-contribution 0 q 2α (x) G λρ (ux)h vβ (0) Bv = f Bm B 4 Z Z dω dξe "(1 i(ω+uξ) v x + /v) 0 0 j (v λ γ ρ v ργ λ )(Ψ A (ω, ξ) Ψ V (ω, ξ)) iσ λρ Ψ V (ω, ξ) «# xλ v ρ x ρv λ xλ v ρ x ρv λ X A (ω,ξ) Y A (ω,ξ) «ffγ 5 v x v x B(p+q) q Γ b c Γ a q βα b p Applying the same method as for 2-particle-DAs: Exponential model: [A. Khodjamirian, Th. Mannel, N. Offen (2007)] Ψ A (ω, ξ) = Ψ V (ω, ξ) = λ2 E 6ω 0 4 ξ 2 (ω+ξ) e ω 0 X A (ω, ξ) = λ2 (ω+ξ) E 6ω 0 4 ξ(2ω ξ)e ω 0 YA (ω, ξ) = λ2 (ω+ξ) E 24ω 0 4 ξ(7ω 0 13ω + 3ξ)e ω 0 Christoph Klein (Univ. Siegen) B D ( ) formf. from QCD sum rules / 52

76 Outline 1 Theory of B D ( ) decays Introduction: Determination of V cb Use of Heavy Quark Symmetry 2 QCD Sum rules Basic idea of QCD sum rules Light cone sum rules Distribution amplitudes 3 Results and Discussion Numerical results Summary and Outlook Christoph Klein (Univ. Siegen) B D ( ) formf. from QCD sum rules / 52

77 Results for the form factors Example: sum rule for f + (q 2 ) M 2 : Borel-parameter, s 0 : duality-parameter f + (q 2 ) = f B mc Z ω0 (q 2 0,s 0 ) 2f D m D 2 dω s ω,q m 2 D 0 M 2 A ( `mb ω + mc φ+ (ω) Φ ± (ω) (1 ω m B ) 1 2m B mc (m B ω) `mb ω + mc (m B ω) 2 + mc 2 q2 (m B ω) 2 + mc 2 Φ ± (ω) q2 + m B mc `mb «!) ω + mc φ + (ω) φ (ω) Φ ± (ω) + f + (q 2 ) 3-particle s(ω,q 2 ) = ωm B + m B m2 c ωq2 m B ω Z Φ ± (ω) = dτ φ + (τ) φ (τ) 0 ω 0 (q 2,s 0 ) = 1 2m B m 2 B q2 + s 0 r 4! mc 2 s 0 m B 2 + m B 2 2 q2 + s 0 Christoph Klein (Univ. Siegen) B D ( ) formf. from QCD sum rules / 52

78 Results B D-form factors (straight) and only 2-particle-contribution (dashed) f q f q 2 f q f +(q 2 ) with uncertainty (left) and M 2 -dependence (right) 1.4 f q f Christoph Klein (Univ. Siegen) B D ( ) formf. from QCD sum rules / 52

79 Results B D -form factors (straight line) and only 2-particle-contribution (dashed) 1.5 V q A 1 q A 1 (q 2 ) with uncertainty (left) and M 2 -dependence (right) A 1 q A Christoph Klein (Univ. Siegen) B D ( ) formf. from QCD sum rules / 52

80 Results Comparison with experiment (BABAR 08) Definition of the form factors in HQET: = v v m B 2 +m2 D( ) q2 1 = A 2 m B m D( ) D(v ) V µ B(v) p = h + (w)(v + v ) µ + h (w)(v v ) µ D (v,ɛ) V µ B(v) q mb m D m B m D = h V (w)ɛ µναβ ɛ ν v α v β D (v,ɛ) A µ B(v) q m B m D = iɛ µ (w + 1)h A1 (w) + i(ɛ q) v µ h A2 (w) + i(ɛ q) v µ h A3 (w) Christoph Klein (Univ. Siegen) B D ( ) formf. from QCD sum rules / 52

81 Results Comparison with experiment (BABAR 08) Definition of the form factors in HQET: = v v m B 2 +m2 D( ) q2 1 = A 2 m B m D( ) D(v ) V µ B(v) p = h + (w)(v + v ) µ + h (w)(v v ) µ D (v,ɛ) V µ B(v) q mb m D m B m D = h V (w)ɛ µναβ ɛ ν v α v β D (v,ɛ) A µ B(v) q m B m D = iɛ µ (w + 1)h A1 (w) + i(ɛ q) v µ h A2 (w) + i(ɛ q) v µ h A3 (w) HQET-prediction for m b, m c : h + (w) = h V (w) = h A1 (w) = h A3 (w) = ξ(w) Isgur-Wise-function h (w) = h A2 (w) = 0 Christoph Klein (Univ. Siegen) B D ( ) formf. from QCD sum rules / 52

82 Results Comparison with experiment (BABAR 08) Definition of the form factors in HQET: = v v m B 2 +m2 D( ) q2 1 = A 2 m B m D( ) D(v ) V µ B(v) p = h + (w)(v + v ) µ + h (w)(v v ) µ D (v,ɛ) V µ B(v) q mb m D m B m D = h V (w)ɛ µναβ ɛ ν v α v β D (v,ɛ) A µ B(v) q m B m D = iɛ µ (w + 1)h A1 (w) + i(ɛ q) v µ h A2 (w) + i(ɛ q) v µ h A3 (w) HQET-prediction for m b, m c : h + (w) = h V (w) = h A1 (w) = h A3 (w) = ξ(w) Isgur-Wise-function h (w) = h A2 (w) = 0 Experimentally measurable: G(w) = h + (w) m B m D m B + m D h (w) R 1 (w) = h V (w) h A1 (w) h A1 (w) R 2 (w) = m D h m A2 (w) + h A3 (w) B h A1 (w) Christoph Klein (Univ. Siegen) B D ( ) formf. from QCD sum rules / 52

83 Comparison with experiment (BABAR 08) Form factors G(w), h A1 (w) [Sum rules: (w = 1.3 w max ), exp.: (w = 1 w max )] G(w) h A1 (w) w w Sum rules only applicable for small momentum transfer: w 1 w 1.3 w max Fit to experimental data with the parametrization: [Caprini, Lellouch, Neubert 97] h A1 (w) = h A1 (1) 1 8ρ 2 z(w) + (53ρ 2 15)z(w) 2 (231ρ 2 91)z(w) 3 G(w) = G(1) 1 8ρ 2 z(w) + (51ρ 2 10)z(w) 2 (252ρ 2 84)z(w) 3 Normalization h A1 (1), G(1) from Lattice-QCD z(w) = w+1 2 w+1+ 2 Christoph Klein (Univ. Siegen) B D ( ) formf. from QCD sum rules / 52

84 Comparison with experiment (BABAR 08) Ratios R 1 (w), R 2 (w) [Sum rules: (w = ), exp.: (w = 1 1.5)] R 1 w R 2 w R 1 (w) = R 1 (1) 0.12(w 1) (w 1) 2 R 2 (w) = R 2 (1) (w 1) 0.06(w 1) 2 In the ratios the normalizations cancel: better prediction Christoph Klein (Univ. Siegen) B D ( ) formf. from QCD sum rules / 52

85 Limit of infinitely heavy quarks Taking the limit: m c, m b, κ := mc = const for the sum rules: m b h +(w) = h V (w) = h A1 (w) = h A3 (w) : = ξ(w) = β 0 /w Z 0 dρ e Λ ρ w τ h 1 2w φb (ρ) + `1 1 φb 2w + (ρ)i h (w) = h A2 (w) = 0 Scaling of the parameter: m B = m b + Λ, m D = m c + Λ, s D 0 = m2 c + 2mcβ 0, M 2 = 2m cτ Christoph Klein (Univ. Siegen) B D ( ) formf. from QCD sum rules / 52

86 Limit of infinitely heavy quarks Taking the limit: m c, m b, κ := mc = const for the sum rules: m b h +(w) = h V (w) = h A1 (w) = h A3 (w) : = ξ(w) = β 0 /w Z 0 dρ e Λ ρ w τ h 1 2w φb (ρ) + `1 1 φb 2w + (ρ)i h (w) = h A2 (w) = 0 Scaling of the parameter: m B = m b + Λ, m D = m c + Λ, s D 0 = m2 c + 2mcβ 0, M 2 = 2m cτ 1.2 Independent of the quark mass ratio κ Numerical one gets the right value (taking into account the uncertainty): ξ(1) Christoph Klein (Univ. Siegen) B D ( ) formf. from QCD sum rules / 52

87 Outline 1 Theory of B D ( ) decays Introduction: Determination of V cb Use of Heavy Quark Symmetry 2 QCD Sum rules Basic idea of QCD sum rules Light cone sum rules Distribution amplitudes 3 Results and Discussion Numerical results Summary and Outlook Christoph Klein (Univ. Siegen) B D ( ) formf. from QCD sum rules / 52

88 Summary Sum rules derived for all B D ( ) -form factors. Only applicable for small momentum transfer q 2 qmax 2 bzw. w (1,3 wmax ). But this is the region, where HQS and Lattice QCD have difficulties. Two- and three-particle-contributions considered. Good agreement with experimental data. Right behaviour in the limit m c, m b. Christoph Klein (Univ. Siegen) B D ( ) formf. from QCD sum rules / 52

89 Summary Sum rules derived for all B D ( ) -form factors. Only applicable for small momentum transfer q 2 qmax 2 bzw. w (1,3 wmax ). But this is the region, where HQS and Lattice QCD have difficulties. Two- and three-particle-contributions considered. Good agreement with experimental data. Right behaviour in the limit m c, m b. Relative big uncertainty, mainly due to errors in the input quantities: B-meson-DAs and decay constants. Yet, in accurracy the result cannot compete with the HQS-determination, but it is an important cross-check and allows more insight into the form factor shape and the heavy quark limit. Further studies of 1/m-corrections in HQET are possible here. Christoph Klein (Univ. Siegen) B D ( ) formf. from QCD sum rules / 52

90 Outlook In the future... : Closer examination of 1 m Q -expansion Determination of V ub V cb using the sum rules smaller uncertainty Examination/calculation of α s -corrections (currently at work) Further project: Evaluation of light cone sum rules with π-meson-distribution amplitudes for D π- and D K -form factors with A. Khodjamirian and N. Offen...? Christoph Klein (Univ. Siegen) B D ( ) formf. from QCD sum rules / 52

91 Ich habe Jahre gebraucht, um sagen zu können, dass alles ganz einfach ist. It took me years to get able to, but now I can say that all this is simple. - N.Offen Special thanks again to A. Khodjamirian and Th. Mannel! Christoph Klein (Univ. Siegen) B D ( ) formf. from QCD sum rules / 52

Light-Cone Sum Rules with B-Meson Distribution Amplitudes

Light-Cone Sum Rules with B-Meson Distribution Amplitudes Light-Cone Sum Rules with B-Meson Distriution Amplitudes Alexander Khodjamirian (University of Siegen) (with Thomas Mannel and Niels Offen) Continuous Advances in QCD, FTPI, Minneapolis, May 11-14, 2006

More information

Analysis of the Isgur-Wise function of the Λ b Λ c transition with light-cone QCD sum rules

Analysis of the Isgur-Wise function of the Λ b Λ c transition with light-cone QCD sum rules Analysis of the Isgur-Wise function of the Λ b Λ c transition with light-cone QCD sum rules Zhi-Gang Wang 1 Department of Physics, North China Electric Power University, Baoding 713, P. R. China arxiv:96.426v1

More information

Applications of QCD Sum Rules to Heavy Quark Physics

Applications of QCD Sum Rules to Heavy Quark Physics Applications of QCD Sum Rules to Heavy Quark Physics Alexander Khodjamirian UNIVERSITÄT SIEGEN Theoretische Physik 1 RESEARCH UNIT q et f 3 lectures at Helmholtz International School "Physics of Heavy

More information

Determination of Vxb

Determination of Vxb Determination of Vxb Thomas Mannel, Siegen University Workshop on Flavour Dynamics Chamonix, France. October 8-15, 2005 Contents Motivation: Why is Vxb of interest? Exclusive Vcb Heavy Quark Symmetries

More information

B γlν and the B meson distribution amplitude

B γlν and the B meson distribution amplitude B γlν and the B meson distribution amplitude M. Beneke Institut für Theoretische Teilchenphysik und Kosmologie RWTH Aachen Colour meets Flavour Workshop on Quantumchromodynamics and Quark Flavour Physics

More information

B D ( ) Form Factors from QCD Light-Cone Sum Rules

B D ( ) Form Factors from QCD Light-Cone Sum Rules B D Form Factors from QCD Light-Cone Sum Rules S. Faller a,b, A. Khodjamirian a, Ch. Klein a and Th. Mannel a arxiv:89.222v2 [hep-ph] 24 Feb 29 a Theoretische Physik 1, Fachbereich Physik, Universität

More information

V cb : experimental and theoretical highlights. Marina Artuso Syracuse University

V cb : experimental and theoretical highlights. Marina Artuso Syracuse University V cb : experimental and theoretical highlights Marina Artuso Syracuse University 1 The method b q W - e, µ, ν c or u q τ Ultimate goal: a precise determination of V cb The challenge: precise evaluation

More information

arxiv:hep-ph/ Jul 1992

arxiv:hep-ph/ Jul 1992 arxiv:hep-ph/9207270 29 Jul 1992 To be published in the Proceedings of the Workshop on B Factories: The State of the Art in Accelerators, Detectors, and Physics, Stanford, California, April 6 10, 1992.

More information

Non-local 1/m b corrections to B X s γ

Non-local 1/m b corrections to B X s γ Non-local 1/m b corrections to B X s γ Michael Benzke TU München September 16, 2010 In collaboration with S. J. Lee, M. Neubert, G. Paz Michael Benzke (JGU) Non-local 1/m b corrections to B X s γ TU München

More information

V ub without shape functions (really!)

V ub without shape functions (really!) V ub without shape functions (really!) Zoltan Ligeti, Lawrence Berkeley Lab SLAC, Dec. 7, 2001 Introduction... V ub is very important to overconstrain CKM It doesn t really matter in this program whether

More information

QCD Effects in Exclusive Rare B-Meson Decays

QCD Effects in Exclusive Rare B-Meson Decays QCD Effects in Exclusive Rare B-Meson Decays Alexander Khodjamirian UNIVERSITÄT SIEGEN Continuous Advances in QCD, Minneapolis 2011 [A.K., Th. Mannel, A. Pivovarov and Yu-M. Wang, JHEP09 (2010) 089] Alexander

More information

Towards Precision Flavour Physics

Towards Precision Flavour Physics : The Status of Semi-Leptonic B Decays Thomas Mannel CERN PH-TH / Universität Siegen CERN-TH Seminar, May 2008 Contents 1 Introduction 2 External Field Method Results to order 1/m 4 b 3 Towards the O(α

More information

arxiv:hep-ph/ v1 5 May 1995

arxiv:hep-ph/ v1 5 May 1995 CERN-TH/95-107 hep-ph/9505238 May 1995 arxiv:hep-ph/9505238v1 5 May 1995 Uncertainties in the Determination of V cb Matthias Neubert Theory Division, CERN, CH-1211 Geneva 23, Switzerland Abstract I discuss

More information

Introduction to Operator Product Expansion

Introduction to Operator Product Expansion Introduction to Operator Product Expansion (Effective Hamiltonians, Wilson coefficients and all that... ) Thorsten Feldmann Neckarzimmern, March 2008 Th. Feldmann (Uni Siegen) Introduction to OPE March

More information

Proceedings of the VIIIth International Workshop on Heavy Quarks and Leptons HQL06

Proceedings of the VIIIth International Workshop on Heavy Quarks and Leptons HQL06 Proceedings of the VIIIth International Workshop on Heavy Quarks and Leptons HQL06 October 2006 Deutsches Museum, Munich Editors S. Recksiegel, A. Hoang, S. Paul Organized by the Physics Department of

More information

Part I: Heavy Quark Effective Theory

Part I: Heavy Quark Effective Theory Part I: Thomas Mannel CERN-PH-TH and Theoretische Physik I, Siegen University KITPC, June 24th, 2008 Contents Motivation 1 Motivation Weak Interaction Reminder Peculiarties of the Standard Model 2 EFT

More information

Precision determinations of V cb and V ub

Precision determinations of V cb and V ub Precision determinations of V cb and V ub Probing weak interactions and CP violation in the quark sector with semileptonic B decays Bob Kowalewski University of Victoria April, 2004 R.V. Kowalewski 1 Outline

More information

B Kl + l at Low Hadronic Recoil

B Kl + l at Low Hadronic Recoil B Kl + l at Low Hadronic Recoil Gudrun Hiller Danny van Dyk Christian Wacker TU Dortmund - Theoretische Physik III DPG-Frühjahrstagung Karlsruhe 11 31. March 11 Christian Wacker (TU Dortmund) B Kl + l

More information

Charm CP Violation and the electric dipole moment of the neutron

Charm CP Violation and the electric dipole moment of the neutron and the electric dipole moment of the neutron Thomas Mannel (with N. Uraltsev, arxiv:1202.6270 and arxiv:1205.0233) Theoretische Physik I Universität Siegen Seminar at TUM, 14.1.2013 Contents Introduction

More information

Angular Analysis of the Decay

Angular Analysis of the Decay Angular Analysis of the Decay Λ b Λ[ Nπ]l + l Philipp Böer, Thorsten Feldmann, and Danny van Dyk Naturwissenschaftlich-Technische Fakultät - Theoretische Physik 1 Universität Siegen 4th Workshop on flavour

More information

Boosting B meson on the lattice

Boosting B meson on the lattice Boosting B meson on the lattice Shoji Hashimoto (KEK) @ INT Workshop Effective Field Theory, QCD, and Heavy Hadrons, U. of Washington, Seattle; April 28, 2005. Beyond the small recoil processes A big limitation

More information

A Form Factor Model for Exclusive B- and D-Decays. Berthold Stech 1

A Form Factor Model for Exclusive B- and D-Decays. Berthold Stech 1 A Form Factor Model for Exclusive B- and D-Decays Berthold Stech Institut für Theoretische Physik, Universität Heidelberg, Philosophenweg 6, D-6920 Heidelberg, Germany Abstract An explicit model is presented

More information

arxiv: v2 [hep-ph] 17 May 2010

arxiv: v2 [hep-ph] 17 May 2010 Heavy χ Q tensor mesons in QCD arxiv:00.767v [hep-ph] 7 May 00 T. M. Aliev a, K. Azizi b, M. Savcı a a Physics Department, Middle East Technical University, 0653 Ankara, Turkey b Physics Division, Faculty

More information

(Semi)leptonic B decays: Form factors and New Physics Searches Danny van Dyk Universität Zürich

(Semi)leptonic B decays: Form factors and New Physics Searches Danny van Dyk Universität Zürich (Semi)leptonic B decays: Form factors and New Physics Searches Danny van Dyk Universität Zürich 20.10.2015 Page 1 Introduction and Motivation QCD in Low Energy Processes One focus of theoretical physics

More information

Meson Form Factors and the BaBar Puzzle

Meson Form Factors and the BaBar Puzzle Meson Form Factors and the BaBar Puzzle Nils Offen Universität Regensburg Séminaire Particule Orsay 17.November 211 Nils Offen (Universität Regensburg) The BaBar Puzzle Orsay 17.11.11 1 / 3 1 Introduction:

More information

V cb. Determination of. and related results from BABAR. Masahiro Morii, Harvard University on behalf of the BABAR Collaboration

V cb. Determination of. and related results from BABAR. Masahiro Morii, Harvard University on behalf of the BABAR Collaboration Determination of and related results from BABAR V cb Masahiro Morii, Harvard University on behalf of the BABAR Collaboration V cb from inclusive B semileptonic decays Lepton energy moments Hadron mass

More information

Marta Calvi Università di Milano Bicocca and INFN Sezione di Milano Piazza della Scienza, Milano, Italy

Marta Calvi Università di Milano Bicocca and INFN Sezione di Milano Piazza della Scienza, Milano, Italy Marta Calvi Università di Milano Bicocca and INFN Sezione di Milano Piazza della Scienza, 3 20126 Milano, Italy This paper reviews recent results on V cb obtained from exclusive and inclusive B decays

More information

Theory of B X u l ν decays and V ub

Theory of B X u l ν decays and V ub Inclusive semileptonic B decays 1 Theory of B X u l ν decays and V ub Björn O. Lange Center for Theoretical Physics Massachusetts Institute of Technology Inclusive semileptonic B decays 2 Outline 1. Direct

More information

Introduction to B Physics

Introduction to B Physics arxiv:hep-ph/0001334v1 31 Jan 2000 CLNS 00/1660 January 2000 hep-ph/0001334 Introduction to B Physics Matthias Neubert Newman Laboratory of Nuclear Studies, Cornell University Ithaca, New York 14853, USA

More information

Inclusive B decay Spectra by Dressed Gluon Exponentiation. Einan Gardi (Cambridge)

Inclusive B decay Spectra by Dressed Gluon Exponentiation. Einan Gardi (Cambridge) Inclusive B decay Spectra by Dressed Gluon Exponentiation Plan of the talk Einan Gardi (Cambridge) Inclusive Decay Spectra Why do we need to compute decay spectra? Kinematics, the endpoint region and the

More information

QCD factorization in B decays ten years later

QCD factorization in B decays ten years later QCD factorization in B decays ten years later M. Beneke (RWTH Aachen) Flavianet meeting in honour of Chris Sachrajda on the occasion of his 60th birthday Southampton, England, December 14/15, 2009 Early

More information

SUM RULES. T.M.ALIEV, D. A. DEMIR, E.ILTAN,and N.K.PAK. Physics Department, Middle East Technical University. Ankara,Turkey.

SUM RULES. T.M.ALIEV, D. A. DEMIR, E.ILTAN,and N.K.PAK. Physics Department, Middle East Technical University. Ankara,Turkey. RADIATIVE B! B and D! D DECAYS IN LIGHT CONE QCD SUM RULES. T.M.ALIEV, D. A. DEMIR, E.ILTAN,and N.K.PAK Physics Department, Middle East Technical University Ankara,Turkey November 6, 995 Abstract The radiative

More information

Danny van Dyk. B Workshop Neckarzimmern February 19th, Danny van Dyk (TU Dortmund) News on B K µ + µ 1 / 35

Danny van Dyk. B Workshop Neckarzimmern February 19th, Danny van Dyk (TU Dortmund) News on B K µ + µ 1 / 35 News on B K µ + µ Danny van Dyk B Workshop Neckarzimmern February 19th, 2010 Danny van Dyk (TU Dortmund) News on B K µ + µ 1 / 35 The Goal 15 1 10 0.8 5 0.6 C10 0-5 0.4-10 0.2-15 -15-10 -5 0 5 10 15 C

More information

Measurement of the CKM Sides at the B-Factories

Measurement of the CKM Sides at the B-Factories Measurement of the CKM Sides at the B-Factories Wolfgang Menges On behalf of the BaBar and Belle Collaborations Queen Mary, University of London, UK CKM matrix and Unitarity Triangle Semileptonic B decays

More information

Hadronic Effects in B -Decays

Hadronic Effects in B -Decays Hadronic Effects in B -Decays (from the b-quark to the B-meson) Thorsten Feldmann Neckarzimmern, March 2007 Th. Feldmann (Uni Siegen) Hadronic Effects in B -Decays March 2007 1 / 60 Outline 1 b cdū decays

More information

Pion Electromagnetic Form Factor in Virtuality Distribution Formalism

Pion Electromagnetic Form Factor in Virtuality Distribution Formalism & s Using s Pion Electromagnetic Form Factor in Distribution Formalism A. Old Dominion University and Jefferson Lab QCD 215 Workshop Jefferson Labs, May 26, 215 Pion Distribution Amplitude & s ϕ π (x):

More information

Inclusive determinations of V ub and V cb - a theoretical perspective

Inclusive determinations of V ub and V cb - a theoretical perspective Inclusive determinations of V ub and V cb - a theoretical perspective Michael Luke University of Toronto March 17, 25 CKM 25 - Workshop on the Unitarity Triangle 1 Global fit, summer 4:.7 η.6.5.4.3.2 excluded

More information

hep2001 Theoretical progress in describing the B-meson lifetimes International Europhysics Conference on High Energy Physics DAMIR BECIREVIC

hep2001 Theoretical progress in describing the B-meson lifetimes International Europhysics Conference on High Energy Physics DAMIR BECIREVIC PROCEEDINGS Theoretical progress in describing the B-meson lifetimes Dipartimento di Fisica, Università di Roma La Sapienza, Piazzale Aldo Moro 2, I-00185 Roma, Italy E-mail: Damir.Becirevic@roma1.infn.it

More information

HADRON WAVE FUNCTIONS FROM LATTICE QCD QCD. Vladimir M. Braun. Institut für Theoretische Physik Universität Regensburg

HADRON WAVE FUNCTIONS FROM LATTICE QCD QCD. Vladimir M. Braun. Institut für Theoretische Physik Universität Regensburg HADRON WAVE FUNCTIONS FROM LATTICE QCD Vladimir M. Braun QCD Institut für Theoretische Physik Universität Regensburg How to transfer a large momentum to a weakly bound system? Heuristic picture: quarks

More information

Determination of the scalar glueball mass in QCD sum rules

Determination of the scalar glueball mass in QCD sum rules Determination of the scalar glueball mass in QCD sum rules Tao Huang 1,2, HongYing Jin 2 and Ailin Zhang 2 1 CCAST (World Laboratory), P. O. Box 8730, Beijing, 100080 arxiv:hep-ph/9807391v1 16 Jul 1998

More information

Exclusive semileptonic B and Λ b decays at large hadronic recoil

Exclusive semileptonic B and Λ b decays at large hadronic recoil Exclusive semileptonic B and Λ b decays at large hadronic recoil Alexander Khodjamirian UNIVERSITÄT SIEGEN Workshop: Beautiful Mesons and Baryons on the Lattice, ECT* Trento, 2-6 April 2012 Alexander Khodjamirian

More information

Pions in the quark matter phase diagram

Pions in the quark matter phase diagram Pions in the quark matter phase diagram Daniel Zabłocki Instytut Fizyki Teoretycznej, Uniwersytet Wrocławski, Poland Institut für Physik, Universität Rostock, Germany Bogoliubov Laboratory of Theoretical

More information

Meson wave functions from the lattice. Wolfram Schroers

Meson wave functions from the lattice. Wolfram Schroers Meson wave functions from the lattice Wolfram Schroers QCDSF/UKQCD Collaboration V.M. Braun, M. Göckeler, R. Horsley, H. Perlt, D. Pleiter, P.E.L. Rakow, G. Schierholz, A. Schiller, W. Schroers, H. Stüben,

More information

QCD Phases with Functional Methods

QCD Phases with Functional Methods QCD Phases with Mario PhD-Advisors: Bernd-Jochen Schaefer Reinhard Alkofer Karl-Franzens-Universität Graz Institut für Physik Fachbereich Theoretische Physik Rab, September 2010 QCD Phases with Table of

More information

A Comparative Study of f B within QCD Sum Rules with Two Typical Correlators up to Next-to-Leading Order

A Comparative Study of f B within QCD Sum Rules with Two Typical Correlators up to Next-to-Leading Order Commun. Theor. Phys. 55 (2011) 635 639 Vol. 55, No. 4, April 15, 2011 A Comparative Study of f B within QCD Sum Rules with Two Typical Correlators up to Next-to-Leading Order WU Xing-Gang ( ), YU Yao (ß

More information

Pion Transition Form Factor

Pion Transition Form Factor First Prev Next Last Symposium on the 12% Rule and ρ π Puzzle in Vector Charmonium Decays Beijing, China, March 18-20, 2011. Pion Transition Form Factor ZE-KUN GUO In Collaboration With Qiang Zhao Institute

More information

The Heavy Quark Spin Symmetry and SU(3)-Flavour Partners of the X(3872)

The Heavy Quark Spin Symmetry and SU(3)-Flavour Partners of the X(3872) The Heavy Quark Spin Symmetry and SU(3)-Flavour Partners of the X(3872) Carlos Hidalgo, J. Nieves and M. Pavón-Valderrama Hypernuclear and Strange Particle Physics 2012 IFIC (CSIC - Universitat de València)

More information

Standard Model of Particle Physics

Standard Model of Particle Physics Standard Model of Particle Physics Chris Sachrajda School of Physics and Astronomy University of Southampton Southampton SO17 1BJ UK SUSSP61, St Andrews August 8th 23rd 2006 Contents 1. Spontaneous Symmetry

More information

arxiv:hep-ph/ v1 18 Jan 1994

arxiv:hep-ph/ v1 18 Jan 1994 CERN TH.7118/93 MPI Ph/93 97 DESY 93 193 Exclusive Radiative B-Decays in the Light-Cone QCD Sum Rule Approach arxiv:hep-ph/9401277v1 18 Jan 1994 A. Ali Theory Division, CERN CH-1211 Geneva 23, Switzerland

More information

Soft-Collinear Effective Theory and B-Meson Decays

Soft-Collinear Effective Theory and B-Meson Decays Soft-Collinear Effective Theory and B-Meson Decays Thorsten Feldmann (TU München) presented at 6th VIENNA CENTRAL EUROPEAN SEMINAR on Particle Physics and Quantum Field Theory, November 27-29, 2009 Th.

More information

A short overview on strong interaction and quantum chromodynamics

A short overview on strong interaction and quantum chromodynamics A short overview on strong interaction and quantum chromodynamics Christoph Klein Universität Siegen Doktorandenseminar 08.10.2008 Christoph Klein (Universität Siegen) QCD and strong interaction Doktorandenseminar

More information

Pion FF in QCD Sum Rules with NLCs

Pion FF in QCD Sum Rules with NLCs Pion FF in QCD Sum Rules with NLCs A. Bakulev, A. Pimikov & N. Stefanis Bogoliubov Lab. Theor. Phys., JINR (Dubna, Russia) Pion FF in QCD Sum Rules with NLCs p.1 Content: Definition of pion form factor

More information

2 2 ω 0 = m B m D. B D + ρ B D 0 π, B D 0 π,

2 2 ω 0 = m B m D. B D + ρ B D 0 π, B D 0 π, .3 Massive Gauge Boson Form Factor & Rapidity Divergences MORE SCET I APPLICATIONS then we may move all usoft wilson lines into the usoft part of the operator yielding,5 (c),5 (d) Q [h Γ Y T a Y h (b)

More information

B Dlν and B πlν on the Lattice

B Dlν and B πlν on the Lattice B Dlν and B πlν on the Lattice Paul Mackenzie Fermilab mackenzie@fnal.gov Thanks, Ruth van de Water, Richard Hill, Thomas Becher BaBar/Lattice QCD Workshop SLAC Sept. 16, 006 1 Lattice calculations Quarks

More information

arxiv:hep-ph/ v1 6 Oct 1993

arxiv:hep-ph/ v1 6 Oct 1993 CCUTH-93-1 arxiv:hep-ph/931231v1 6 Oct 1993 Stability Analysis of Sum Rules for pion Compton Scattering Claudio Corianò 1 and Hsiang-nan Li 2 1 Institute for Theoretical Physics, University of Stockholm,

More information

HLbl from a Dyson Schwinger Approach

HLbl from a Dyson Schwinger Approach HLbl from a Dyson Schwinger Approach Richard Williams KFUni Graz Tobias Göcke TU Darmstadt Christian Fischer Uni Gießen INT Workshop on Hadronic Light-by-Light contribution to the Muon Anomaly February

More information

Inclusive B decay Spectra by Dressed Gluon Exponentiation

Inclusive B decay Spectra by Dressed Gluon Exponentiation Inclusive B decay Spectra by Dressed Gluon Exponentiation Plan of the tal Einan Gardi (Cambridge) Inclusive B decay spectra motivation Strategy of the theoretical study Very short introduction to Sudaov

More information

Deep inelastic scattering and the OPE in lattice QCD

Deep inelastic scattering and the OPE in lattice QCD Deep inelastic scattering and the OPE in lattice QCD William Detmold [WD & CJD Lin PRD 73, 014501 (2006)] DIS structure of hadrons Deep-inelastic scattering process critical to development of QCD k, E

More information

arxiv: v1 [hep-ph] 28 Aug 2013

arxiv: v1 [hep-ph] 28 Aug 2013 Prepared for submission to JHEP Light-Cone Distribution Amplitudes for Heavy-Quark Hadrons arxiv:138.611v1 [hep-ph] 8 Aug 13 Guido Bell, a Thorsten Feldmann, b Yu-Ming Wang, c and Matthew W Y Yip d a Rudolf

More information

Thermal Properties of Heavy-Light Quark Pseudoscalar and Vector Mesons

Thermal Properties of Heavy-Light Quark Pseudoscalar and Vector Mesons Brazilian Journal of Physics, vol. 38, no. 3B, September, 2008 437. Thermal Properties of Heavy-Light uark Pseudoscalar and Vector Mesons Cesareo A. Dominguez Centre for Theoretical Physics and Astrophysics,

More information

Sébastien Descotes-Genon

Sébastien Descotes-Genon α s (CIPT) Sébastien Descotes-Genon Laboratoire de Physique Théorique CNRS & Université Paris-Sud 11, 9145 Orsay, France α s workshop - February 9 211 Sébastien Descotes-Genon (LPT-Orsay) α s(cipt) 9/2/11

More information

The dierence in complexity of inclusive and exclusive observables is illuminated by the fact that the simple parton picture of charm and beauty decays

The dierence in complexity of inclusive and exclusive observables is illuminated by the fact that the simple parton picture of charm and beauty decays WUE-ITP-98-11 CERN-TH/98-14 Exclusive Decays of Charm and Beauty Reinhold Ruckl Institut fur Theoretische Physik, Universitat Wurzburg, D-9774 Wurzburg, Germany and Theory Division, CERN, CH-111 Geneve,

More information

Derek Harnett University of the Fraser Valley Abbotsford, British Columbia, Canada

Derek Harnett University of the Fraser Valley Abbotsford, British Columbia, Canada Derek Harnett University of the Fraser Valley Abbotsford, British Columbia, Canada hadrons with explicit quark and gluon constituents predicted/allowed by QCD outside the constituent quark model probe

More information

arxiv: v2 [hep-ph] 6 May 2015

arxiv: v2 [hep-ph] 6 May 2015 Transverse Spin Polarization of τ in B D + τ ν and Charged Higgs Boson arxiv:154.6933v [hep-ph] 6 May 15 Dae Sung Hwang Department of Physics, Sejong University, Seoul 143 747, South Korea Abstract The

More information

Semileptonic B decays at BABAR

Semileptonic B decays at BABAR at (University of Oregon) representing collaboration March 4, 4 1.5 excluded area has

More information

Decay constants and masses of light tensor mesons (J P = 2 + )

Decay constants and masses of light tensor mesons (J P = 2 + ) Decay constants and masses of light tensor mesons (J P = + ) R. Khosravi, D. Hatami Department of Physics, Isfahan University of Technology, Isfahan 84156-83111, Iran Abstract We calculate the masses and

More information

OPE for B-meson distribution amplitude and dimension-5 HQET operators

OPE for B-meson distribution amplitude and dimension-5 HQET operators OPE for B-meson distribution amplitude and dimension-5 HQET operators Hiroyui Kawamura Department of Mathematical Sciences, University of Liverpool, Liverpool, L69 3BX, United Kingdom E-mail: Hiroyui.Kawamura@liverpool.ac.u

More information

V ub measurements with the BaBar detector

V ub measurements with the BaBar detector V ub measurements with the BaBar detector Daniele del Re University of California San Diego (on behalf of the BaBar collaboration) Outline: Inclusive b ulν measurements: Endpoint ν reconstruction m X on

More information

Michael Buballa. Theoriezentrum, Institut für Kernphysik, TU Darmstadt

Michael Buballa. Theoriezentrum, Institut für Kernphysik, TU Darmstadt Vacuum-fluctuation effects on inhomogeneous chiral condensates Michael Buballa Theoriezentrum, Institut für Kernphysik, TU Darmstadt International School of Nuclear Physics 38 th Course Nuclear matter

More information

B-meson form factors

B-meson form factors B-meson form factors Mikhail A. Ivanov JINR Dubna HQP 08, Dubna Contents Introduction Relativistic Quark Model of Hadrons B c-meson Heavy baryons B- to light-meson transition form factors Conclusion Introduction

More information

The γ γ π 0 form factor in QCD

The γ γ π 0 form factor in QCD The γ γ π 0 form factor in QCD Vladimir M. Braun Institut für Theoretische Physik Universität Regensburg based on S.S. Agaev, V.M. Braun, N. Offen, F.A. Porkert, Phys. Rev. D83 (2011) 054020 Pion-photon

More information

Hadronic Light-by-Light Scattering and Muon g 2: Dispersive Approach

Hadronic Light-by-Light Scattering and Muon g 2: Dispersive Approach Hadronic Light-by-Light Scattering and Muon g 2: Dispersive Approach Peter Stoffer in collaboration with G. Colangelo, M. Hoferichter and M. Procura JHEP 09 (2015) 074 [arxiv:1506.01386 [hep-ph]] JHEP

More information

Recent results on CKM/CPV from Belle

Recent results on CKM/CPV from Belle Recent results on CKM/CPV from Belle Alexander Leopold for the Belle Collaboration Insitute of High Energy Physics Austrian Academy of Sciences HEPMAD 15, September 21 st 2015 A. Leopold (HEPHY) Belle

More information

P. Kroll. Fachbereich Physik, Universität Wuppertal Gaußstrasse 20, D Wuppertal, Germany

P. Kroll. Fachbereich Physik, Universität Wuppertal Gaußstrasse 20, D Wuppertal, Germany WU B 00-05 hep-ph/0003097 March 2000 THE b u SKEWED PARTON DISTRIBUTIONS P. Kroll Fachbereich Physik, Universität Wuppertal Gaußstrasse 20, D-42097 Wuppertal, Germany E-mail: kroll@theorie.physik.uni-wuppertal.de

More information

Short- and mid-distance physics (or quark-hadron duality) from lattice QCD. Shoji Hashimoto (KEK) December 20, Peking University

Short- and mid-distance physics (or quark-hadron duality) from lattice QCD. Shoji Hashimoto (KEK) December 20, Peking University Short- and mid-distance physics (or quark-hadron duality) from lattice QCD Shoji Hashimoto (KEK) December 20, 2018 @ Peking University QCD is (non-)perturbative perturbative non-perturbative e + e qq Well

More information

BABAR Results on Hadronic Cross Sections with Initial State Radiation (ISR)

BABAR Results on Hadronic Cross Sections with Initial State Radiation (ISR) 1 International Workshop on e+e- Collisions from Phi to Psi (PHIPSI08) Laboratori Nazionali di Frascati April 7-10, 2008 Results on Hadronic Cross Sections with Initial State Radiation (ISR) Johannes Gutenberg-Universität

More information

Radiative and Electroweak Penguin Decays of B Mesons

Radiative and Electroweak Penguin Decays of B Mesons Radiative and Electroweak Penguin Decays of B Mesons Jeffrey D. Richman University of California, Santa Barbara BABAR AR Collaboration 11 th International Conference on B Physics at Hadron Machines Oxford,

More information

The inclusive determination of V ub

The inclusive determination of V ub The inclusive determination of V ub Paolo Gambino Università di Torino and INFN Torino 1 The Unitarity Triangle V =! V * ij jk ik area= measure of CPV V ud V * ub Unitarity determines several triangles

More information

arxiv:hep-ph/ v1 26 Apr 1996

arxiv:hep-ph/ v1 26 Apr 1996 CERN-TH/96-55 hep-ph/9604412 arxiv:hep-ph/9604412v1 26 Apr 1996 B Decays and CP Violation Matthias Neuert Theory Division, CERN, CH-1211 Geneva 23, Switzerland Astract We review the status of the theory

More information

Annihilation-Type Semileptonic B-Meson Decays

Annihilation-Type Semileptonic B-Meson Decays Annihilation-Type Semileptonic B-Meson Decays Anna Kuznetsova 1 and Alexander Parkhomenko 1, 1 P. G. Demidov Yaroslavl State University, Yaroslavl, Russia Abstract. The rare semileptonic decay B 0 φl +

More information

Hadronic light-by-light from Dyson-Schwinger equations

Hadronic light-by-light from Dyson-Schwinger equations Hadronic light-by-light from Dyson-Schwinger equations Christian S. Fischer Justus Liebig Universität Gießen 23rd of October 2014 Together with Richard Williams, Gernot Eichmann, Tobias Goecke, Jan Haas

More information

The chiral anomaly and the eta-prime in vacuum and at low temperatures

The chiral anomaly and the eta-prime in vacuum and at low temperatures The chiral anomaly and the eta-prime in vacuum and at low temperatures Stefan Leupold, Carl Niblaeus, Bruno Strandberg Department of Physics and Astronomy Uppsala University St. Goar, March 2013 1 Table

More information

Moments of leading and next-to-leading twist Nucleon Distribution Amplitudes. Institut für Theoretische Physik Universität Regensburg

Moments of leading and next-to-leading twist Nucleon Distribution Amplitudes. Institut für Theoretische Physik Universität Regensburg Moments of leading and next-to-leading twist Nucleon Distribution Amplitudes Nikolaus Warkentin for QCDSF Institut für Theoretische Physik Universität Regensburg Theoretical framework for hard exclusive

More information

Critical Behavior of heavy quarkonia in medium from QCD sum rules

Critical Behavior of heavy quarkonia in medium from QCD sum rules Critical Behavior of heavy quarkonia in medium from QCD sum rules Kenji Morita Institute of Physics and Applied Physics, Yonsei University in Collaboration with Su Houng Lee Aim of this talk: 1. Practical

More information

Estimates of B-Decays into K-Resonances and Dileptons

Estimates of B-Decays into K-Resonances and Dileptons Estimates of B-Decays into K-Resonances and Dileptons arxiv:hep-ph/9506235v1 5 Jun 1995 Mohammad R. Ahmady Department of Physics, Ochanomizu University 1-1, Otsuka 2, Bunkyo-ku, Tokyo 112, Japan Dongsheng

More information

Ruben Sandapen (Acadia & Mt. A) in collaboration with M. Ahmady & F. Chishtie. September 5 th 2016

Ruben Sandapen (Acadia & Mt. A) in collaboration with M. Ahmady & F. Chishtie. September 5 th 2016 Holographic Distribution Amplitudes for mesons Ruben Sandapen (Acadia & Mt. A) in collaboration with M. Ahmady & F. Chishtie Diffraction 2016 Progress in QCD session September 5 th 2016 1 Outline Overview

More information

16.1 QCD Renormalization of Weak Interactions

16.1 QCD Renormalization of Weak Interactions 16 Heavy Flavors As shown in Fig 1515, the energy point 1 GeV separates the QCD scale into regions of large and small running coupling α s (µ), or equivalently, of low and high energy, or light and heavy

More information

IFAE 2003 Lecce. Alessio Sarti University and INFN Ferrara. BaBar CLEO. Motivation. Inclusive V ub Exclusive V ub Summary, Outlook and Conclusions

IFAE 2003 Lecce. Alessio Sarti University and INFN Ferrara. BaBar CLEO. Motivation. Inclusive V ub Exclusive V ub Summary, Outlook and Conclusions Measuring V ub @ B-factoriesB BaBar Motivation CLEO Inclusive V ub Exclusive V ub Summary, Outlook and Conclusions IFAE 2003 Lecce Belle Alessio Sarti University and INFN Ferrara Motivation Measurements

More information

Nucleon structure from lattice QCD

Nucleon structure from lattice QCD Nucleon structure from lattice QCD M. Göckeler, P. Hägler, R. Horsley, Y. Nakamura, D. Pleiter, P.E.L. Rakow, A. Schäfer, G. Schierholz, W. Schroers, H. Stüben, Th. Streuer, J.M. Zanotti QCDSF Collaboration

More information

Estimates of m d m u and dd ūu from QCD sum rules for D and D isospin mass differences

Estimates of m d m u and dd ūu from QCD sum rules for D and D isospin mass differences TPI-MINN-92/69-T BUTP-93/2 Estimates of m d m u and dd ūu from QCD sum rules for D and D isospin mass differences V.L. Eletsky, Theoretical Physics Institute, University of Minnesota Minneapolis, MN 55455,

More information

The Lambda parameter and strange quark mass in two-flavor QCD

The Lambda parameter and strange quark mass in two-flavor QCD The Lambda parameter and strange quark mass in two-flavor QCD Patrick Fritzsch Institut für Physik, Humboldt-Universität zu Berlin, Germany talk based on [arxiv:1205.5380] in collaboration with F.Knechtli,

More information

RESONANCE at LARGE MOMENTUM TRANSFERS

RESONANCE at LARGE MOMENTUM TRANSFERS 1 V. M. Braun, M. Göckeler, R. Horsley, T. Kaltenbrunner, A. Lenz, Y. Nakamura, D. Pleiter, P. E. L. Rakow, J. Rohrwild, A. Schäfer, G. Schierholz, H. Stüben, N. Warkentin, J. M. Zanotti µ ELECTROPRODUCTION

More information

Lawrence Berkeley National Laboratory Lawrence Berkeley National Laboratory

Lawrence Berkeley National Laboratory Lawrence Berkeley National Laboratory Lawrence Berkeley National Laboratory Lawrence Berkeley National Laboratory Title Semileptonic Form-factors from B-> K* gamma Decays in the Large Energy Limit Permalink https://escholarship.org/uc/item/2xf5d50b

More information

Lecture II: Owe Philipsen. The ideal gas on the lattice. QCD in the static and chiral limit. The strong coupling expansion at finite temperature

Lecture II: Owe Philipsen. The ideal gas on the lattice. QCD in the static and chiral limit. The strong coupling expansion at finite temperature Lattice QCD, Hadron Structure and Hadronic Matter Dubna, August/September 2014 Lecture II: Owe Philipsen The ideal gas on the lattice QCD in the static and chiral limit The strong coupling expansion at

More information

Virtuality Distributions and γγ π 0 Transition at Handbag Level

Virtuality Distributions and γγ π 0 Transition at Handbag Level and γγ π Transition at Handbag Level A.V. Radyushkin form hard Physics Department, Old Dominion University & Theory Center, Jefferson Lab May 16, 214, QCD Evolution 214, Santa Fe Transverse Momentum form

More information

Effective Field Theory

Effective Field Theory Effective Field Theory Iain Stewart MIT The 19 th Taiwan Spring School on Particles and Fields April, 2006 Physics compartmentalized Quantum Field Theory String Theory? General Relativity short distance

More information

Matthias Jamin ICREA & IFAE Universitat Autònoma de Barcelona

Matthias Jamin ICREA & IFAE Universitat Autònoma de Barcelona ICREA & IFAE Universitat Autònoma de Barcelona 1 Particles With M τ = 1.777GeV, only τ leptons decay into hadrons. Tau lifetime: τ τ = 290.6 10 15 sec Γ τ = h/τ τ = 2.27 10 3 ev. 2 Discovered 1975 by Martin

More information

arxiv:hep-ph/ v1 13 Oct 2000

arxiv:hep-ph/ v1 13 Oct 2000 DIRECT CP VIOLATION IN NONLEPTONIC KAON DECAYS BY AN EFFECTIVE CHIRAL LAGRANGIAN APPROACH AT O(p 6 ) 1 A.A. Bel kov 1, G. Bohm 2, A.V. Lanyov 1 and A.A. Moshkin 1 (1) Particle Physics Laboratory, Joint

More information

arxiv:nucl-th/ v1 21 Jan 1999

arxiv:nucl-th/ v1 21 Jan 1999 EPJ manuscript No. will be inserted by the editor) Model independent constraints from vacuum and in-medium QCD Sum Rules arxiv:nucl-th/99158v1 21 Jan 1999 F. Klingl and W. Weise a Physik-Department, Theoretische

More information

Dirac and Pauli form factors from N f = 2 Clover-fermion simulations

Dirac and Pauli form factors from N f = 2 Clover-fermion simulations Mitglied der Helmholtz-Gemeinschaft Dirac and Pauli form factors from N f = 2 Clover-fermion simulations 20.1011 Dirk Pleiter JSC & University of Regensburg Outline 20.1011 Dirk Pleiter JSC & University

More information