Meson Form Factors and the BaBar Puzzle

Size: px
Start display at page:

Download "Meson Form Factors and the BaBar Puzzle"

Transcription

1 Meson Form Factors and the BaBar Puzzle Nils Offen Universität Regensburg Séminaire Particule Orsay 17.November 211 Nils Offen (Universität Regensburg) The BaBar Puzzle Orsay / 3

2 1 Introduction: The BaBar Puzzle 2 Collinear Factorisation 3 Proposed Solutions 4 Light Cone Sum Rules 5 Reprise: η ( ) γγ -Transitions 6 Conclusions/Summary Nils Offen (Universität Regensburg) The BaBar Puzzle Orsay / 3

3 Introduction: The BaBar Puzzle π(η ( ) ) γ γ-transition form factors Z d 4 x e iq 1 x P(p) T {j µ(x) j ν()} = i e 2 ǫ µναβ q α 1 q β 2 F γ γ P(q 2 1, q 2 2) related to axial anomaly for q 2 1 = q 2 2 = F(, ) = 1 4pi 2 f π theoretically cleanest case: both photons virtual q 2 1, q 2 2 e? e? e? e + e + e + experimentally easier: one real photon q 2 2 =, q 2 1 = Q 2 < Nils Offen (Universität Regensburg) The BaBar Puzzle Orsay / 3

4 Introduction: The BaBar Puzzle Good Old Times.22.2 Q 2 F γ γπ (Q 2 ) [GeV] Q 2 [GeV 2 ] asymptotic limit from handbag diagram π lim Q 2 F πγγ (Q 2 ) = 2 f π Q 2 collinear QCD seemed to describe main part of FF asymptotic regime reached for Q 2 few GeV 2? Brodsky, Lepage Nils Offen (Universität Regensburg) The BaBar Puzzle Orsay / 3

5 Introduction: The BaBar Puzzle The BaBar-Puzzle Q 2 F(Q 2 ) (GeV).3.2 CELLO CLEO BABAR CZ.1 BMS ASY Q 2 (GeV 2 ) BaBar-Puzzle part I: experimental results exceed asymptotic limit for the π form factor Nils Offen (Universität Regensburg) The BaBar Puzzle Orsay / 3

6 Introduction: The BaBar Puzzle The BaBar-Puzzle Q 2 F(Q 2 ) (GeV) CELLO CLEO BABAR BMS CZ ASY Q 2 (GeV 2 ) (3/5)Q 2 F n (Q 2 ) (GeV) BABAR (γ γ π ) CLEO* (γ γ η,η / ) CLEO (e + e - γη,γη / ) BABAR (γ γ η,η / ) BABAR (e + e - γη,γη / ) Q 2 (GeV 2 ) BaBar-Puzzle part I: experimental results exceed asymptotic limit for the π form factor BaBar-Puzzle part II: η ( ) form factors behave as expected assume flavour mixing scheme n = 1 2 ( ūu + dd ), s = ss η = cos φ n sin φ s, η = sin φ n + cos φ s for similar DAs the difference between F πγ γ and F n γ γ factor 3 5 Nils Offen (Universität Regensburg) The BaBar Puzzle Orsay / 3

7 Introduction: The BaBar Puzzle The BaBar puzzle II Fixed-order NLO QCD calculation with µ 2 = Q 2 does not work:.3 a 2, a 4 Q 2 F(Q 2 ) [GeV].2.1 a 2 AS fit BABAR CLEO Input parameters at 1 GeV: magenta: a = 1, blue: a = 1, a 2 =.39, black: a = 1, a 2 =.39, Q 2 [GeV 2 ] Figure: The fixed-order NLO QCD calculation Changing pion distribution amplitude does not help at all? Power-suppressed effects 1/Q p?? Nils Offen (Universität Regensburg) The BaBar Puzzle Orsay / 3

8 Collinear Factorisation The general picture Ì À Ì ¼ À Ë µ µ µ Figure: Schematic structure of the QCD factorization for the F γ γ π (Q2 ) formfactor. A : hard subgraph that includes both photon vertices B : real photon is emitted at large distances C : Feynman Mechanism: soft quark spectator 1 Q Q Q Q 4 Contributions of regions A, B, C are additive All other possibilities lead to exponentially small corrections exp[ Q 2 ] not seen in OPE Nils Offen (Universität Regensburg) The BaBar Puzzle Orsay / 3

9 Collinear Factorisation Region A: 1 Q 2 -Terms leading term of OPE from T{ j µ(x) j ν()} can be written in factorised form: Z F γγ π(q 2 2fπ ) = 3 dx T H (x, Q 2, µ, α s(µ))φ π(x, µ) T H known to NLO in MS scheme and NNLO in conformal scheme φ π: leading twist distribution amplitude Z 1 2 fπ p µ dx e ixp z φ(x, µ) = π(p) ū(z)γ µ[z, ]u() z 2 = ER-BL evolution implies expansion in Gegenbauer-polynomials φ π(x, µ) = 6x(1 x) X n= αs(µ) () γ n /2β an(µ )C 3/2 n (2x 1), a (µ) = 1 α s(µ ) expect 1 = a > a 2 > a 4 > a 6 > a 2 [1 GeV] =.3 ±.15, a 4 [1 GeV] j.1 B-decays.1 NLC SR [BMS-model], a n>4 [1 GeV] unconstrained Nils Offen (Universität Regensburg) The BaBar Puzzle Orsay / 3

10 Collinear Factorisation Region A: Twist 4 terms twist 4 term from OPE of T{ j µ(x) j ν()} µ µ µ µ Figure: Twist-4 corrections to the pion transition form factor involves twist-4 quark-gluon pion distribution amplitudes Z «2fπ 1 dx 8 δ F γ γ π (Q2 π 2 ) = φπ(x) Q 2 3 x 27 Q 2 δ 2 π.2 GeV 2 Might be significant at Q GeV 2 but does not change high Q 2 behaviour Nils Offen (Universität Regensburg) The BaBar Puzzle Orsay / 3

11 Collinear Factorisation Region B: Photon Emission From Large Distances hard scattering kernel convoluted with twist three pion and photon DA π γ π γ results in F (B) γ γ π (Q 2 ) = 2fπ 3 16πα sχ qq 2 9f 2 πq 4 infrared divergent overlap with region C regularised result Z 1 dx φp 3;π (x) x Z 1 dy φγ(y) ȳ 2 F γ γ π (Q2 ) = 2fπ Q 2 Z 1 3 «dx.2 GeV2 φπ(x) + ln 2 Q 2 x Q 2 µ 2 IR might be significant up to Q 2 5 GeV 2 Nils Offen (Universität Regensburg) The BaBar Puzzle Orsay / 3

12 Collinear Factorisation Region C: Feynman Mechanism truly non-perturbative one quark carries almost all momentum overlap integral of wave functions use e.g. Drell-Yan representation as convolution of light-cone WFs (Brodsky-Lepage) (ε q )F qq γ γ π (Q2 ) = f π 4π 3 3 Z 1 Z dx d 2 k (ε (xq + k )) (xq + k ) 2 iǫ Ψ qq (x, k ) has to be calculated in some model Needs approaches that go geyond this picture. Nils Offen (Universität Regensburg) The BaBar Puzzle Orsay / 3

13 Proposed Solutions Sudakov Suppression Kroll; Li, Sterman; Botts, Sterman general idea: keep k dependence in hard scattering kernel 1 xq 2 1 xq 2 + k 2... and in wave function double logs from collinear and soft regions exponentiate F γ γ π (Q2 ) = Z 2fπ 3 Z dx d 2 b 2π e T H (x, Q 2, b, µ, α s(µ)) e S φ π(x, b /b) Sudakov factor suppresses region of large b soft contributions modelled by wave function hard scattering kernel and Sudakov factor suppress higher Gegenbauer moments Q 2 [GeV 2 ] Nils Offen (Universität Regensburg) The BaBar Puzzle Orsay / C n /C n

14 Proposed Solutions State-of-the-art calculations in k factorization k factorization fit ) [GeV] 2 (Q F πγ 2 Q Q [GeV ] Asymptotic DA, LO Asymptotic DA, NLO Flat DA, LO Flat DA, NLO Q 2 F(Q 2 ) [GeV].2.1 BaBar CLEO Q 2 [GeV 2 ] Li, Mishima, arxiv: P. Kroll, arxiv: flat: a 2 =.39, a 4 =.24 fit: a 2 =.25, a 4 =.7 R dx R d 2 k t Ψ qq(x, k ) 2 = needs separate fit for η γγ Nils Offen (Universität Regensburg) The BaBar Puzzle Orsay / 3

15 Proposed Solutions Quark Models Dorokhov π simple interal over quark loop γ5 with constituent quark mass M q 135 MeV reproduces BaBar data for F γγ π caveat: f π in same model divergent regularised model does not reproduce data... no Pion in QCD, no γ 5 -vertex, wrong chiral limit M q, m π similar model from PCAC by Pham, Pham quark models imply flat DA for light quarks, more peaked DAs for heavier quarks introducing dynamical constituent mass m(k 2 Λ k2 ) = M q e nonlocal quark photon vertex Γ µ = ie q(γ µ + Γ µ) pion quark vertex LCWF γ 5 F(k1,k 2 2) 2 can describe γγ π, η ( ), η c data with three different M q physical justification for m(k 2 )? models soft contribution... Nils Offen (Universität Regensburg) The BaBar Puzzle Orsay / 3

16 Proposed Solutions Musatov-Radyushkin Model I Use Drell-Yan representation as convolution of light-cone WFs (Brodsky-Lepage) (ε q )F qq γ γ π (Q 2 ) = with a model wave function f π 4π 3 3 Z 1 Z dx d 2 k (ε (xq + k )) (xq + k ) 2 iǫ Ψ qq (x, k ) to get Ψ qq(x, k ) = 4π2 σ φ π(x) exp k «2 6 x x 2σx x Z 1» «F MR 2fπ dx φ π(x) γ γ π (Q2 ) = 1 exp xq2 3 xq 2 2 xσ using σ =.53 GeV 2 and flat pion DA φ π(x) = 1 can fit the BABAR data! caveat: R R dx d 2 k t Ψ qq(x, k ) 2 =,?! F γ γ π() R 1 φπ(x) dx =,?! x Nils Offen (Universität Regensburg) The BaBar Puzzle Orsay / 3

17 Proposed Solutions Musatov-Radyuskin Model II correction in Musatov-Radyushkin model is exponentially suppressed Z 1» «F MR 2fπ dx φ π(x) γ γ π (Q2 ) = 1 exp xq2 3 xq 2 2 xσ absent in OPE for flat DA and large Q 2 numerically very similar to 2fπ 3 Z 1 φ π(x) dx xq 2 + M, 2 2 M.6GeV 2 σ.53 average k, 2 k 2 = σ = (.42 GeV)2 3 q close to folklore value k 2 3 MeV flat DA does not evolve for Photon-Pion form factor Nils Offen (Universität Regensburg) The BaBar Puzzle Orsay / 3

18 Proposed Solutions Flat Distribution Amplitude? flat distribution amplitude would force us to reconsider pqcd predictions e.g. as (pqcd) Fπ (Q 2 ) = 8παs 9Q 2 Z 1 dx Z 1 φπ(x) φπ(y) dy x y Q 2 flat DA really necessary in MR-model? Answer: BaBar flat n=4 n= n=2 n= Q x alternatively, check how much is contributed by each successive Gegenbauer polynomial: F MR flat (Q 2 = 2) = = n = n = 2 n = 4 n = 6 Nils Offen (Universität Regensburg) The BaBar Puzzle Orsay / 3

19 Proposed Solutions First Summary shape of Pion distribution amplitude The Gegenbauer expansion for the form factor calculated with flat DA converges very fast At Q 2 < 1 2 GeV 2 using n = 4 truncation is sufficient End-point behavior of a true pion DA is irrelevant soft corrections are modelled by different approaches physical (QCD) interpretation not always clear... Systematic calculation of soft effects possible? Dispersion relations. Nils Offen (Universität Regensburg) The BaBar Puzzle Orsay / 3

20 Light Cone Sum Rules The Method I The QCD result satisfies an unsubtracted dispersion relation F QCD γ γ π (Q 2, q 2 ) = 1 π hadronic sum looks like F γ γ π (Q2, q 2 2fρ F γ ) = ρ π (Q2 ) mρ q2 π ds ImF QCD γ γ π (Q 2, s) s + q 2. s Khodjamirian ds ImF γ γ π(q2, s) s + q 2. Duality: assume that above a certain threshold ImF γ γ π (Q2, s) = ImF QCD γ γ π (Q 2, s) for s > s Asymptotic freedom: QCD expression must be correct at q 2, therefore 2fρ F γ ρ π (Q2 ) = 1 π s ds ImF QCD γ γ π (Q 2, s). Duality sum rules: use this result to correct the QCD calculation Nils Offen (Universität Regensburg) The BaBar Puzzle Orsay / 3

21 Light Cone Sum Rules The Method II correlation function F(q1, 2 q2) 2 = i d 4 xe iq1x π(p) T { jµ(x)jν()} hadronic dispersion relation operator-product-expansion F (had) (Q 2, q 2 ) = 2 fρ f ρπ (Q 2 ) m 2 ρ + + q2 s ds ρ(s) s + q 2 F (OPE) (Q 2, q 2 ) = 1 π ds Im F (OPE) (Q 2, s) s + q 2 s quark-hadron-duality ds ρ(s) s + q 2 1 π s ds Im F (OPE) (Q 2, s) s + q 2 2fρ f ρπ (Q 2 ) (m 2 ρ + q2 ) = 1 π s ds Im F (OPE) (Q 2, s) s + q 2 main uncertainties universal input Borel-transformation F γπ (Q 2 ) = 1 π m 2 ρ s sum rule for lim q 2 ds Im F (OPE) (s)e (m2 ρ s)/m2 + 1 π ds Im F (OPE) (s) s s Nils Offen (Universität Regensburg) The BaBar Puzzle Orsay / 3

22 Light Cone Sum Rules The Method II correlation function F(q1, 2 q2) 2 = i d 4 xe iq1x π(p) T { jµ(x)jν()} hadronic dispersion relation operator-product-expansion F (had) (Q 2, q 2 ) = 2 fρ f ρπ (Q 2 ) m 2 ρ + + q2 s ds ρ(s) s + q 2 F (OPE) (Q 2, q 2 ) = 1 π ds Im F (OPE) (Q 2, s) s + q 2 s quark-hadron-duality ds ρ(s) s + q 2 1 π s ds Im F (OPE) (Q 2, s) s + q 2 2fρ f ρπ (Q 2 ) (m 2 ρ + q2 ) = 1 π Borel-transformation s ds Im F (OPE) (Q 2, s) s + q 2 main uncertainties universal input truncated OPE F γπ (Q 2 ) = 1 π m 2 ρ s sum rule for lim q 2 ds Im F (OPE) (s)e (m2 ρ s)/m2 + 1 π ds Im F (OPE) (s) s s Nils Offen (Universität Regensburg) The BaBar Puzzle Orsay / 3

23 Light Cone Sum Rules The Method II correlation function F(q1, 2 q2) 2 = i d 4 xe iq1x π(p) T { jµ(x)jν()} hadronic dispersion relation operator-product-expansion F (had) (Q 2, q 2 ) = 2 fρ f ρπ (Q 2 ) m 2 ρ + + q2 s ds ρ(s) s + q 2 F (OPE) (Q 2, q 2 ) = 1 π ds Im F (OPE) (Q 2, s) s + q 2 s quark-hadron-duality ds ρ(s) s + q 2 1 π s ds Im F (OPE) (Q 2, s) s + q 2 2fρ f ρπ (Q 2 ) (m 2 ρ + q2 ) = 1 π Borel-transformation s ds Im F (OPE) (Q 2, s) s + q 2 main uncertainties universal input truncated OPE quark-hadron duality F γπ (Q 2 ) = 1 π m 2 ρ s sum rule for lim q 2 ds Im F (OPE) (s)e (m2 ρ s)/m2 + 1 π ds Im F (OPE) (s) s s Nils Offen (Universität Regensburg) The BaBar Puzzle Orsay / 3

24 Light Cone Sum Rules Leading order example QCD calculation F QCD γ γ π (Q 2, q 2 ) = 2fπ 3 Z 1 dx φ π(x) xq 2 + xq 2. LCSR F LCSR γ γ π (Q2 ) = 1 Im s xq 2 xs π x δ s Q2 x x ( Z 1 2fπ 3 x Z dx φ x π(x) + xq 2 ) dx φ π(x), x xm ρ 2 = s s + Q 2 Cn/C.6 The difference is a soft correction that suppresses higher Gegenbauer-moments qualitative picture stays the same after inclusion of NLO corrections Q 2 [GeV 2 ] Nils Offen (Universität Regensburg) The BaBar Puzzle Orsay / 3

25 Light Cone Sum Rules Results I Agaev et al. Three models with a n>4 a 2 < a 4 a 2 [1 GeV].15, a 4 [1GeV].2 Nils Offen (Universität Regensburg) The BaBar Puzzle Orsay / 3

26 Light Cone Sum Rules Results II comparison of soft and hard contributions in LCSRs Agaev et al Q 2 F π γ γ(q 2 ) soft+hard hard soft Q 2 soft part still 25% at Q 2 4 GeV 2 asymptotic regime starts later than assumed?! Nils Offen (Universität Regensburg) The BaBar Puzzle Orsay / 3

27 Light Cone Sum Rules Results III The same models describe pion form EM factor and B πlν l width Agaev et al. NLO LCSRs including twist up to 6 and up to 4, respectively What about η, η? Nils Offen (Universität Regensburg) The BaBar Puzzle Orsay / 3

28 Reprise: η ( ) γγ -Transitions η η -mixing singlet-octet scheme J i µ5 P(p) = i f i P p µ (i = 1, 8; P = η, η ) f 8 η = f 8 cos θ 8, f 8 η = f 8 sin θ 8, f 1 η = f 1 sin θ f 1 η = f 1 cos θ flavour scheme J q µ5 = 1 2 (ūγ µγ 5u + dγ µγ 5d), J s µ5 = sγ µγ 5s J r µ5 P(p) = i f r P p µ (r = q, s) f q η = f q cos φ q, f q η = f q sin φ q, f s η = f s sin φ s f s η = fs cos φs neglect difference φ q φ s φ q φ s 41 include η c and G into mixing? Nils Offen (Universität Regensburg) The BaBar Puzzle Orsay / 3

29 Reprise: η ( ) γγ -Transitions BaBar-Measurement Q 2 F(Q 2 ) (GeV).25.2 CLEO* (γ γ η) CLEO (e + e - ηγ) (a) Q 2 F(Q 2 ) (GeV).3.25 CLEO (γ γ η / ) CLEO (e + e - η / γ) (b) BABAR (γ γ η) BABAR (e + e - ηγ) Q 2 (GeV 2 ).15 BABAR (γ γ η / ) BABAR (e + e - η / γ) Q 2 (GeV 2 ) BaBar measured η ( ) γγ and e + e η ( ) γ form factors Nils Offen (Universität Regensburg) The BaBar Puzzle Orsay / 3

30 Reprise: η ( ) γγ -Transitions BaBar-Measurement (3/5)Q 2 F n (Q 2 ) (GeV).3.2 Q 2 F s (Q 2 ) (GeV).15.1 CLEO* (γ γ η,η / ) CLEO (e + e - γη,γη / ) BABAR (γ γ η,η / ) BABAR (e + e - γη,γη / ).1 BABAR (γ γ π ) CLEO* (γ γ η,η / ) CLEO (e + e - γη,γη / ) BABAR (γ γ η,η / ) BABAR (e + e - γη,γη / ) Q 2 (GeV 2 ) Q 2 (GeV 2 ) BaBar measured η ( ) γγ and e + e η ( ) γ form factors used flavour scheme to translate to light quark and strange quark content n FF does not rise as pion FF s FF falls short even of prediction with asymptotic DA Nils Offen (Universität Regensburg) The BaBar Puzzle Orsay / 3

31 Reprise: η ( ) γγ -Transitions BaBar-Measurement (3/5)Q 2 F n (Q 2 ) (GeV).3.2 Q 2 F s (Q 2 ) (GeV).15.1 CLEO* (γ γ η,η / ) CLEO (e + e - γη,γη / ) BABAR (γ γ η,η / ) BABAR (e + e - γη,γη / ).1 BABAR (γ γ π ) CLEO* (γ γ η,η / ) CLEO (e + e - γη,γη / ) BABAR (γ γ η,η / ) BABAR (e + e - γη,γη / ) Q 2 (GeV 2 ) Q 2 (GeV 2 ) BaBar measured η ( ) γγ and e + e η ( ) γ form factors used flavour scheme to translate to light quark and strange quark content n FF does not rise as pion FF s FF falls short even of prediction with asymptotic DA Can additional contributions solve this? Nils Offen (Universität Regensburg) The BaBar Puzzle Orsay / 3

32 Reprise: η ( ) γγ -Transitions Additional Corrections for the η ( ) form factors gluonic content Agaev et al. work in progress include three Gluon or Twist 4 contribution? η ( ) η ( ) η ( ) mass corrections due to m 2 η ( ) SU(3)-breaking due to additional twist 3 corrections for massive strange quark ms µ ( η ( ( ) 2f ) Z 1 σ η dx dφ (x) Z x η ( ),3 dx dφ σ + (x) ) η ( ),3 x Q 2 3 xq 2 dx xm ρ 2 = s + ms 2 dx s + Q 2 x even though m 2 n > m 2 π larger effect if η c is taken into account unlikely to cure discrepancy of F γγ π F γγ n Nils Offen (Universität Regensburg) The BaBar Puzzle Orsay / 3

33 Conclusions/Summary Conclusions/Summary picture still rather confusing some important issues LCSR fits generally prefer a small value a 2 (1 GeV) compared to a 2 (1 GeV).35 ±.15 from lattice calculations higher precision lattice data needed BES data? BABAR data in the Q 2 = 1 2 GeV 2 range require large a 4 (1 GeV).25; older data/other reactions not sensitive because of lower effective Q 2 No natural explanation for the difference γ γ π and γ γ η more experimental data needed (KEK?) Nils Offen (Universität Regensburg) The BaBar Puzzle Orsay / 3

34 Method µ = 1 GeV µ = 2 GeV Reference LO QCDSR, CZ model CZ 1981 QCDSR Khodjamirian et al. 24 QCDSR.28 ±.8.19 ±.5 Ball et al. 26 QCDSR, NLC.19 ±.6.13 ±.4 BMS 91, 98, 1 F πγγ, LCSR.19 ±.5.12 ±.3 (µ = 2.4) Schmedding, Yakovlev 99 F πγγ, LCSR.32.2(µ = 2.4) BMS 2 F πγγ, LCSR, R.44.3 BMS 5 F πγγ, LCSR, R Agaev 5 Fπ em,lcsr.24 ±.14 ±.8.16 ±.9 ±.5 Braun 99, Bijnens 2 Fπ em,lcsr, R.2 ±.3.13 ±.2 Agaev 5 F B πlν, LCSR.19 ± ±.13 Ball 5 F B πlν, LCSR.16.1 Duplancic 8 LQCD, N f = 2, CW.329 ± ±.114 QCDSF/UKQCD 6 LQCD,N f = 2+1, DWF.382 ± ±.88 RBS/UKQCD 7 Nils Offen (Universität Regensburg) The BaBar Puzzle Orsay / 3

35 Region C: LCSR vs. MR model Separate contributions of different Gegenbauer polynomials Q 2 F γ γ π (Q2 ) = o 2f π nf (Q 2 ) + a 2 f 2 (Q 2 ) + a 4 f 4 (Q 2 ) and compare the coefficients f n(q 2 ) n= n=2 n= n= n=2 n= Q Q2 A qualitative agreement MR Model LCSR Convincing evidence for strong suppression of end-point regions alias contributions of higher Gegenbauer polynomials in pion DA Nils Offen (Universität Regensburg) The BaBar Puzzle Orsay / 3

The γ γ π 0 form factor in QCD

The γ γ π 0 form factor in QCD The γ γ π 0 form factor in QCD Vladimir M. Braun Institut für Theoretische Physik Universität Regensburg based on S.S. Agaev, V.M. Braun, N. Offen, F.A. Porkert, Phys. Rev. D83 (2011) 054020 Pion-photon

More information

Pion Electromagnetic Form Factor in Virtuality Distribution Formalism

Pion Electromagnetic Form Factor in Virtuality Distribution Formalism & s Using s Pion Electromagnetic Form Factor in Distribution Formalism A. Old Dominion University and Jefferson Lab QCD 215 Workshop Jefferson Labs, May 26, 215 Pion Distribution Amplitude & s ϕ π (x):

More information

Pion Transition Form Factor

Pion Transition Form Factor First Prev Next Last Symposium on the 12% Rule and ρ π Puzzle in Vector Charmonium Decays Beijing, China, March 18-20, 2011. Pion Transition Form Factor ZE-KUN GUO In Collaboration With Qiang Zhao Institute

More information

The Pγ transition form factor in QCD

The Pγ transition form factor in QCD The Pγ transition form factor in QCD P. Kroll Fachbereich Physik, Univ. Wuppertal and Univ. Regensburg Jefferson Lab, May 2011 Outline: The πγ trans. form factor in coll. factorization The new BaBar data

More information

Vector meson dominance, axial anomaly and mixing

Vector meson dominance, axial anomaly and mixing Vector meson dominance, axial anomaly and mixing Yaroslav Klopot 1, Armen Oganesian 1,2 and Oleg Teryaev 1 1 Bogoliubov Laboratory of Theoretical Physics, Joint Institute for Nuclear Research, Dubna, Russia

More information

Axial anomaly, vector meson dominance and mixing

Axial anomaly, vector meson dominance and mixing Axial anomaly, vector meson dominance and mixing Yaroslav Klopot 1, Armen Oganesian 1,2 and Oleg Teryaev 1 1 Bogoliubov Laboratory of Theoretical Physics, Joint Institute for Nuclear Research, Dubna, Russia

More information

Joint resummation for pion wave function and pion transition form factor

Joint resummation for pion wave function and pion transition form factor Joint resummation for pion wave function and pion transition form factor Yu-Ming Wang RWTH Aachen and TUM Talk based on: Hsiang-nan Li, Yue-Long Shen, YMW, JHEP 01 (2014) 004. QCD Evolution Workshop, Santa

More information

HADRON WAVE FUNCTIONS FROM LATTICE QCD QCD. Vladimir M. Braun. Institut für Theoretische Physik Universität Regensburg

HADRON WAVE FUNCTIONS FROM LATTICE QCD QCD. Vladimir M. Braun. Institut für Theoretische Physik Universität Regensburg HADRON WAVE FUNCTIONS FROM LATTICE QCD Vladimir M. Braun QCD Institut für Theoretische Physik Universität Regensburg How to transfer a large momentum to a weakly bound system? Heuristic picture: quarks

More information

arxiv:hep-ph/ v1 1 Sep 1997

arxiv:hep-ph/ v1 1 Sep 1997 WU B 97-22 hep-ph/9709203 A perturbative approach to the η c γ transition form factor arxiv:hep-ph/9709203v1 1 Sep 1997 Thorsten Feldmann 1 and Peter Kroll Department of Theoretical Physics, University

More information

Virtuality Distributions and γγ π 0 Transition at Handbag Level

Virtuality Distributions and γγ π 0 Transition at Handbag Level and γγ π Transition at Handbag Level A.V. Radyushkin form hard Physics Department, Old Dominion University & Theory Center, Jefferson Lab May 16, 214, QCD Evolution 214, Santa Fe Transverse Momentum form

More information

Applications of QCD Sum Rules to Heavy Quark Physics

Applications of QCD Sum Rules to Heavy Quark Physics Applications of QCD Sum Rules to Heavy Quark Physics Alexander Khodjamirian UNIVERSITÄT SIEGEN Theoretische Physik 1 RESEARCH UNIT q et f 3 lectures at Helmholtz International School "Physics of Heavy

More information

arxiv:hep-ph/ v1 6 Oct 1993

arxiv:hep-ph/ v1 6 Oct 1993 CCUTH-93-1 arxiv:hep-ph/931231v1 6 Oct 1993 Stability Analysis of Sum Rules for pion Compton Scattering Claudio Corianò 1 and Hsiang-nan Li 2 1 Institute for Theoretical Physics, University of Stockholm,

More information

Light-Cone Sum Rules with B-Meson Distribution Amplitudes

Light-Cone Sum Rules with B-Meson Distribution Amplitudes Light-Cone Sum Rules with B-Meson Distriution Amplitudes Alexander Khodjamirian (University of Siegen) (with Thomas Mannel and Niels Offen) Continuous Advances in QCD, FTPI, Minneapolis, May 11-14, 2006

More information

Pion FF in QCD Sum Rules with NLCs

Pion FF in QCD Sum Rules with NLCs Pion FF in QCD Sum Rules with NLCs A. Bakulev, A. Pimikov & N. Stefanis Bogoliubov Lab. Theor. Phys., JINR (Dubna, Russia) Pion FF in QCD Sum Rules with NLCs p.1 Content: Definition of pion form factor

More information

Inclusive B decay Spectra by Dressed Gluon Exponentiation. Einan Gardi (Cambridge)

Inclusive B decay Spectra by Dressed Gluon Exponentiation. Einan Gardi (Cambridge) Inclusive B decay Spectra by Dressed Gluon Exponentiation Plan of the talk Einan Gardi (Cambridge) Inclusive Decay Spectra Why do we need to compute decay spectra? Kinematics, the endpoint region and the

More information

Fixed Angle Scattering and the Transverse Structure of Hadrons

Fixed Angle Scattering and the Transverse Structure of Hadrons Fixed Angle Scattering and the Transverse Structure of Hadrons Exclusive Reactions at High Momentum Transfer Jefferson Accelerator Facility, May. 18, 2010 George Sterman, Stony Brook Some classic results

More information

2. HEAVY QUARK PRODUCTION

2. HEAVY QUARK PRODUCTION 2. HEAVY QUARK PRODUCTION In this chapter a brief overview of the theoretical and experimental knowledge of heavy quark production is given. In particular the production of open beauty and J/ψ in hadronic

More information

Boosting B meson on the lattice

Boosting B meson on the lattice Boosting B meson on the lattice Shoji Hashimoto (KEK) @ INT Workshop Effective Field Theory, QCD, and Heavy Hadrons, U. of Washington, Seattle; April 28, 2005. Beyond the small recoil processes A big limitation

More information

Higher Fock states and power counting in exclusive charmonium decays

Higher Fock states and power counting in exclusive charmonium decays Higher Fock states and power counting in exclusive charmonium decays WU B 98-15 hep-ph/9807470 P. Kroll 1 arxiv:hep-ph/9807470v1 23 Jul 1998 Fachbereich Physik, Universität Wuppertal Gaußstrasse 20, D-42097

More information

Transition form factors of pseudoscalar mesons: theory vs experiment

Transition form factors of pseudoscalar mesons: theory vs experiment Transition form factors of pseudoscalar mesons: theory vs experiment A.E. Dorokhov JINR, Bogoliubov Laboratory of Theoretical Physics, Dubna, Russia Abstract. Recently, the BABAR collaboration reported

More information

Andreas Nyffeler. Chiral Dynamics 2012, August 6-10, 2012 Jefferson Laboratory, Newport News, VA, USA

Andreas Nyffeler. Chiral Dynamics 2012, August 6-10, 2012 Jefferson Laboratory, Newport News, VA, USA Hadronic light-by-light scattering in the muon g : impact of proposed measurements of the π 0 γγ decay width and the γ γ π 0 transition form factor with the KLOE- experiment Andreas Nyffeler Regional Centre

More information

Physics Letters B. Axial anomaly as a collective effect of meson spectrum. Yaroslav N. Klopot a,, Armen G. Oganesian b,olegv.

Physics Letters B. Axial anomaly as a collective effect of meson spectrum. Yaroslav N. Klopot a,, Armen G. Oganesian b,olegv. Physics Letters B 695 ) 3 35 Contents lists available at ScienceDirect Physics Letters B www.elsevier.com/locate/physletb Axial anomaly as a collective effect of meson spectrum Yaroslav N. Klopot a,, Armen

More information

Johan Bijnens. Lund University. bijnens bijnens/chpt.html

Johan Bijnens. Lund University.  bijnens  bijnens/chpt.html 1/28 Lund University bijnens@thep.lu.se http://thep.lu.se/ bijnens http://thep.lu.se/ bijnens/chpt.html Workshop on at CLAS Jefferson Lab 5 August 2012 2/28 Outline 1 2 3 4 5 6 7 3/28 The big picture This

More information

QCD Collinear Factorization for Single Transverse Spin Asymmetries

QCD Collinear Factorization for Single Transverse Spin Asymmetries INT workshop on 3D parton structure of nucleon encoded in GPD s and TMD s September 14 18, 2009 QCD Collinear Factorization for Single Transverse Spin Asymmetries Iowa State University Based on work with

More information

QCD Factorization and PDFs from Lattice QCD Calculation

QCD Factorization and PDFs from Lattice QCD Calculation QCD Evolution 2014 Workshop at Santa Fe, NM (May 12 16, 2014) QCD Factorization and PDFs from Lattice QCD Calculation Yan-Qing Ma / Jianwei Qiu Brookhaven National Laboratory ² Observation + Motivation

More information

Physics at LHC. lecture one. Sven-Olaf Moch. DESY, Zeuthen. in collaboration with Martin zur Nedden

Physics at LHC. lecture one. Sven-Olaf Moch. DESY, Zeuthen. in collaboration with Martin zur Nedden Physics at LHC lecture one Sven-Olaf Moch Sven-Olaf.Moch@desy.de DESY, Zeuthen in collaboration with Martin zur Nedden Humboldt-Universität, October 22, 2007, Berlin Sven-Olaf Moch Physics at LHC p.1 LHC

More information

Toward Baryon Distributions Amplitudes

Toward Baryon Distributions Amplitudes Toward Baryon Distributions Amplitudes Cédric Mezrag INFN Roma1 September 13 th, 2018 Cédric Mezrag (INFN) Baryon DAs September 13 th, 2018 1 / 28 Chapter 1: Dyson-Schwinger equations Cédric Mezrag (INFN)

More information

Pion form factor in QCD: From nonlocal condensates to NLO analytic perturbation theory

Pion form factor in QCD: From nonlocal condensates to NLO analytic perturbation theory IRB-TH-02/04, MIT/CTP-3478, RUB-TPII-02/04 Pion form factor in QCD: From nonlocal condensates to NLO analytic perturbation theory A. P. Bakulev Bogoliubov Laboratory of Theoretical Physics, JINR, 141980

More information

Introduction to Perturbative QCD

Introduction to Perturbative QCD Introduction to Perturbative QCD Lecture Jianwei Qiu Iowa State University/Argonne National Laboratory PHENIX Spinfest at RIKEN 007 June 11 - July 7, 007 RIKEN Wako Campus, Wako, Japan June 5, 007 1 Infrared

More information

Diffractive vector meson leptoproduction and spin effects

Diffractive vector meson leptoproduction and spin effects Diffractive vector meson leptoproduction and spin effects Bogoliubov Laboratory of Theoretical Physics, Joint Institute for Nuclear Research, Dubna 141980, Moscow region, Russia E-mail: goloskkv@theor.jinr.ru

More information

QCD and Rescattering in Nuclear Targets Lecture 2

QCD and Rescattering in Nuclear Targets Lecture 2 QCD and Rescattering in Nuclear Targets Lecture Jianwei Qiu Iowa State University The 1 st Annual Hampton University Graduate Studies Program (HUGS 006) June 5-3, 006 Jefferson Lab, Newport News, Virginia

More information

Inclusive B decay Spectra by Dressed Gluon Exponentiation

Inclusive B decay Spectra by Dressed Gluon Exponentiation Inclusive B decay Spectra by Dressed Gluon Exponentiation Plan of the tal Einan Gardi (Cambridge) Inclusive B decay spectra motivation Strategy of the theoretical study Very short introduction to Sudaov

More information

QCD factorization in B decays ten years later

QCD factorization in B decays ten years later QCD factorization in B decays ten years later M. Beneke (RWTH Aachen) Flavianet meeting in honour of Chris Sachrajda on the occasion of his 60th birthday Southampton, England, December 14/15, 2009 Early

More information

Danny van Dyk. B Workshop Neckarzimmern February 19th, Danny van Dyk (TU Dortmund) News on B K µ + µ 1 / 35

Danny van Dyk. B Workshop Neckarzimmern February 19th, Danny van Dyk (TU Dortmund) News on B K µ + µ 1 / 35 News on B K µ + µ Danny van Dyk B Workshop Neckarzimmern February 19th, 2010 Danny van Dyk (TU Dortmund) News on B K µ + µ 1 / 35 The Goal 15 1 10 0.8 5 0.6 C10 0-5 0.4-10 0.2-15 -15-10 -5 0 5 10 15 C

More information

arxiv:hep-ph/ v3 24 Jan 2005

arxiv:hep-ph/ v3 24 Jan 2005 Photon-meson transition form factors of light pseudoscalar mesons Bo-Wen Xiao Department of Physics, Peking University, Beijing 100871, China Department of Physics, Columbia University, New York, 10027,

More information

arxiv:hep-ph/ v2 19 Sep 2004

arxiv:hep-ph/ v2 19 Sep 2004 RUB-TPII-5/4 arxiv:hep-ph/49198v 19 Sep 4 The gluon content of the η and η mesons 1 N. G. Stefanis a and S. S. Agaev b a Institut für Theoretische Physik II, Ruhr-Universität Bochum, D-4478 Bochum, Germany

More information

Introduction to Quantum Chromodynamics (QCD)

Introduction to Quantum Chromodynamics (QCD) Introduction to Quantum Chromodynamics (QCD) Jianwei Qiu August 16 19, 018 Four Lectures The 3 rd WHEPS, August 16-4, 018, Weihai, Shandong q The Goal: The plan for my four lectures To understand the strong

More information

arxiv:hep-ph/ Jul 97

arxiv:hep-ph/ Jul 97 e-print JLAB-THY-97-9 July 1997 QCD SUM RULES: FORM FACTORS AND WAVE FUNCTIONS arxiv:hep-ph/977335 1 Jul 97 A.V. RADYUSHKIN a Old Dominion University, Norfolk, VA 359, USA; Jeerson Lab, Newport News, VA

More information

Meson wave functions from the lattice. Wolfram Schroers

Meson wave functions from the lattice. Wolfram Schroers Meson wave functions from the lattice Wolfram Schroers QCDSF/UKQCD Collaboration V.M. Braun, M. Göckeler, R. Horsley, H. Perlt, D. Pleiter, P.E.L. Rakow, G. Schierholz, A. Schiller, W. Schroers, H. Stüben,

More information

Low-energy aspects of amplitude analysis: chiral perturbation theory and dispersion relations

Low-energy aspects of amplitude analysis: chiral perturbation theory and dispersion relations Low-energy aspects of amplitude analysis: chiral perturbation theory and dispersion relations Bastian Kubis Helmholtz-Institut für Strahlen- und Kernphysik (Theorie) Bethe Center for Theoretical Physics

More information

Hadronic light-by-light from Dyson-Schwinger equations

Hadronic light-by-light from Dyson-Schwinger equations Hadronic light-by-light from Dyson-Schwinger equations Christian S. Fischer Justus Liebig Universität Gießen 23rd of October 2014 Together with Richard Williams, Gernot Eichmann, Tobias Goecke, Jan Haas

More information

How far can you go? Surprises & pitfalls in three-flavour chiral extrapolations

How far can you go? Surprises & pitfalls in three-flavour chiral extrapolations How far can you go? Surprises & pitfalls in three-flavour chiral extrapolations Sébastien Descotes-Genon Laboratoire de Physique Théorique CNRS & Université Paris-Sud 11, 91405 Orsay, France July 31 2007

More information

Charm CP Violation and the electric dipole moment of the neutron

Charm CP Violation and the electric dipole moment of the neutron and the electric dipole moment of the neutron Thomas Mannel (with N. Uraltsev, arxiv:1202.6270 and arxiv:1205.0233) Theoretische Physik I Universität Siegen Seminar at TUM, 14.1.2013 Contents Introduction

More information

Pion Distribution Amplitude from Euclidean Correlation functions

Pion Distribution Amplitude from Euclidean Correlation functions Pion Distribution Amplitude from Euclidean Correlation functions Vladimir M. Braun Institut für Theoretische Physik Universität Regensburg November 17 RQCD Collaboration: G. Bali, V.M. Braun, M. Göckeler,

More information

Deuteron from CLAS/EG1B Data. Spin Structure Functions of the OUTLINE. Nevzat Guler (for the CLAS Collaboration) Old Dominion University

Deuteron from CLAS/EG1B Data. Spin Structure Functions of the OUTLINE. Nevzat Guler (for the CLAS Collaboration) Old Dominion University Spin Structure Functions of the Deuteron from CLAS/EGB Data Nevzat Guler (for the CLAS Collaboration) Old Dominion University OULINE Formalism Experimental setup Data analysis Results and Conclusion Motivation

More information

η π 0 γγ decay in the three-flavor Nambu Jona-Lasinio model

η π 0 γγ decay in the three-flavor Nambu Jona-Lasinio model TIT/HEP-38/NP INS-Rep.-3 η π 0 γγ decay in the three-flavor Nambu Jona-Lasinio model arxiv:hep-ph/96053v 8 Feb 996 Y.Nemoto, M.Oka Department of Physics, Tokyo Institute of Technology, Meguro, Tokyo 5,

More information

Analysis of the Isgur-Wise function of the Λ b Λ c transition with light-cone QCD sum rules

Analysis of the Isgur-Wise function of the Λ b Λ c transition with light-cone QCD sum rules Analysis of the Isgur-Wise function of the Λ b Λ c transition with light-cone QCD sum rules Zhi-Gang Wang 1 Department of Physics, North China Electric Power University, Baoding 713, P. R. China arxiv:96.426v1

More information

Introduction to Quantum Chromodynamics (QCD)

Introduction to Quantum Chromodynamics (QCD) Introduction to Quantum Chromodynamics (QCD) Jianwei Qiu Theory Center, Jefferson Lab May 29 June 15, 2018 Lecture One The plan for my four lectures q The Goal: To understand the strong interaction dynamics

More information

RESONANCE at LARGE MOMENTUM TRANSFERS

RESONANCE at LARGE MOMENTUM TRANSFERS 1 V. M. Braun, M. Göckeler, R. Horsley, T. Kaltenbrunner, A. Lenz, Y. Nakamura, D. Pleiter, P. E. L. Rakow, J. Rohrwild, A. Schäfer, G. Schierholz, H. Stüben, N. Warkentin, J. M. Zanotti µ ELECTROPRODUCTION

More information

Hadronic contributions to the muon g-2

Hadronic contributions to the muon g-2 Hadronic contributions to the muon g-2 RICHARD WILLIAMS (HIRSCHEGG 2014) 1 Overview Introduction Hadronic Vacuum Polarisation Hadronic Light-by-Light Scattering Conclusions 2 Overview Introduction Hadronic

More information

Ruben Sandapen (Acadia & Mt. A) in collaboration with M. Ahmady & F. Chishtie. September 5 th 2016

Ruben Sandapen (Acadia & Mt. A) in collaboration with M. Ahmady & F. Chishtie. September 5 th 2016 Holographic Distribution Amplitudes for mesons Ruben Sandapen (Acadia & Mt. A) in collaboration with M. Ahmady & F. Chishtie Diffraction 2016 Progress in QCD session September 5 th 2016 1 Outline Overview

More information

Deep inelastic scattering and the OPE in lattice QCD

Deep inelastic scattering and the OPE in lattice QCD Deep inelastic scattering and the OPE in lattice QCD William Detmold [WD & CJD Lin PRD 73, 014501 (2006)] DIS structure of hadrons Deep-inelastic scattering process critical to development of QCD k, E

More information

B D ( ) form factors from QCD sum rules

B D ( ) form factors from QCD sum rules B D ( ) form factors from QCD sum rules (Master Thesis, June 2008) Christoph Klein in collaboration with Sven Faller Alexander Khodjamirian Thomas Mannel Nils Offen Theoretische Physik 1 Universität Siegen

More information

Determination of Vxb

Determination of Vxb Determination of Vxb Thomas Mannel, Siegen University Workshop on Flavour Dynamics Chamonix, France. October 8-15, 2005 Contents Motivation: Why is Vxb of interest? Exclusive Vcb Heavy Quark Symmetries

More information

Higgs-charm Couplings

Higgs-charm Couplings Higgs-charm Couplings Wai Kin Lai TUM December 21, 2017 MLL Colloquium, TUM OUTLINE Higgs physics at the LHC OUTLINE Higgs physics at the LHC H J/ψ + γ as a key channel to measure Hc c coupling CHRISTMAS

More information

QCD Effects in Exclusive Rare B-Meson Decays

QCD Effects in Exclusive Rare B-Meson Decays QCD Effects in Exclusive Rare B-Meson Decays Alexander Khodjamirian UNIVERSITÄT SIEGEN Continuous Advances in QCD, Minneapolis 2011 [A.K., Th. Mannel, A. Pivovarov and Yu-M. Wang, JHEP09 (2010) 089] Alexander

More information

Polarization Study in B u,d,s,c Decays to Vector Final States

Polarization Study in B u,d,s,c Decays to Vector Final States Polarization Study in B u,d,s,c Decays to Vector Final States Cai-Dian LÜ( 吕才典 )(IHEP,Beijng) Collaborators:A. Ali, Y.Li, X. Liu, Z.T. Zou, arxiv:1501.00784 C.D. Lu 1 Outline Polarization problem in decays

More information

Decay constants and masses of light tensor mesons (J P = 2 + )

Decay constants and masses of light tensor mesons (J P = 2 + ) Decay constants and masses of light tensor mesons (J P = + ) R. Khosravi, D. Hatami Department of Physics, Isfahan University of Technology, Isfahan 84156-83111, Iran Abstract We calculate the masses and

More information

HLbl from a Dyson Schwinger Approach

HLbl from a Dyson Schwinger Approach HLbl from a Dyson Schwinger Approach Richard Williams KFUni Graz Tobias Göcke TU Darmstadt Christian Fischer Uni Gießen INT Workshop on Hadronic Light-by-Light contribution to the Muon Anomaly February

More information

(Semi)leptonic B decays: Form factors and New Physics Searches Danny van Dyk Universität Zürich

(Semi)leptonic B decays: Form factors and New Physics Searches Danny van Dyk Universität Zürich (Semi)leptonic B decays: Form factors and New Physics Searches Danny van Dyk Universität Zürich 20.10.2015 Page 1 Introduction and Motivation QCD in Low Energy Processes One focus of theoretical physics

More information

Renormalon approach to Higher Twist Distribution Amplitudes

Renormalon approach to Higher Twist Distribution Amplitudes Renormalon approach to Higher Twist Distribution Amplitudes Einan Gardi (Cambridge) plan conformal expansion: why, why not cancellation of ambiguities in the OPE example: quadratic UV divergence of twist

More information

Zhong-Bo Kang Los Alamos National Laboratory

Zhong-Bo Kang Los Alamos National Laboratory Introduction to pqcd and Jets: lecture 1 Zhong-Bo Kang Los Alamos National Laboratory Jet Collaboration Summer School University of California, Davis July 19 1, 014 Selected references on QCD! QCD and

More information

QCD, Colliders & Jets - HW II Solutions. x, x

QCD, Colliders & Jets - HW II Solutions. x, x QCD, Colliders & Jets - HW II Solutions. As discussed in the Lecture the parton distributions do not scale as in the naïve parton model but rather are epected to ehibit the scaling violation predicted

More information

Finite volume effects for masses and decay constants

Finite volume effects for masses and decay constants Finite volume effects for masses and decay constants Christoph Haefeli University of Bern Exploration of Hadron Structure and Spectroscopy using Lattice QCD Seattle, March 27th, 2006 Introduction/Motivation

More information

AN INTRODUCTION TO QCD

AN INTRODUCTION TO QCD AN INTRODUCTION TO QCD Frank Petriello Northwestern U. & ANL TASI 2013: The Higgs Boson and Beyond June 3-7, 2013 1 Outline We ll begin with motivation for the continued study of QCD, especially in the

More information

π 0 decays: overview and recent studies Karol Kampf PSI, Switzerland & IPNP, Charles University, Czech Republic karol.kampf psi.ch

π 0 decays: overview and recent studies Karol Kampf PSI, Switzerland & IPNP, Charles University, Czech Republic karol.kampf psi.ch π 0 decays: overview and recent studies Karol Kampf PSI, Switzerland & IPNP, Charles University, Czech Republic karol.kampf psi.ch Orsay, November 16, 2007 in collaboration with M. Knecht, B. Moussallam,

More information

Dalitz Decays of Pseudo-Scalar Mesons

Dalitz Decays of Pseudo-Scalar Mesons Dalitz Decays of Pseudo-calar Mesons Michael Kunkel On behalf on the CLA collaboration Outline 1 Introduction Constituent Quark Model Form Factors 2 CLA etup 3 G12 Experiment 4 Current tate of the Art

More information

Babar anomaly and the pion form factors

Babar anomaly and the pion form factors Babar anomaly and the pion form factors Adam Szczepaniak Indiana University Form-factors :: quark/gluon structure of hadrons Babar anomaly and the pion form factors Adam Szczepaniak Indiana University

More information

Non-local 1/m b corrections to B X s γ

Non-local 1/m b corrections to B X s γ Non-local 1/m b corrections to B X s γ Michael Benzke TU München September 16, 2010 In collaboration with S. J. Lee, M. Neubert, G. Paz Michael Benzke (JGU) Non-local 1/m b corrections to B X s γ TU München

More information

Introduction to particle physics Lecture 7

Introduction to particle physics Lecture 7 Introduction to particle physics Lecture 7 Frank Krauss IPPP Durham U Durham, Epiphany term 2009 Outline 1 Deep-inelastic scattering and the structure of protons 2 Elastic scattering Scattering on extended

More information

HARD PION CHIRAL PERTURBATION THEORY

HARD PION CHIRAL PERTURBATION THEORY HARD PION CHIRAL PERTURBATION THEORY Johan Bijnens Lund University bijnens@thep.lu.se http://www.thep.lu.se/ bijnens Various ChPT: http://www.thep.lu.se/ bijnens/chpt.html Bonn 11/10/2011 Hard Pion Chiral

More information

Factorization, Evolution and Soft factors

Factorization, Evolution and Soft factors Factorization, Evolution and Soft factors Jianwei Qiu Brookhaven National Laboratory INT Workshop: Perturbative and nonperturbative aspects of QCD at collider energies University of Washington, Seattle,

More information

Transverse Spin Effects and k T -dependent Functions

Transverse Spin Effects and k T -dependent Functions Transverse Spin Effects and k T -dependent Functions Daniël Boer Free University, Amsterdam Outline Left-right single spin asymmetries Azimuthal spin asymmetries; Sivers and Collins effects Transversity

More information

Baryon Resonance Determination using LQCD. Robert Edwards Jefferson Lab. Baryons 2013

Baryon Resonance Determination using LQCD. Robert Edwards Jefferson Lab. Baryons 2013 Baryon Resonance Determination using LQCD Robert Edwards Jefferson Lab Baryons 2013 Where are the Missing Baryon Resonances? What are collective modes? Is there freezing of degrees of freedom? What is

More information

arxiv: v1 [hep-ph] 30 Nov 2018

arxiv: v1 [hep-ph] 30 Nov 2018 Dynamical spin effects in the pseudoscalar nonet within holographic QCD arxiv:1811.1886v1 [hep-ph] 3 Nov 18 Mohammad Ahmady Physics Department, Mount Allison University, New-Brunswick, E4L 1E6, Canada

More information

Generalizing the DGLAP Evolution of Fragmentation Functions to the Smallest x Values

Generalizing the DGLAP Evolution of Fragmentation Functions to the Smallest x Values Generalizing the DGLAP Evolution of Fragmentation Functions to the Smallest x Values Bernd Kniehl 1 2nd Institute for Theoretical Physics, University of Hamburg Describe inclusive hadron production,...

More information

The x + (5568) from QCDSR

The x + (5568) from QCDSR The x + (5568) from QCDSR Marina Nielsen Universidade de São Paulo Lots of X, Y and Z states observed by BaBar, Belle, BESIII, CDF, CLEOIII, CLEO-c, CMS, D0 and LHCb Collaborations many not confirmed

More information

Nucleon Valence Quark Structure

Nucleon Valence Quark Structure Nucleon Valence Quark Structure Z.-E. Meziani, S. Kuhn, O. Rondon, W. Melnitchouk Physics Motivation Nucleon spin and flavor structure High-x quark distributions Spin-flavor separation Moments of structure

More information

Charged Pion Polarizability & Muon g-2

Charged Pion Polarizability & Muon g-2 Charged Pion Polarizability & Muon g-2 M.J. Ramsey-Musolf U Mass Amherst Amherst Center for Fundamental Interactions http://www.physics.umass.edu/acfi/ ACFI-J Lab Workshop! March 2014! 1 Outline I. Intro

More information

Lecture II. QCD and its basic symmetries. Renormalisation and the running coupling constant

Lecture II. QCD and its basic symmetries. Renormalisation and the running coupling constant Lecture II QCD and its basic symmetries Renormalisation and the running coupling constant Experimental evidence for QCD based on comparison with perturbative calculations The road to QCD: SU(3) quark model

More information

Distribution Amplitudes of the Nucleon and its resonances

Distribution Amplitudes of the Nucleon and its resonances Distribution Amplitudes of the Nucleon and its resonances C. Mezrag Argonne National Laboratory November 16 th, 2016 In collaboration with: C.D. Roberts and J. Segovia C. Mezrag (ANL) Nucleon DA November

More information

strong coupling Antonio Vairo INFN and University of Milano

strong coupling Antonio Vairo INFN and University of Milano potential Non-Relativistic QCD strong coupling Antonio Vairo INFN and University of Milano For most of the quarkonium states: 1/r mv Λ QCD (0) V (r) (GeV) 2 1 Υ Υ Υ Υ η ψ c χ ψ ψ 2 0 1 2 r(fm) -1 weak

More information

Top and bottom at threshold

Top and bottom at threshold Top and bottom at threshold Matthias Steinhauser TTP Karlsruhe Vienna, January 27, 2015 KIT University of the State of Baden-Wuerttemberg and National Laboratory of the Helmholtz Association www.kit.edu

More information

A scrutiny of hard pion chiral perturbation theory

A scrutiny of hard pion chiral perturbation theory A scrutiny of hard pion chiral perturbation theory Massimiliano Procura Albert Einstein Center for Fundamental Physics 7th Workshop on Chiral Dynamics, JLab, Newport News, August 2012 Outline Hard pion

More information

A complete NLO calculation of the J/ψ production at Tevatron and LHC In collaboration with Wang Kai and Chao Kuang-Ta

A complete NLO calculation of the J/ψ production at Tevatron and LHC In collaboration with Wang Kai and Chao Kuang-Ta A complete NLO calculation of the J/ψ production at Tevatron and LHC Ma Yan-Qing ( 马滟青 ) Department of physics, Peking University yqma.cn@gmail.com In collaboration with Wang Kai and Chao Kuang-Ta p.1

More information

Gian Gopal Particle Attributes Quantum Numbers 1

Gian Gopal Particle Attributes Quantum Numbers 1 Particle Attributes Quantum Numbers Intro Lecture Quantum numbers (Quantised Attributes subject to conservation laws and hence related to Symmetries) listed NOT explained. Now we cover Electric Charge

More information

SUM RULES. T.M.ALIEV, D. A. DEMIR, E.ILTAN,and N.K.PAK. Physics Department, Middle East Technical University. Ankara,Turkey.

SUM RULES. T.M.ALIEV, D. A. DEMIR, E.ILTAN,and N.K.PAK. Physics Department, Middle East Technical University. Ankara,Turkey. RADIATIVE B! B and D! D DECAYS IN LIGHT CONE QCD SUM RULES. T.M.ALIEV, D. A. DEMIR, E.ILTAN,and N.K.PAK Physics Department, Middle East Technical University Ankara,Turkey November 6, 995 Abstract The radiative

More information

AuttWr(s): A. Blotz, Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM 87545, USA

AuttWr(s): A. Blotz, Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM 87545, USA THE QUARK AND MESON STRUCTURE IN THE INSTANTON AuttWr(s): A. Blotz, Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM 87545, USA E. Shuryak, SUNY Stony Brook, Stony Brook, NY 11794,

More information

Theory of B X u l ν decays and V ub

Theory of B X u l ν decays and V ub Inclusive semileptonic B decays 1 Theory of B X u l ν decays and V ub Björn O. Lange Center for Theoretical Physics Massachusetts Institute of Technology Inclusive semileptonic B decays 2 Outline 1. Direct

More information

Intrinsic Heavy Quarks

Intrinsic Heavy Quarks Intrinsic Heavy Quarks Ingo Schienbein UGA/LPSC Laboratoire de Physique Subatomique et de Cosmologie Many thanks to my long term collaborators on heavy quark related topics: Fred Olness, Aleksander Kusina,

More information

arxiv: v2 [hep-ph] 17 May 2010

arxiv: v2 [hep-ph] 17 May 2010 Heavy χ Q tensor mesons in QCD arxiv:00.767v [hep-ph] 7 May 00 T. M. Aliev a, K. Azizi b, M. Savcı a a Physics Department, Middle East Technical University, 0653 Ankara, Turkey b Physics Division, Faculty

More information

Introduction to Operator Product Expansion

Introduction to Operator Product Expansion Introduction to Operator Product Expansion (Effective Hamiltonians, Wilson coefficients and all that... ) Thorsten Feldmann Neckarzimmern, March 2008 Th. Feldmann (Uni Siegen) Introduction to OPE March

More information

CHIRAL SYMMETRY AT HIGH ENERGIES: HARD PION CHIRAL PERTURBATION THEORY

CHIRAL SYMMETRY AT HIGH ENERGIES: HARD PION CHIRAL PERTURBATION THEORY CHIRAL SYMMETRY AT HIGH ENERGIES: HARD PION CHIRAL PERTURBATION THEORY Johan Bijnens Lund University bijnens@thep.lu.se http://www.thep.lu.se/ bijnens Various ChPT: http://www.thep.lu.se/ bijnens/chpt.html

More information

Introduction to chiral perturbation theory II Higher orders, loops, applications

Introduction to chiral perturbation theory II Higher orders, loops, applications Introduction to chiral perturbation theory II Higher orders, loops, applications Gilberto Colangelo Zuoz 18. July 06 Outline Introduction Why loops? Loops and unitarity Renormalization of loops Applications

More information

Overview and Status of Measurements of F 3π at COMPASS

Overview and Status of Measurements of F 3π at COMPASS g-2 workshop Mainz: Overview and Status of Measurements of F 3π at COMPASS D. Steffen on behalf of the COMPASS collaboration 19.06.2018 sponsored by: 2 Dominik Steffen g-2 workshop Mainz 19.06.2018 Contents

More information

Introduction to Perturbative QCD

Introduction to Perturbative QCD Introduction to Perturbative QCD Lecture 3 Jianwei Qiu Iowa State University/Argonne National Laboratory PHENIX Spinfest at RIKEN 007 June 11 - July 7, 007 RIKEN Wako Campus, Wako, Japan June 6, 007 1

More information

B γlν and the B meson distribution amplitude

B γlν and the B meson distribution amplitude B γlν and the B meson distribution amplitude M. Beneke Institut für Theoretische Teilchenphysik und Kosmologie RWTH Aachen Colour meets Flavour Workshop on Quantumchromodynamics and Quark Flavour Physics

More information

The Radiative Return at Φ- and B-Meson Factories

The Radiative Return at Φ- and B-Meson Factories The Radiative Return at Φ- and B-Meson Factories J.H. KÜHN INSTITUT FÜR THEORETISCHE TEILCHENPHYSIK KARLSRUHER INSTITUT FÜR TECHNOLOGIE I II Basic Idea Monte Carlo Generators: Status & Perspectives III

More information

Introduction to the physics of hard probes in hadron collisions: lecture I. Michelangelo Mangano TH Division, CERN

Introduction to the physics of hard probes in hadron collisions: lecture I. Michelangelo Mangano TH Division, CERN Introduction to the physics of hard probes in hadron collisions: lecture I Michelangelo Mangano TH Division, CERN michelangelo.mangano@cern.ch Contents The structure of the proton the initial-state : parton

More information

1 The pion bump in the gamma reay flux

1 The pion bump in the gamma reay flux 1 The pion bump in the gamma reay flux Calculation of the gamma ray spectrum generated by an hadronic mechanism (that is by π decay). A pion of energy E π generated a flat spectrum between kinematical

More information