Distribution Amplitudes of the Nucleon and its resonances

Size: px
Start display at page:

Download "Distribution Amplitudes of the Nucleon and its resonances"

Transcription

1 Distribution Amplitudes of the Nucleon and its resonances C. Mezrag Argonne National Laboratory November 16 th, 2016 In collaboration with: C.D. Roberts and J. Segovia C. Mezrag (ANL) Nucleon DA November 16 th, / 34

2 Nucleon Distribution Amplitudes 3 bodies matrix element: 0 ɛ ijk u i α(z 1 )u j β (z 2)d k γ (z 3 ) P C. Mezrag (ANL) Nucleon DA November 16 th, / 34

3 Nucleon Distribution Amplitudes 3 bodies matrix element expanded at leading twist: 0 ɛ ijk uα(z i 1 )u j β (z 2)dγ k (z 3 ) P = 1 [ (/ pc ) ( γ5 N +) 4 αβ γ V (z i ) + ( /pγ 5 C ) ( αβ N + ) γ A(z i ) (ip µ ( σ µν C) αβ γ ν γ 5 N +) γ T (z i )] V. Chernyak and I. Zhitnitsky, Nucl. Phys. B 246, (1984) C. Mezrag (ANL) Nucleon DA November 16 th, / 34

4 Nucleon Distribution Amplitudes 3 bodies matrix element expanded at leading twist: 0 ɛ ijk uα(z i 1 )u j β (z 2)dγ k (z 3 ) P = 1 [ (/ pc ) ( γ5 N +) 4 αβ γ V (z i ) + ( /pγ 5 C ) ( αβ N + ) γ A(z i ) (ip µ ( σ µν C) αβ γ ν γ 5 N +) γ T (z i )] Usually, one defines ϕ = V A V. Chernyak and I. Zhitnitsky, Nucl. Phys. B 246, (1984) C. Mezrag (ANL) Nucleon DA November 16 th, / 34

5 Nucleon Distribution Amplitudes 3 bodies matrix element expanded at leading twist: 0 ɛ ijk uα(z i 1 )u j β (z 2)dγ k (z 3 ) P = 1 [ (/ pc ) ( γ5 N +) 4 αβ γ V (z i ) + ( /pγ 5 C ) ( αβ N + ) γ A(z i ) (ip µ ( σ µν C) αβ γ ν γ 5 N +) γ T (z i )] V. Chernyak and I. Zhitnitsky, Nucl. Phys. B 246, (1984) Usually, one defines ϕ = V A 3 bodies Fock space interpretation (leading twist): [dx] P, = 8 uud [ϕ(x 1, x 2, x 3 ) 6x 1 x 2 x 3 +ϕ(x 2, x 1, x 3 ) 2T (x 1, x 2, x 2 ) ] C. Mezrag (ANL) Nucleon DA November 16 th, / 34

6 Nucleon Distribution Amplitudes 3 bodies matrix element expanded at leading twist: 0 ɛ ijk uα(z i 1 )u j β (z 2)dγ k (z 3 ) P = 1 [ (/ pc ) ( γ5 N +) 4 αβ γ V (z i ) + ( /pγ 5 C ) ( αβ N + ) γ A(z i ) (ip µ ( σ µν C) αβ γ ν γ 5 N +) γ T (z i )] V. Chernyak and I. Zhitnitsky, Nucl. Phys. B 246, (1984) Usually, one defines ϕ = V A 3 bodies Fock space interpretation (leading twist): [dx] P, = 8 uud [ϕ(x 1, x 2, x 3 ) 6x 1 x 2 x 3 Isospin symmetry: +ϕ(x 2, x 1, x 3 ) 2T (x 1, x 2, x 2 ) ] 2T (x 1, x 2, x 3 ) = ϕ(x 1, x 3, x 2 ) + ϕ(x 2, x 3, x 1 ) C. Mezrag (ANL) Nucleon DA November 16 th, / 34

7 Evolution and Asymptotic results Both ϕ and T are scale dependent objects: they obey evolution equations C. Mezrag (ANL) Nucleon DA November 16 th, / 34

8 Evolution and Asymptotic results Both ϕ and T are scale dependent objects: they obey evolution equations At large scale, they both yield the so-called asymptotic DA ϕ AS : C. Mezrag (ANL) Nucleon DA November 16 th, / 34

9 Evolution and Asymptotic results Both ϕ and T are scale dependent objects: they obey evolution equations At large scale, they both yield the so-called asymptotic DA ϕ AS : 4 3 u x 2 d x u x 1 C. Mezrag (ANL) Nucleon DA November 16 th, / 34

10 Form Factors: Nucleon case C. Mezrag (ANL) Nucleon DA November 16 th, / 34

11 Form Factors: Nucleon case 4 3 u x 2 d x S. Brodsky and G. Lepage, PRD 22, (1980) u x 1 η = 1 C. Mezrag (ANL) Nucleon DA November 16 th, / 34

12 Form Factors: Nucleon case u x 2 d x S. Brodsky and G. Lepage, PRD 22, (1980) u x 1 η = C. Mezrag (ANL) Nucleon DA November 16 th, / 34

13 Form Factors: Nucleon case 6 5 u x 2 d x S. Brodsky and G. Lepage, PRD 22, (1980) u x 1 η = 2 C. Mezrag (ANL) Nucleon DA November 16 th, / 34

14 Some previous studies of DA QCD Sum Rules V. Chernyak and I. Zhitnitsky, Nucl. Phys. B 246 (1984) Relativistic quark model Z. Dziembowski, PRD 37 (1988) Scalar diquark clustering Z. Dziembowski and J. Franklin, PRD 42 (1990) Phenomenological fit J. Bolz and P. Kroll, Z. Phys. A 356 (1996) Lightcone quark model B. Pasquini et al., PRD 80 (2009) Lightcone sum rules I. Anikin et al., PRD 88 (2013) Lattice Mellin moment computation G. Bali et al., JHEP C. Mezrag (ANL) Nucleon DA November 16 th, / 34

15 Dyson-Schwinger equations The gap equation for the quark propagator S(q): ( ) 1 = ( ) 1. C. Mezrag (ANL) Nucleon DA November 16 th, / 34

16 Dyson-Schwinger equations The gap equation for the quark propagator S(q): ( ) 1 = ( ) 1. It has successfully described the quark mass behaviour: S(q) 1 = i /qa(q 2 ) + B(q 2 ) Non-perturbative description of the quark mass Dynamical mass generation Figure from Bashir et al. (2012) C. Mezrag (ANL) Nucleon DA November 16 th, / 34

17 Faddeev Equation The Faddeev equation provides a covariant framework to describe the nucleon as a bound state of three dressed quarks. C. Mezrag (ANL) Nucleon DA November 16 th, / 34

18 Faddeev Equation The Faddeev equation provides a covariant framework to describe the nucleon as a bound state of three dressed quarks. It predicts the existence of strong diquarks correlations inside the nucleon. p q p q p d a Ψ P = p d Γ a q Γ b b Ψ P C. Mezrag (ANL) Nucleon DA November 16 th, / 34

19 Faddeev Equation The Faddeev equation provides a covariant framework to describe the nucleon as a bound state of three dressed quarks. It predicts the existence of strong diquarks correlations inside the nucleon. p q p q p d a Ψ P = p d Γ a q Γ b b Ψ Mostly two types of diquark are dynamically generated by the Faddeev equation: Scalar diquarks, with mass roughly 2/3 of the nucleon mass, Axial-Vector (AV) diquarks, with mass roughly the same as the nucleon one. P C. Mezrag (ANL) Nucleon DA November 16 th, / 34

20 Faddeev Equation The Faddeev equation provides a covariant framework to describe the nucleon as a bound state of three dressed quarks. It predicts the existence of strong diquarks correlations inside the nucleon. p q p q p d a Ψ P = p d Γ a q Γ b b Ψ Mostly two types of diquark are dynamically generated by the Faddeev equation: Scalar diquarks, with mass roughly 2/3 of the nucleon mass, Axial-Vector (AV) diquarks, with mass roughly the same as the nucleon one. Can we understand the nucleon DA in terms of quark-diquarks correlations? C. Mezrag (ANL) Nucleon DA November 16 th, / 34 P

21 The Nakanishi Representation Propagator: Amplitude: Complexe conjugate poles: S(p) = α j + c.c. i/p + m j j Nakanishi representation: F (p, K) dz ρ νj (z) [ (p ] j 1 z 2 K) 2 νj + Λ 2 j The parameters m j, α j, ν j and Λ j are fitted on the numerical solution of the DSEs. Both have been successfully used in the case of the mesons DSE/Bethe-Salpeter equation. The Nakanishi representation will be at the center of the following work. C. Mezrag (ANL) Nucleon DA November 16 th, / 34

22 Nucleon DA and DSE Operator point of view for every DA (and at every twist): ( ) 0 ɛ ijk u i (z 1)C /nu j (z 2) /nd k (z 3) P, λ ϕ(x i ), ( ) 0 ɛ ijk u i (z 1)Ciσ ν n ν u j (z 2) γ /nd k (z 3) P, λ T (x i ) O T, Braun et al., Nucl.Phys. B589 (2000) C. Mezrag (ANL) Nucleon DA November 16 th, / 34

23 Nucleon DA and DSE Operator point of view for every DA (and at every twist): ( ) 0 ɛ ijk u i (z 1)C /nu j (z 2) /nd k (z 3) P, λ ϕ(x i ), ( ) 0 ɛ ijk u i (z 1)Ciσ ν n ν u j (z 2) γ /nd k (z 3) P, λ T (x i ) O T, We can apply it on the wave function: Braun et al., Nucl.Phys. B589 (2000) C. Mezrag (ANL) Nucleon DA November 16 th, / 34

24 Nucleon DA and DSE Operator point of view for every DA (and at every twist): ( ) 0 ɛ ijk u i (z 1)C /nu j (z 2) /nd k (z 3) P, λ ϕ(x i ), ( ) 0 ɛ ijk u i (z 1)Ciσ ν n ν u j (z 2) γ /nd k (z 3) P, λ T (x i ) O T, We can apply it on the wave function: Braun et al., Nucl.Phys. B589 (2000) = + + C. Mezrag (ANL) Nucleon DA November 16 th, / 34

25 Nucleon DA and DSE Operator point of view for every DA (and at every twist): ( ) 0 ɛ ijk u i (z 1)C /nu j (z 2) /nd k (z 3) P, λ ϕ(x i ), ( ) 0 ɛ ijk u i (z 1)Ciσ ν n ν u j (z 2) γ /nd k (z 3) P, λ T (x i ) O T, We can apply it on the wave function: Braun et al., Nucl.Phys. B589 (2000) = + + The operator then selects the relevant component of the wave function. C. Mezrag (ANL) Nucleon DA November 16 th, / 34

26 Scalar diquark contribution In the scalar diquark case, only one contribution remains (ϕ case): = C. Mezrag (ANL) Nucleon DA November 16 th, / 34

27 Scalar diquark contribution In the scalar diquark case, only one contribution remains (ϕ case): = The contraction of the Dirac indices between the single quark and the diquark makes it hard to understand. C. Mezrag (ANL) Nucleon DA November 16 th, / 34

28 Scalar diquark contribution In the scalar diquark case, only one contribution remains (ϕ case): = The contraction of the Dirac indices between the single quark and the diquark makes it hard to understand. The way to write the nucleon Dirac structure is not unique, and can be modified (Fierz identity): = γ n C. Mezrag (ANL) Nucleon DA November 16 th, / 34

29 Scalar diquark contribution In the scalar diquark case, only one contribution remains (ϕ case): = The contraction of the Dirac indices between the single quark and the diquark makes it hard to understand. The way to write the nucleon Dirac structure is not unique, and can be modified (Fierz identity): = γ n We recognise the leading twist DA of a scalar diquark C. Mezrag (ANL) Nucleon DA November 16 th, / 34

30 Scalar diquark I: the point-like case γ n Quark propagator: S(q) = i /q + M q 2 + M 2 C. Mezrag (ANL) Nucleon DA November 16 th, / 34

31 Scalar diquark I: the point-like case γ n Quark propagator: S(q) = i /q + M q 2 + M 2 Bethe-Salpeter amplitude (1 out of 4 structures): Γ 0+ PL (q, K) = iγ 5CN 0+ C. Mezrag (ANL) Nucleon DA November 16 th, / 34

32 Scalar diquark I: the point-like case γ n Quark propagator: S(q) = i /q + M q 2 + M 2 Bethe-Salpeter amplitude (1 out of 4 structures): Γ 0+ PL (q, K) = iγ 5CN 0+ This point-like case leads to a flat DA: φ PL (x) = 1 C. Mezrag (ANL) Nucleon DA November 16 th, / 34

33 Scalar diquark II: the Nakanishi case γ n Quark propagator: S(q) = i /q + M q 2 + M 2 C. Mezrag (ANL) Nucleon DA November 16 th, / 34

34 Scalar diquark II: the Nakanishi case γ n Quark propagator: S(q) = i /q + M q 2 + M 2 Bethe-Salpeter amplitude (1 out of 4 structures): Γ 0+ PL (q, K) = iγ 5CN (1 z 2 ) dz [ (q ] 1 z 2 K) 2 + Λ 2 q C. Mezrag (ANL) Nucleon DA November 16 th, / 34

35 Scalar diquark II: the Nakanishi case γ n Quark propagator: S(q) = i /q + M q 2 + M 2 Bethe-Salpeter amplitude (1 out of 4 structures): Γ 0+ PL (q, K) = iγ 5CN (1 z 2 ) dz [ (q ] 1 z 2 K) 2 + Λ 2 q The Nakanishi case leads to a non trivial DA: [ ] φ(x) = 1 M2 ln 1 + K 2 x(1 x) M 2 K 2 x(1 x) C. Mezrag (ANL) Nucleon DA November 16 th, / 34

36 Scalar DA behaviour Scalar diquark [ ] φ(x) = 1 M2 ln 1 + K 2 x(1 x) M 2 K 2 x(1 x) Asymptotic K^2 4M^2 K^2 16 M^2 C. Mezrag (ANL) Nucleon DA November 16 th, / 34

37 Scalar DA behaviour Scalar diquark [ ] φ(x) = 1 M2 ln 1 + K 2 x(1 x) M 2 K 2 x(1 x) Asymptotic K^2 4M^2 K^2 16 M^2 Φ Π x Pion x Pion figure from L. Chang et al., PRL 110 (2013) C. Mezrag (ANL) Nucleon DA November 16 th, / 34

38 Scalar DA behaviour Scalar diquark [ ] φ(x) = 1 M2 ln 1 + K 2 x(1 x) M 2 K 2 x(1 x) Asymptotic K^2 4M^2 K^2 16 M^2 Φ Π x Pion x Pion figure from L. Chang et al., PRL 110 (2013) This extended version of the DA seems promising! C. Mezrag (ANL) Nucleon DA November 16 th, / 34

39 Faddeev Amplitude Quark propagator: S(q) = i /q + M q 2 + M 2 Diquark propagator: (K) = 1 K 2 + M 2 Faddeev Amplitude: 1 s 1 (K, P) = N 1 dz 1 (1 z 2 ) [ (K ] 1 z 2 P) 2 + Λ 2 N C. Mezrag (ANL) Nucleon DA November 16 th, / 34

40 Results in the scalar channel 4 uhx2l uhx2l 2 1 uhx1l dhx3l uhx2l uhx1l 4 dhx3l uhx1l Extended case: ϕ Point-like case: ϕ C. Mezrag (ANL) uhx1l 1 Extended case: T 2.5 uhx2l dhx3l 2.5 Asymptotic DA 3 3 dhx3l Nucleon DA November 16th, / 34

41 Comparison with lattice < x i > ϕ = Dx x i ϕ(x 1, x 2, x 3 ) Pointlike Extended Lattice Lattice n f = 2 n f = (2, 1) < x 1 > ϕ (7) 58 < x 2 > ϕ (3) 19 < x 3 > ϕ (7) 23 < x 1 > T < x 2 > T < x 3 > T Lattice data from V.Braun et al, PRD 89 (2014) G. Bali et al., JHEP C. Mezrag (ANL) Nucleon DA November 16 th, / 34

42 Comparison with lattice < x i > ϕ = Dx x i ϕ(x 1, x 2, x 3 ) Pointlike Extended Lattice Lattice n f = 2 n f = (2, 1) < x 1 > ϕ (7) 58 < x 2 > ϕ (3) 19 < x 3 > ϕ (7) 23 < x 1 > T < x 2 > T < x 3 > T Lattice data from V.Braun et al, PRD 89 (2014) G. Bali et al., JHEP How are these results modified by the AV component? C. Mezrag (ANL) Nucleon DA November 16 th, / 34

43 Vector Meson DA Leading twist chiral-even DA: 0 ū(0)γ µ d(z) ρ + (P, λ) = P µ ɛ(λ) n P n f ρm ρ Leading twist chiral-odd DA: 0 ū(0)σ µν d(z) ρ + (P, λ) = ( ) i ɛ (λ) µ p ν ɛ (λ) ν p µ fρ duφ (u)e iup n duφ (u)e iup n P.Ball and V. Braun,Nucl.Phys. B543 (1999) C. Mezrag (ANL) Nucleon DA November 16 th, / 34

44 Vector Meson DA Leading twist chiral-even DA: 0 ū(0)γ µ d(z) ρ + (P, λ) = P µ ɛ(λ) n P n f ρm ρ Leading twist chiral-odd DA: 0 ū(0)σ µν d(z) ρ + (P, λ) = ( ) i ɛ (λ) µ p ν ɛ (λ) ν p µ fρ duφ (u)e iup n duφ (u)e iup n P.Ball and V. Braun,Nucl.Phys. B543 (1999) Same structures appear in the Axial-Vector diquark. C. Mezrag (ANL) Nucleon DA November 16 th, / 34

45 Selecting the AV components ( ) 0 ɛ ijk u i (z 1)C /nu j (z 2) /nd k (z 3) P, λ ϕ(x i ), ( ) 0 ɛ ijk u i (z 1)Ciσ ν n ν u j (z 2) γ /nd k (z 3) P, λ T (x i ) O T, C. Mezrag (ANL) Nucleon DA November 16 th, / 34

46 Selecting the AV components ( ) 0 ɛ ijk u i (z 1)C /nu j (z 2) /nd k (z 3) P, λ ϕ(x i ), ( ) 0 ɛ ijk u i (z 1)Ciσ ν n ν u j (z 2) γ /nd k (z 3) P, λ T (x i ) O T, = + + C. Mezrag (ANL) Nucleon DA November 16 th, / 34

47 Selecting the AV components ( ) 0 ɛ ijk u i (z 1)C /nu j (z 2) /nd k (z 3) P, λ ϕ(x i ), ( ) 0 ɛ ijk u i (z 1)Ciσ ν n ν u j (z 2) γ /nd k (z 3) P, λ T (x i ) O T, = + } {{ } Two chiral-even DAs (longitudinal) + }{{} One chiral-odd DA (transverse) C. Mezrag (ANL) Nucleon DA November 16 th, / 34

48 Selecting the AV components ( ) 0 ɛ ijk u i (z 1)C /nu j (z 2) /nd k (z 3) P, λ ϕ(x i ), ( ) 0 ɛ ijk u i (z 1)Ciσ ν n ν u j (z 2) γ /nd k (z 3) P, λ T (x i ) O T, = + } {{ } Two chiral-even DAs (longitudinal) + }{{} One chiral-odd DA (transverse) O T O T = O T O T }{{} One chiral-odd DA (transverse) + O T + O T O T O T } {{ } Two chiral-even DAs (longitudinal) C. Mezrag (ANL) Nucleon DA November 16 th, / 34

49 Selecting the AV components ( ) 0 ɛ ijk u i (z 1)C /nu j (z 2) /nd k (z 3) P, λ ϕ(x i ), ( ) 0 ɛ ijk u i (z 1)Ciσ ν n ν u j (z 2) γ /nd k (z 3) P, λ T (x i ) O T, = + } {{ } Two chiral-even DAs (longitudinal) + }{{} One chiral-odd DA (transverse) O T O T = O T O T }{{} One chiral-odd DA (transverse) + O T + O T O T O T } {{ } Two chiral-even DAs (longitudinal) 2T (x 1, x 2, x 3 ) = ϕ(x 1, x 3, x 2 ) + ϕ(x 2, x 3, x 1 ) C. Mezrag (ANL) Nucleon DA November 16 th, / 34

50 AV diquark DA γ n σ µν n ν Quark propagator: S(q) = i /q + M q 2 + M 2 C. Mezrag (ANL) Nucleon DA November 16 th, / 34

51 AV diquark DA γ n σ µν n ν Quark propagator: S(q) = i /q + M q 2 + M 2 Bethe-Salpeter amplitude (2 out of 8 structures): 1 Γ µ PL (q, K) = (N 1τ µ 1 + N 2τ µ 2 ) C dz τ µ 1 = i τ µ 2 = 1 ( γ µ K µ K / ) K 2 Chiral even K q ( iτ µ q 2 (K q) 2 K 2 1 /q + i /qτ µ 1 (1 z 2 ) [ (q ] 1 z 2 K) 2 + Λ 2 q ) Chiral odd C. Mezrag (ANL) Nucleon DA November 16 th, / 34

52 Comparison with the ρ meson AV diquark ρ meson Τ2 DA Τ1 Asymptotic DA longitudinal part transverse part transverse part with only a 2 pion asymptotic x ρ figure from F. Gao et al., PRD 90 (2014) C. Mezrag (ANL) Nucleon DA November 16 th, / 34

53 Comparison with the ρ meson AV diquark ρ meson Τ2 DA Τ1 Asymptotic DA longitudinal part transverse part transverse part with only a 2 pion asymptotic x ρ figure from F. Gao et al., PRD 90 (2014) Same shape ordering φ is flatter in both cases. Farther apart compared to the ρ meson case. C. Mezrag (ANL) Nucleon DA November 16 th, / 34

54 Faddeev Amplitude for the AV case Quark propagator: S(q) = i /q + M q 2 + M 2 Diquark propagator: AV Faddeev amplitude (2 out of 6 structures): A µ (K, P) = (γ 5 γ µ iγ 5 ˆP µ) 1 dz µν (K) = δµν + K µ K ν K 2 K 2 + M 2 1 (1 z 2 ) [ (K ] 1 z 2 P) 2 + Λ 2 N C. Mezrag (ANL) Nucleon DA November 16 th, / 34

55 Preliminary results for the AV contributions I u x 2 d x u x 2 d x u x 2 d x u x 1 u x 1 u x 1 C. Mezrag (ANL) Nucleon DA November 16 th, / 34

56 Preliminary results for the AV contributions II ϕ AV (x 1, x 2, x 3 ) T AV (x 1, x 2, x 3 ) u x 2 d x u x 2 d x u x 1 u x 1 C. Mezrag (ANL) Nucleon DA November 16 th, / 34

57 Complete results for ϕ We use the prediction from the Faddeev equation to weight the scalar and AV contributions 62/38: u x 2 d x u x 2 d x u x 1 u x 1 C. Mezrag (ANL) Nucleon DA November 16 th, / 34

58 Complete results for ϕ We use the prediction from the Faddeev equation to weight the scalar and AV contributions 62/38: u x 2 d x u x 2 d x u x 1 which can be compared with LCSR results: u x 1 figure from I Anikin et al., PRD 88 (2013) C. Mezrag (ANL) Nucleon DA November 16 th, / 34

59 Complete results for T u x 2 d x u x 2 d x u x 2 d x u x 1 100% Scalar u x 1 62% Scalar u x 1 100% AV Like φ, T received both contributions from the scalar and AV diquarks. Both contributions are similar and thus contrary to φ, T is hardly modified. C. Mezrag (ANL) Nucleon DA November 16 th, / 34

60 Comparison with lattice Scalar S+AV Lattice Lattice (62/38) n f = 2 n f = (2, 1) < x 1 > ϕ (7) 58 < x 2 > ϕ (3) 19 < x 3 > ϕ (7) 23 < x 1 > T < x 2 > T < x 3 > T f N (10 3 GeV 2 ) (1)(33) 3.60(6)(2) Lattice data from V.Braun et al, PRD 89 (2014) G. Bali et al., JHEP Normalisation from J. Segovia C. Mezrag (ANL) Nucleon DA November 16 th, / 34

61 Comparison with lattice Scalar S+AV Lattice Lattice (62/38) n f = 2 n f = (2, 1) < x 1 > ϕ (7) 58 < x 2 > ϕ (3) 19 < x 3 > ϕ (7) 23 < x 1 > T < x 2 > T < x 3 > T f N (10 3 GeV 2 ) (1)(33) 3.60(6)(2) Lattice data from V.Braun et al, PRD 89 (2014) G. Bali et al., JHEP Normalisation from J. Segovia Quark-diquark correlation seems able to explain the nucleon DA. C. Mezrag (ANL) Nucleon DA November 16 th, / 34

62 Extension to the Roper Everything done before can actually be extended to the Roper case. C. Mezrag (ANL) Nucleon DA November 16 th, / 34

63 Extension to the Roper Everything done before can actually be extended to the Roper case. The only difference holds in the Faddeev amplitude model. C. Mezrag (ANL) Nucleon DA November 16 th, / 34

64 Extension to the Roper Everything done before can actually be extended to the Roper case. The only difference holds in the Faddeev amplitude model. In particular in the Chebychev moments: S 1 A 2 (1/3)A 3 +(2/3)A p (GeV) S 1 A 2 (1/3)A 3 +(2/3)A p (GeV) figures from J. Segovia et al.,prl 115 (2015) C. Mezrag (ANL) Nucleon DA November 16 th, / 34

65 Extension to the Roper Everything done before can actually be extended to the Roper case. The only difference holds in the Faddeev amplitude model. In particular in the Chebychev moments: S 1 A 2 (1/3)A 3 +(2/3)A p (GeV) S 1 A 2 (1/3)A 3 +(2/3)A p (GeV) figures from J. Segovia et al.,prl 115 (2015) This behaviour can be obtained by adding a zero in the Faddeev amplitude through: 1 1 (1 z 2 ) dz [ (K ] 1 z 2 P) 2 + Λ 2 N 1 1 (1 z 2 )(z κ) dz [ (K ] 1 z 2 P) 2 + Λ 2 R C. Mezrag (ANL) Nucleon DA November 16 th, / 34

66 Scalar and AV components uhx2l dhx3l uhx2l 1-1 uhx1l -3 dhx3l Scalar uhx1l AV Long. 4 2 uhx2l dhx3l uhx2l 0-2 uhx1l dhx3l AV Long. C. Mezrag (ANL) -4 0 uhx1l AV Trans. Nucleon DA November 16th, / 34

67 Complete results for ϕ R 3 4 u x 2 d x u x 2 d x u x % Scalar u x 1 100% AV 1 0 u x 2 d x u x 1 62% Scalar C. Mezrag (ANL) Nucleon DA November 16 th, / 34

68 Complete results for T R u x 2 d x 3 1 u x 2 d x u x % Scalar u x 1 100% AV 0 u x 2 d x u x 1 62% Scalar C. Mezrag (ANL) Nucleon DA November 16 th, / 34

69 Absolute Normalisation Nucleon: f N = GeV 2 Roper: f R = GeV 2 Courtesy of J. Segovia C. Mezrag (ANL) Nucleon DA November 16 th, / 34

70 Summary Both nucleon DAs ϕ and T can be described using a quark-diquark approximation. We show how the diquark types and diquarks polarisations were selected. The comparison with lattice computation explains how the different diquarks contribute to the total DAs, and the respective sensitivity of the latter to the AV-diquarks. The comparison with the lattice data is encouraging. It is possible to extend the work on the nucleon to the Roper case. In the Roper case, the results of individual diquarks contributions seems to be consistent with a n = 1 excited state. C. Mezrag (ANL) Nucleon DA November 16 th, / 34

71 Outlooks Adding the full Dirac structure may help to correct the discrepancy. The use of the numerical solutions of the DSE-Faddeev Equation will certainly modify the previous results, and improve our understanding of the physics of the nucleon. From Distribution Amplitudes to observables: the computation of the form factor at large momentum transfer within this framework is one of the future goals. Other resonances, N(1535)? C. Mezrag (ANL) Nucleon DA November 16 th, / 34

72 Thank you for your attention C. Mezrag (ANL) Nucleon DA November 16 th, / 34

Toward Baryon Distributions Amplitudes

Toward Baryon Distributions Amplitudes Toward Baryon Distributions Amplitudes Cédric Mezrag INFN Roma1 September 13 th, 2018 Cédric Mezrag (INFN) Baryon DAs September 13 th, 2018 1 / 28 Chapter 1: Dyson-Schwinger equations Cédric Mezrag (INFN)

More information

Moments of leading and next-to-leading twist Nucleon Distribution Amplitudes. Institut für Theoretische Physik Universität Regensburg

Moments of leading and next-to-leading twist Nucleon Distribution Amplitudes. Institut für Theoretische Physik Universität Regensburg Moments of leading and next-to-leading twist Nucleon Distribution Amplitudes Nikolaus Warkentin for QCDSF Institut für Theoretische Physik Universität Regensburg Theoretical framework for hard exclusive

More information

A Dyson-Schwinger equation study of the baryon-photon interaction.

A Dyson-Schwinger equation study of the baryon-photon interaction. A Dyson-Schwinger equation study of the baryon-photon interaction. Diana Nicmorus in collaboration with G. Eichmann A. Krassnigg R. Alkofer Jefferson Laboratory, March 24, 2010 What is the nucleon made

More information

Bethe Salpeter studies of mesons beyond rainbow-ladder

Bethe Salpeter studies of mesons beyond rainbow-ladder Bethe Salpeter studies of mesons beyond rainbow-ladder Richard Williams 1 st June 2010 12th International Conference on Meson-Nucleon Physics and the Structure of the Nucleon College of William and Mary,

More information

HLbl from a Dyson Schwinger Approach

HLbl from a Dyson Schwinger Approach HLbl from a Dyson Schwinger Approach Richard Williams KFUni Graz Tobias Göcke TU Darmstadt Christian Fischer Uni Gießen INT Workshop on Hadronic Light-by-Light contribution to the Muon Anomaly February

More information

Valence quark contributions for the γn P 11 (1440) transition

Valence quark contributions for the γn P 11 (1440) transition Valence quark contributions for the γn P 11 (144) transition Gilberto Ramalho (Instituto Superior Técnico, Lisbon) In collaboration with Kazuo Tsushima 12th International Conference on Meson-Nucleon Physics

More information

Spectrum of Octet & Decuplet Baryons

Spectrum of Octet & Decuplet Baryons Spectrum of Octet & Decuplet Baryons CHEN CHEN The Institute for Theoretical Physics (IFT) Universidade Estadual Paulista (UNESP) Universal Truths & DSEs Spectrum of hadrons (ground, excited and exotic

More information

A study of π and ρ mesons with a nonperturbative

A study of π and ρ mesons with a nonperturbative Journal of Physics: Conference Series PAPER OPEN ACCESS A study of π and ρ mesons with a nonperturbative approach To cite this article: Rocio Bermudez et al 2015 J. Phys.: Conf. Ser. 651 012002 Related

More information

Covariance, dynamics and symmetries, and hadron form factors

Covariance, dynamics and symmetries, and hadron form factors Covariance, dynamics and symmetries, and hadron form factors Craig D. Roberts cdroberts@anl.gov Physics Division Argonne National Laboratory Exclusive Reactions at High Momentum Transfer, 21-24May/07,

More information

Faddeev equations: a view of baryon properties

Faddeev equations: a view of baryon properties E-mail: diana.nicmorus@uni-graz.at G. Eichmann E-mail: ge.eichmann@uni-graz.at A. Krassnigg E-mail: andreas.krassnigg@uni-graz.at R. Alkofer E-mail: reinhard.alkofer@uni-graz.at We present a calculation

More information

γnn Electrocouplings in Dyson-Schwinger Equations

γnn Electrocouplings in Dyson-Schwinger Equations γnn Electrocouplings in Dyson-Schwinger Equations Jorge Segovia Technische Universität München Physik-Department T30f T30f Theoretische Teilchenund Kernphysik Main collaborators: Craig D. Roberts (Argonne),

More information

SKETCHING, TRANSITION FORM FACTORS. Khépani Raya-Montaño University of Michoacan Morelia, Michoacan, Mexico.

SKETCHING, TRANSITION FORM FACTORS. Khépani Raya-Montaño University of Michoacan Morelia, Michoacan, Mexico. SKETCHING, TRANSITION FORM FACTORS Khépani Raya-Montaño University of Michoacan Morelia, Michoacan, Mexico. XXXI RA DPyC. May 24-26, 2017 CINVESTAV-Zacatenco, Ciudad de México Motivation Understanding

More information

Hadron Phenomenology and QCDs DSEs

Hadron Phenomenology and QCDs DSEs Hadron Phenomenology and QCDs DSEs Lecture 3: Relativistic Scattering and Bound State Equations Ian Cloët University of Adelaide & Argonne National Laboratory Collaborators Wolfgang Bentz Tokai University

More information

Richard Williams. Hèlios Sanchis-Alepuz

Richard Williams. Hèlios Sanchis-Alepuz Richard Williams Hèlios Sanchis-Alepuz Introduction 2 Idea: Information on hadron properties encoded in Green s functions EM form-factors Dyson-Schwinger Approach Nonpert. Covariant Multi-scale Symmetries

More information

Ruben Sandapen (Acadia & Mt. A) in collaboration with M. Ahmady & F. Chishtie. September 5 th 2016

Ruben Sandapen (Acadia & Mt. A) in collaboration with M. Ahmady & F. Chishtie. September 5 th 2016 Holographic Distribution Amplitudes for mesons Ruben Sandapen (Acadia & Mt. A) in collaboration with M. Ahmady & F. Chishtie Diffraction 2016 Progress in QCD session September 5 th 2016 1 Outline Overview

More information

Hadronic contributions to the muon g-2

Hadronic contributions to the muon g-2 Hadronic contributions to the muon g-2 RICHARD WILLIAMS (HIRSCHEGG 2014) 1 Overview Introduction Hadronic Vacuum Polarisation Hadronic Light-by-Light Scattering Conclusions 2 Overview Introduction Hadronic

More information

Relativistic studies of few-body systems using the Bethe-Salpeter approach

Relativistic studies of few-body systems using the Bethe-Salpeter approach Relativistic studies of few-body systems using the Bethe-Salpeter approach Jorge H. A. Nogueira Università di Roma La Sapienza and INFN, Sezione di Roma (Italy) Instituto Tecnológico de Aeronáutica, (Brazil)

More information

Tetraquarks and Goldstone boson physics

Tetraquarks and Goldstone boson physics Tetraquarks and Goldstone boson physics Christian S. Fischer Justus Liebig Universität Gießen February 2017 Eichmann, CF, Heupel, PLB 753 (2016) 282-287 Review: Eichmann, Sanchis-Alepuz, Williams, Alkofer,

More information

Pion Transition Form Factor

Pion Transition Form Factor First Prev Next Last Symposium on the 12% Rule and ρ π Puzzle in Vector Charmonium Decays Beijing, China, March 18-20, 2011. Pion Transition Form Factor ZE-KUN GUO In Collaboration With Qiang Zhao Institute

More information

Covariant quark-diquark model for the N N electromagnetic transitions

Covariant quark-diquark model for the N N electromagnetic transitions Covariant quark-diquark model for the N N electromagnetic transitions Gilberto Ramalho CFTP, Instituto Superior Técnico, Lisbon In collaboration with F. Gross, M.T. Peña and K. Tsushima Nucleon Resonance

More information

Three-Quark Light-Cone Wave function of the Nucleon. Spin-Spin and Spin-Orbit Correlations in T-even TMDs

Three-Quark Light-Cone Wave function of the Nucleon. Spin-Spin and Spin-Orbit Correlations in T-even TMDs TMDs and Azimuthal Spin Asymmetries in Light-Cone Quark Models Barbara Pasquini (Uni Pavia & INFN Pavia, Italy) in collaboration with: S. Boffi (Uni Pavia & INFN Pavia) A.V. Efremov (JINR, Dubna) P. Schweitzer

More information

Quark-Gluon Vertex Dressing And Meson Masses Beyond Ladder-Rainbow Truncation.

Quark-Gluon Vertex Dressing And Meson Masses Beyond Ladder-Rainbow Truncation. Quark-Gluon Vertex Dressing And Meson Masses Beyond Ladder-Rainbow Truncation. nucl-th/0605057 H.H. Matevosyan 1,2, A.W. Thomas 2, P.C. Tandy 3 1 Department of Physics & Astronomy, Louisiana State University

More information

On bound states in gauge theories with different matter content

On bound states in gauge theories with different matter content On bound states in gauge theories with different matter content Reinhard Alkofer Institute of Physics, Department of Theoretical Physics, University of Graz Bound states in QCD and beyond St. Goar, March

More information

QCD at finite density with Dyson-Schwinger equations

QCD at finite density with Dyson-Schwinger equations QCD at finite density with Dyson-Schwinger equations Daniel Müller, Michael Buballa, Jochen Wambach Quark Gluon Plasma meets Cold Atoms Episode III August 3, 212 TU Darmstadt 1 Outline Motivation Dyson-Schwinger

More information

Richard Williams C. S. Fischer, W. Heupel, H. Sanchis-Alepuz

Richard Williams C. S. Fischer, W. Heupel, H. Sanchis-Alepuz Richard Williams C. S. Fischer, W. Heupel, H. Sanchis-Alepuz Overview 2 1.Motivation and Introduction 4. 3PI DSE results 2. DSEs and BSEs 3. npi effective action 6. Outlook and conclusion 5. 3PI meson

More information

Nucleon structure from lattice QCD

Nucleon structure from lattice QCD Nucleon structure from lattice QCD M. Göckeler, P. Hägler, R. Horsley, Y. Nakamura, D. Pleiter, P.E.L. Rakow, A. Schäfer, G. Schierholz, W. Schroers, H. Stüben, Th. Streuer, J.M. Zanotti QCDSF Collaboration

More information

Bethe Salpeter studies of mesons beyond rainbow-ladder Complutense Unviversity of Madrid

Bethe Salpeter studies of mesons beyond rainbow-ladder Complutense Unviversity of Madrid Bethe Salpeter studies of mesons beyond rainbow-ladder Complutense Unviversity of Madrid Richard Williams C. S. Fischer and RW, Phys. Rev. D 78 2008 074006, [arxiv:0808.3372] C. S. Fischer and RW, Phys.

More information

Nucleon, Delta and Nucleon to Delta Electromagnetic Form Factors in DSEs

Nucleon, Delta and Nucleon to Delta Electromagnetic Form Factors in DSEs Nucleon, Delta and Nucleon to Delta Electromagnetic Form Factors in DSEs Jorge Segovia, Ian C. Cloët and Craig D. Roberts Argonne National Laboratory Chen Chen and Shaolong Wan University of Science and

More information

Dirac and Pauli form factors from N f = 2 Clover-fermion simulations

Dirac and Pauli form factors from N f = 2 Clover-fermion simulations Mitglied der Helmholtz-Gemeinschaft Dirac and Pauli form factors from N f = 2 Clover-fermion simulations 20.1011 Dirk Pleiter JSC & University of Regensburg Outline 20.1011 Dirk Pleiter JSC & University

More information

Goldstone bosons in the CFL phase

Goldstone bosons in the CFL phase Goldstone bosons in the CFL phase Verena Werth 1 Michael Buballa 1 Micaela Oertel 2 1 Institut für Kernphysik, Technische Universität Darmstadt 2 Observatoire de Paris-Meudon Dense Hadronic Matter and

More information

The dissection of γ v N N and γ v N R electromagnetic form factors

The dissection of γ v N N and γ v N R electromagnetic form factors The dissection of γ v N N and γ v N R electromagnetic form factors Jorge Segovia Technische Universität München Physik-Department-T30f T30f Theoretische Teilchenund Kernphysik Jorge Segovia (jorge.segovia@tum.de)

More information

Nucleon to Pion Transition Distribution Amplitudes in a Light-Cone Quark Model

Nucleon to Pion Transition Distribution Amplitudes in a Light-Cone Quark Model Nucleon to Pion Transition Distribution Amplitudes in a Light-Cone Quark Model Manuel Pincetti Department of Nuclear and Theoretical Physics, University of Pavia and INFN, Section of Pavia work done in

More information

Impact of γ ν NN* Electrocuplings at High Q 2 and Preliminary Cross Sections off the Neutron

Impact of γ ν NN* Electrocuplings at High Q 2 and Preliminary Cross Sections off the Neutron Impact of γ ν NN* Electrocuplings at High Q 2 and Preliminary Cross Sections off the Neutron Ralf W. Gothe Nucleon Resonances: From Photoproduction to High Photon October 12-16, 2015, ECT*, Trento, Italy

More information

Light and strange baryon spectrum from functional methods

Light and strange baryon spectrum from functional methods Light and strange baryon spectrum from functional methods Christian S. Fischer Justus Liebig Universität Gießen Review: Eichmann, Sanchis-Alepuz, Williams, Alkofer, CF, PPNP 91, 1-100 [1606.09602] Christian

More information

arxiv:hep-lat/ v1 9 Oct 2006

arxiv:hep-lat/ v1 9 Oct 2006 Distribution Amplitudes of Pseudoscalar Mesons arxiv:hep-lat/0610055v1 9 Oct 006 V. M. Braun a, M. Göckeler a, R. Horsley b, H. Perlt c, D. Pleiter d, P. E. L. Rakow e, G. Schierholz d f, A. Schiller c,

More information

A meson-exchange model for π N scattering up to energies s. Shin Nan Yang National Taiwan University

A meson-exchange model for π N scattering up to energies s. Shin Nan Yang National Taiwan University A meson-exchange model for π N scattering up to energies s 2 GeV Shin Nan Yang National Taiwan University Collaborators: S. S. Kamalov (Dubna) Guan Yeu Chen (Taipei) 18th International Conference on Few-body

More information

QCD at finite density with Dyson-Schwinger equations

QCD at finite density with Dyson-Schwinger equations QCD at finite density with Dyson-Schwinger equations Daniel Müller, Michael Buballa, Jochen Wambach KFU Graz, January 3, 213 January 3, 213 TU Darmstadt 1 Outline Introduction: QCD phase diagram Dyson-Schwinger

More information

Erice Hadronic contribution. muon g 2 from a Dyson-Schwinger perspective. Tobias Göcke yo

Erice Hadronic contribution. muon g 2 from a Dyson-Schwinger perspective. Tobias Göcke yo Erice 2011 1. Introduction Hadronic contribution to the muon g 2 from a Dyson-Schwinger perspective 4. Summary and Outlook Tobias Göcke yo 2. A Together with C. Functional S. Fischer (JLU) and R. Williams

More information

HADRON WAVE FUNCTIONS FROM LATTICE QCD QCD. Vladimir M. Braun. Institut für Theoretische Physik Universität Regensburg

HADRON WAVE FUNCTIONS FROM LATTICE QCD QCD. Vladimir M. Braun. Institut für Theoretische Physik Universität Regensburg HADRON WAVE FUNCTIONS FROM LATTICE QCD Vladimir M. Braun QCD Institut für Theoretische Physik Universität Regensburg How to transfer a large momentum to a weakly bound system? Heuristic picture: quarks

More information

Spin Densities and Chiral Odd Generalized Parton Distributions

Spin Densities and Chiral Odd Generalized Parton Distributions Spin Densities and Chiral Odd Generalized Parton Distributions Harleen Dahiya Dr. B.R. Ambedkar National Institute of Technology, Jalandhar, PUNJAB 144011 XVI International Conference on Hadron Spectroscopy

More information

arxiv: v1 [nucl-th] 7 Oct 2008

arxiv: v1 [nucl-th] 7 Oct 2008 On unifying the description of meson and baryon properties G. Eichmann, 1,2 I.C. Cloët, 1 R. Alkofer, 2 A. Krassnigg, 2 and C.D. Roberts 1 1 Physics Division, Argonne National Laboratory, Argonne IL 60439-4843

More information

Nucleon and Delta Elastic and Transition Form Factors

Nucleon and Delta Elastic and Transition Form Factors Nucleon and Delta Elastic and Transition Form Factors Based on: - Phys. Rev. C88 (013) 0301(R), - Few-Body Syst. 54 (013) 1-33, - Few-body Syst. 55 (014) 1185-1. Jorge Segovia Instituto Universitario de

More information

Pion Electromagnetic Form Factor in Virtuality Distribution Formalism

Pion Electromagnetic Form Factor in Virtuality Distribution Formalism & s Using s Pion Electromagnetic Form Factor in Distribution Formalism A. Old Dominion University and Jefferson Lab QCD 215 Workshop Jefferson Labs, May 26, 215 Pion Distribution Amplitude & s ϕ π (x):

More information

Deep inelastic scattering and the OPE in lattice QCD

Deep inelastic scattering and the OPE in lattice QCD Deep inelastic scattering and the OPE in lattice QCD William Detmold [WD & CJD Lin PRD 73, 014501 (2006)] DIS structure of hadrons Deep-inelastic scattering process critical to development of QCD k, E

More information

Explanations and Predictions from QCD s DSEs

Explanations and Predictions from QCD s DSEs Explanations and Predictions from QCD s DSEs Jorge Segovia, Ian C. Cloët and Craig D. Roberts Argonne National Laboratory Chen Chen and Shaolong Wan University of Science and Technology of China Physics

More information

SUNY Stony Brook August 16, Wolfram Weise. with. Thomas Hell Simon Rössner Claudia Ratti

SUNY Stony Brook August 16, Wolfram Weise. with. Thomas Hell Simon Rössner Claudia Ratti SUNY Stony Brook August 16, 27 PHASES of QCD POLYAKOV LOOP and QUASIPARTICLES Wolfram Weise with Thomas Hell Simon Rössner Claudia Ratti C. Ratti, M. Thaler, W. Weise: Phys. Rev. D 73 (26) 1419 C. Ratti,

More information

N N Transitions from Holographic QCD

N N Transitions from Holographic QCD N N Transitions from Holographic QCD Guy F. de Téramond Universidad de Costa Rica Nucleon Resonance Structure Electroproduction at High Photon Virtualities with the Class 12 Detector Workshop Jefferson

More information

RECENT ADVANCES IN THE CALCULATION OF HADRON FORM FACTORS USING DYSON-SCHWINGER EQUATIONS OF QCD

RECENT ADVANCES IN THE CALCULATION OF HADRON FORM FACTORS USING DYSON-SCHWINGER EQUATIONS OF QCD RECENT ADVANCES IN THE CALCULATION OF HADRON FORM FACTORS USING DYSON-SCHWINGER EQUATIONS OF QCD Jorge Segovia Argonne National Laboratory Thomas Jefferson National Accelerator Facility Newport News (Virginia)

More information

Pion Distribution Amplitude from Euclidean Correlation functions

Pion Distribution Amplitude from Euclidean Correlation functions Pion Distribution Amplitude from Euclidean Correlation functions Vladimir M. Braun Institut für Theoretische Physik Universität Regensburg November 17 RQCD Collaboration: G. Bali, V.M. Braun, M. Göckeler,

More information

Higher Fock states and power counting in exclusive charmonium decays

Higher Fock states and power counting in exclusive charmonium decays Higher Fock states and power counting in exclusive charmonium decays WU B 98-15 hep-ph/9807470 P. Kroll 1 arxiv:hep-ph/9807470v1 23 Jul 1998 Fachbereich Physik, Universität Wuppertal Gaußstrasse 20, D-42097

More information

Quark Structure of the Pion

Quark Structure of the Pion Quark Structure of the Pion Hyun-Chul Kim RCNP, Osaka University & Department of Physics, Inha University Collaborators: H.D. Son, S.i. Nam Progress of J-PARC Hadron Physics, Nov. 30-Dec. 01, 2014 Interpretation

More information

International Journal of Theoretical Physics, October 2015, Volume 54, Issue 10, pp ABSTRACT

International Journal of Theoretical Physics, October 2015, Volume 54, Issue 10, pp ABSTRACT 1 meson-nucleon coupling constant from the soft-wall AdS/QCD model Narmin Huseynova a,b1 and Shahin Mamedov a a Institute for Physical Problems, Baku State University, Z.Khalilov 3, Baku, AZ-1148, Azerbaijan

More information

Yang-Mills Propagators in Landau Gauge at Non-Vanishing Temperature

Yang-Mills Propagators in Landau Gauge at Non-Vanishing Temperature Yang-Mills Propagators in Landau Gauge at Non-Vanishing Temperature Leonard Fister, Jan M. Pawlowski, Universität Heidelberg... work in progress ERG Corfu - September 2 Motivation ultimate goal: computation

More information

Light-Front Holographic QCD: an Overview

Light-Front Holographic QCD: an Overview Light-Front Holographic QCD: an Overview Guy F. de Téramond Universidad de Costa Rica Continuous Advances is QCD University of Minnesota Minneapolis, May 14, 2011 CAQCD, Minneapolis, May 14, 2011 Page

More information

QCD and the Nambu Jona-Lasinio Model

QCD and the Nambu Jona-Lasinio Model Lecture 1 QCD and the Nambu Jona-Lasinio Model Ian Cloët The University of Adelaide & Argonne National Laboratory CSSM Summer School Non-perturbative Methods in Quantum Field Theory 11 th 15 th February

More information

Distribution amplitudes of Σ and Λ and their electromagnetic form factors

Distribution amplitudes of Σ and Λ and their electromagnetic form factors Distribution amplitudes of Σ and Λ and their electromagnetic form factors Yong-Lu Liu 1 and Ming-Qiu Huang arxiv:811.1812v1 [hep-ph] 12 Nov 28 Department of Physics, National University of Defense Technology,

More information

Virtuality Distributions and γγ π 0 Transition at Handbag Level

Virtuality Distributions and γγ π 0 Transition at Handbag Level and γγ π Transition at Handbag Level A.V. Radyushkin form hard Physics Department, Old Dominion University & Theory Center, Jefferson Lab May 16, 214, QCD Evolution 214, Santa Fe Transverse Momentum form

More information

Richard Williams. Collaborators: Alkofer, Eichmann, Fischer, Heupel, Sanchis-Alepuz

Richard Williams. Collaborators: Alkofer, Eichmann, Fischer, Heupel, Sanchis-Alepuz Richard Williams Collaborators: Alkofer, Eichmann, Fischer, Heupel, Sanchis-Alepuz 2 baryons mesons glueballs hybrids tetraquarks pentaquarks Extracting hadron poles from Green s functions 3 Extracting

More information

Hadronic light-by-light from Dyson-Schwinger equations

Hadronic light-by-light from Dyson-Schwinger equations Hadronic light-by-light from Dyson-Schwinger equations Christian S. Fischer Justus Liebig Universität Gießen 23rd of October 2014 Together with Richard Williams, Gernot Eichmann, Tobias Goecke, Jan Haas

More information

Gernot Eichmann. The Analytic Structure of the Quark Propagator in the Covariant Faddeev Equation of the Nucleon

Gernot Eichmann. The Analytic Structure of the Quark Propagator in the Covariant Faddeev Equation of the Nucleon Gernot Eichmann The Analytic Structure of the Quark Propagator in the Covariant Faddeev Equation of the Nucleon Diplomarbeit zur Erlangung des Magistergrades der Naturwissenschaften verfasst am Institut

More information

Nucleon Resonance Electro-couplings in Dyson-Schwinger Equations

Nucleon Resonance Electro-couplings in Dyson-Schwinger Equations Nucleon Resonance Electro-couplings in Dyson-Schwinger Equations Jorge Segovia Technische Universität München Physik-Department T30f T30f Theoretische Teilchenund Kernphysik Seminar Theoretical Hadron

More information

Nuclear Structure for the Crust of Neutron Stars

Nuclear Structure for the Crust of Neutron Stars Nuclear Structure for the Crust of Neutron Stars Peter Gögelein with Prof. H. Müther Institut for Theoretical Physics University of Tübingen, Germany September 11th, 2007 Outline Neutron Stars Pasta in

More information

Systematics of the Hadron Spectrum from Conformal Quantum Mechanics and Holographic QCD

Systematics of the Hadron Spectrum from Conformal Quantum Mechanics and Holographic QCD Systematics of the Hadron Spectrum from Conformal Quantum Mechanics and Holographic QCD Guy F. de Téramond Universidad de Costa Rica Twelfth Workshop on Non-Perturbative Quantum Chromodynamics Institut

More information

Triple-gluon and quark-gluon vertex from lattice QCD in Landau gauge

Triple-gluon and quark-gluon vertex from lattice QCD in Landau gauge Triple-gluon and quark-gluon vertex from lattice QCD in Landau gauge André Sternbeck Friedrich-Schiller-Universität Jena, Germany Lattice 2016, Southampton (UK) Overview in collaboration with 1) Motivation

More information

Nucleon structure near the physical pion mass

Nucleon structure near the physical pion mass Nucleon structure near the physical pion mass Jeremy Green Center for Theoretical Physics Massachusetts Institute of Technology January 4, 2013 Biographical information Undergraduate: 2003 2007, University

More information

Currents and scattering

Currents and scattering Chapter 4 Currents and scattering The goal of this remaining chapter is to investigate hadronic scattering processes, either with leptons or with other hadrons. These are important for illuminating the

More information

Towards Exploring Parity Violation with Lattice QCD. Towards Exploring Parity Violation with Lattice QCD. Brian Tiburzi 30 July 2014 RIKEN BNL

Towards Exploring Parity Violation with Lattice QCD. Towards Exploring Parity Violation with Lattice QCD. Brian Tiburzi 30 July 2014 RIKEN BNL Towards Exploring Parity Violation with Lattice QCD Brian Tiburzi 30 July 2014 RIKEN BNL Research Center Towards Exploring Parity Violation with Lattice QCD Towards Exploring Parity Violation with Lattice

More information

QCD Phases with Functional Methods

QCD Phases with Functional Methods QCD Phases with Mario PhD-Advisors: Bernd-Jochen Schaefer Reinhard Alkofer Karl-Franzens-Universität Graz Institut für Physik Fachbereich Theoretische Physik Rab, September 2010 QCD Phases with Table of

More information

HLbl from a Dyson Schwinger Approach

HLbl from a Dyson Schwinger Approach HLbl from a Dyson Schwinger Approach Richard Williams KFUni Graz Tobias Göcke TU Darmstadt Christian Fischer Uni Gießen Dissertantenseminar, March 16 th 2011, Graz 1 / 45 Introduction Table of contents

More information

Aspects of Light-Front Hadron Physics Where DSEs and Lattice-QCD Meet

Aspects of Light-Front Hadron Physics Where DSEs and Lattice-QCD Meet Aspects of Light-Front Hadron Physics Where DSEs and Lattice-QCD Meet Peter C. Tandy Dept of Physics Kent State University USA 1 Topics Parton Distribution Amplitudes (pion, kaon). Close contact with lattice-qcd

More information

The transition from pqcd to npqcd

The transition from pqcd to npqcd The transition from pqcd to npqcd A. Fantoni (INFN - Frascati) First Workshop on Quark-Hadron Duality and the Transition to pqcd Laboratori Nazionali di Frascati, Italy June 6-8, 2005 Introduction Overview

More information

NTNU Trondheim, Institutt for fysikk

NTNU Trondheim, Institutt for fysikk NTNU Trondheim, Institutt for fysikk Examination for FY3464 Quantum Field Theory I Contact: Michael Kachelrieß, tel. 998971 Allowed tools: mathematical tables 1. Spin zero. Consider a real, scalar field

More information

Chiral symmetry breaking in continuum QCD

Chiral symmetry breaking in continuum QCD Chiral symmetry breaking in continuum QCD Mario Mitter Ruprecht-Karls-Universität Heidelberg GSI, February 9, 216 M. Mitter (U Heidelberg) χsb in continuum QCD GSI, February 216 1 / 29 fqcd collaboration

More information

Toward a unified description of equilibrium and dynamics of neutron star matter

Toward a unified description of equilibrium and dynamics of neutron star matter Toward a unified description of equilibrium and dynamics of neutron star matter Omar Benhar INFN and Department of Physics Sapienza Università di Roma I-00185 Roma, Italy Based on work done in collaboration

More information

Chemical composition of the decaying glasma

Chemical composition of the decaying glasma Chemical composition of the decaying glasma Tuomas Lappi BNL tvv@quark.phy.bnl.gov with F. Gelis and K. Kajantie Strangeness in Quark Matter, UCLA, March 2006 Abstract I will present results of a nonperturbative

More information

Nucleon form factors and moments of GPDs in twisted mass lattice QCD

Nucleon form factors and moments of GPDs in twisted mass lattice QCD Nucleon form factors and moments of GPDs in twisted mass lattice QCD European Collab ora tion M. Constantinou, C. Alexandrou, M. Brinet, J. Carbonell P. Harraud, P. Guichon, K. Jansen, C. Kallidonis, T.

More information

Moments of generalized parton distribution functions viewed from chiral effective field theory.

Moments of generalized parton distribution functions viewed from chiral effective field theory. Moments of generalized parton distribution functions viewed from chiral effective field theory. Marina Dorati Universita di Pavia, Dipartimento di Fisica Nucleare e Teorica Technische Universität München,

More information

Coherent Neutrino Nucleus Scattering

Coherent Neutrino Nucleus Scattering 1 Coherent Neutrino Nucleus Scattering E.A. Paschos a and A. Kartavtsev b (presented by E.A. Paschos) a Universität Dortmund, D 441 Dortmund, Germany b Rostov State University, Rostov on Don, Russia We

More information

Scattering amplitudes from lattice QCD

Scattering amplitudes from lattice QCD Scattering amplitudes from lattice QCD David Wilson Old Dominion University Based on work in collaboration with J.J. Dudek, R.G. Edwards and C.E. Thomas. Jefferson lab theory center 20th October 2014.

More information

Mapping String States into Partons:

Mapping String States into Partons: Mapping String States into Partons: Form Factors, and the Hadron Spectrum in AdS/QCD Guy F. de Téramond Universidad de Costa Rica In Collaboration with Stan Brodsky Continuous Advances in QCD Minneapolis,

More information

η π 0 γγ decay in the three-flavor Nambu Jona-Lasinio model

η π 0 γγ decay in the three-flavor Nambu Jona-Lasinio model TIT/HEP-38/NP INS-Rep.-3 η π 0 γγ decay in the three-flavor Nambu Jona-Lasinio model arxiv:hep-ph/96053v 8 Feb 996 Y.Nemoto, M.Oka Department of Physics, Tokyo Institute of Technology, Meguro, Tokyo 5,

More information

arxiv:hep-ph/ v1 13 Dec 2006

arxiv:hep-ph/ v1 13 Dec 2006 1 arxiv:hep-ph/061163v1 13 Dec 006 Electromagnetic form factors of the nucleon in spacelike and timelike regions J. P. B. C. de Melo Centro de Ciências Exatas e Tecnológicas, Universidade Cruzeiro do Sul,

More information

Nucleon Structure at Twist-3

Nucleon Structure at Twist-3 Nucleon Structure at Twist-3 F. Aslan, MB, C. Lorcé, A. Metz, B. Pasquini New Mexico State University October 10, 2017 Outline 2 Motivation: why twist-3 GPDs twist-3 GPD G q 2 Lq twist 3 PDF g 2(x) force

More information

Light-Front Holography and Gauge/Gravity Correspondence: Applications to Hadronic Physics

Light-Front Holography and Gauge/Gravity Correspondence: Applications to Hadronic Physics Light-Front Holography and Gauge/Gravity Correspondence: Applications to Hadronic Physics Guy F. de Téramond University of Costa Rica In Collaboration with Stan Brodsky 4 th International Sakharov Conference

More information

arxiv:hep-ph/ v1 11 Mar 1994

arxiv:hep-ph/ v1 11 Mar 1994 An interesting charmonium state formation and decay: p p D 2 P γ M. Anselmino a, F. Caruso b,c, F. Murgia d and M.R. Negrão b arxiv:hep-ph/9403272v Mar 994 a Dipartimento di Fisica Teorica, Università

More information

Scalar and pseudo-scalar scalar form factors in electro- and weak- pionproduction

Scalar and pseudo-scalar scalar form factors in electro- and weak- pionproduction Scalar and pseudo-scalar scalar form factors in electro- and weak- pionproduction Myung-Ki CHEOUN, Kyungsik KIM, Kiseok CHOI (Soongsil Univ., Seoul) Fukuoka, Japan 1 Contents 1. Motivation - PS and Scalar

More information

Melting and freeze-out conditions of hadrons in a thermal medium. Juan M. Torres-Rincon

Melting and freeze-out conditions of hadrons in a thermal medium. Juan M. Torres-Rincon Melting and freeze-out conditions of hadrons in a thermal medium Juan M. Torres-Rincon Frankfurt Institute for Advanced Studies Frankfurt am Main, Germany in collaboration with J. Aichelin, H. Petersen,

More information

Pion-nucleon scattering around the delta-isobar resonance

Pion-nucleon scattering around the delta-isobar resonance Pion-nucleon scattering around the delta-isobar resonance Bingwei Long (ECT*) In collaboration with U. van Kolck (U. Arizona) What do we really do Fettes & Meissner 2001... Standard ChPT Isospin 3/2 What

More information

Chiral symmetry breaking in continuum QCD

Chiral symmetry breaking in continuum QCD Chiral symmetry breaking in continuum QCD Mario Mitter Ruprecht-Karls-Universität Heidelberg Trieste, September 206 M. Mitter (U Heidelberg) χsb in continuum QCD Trieste, September 206 / 20 fqcd collaboration

More information

QCD Symmetries in eta and etaprime mesic nuclei

QCD Symmetries in eta and etaprime mesic nuclei QCD Symmetries in eta and etaprime mesic nuclei Steven Bass Chiral symmetry, eta and eta physics: the masses of these mesons are 300-400 MeV too big for them to be pure Goldstone bosons Famous axial U(1)

More information

Measurement of the Charged Pion Form Factor to High Q 2

Measurement of the Charged Pion Form Factor to High Q 2 Measurement of the Charged Pion Form Factor to High Q 2 Dave Gaskell Jefferson Lab Hall C Users Meeting January 22, 2016 1 Outline 1. Motivation and techniques for measuring F π (Q 2 ) 2. Data àpre-jlab

More information

A New Perspectives on QCD Condensates and Dark Energy. Stan Brodsky. Applications of AdS/QCD and Light-Front Holography to Hadron Physics

A New Perspectives on QCD Condensates and Dark Energy. Stan Brodsky. Applications of AdS/QCD and Light-Front Holography to Hadron Physics Applications of AdS/QCD and Light-Front Holography to Hadron Physics A New Perspectives on QCD Condensates and Dark Energy Experimental and Theoretical Challenges to Probing Dark Energy A Workshop sponsored

More information

The Heavy Quark Spin Symmetry and SU(3)-Flavour Partners of the X(3872)

The Heavy Quark Spin Symmetry and SU(3)-Flavour Partners of the X(3872) The Heavy Quark Spin Symmetry and SU(3)-Flavour Partners of the X(3872) Carlos Hidalgo, J. Nieves and M. Pavón-Valderrama Hypernuclear and Strange Particle Physics 2012 IFIC (CSIC - Universitat de València)

More information

Λ QCD and Light Quarks Contents Symmetries of the QCD Lagrangian Chiral Symmetry and Its Breaking Parity and Handedness Parity Doubling Explicit Chira

Λ QCD and Light Quarks Contents Symmetries of the QCD Lagrangian Chiral Symmetry and Its Breaking Parity and Handedness Parity Doubling Explicit Chira Lecture 5 QCD Symmetries & Their Breaking From Quarks to Hadrons Adnan Bashir, IFM, UMSNH, Mexico August 2013 Hermosillo Sonora Λ QCD and Light Quarks Contents Symmetries of the QCD Lagrangian Chiral Symmetry

More information

Fluid dynamic propagation of initial baryon number perturbations

Fluid dynamic propagation of initial baryon number perturbations Fluid dynamic propagation of initial baryon number perturbations Stefan Flörchinger (Heidelberg U.) Initial Stages 2016, Lisbon, mainly based on S. Floerchinger & M. Martinez: Fluid dynamic propagation

More information

Generalized Rarita-Schwinger Equations

Generalized Rarita-Schwinger Equations KLTE-DTP/1998/1 Generalized Rarita-Schwinger Equations I. Lovas Research Group for Theoretical Physics (MTA-KLTE) Kossuth Lajos University, Debrecen, Hungary K. Sailer Department of Theoretical Physics,

More information

Possible relations between GPDs and TMDs

Possible relations between GPDs and TMDs Possible relations between GPDs and TMDs Marc Schlegel, Theory Center, Jefferson Lab Hall C summer meeting: Physics opportunities in Hall C at 12 GeV Generalized Parton Distributions Exclusive processes

More information

Quark tensor and axial charges within the Schwinger-Dyson formalism

Quark tensor and axial charges within the Schwinger-Dyson formalism Quark tensor and axial charges within the Schwinger-Dyson formalism, Takahiro M. Doi, Shotaro Imai, Hideo Suganuma Department of Physics, Graduate School of Science, Kyoto University, Kitashirakawa-oiwake,

More information

Electroweak Probes of Three-Nucleon Systems

Electroweak Probes of Three-Nucleon Systems Stetson University July 3, 08 Brief Outline Form factors of three-nucleon systems Hadronic parity-violation in three-nucleon systems Pionless Effective Field Theory Ideally suited for momenta p < m π since

More information

arxiv: v1 [hep-ph] 31 Jul 2009

arxiv: v1 [hep-ph] 31 Jul 2009 arxiv:0907.5540v1 [hep-ph] 31 Jul 2009 Frascati Physics Series Vol. XLVIII (2009), pp. 19-24 Young Researchers Workshop: Physics Challenges in the LHC Era Frascati, May 11 and 14, 2009 HADRONIC τ DECAYS

More information