A study of π and ρ mesons with a nonperturbative

Size: px
Start display at page:

Download "A study of π and ρ mesons with a nonperturbative"

Transcription

1 Journal of Physics: Conference Series PAPER OPEN ACCESS A study of π and ρ mesons with a nonperturbative approach To cite this article: Rocio Bermudez et al 2015 J. Phys.: Conf. Ser Related content - X (3872) production from reactions involving D and D* mesons A Martínez Torres, K P Khemchandani, F S Navarra et al. - Non-perturbative QCD and hadron physics J J Cobos-Martínez - STAR D0 meson 2 measurement Liang He View the article online for updates and enhancements. This content was downloaded from IP address on 24/02/2018 at 19:53

2 A study of π and ρ mesons with a non-perturbative approach Rocio Bermudez Departamento de Investigación en Fsica, Universidad de Sonora, Blvd. Transversal S/N,83000, Hermosillo, Mexico rabermudezr@gmail.com J.J. Cobos-Martnez Departamento de Física, Universidad de Sonora, Blvd. Transversal S/N,83000, Hermosillo, Mexico j.j.cobos.martinez@gmail.com M.E. Tejeda-Yeomans Departamento de Física, Universidad de Sonora, Blvd. Transversal S/N,83000, Hermosillo, Mexico elena.tejeda@correo.fisica.uson.mx Abstract. In this poster, we give a summary of work in progress regarding the study of meson s PDAs. We explore the consequences of a momentum-independent interaction as an ad-hoc tool to rebuild the pion distribution amplitude (PDA). The PDA is obtained through its moments using the Schwinger-Dyson formalism within QCD in the rainbow-ladder approximation. 1. Introduction We can say that and mesons are the simplest bound-states to study in QCD. This can be achieved by describing light-quark confinement and dynamical chiral symmetry breaking (DCSB), and admits a symmetry-preserving truncation scheme. QCDs Dyson-Schwinger equations (DSEs) provide a picture of these mesons in hadron physics. We assume that u/dmesons are produced by a vector-vector current-current interaction that is mediated by a momentum-independent boson propagator, i.e., by the symmetry preserving regularisation of a contact interaction. 2. Pion Distribution Amplitude Consider S the dressed-quark propagator, which is obtained from the gap equation: S 1 (p) = iγ p + m + (2π) 4 g2 D µν (p q) λa 2 γ µs(q) λa 2 Γ ν(q, p) (1) Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI. Published under licence by Ltd 1

3 where m is the Lagrangian current-quark mass, D µν is the vector-boson propagator, and Γ ν is the quark vector-boson vertex which contains the non-perturbative information. In order to build a stock of material that can be used to identify unambiguous signals in experiment for the pointwise behavior of interaction between light-quarks, their mass-functions and other quantities, we use a description through a contact interaction. We thus define g 2 D µν (p q) = 1 m 2 δ µν (2) G where m G is a gluon mass-scale, and preceed by embedding this interaction in a rainbow-ladder truncation of the DSEs, which implies Γ ν (k, p) = γ ν. This leads to the quark propagator equation: S 1 (p) = iγ p + M (3) where M is momentum independent and is defined as: M = m The regularisation procedure used is 1 m 2 G (2π) 4 γ µs(q)γ µ (4) 1 s + M 2 = dτe τ(s+m 2) 0 τ 2 ir τ 2 uv dτe τ(s+m 2 ) (5) where τ uv,ir are, respectively, infrared and ultraviolet regulators. A nonzero value of τ ir = 1/Λ ir implements confinement by ensuring the absence of quark production thresholds. τ ir = 1/Λ ir plays a dynamical role and sets the scale of all dimensioned quantities. The homogeneous Bethe-Salpeter Equation (BSE) for the pseudoscalar meson for this interaction is Γ π (P ) = (2π) 4 γ µχ π (q +, q )γ µ (6) m 2 G where q + = q + P and q = q are the gluons relative momentum. With a symmetrypreserving regularisation of the interaction, the Bethe-Salpeter amplitude cannot depend on relative momentum. We use Γ π (P ) = γ 5 [ie π (P ) + 1 M γ P F π(p )] (7) We want to build the pion distribution amplitude (PDA) from a moments calculation of it. The PDA is f π ϕ π (x) = Z 2 N c (2π) 4 δ(n q x n P ) tr[γ 5γ ns(q + )Γ π (q; P )S(q )] (8) The PDAs moments are So, we need to solve f π x m = Z 2 N c x m = 1 0 dx x m ϕ π (x) (9) (n q) m (2π) 4 (n P ) m+1 tr[γ 5γ ns(q + )Γ π (q; P )S(q )] (10) where f π is the pions leptonic decay constant define as the zero-moment of the PDA. 2

4 2.1. Results Weve obtained the following expression for the PDAs moments: f π x m = 1 4π 2 Z 1 1 2N c dα( α) [E m π M 2 C 1 (M 2 ) + 1 [ ] ] M 0 2 F π (M 2 4M 2 )C 1 (M 2 ) + C(M 2 ) (11) where M 2 = α(1 α)p 2 + M 2 and the constants C 1 (M 2 ; τ 2 uv, τ 2 ir) = Γ(0; M 2 τ 2 uv) Γ(0; M 2 τ 2 ir) C(M 2 ; τ 2 uv, τ 2 ir) = M 2 [Γ( 1; M 2 τ 2 uv) Γ( 1; M 2 τ 2 ir)] (12) The f π, define as m = 0, is f π = 1 4π 2 Z 1 1 [ 2N c dα E π M 2 C 1 (M 2 ) + 1 M 0 2 F π This means x 0 = 1, i.e. PDAs moments describe a point-like particle. [ (M 2 4M 2 )C 1 (M 2 ) + C(M 2 )] ] (13) Figure 1. Results for the Pions moments and the point-like behavior of the PDA. 3. Pion Distribution Amplitude We want to build a distribution amplitude for the ρ-meson by getting a procedure analogous to the PDAs moments calculation. In this case, we need to change the Bethe-Salpeter amplitude 3

5 in order to have a description of a vector rather than a pseudoscalar meson. The vector BSA takes the form Γ ρ µ(p ) = γ T µ E ρ (P ) (14) with P µ γ T µ = 0 γ L µ + γ T µ = γ µ (15) The first attempt for a ρ distribution amplitude (ρda) from a moment calculation is f ρ ϕ ρ (x) = 1 3 Z 2N c The moments are given by f ρ x m L = 1 3 Z 2N c f ρ x m T = 1 3 Z 2N c (2π) 4 f ρ x m i = 3 Z 2N c (2π) 4 δ(n q x n P )tr[γ µs(q + )Γ ρ µ(q; P )S(q )] (16) (n q) m (2π) 4 (n P ) m+1 tr[γ µs(q + )Γ ρ µ(q; P )S(q )] (17) (2π) 4 (n q) m (n P ) m+1 tr[σ µνn ν S(q + )Γ ρ µ(q; P )S(q )] (18) (n q) m (n P ) m+1 tr[n γγ µs(q + )Γ ρ µ(q; P )S(q )] (19) where f ρ is the ρ s leptonic decay constant define as the zero-moment of the ρda. The test moments x m L and xm T are a longitudinal-like and a transverse-like, respectively, forms inspired from [4]. On the other hand, test moment x m it s a fit to the point-like form that we expect. The results of these test expressions are presented in the following graph (20) 4

6 Figure 2. Results for the ρ s moments and the point-like behavior of the ρda. 4. Summary Weve obtained expressions for the DAs moments using the contact interaction. This represent an easy way to describe the behavior of the π- and ρ- mesons as point-like particles. Its important to note that weve only tested expressions that still need to be explored and fixed for a better description. It is also necessary to find a way to reconstruct ρda using the moments for the complete picture. References [1] Pion form factor from a contact interaction. Phys. Rev. C [2] pi- and rho-mesons, and their diquark partners, from a contact interaction. Phys. Rev. C [3] Pion and kaon valence-quark parton distribution functions. Phys. Rev. C [4] The rho- meson light-cone distribution amplitudes of leading twist revisited. Phys. Rev. D [5] Bethe-Salpeter study of vector meson masses and decay constants. Phys. Rev. C

Spectrum of Octet & Decuplet Baryons

Spectrum of Octet & Decuplet Baryons Spectrum of Octet & Decuplet Baryons CHEN CHEN The Institute for Theoretical Physics (IFT) Universidade Estadual Paulista (UNESP) Universal Truths & DSEs Spectrum of hadrons (ground, excited and exotic

More information

A Dyson-Schwinger equation study of the baryon-photon interaction.

A Dyson-Schwinger equation study of the baryon-photon interaction. A Dyson-Schwinger equation study of the baryon-photon interaction. Diana Nicmorus in collaboration with G. Eichmann A. Krassnigg R. Alkofer Jefferson Laboratory, March 24, 2010 What is the nucleon made

More information

Bethe Salpeter studies of mesons beyond rainbow-ladder

Bethe Salpeter studies of mesons beyond rainbow-ladder Bethe Salpeter studies of mesons beyond rainbow-ladder Richard Williams 1 st June 2010 12th International Conference on Meson-Nucleon Physics and the Structure of the Nucleon College of William and Mary,

More information

HLbl from a Dyson Schwinger Approach

HLbl from a Dyson Schwinger Approach HLbl from a Dyson Schwinger Approach Richard Williams KFUni Graz Tobias Göcke TU Darmstadt Christian Fischer Uni Gießen INT Workshop on Hadronic Light-by-Light contribution to the Muon Anomaly February

More information

SKETCHING, TRANSITION FORM FACTORS. Khépani Raya-Montaño University of Michoacan Morelia, Michoacan, Mexico.

SKETCHING, TRANSITION FORM FACTORS. Khépani Raya-Montaño University of Michoacan Morelia, Michoacan, Mexico. SKETCHING, TRANSITION FORM FACTORS Khépani Raya-Montaño University of Michoacan Morelia, Michoacan, Mexico. XXXI RA DPyC. May 24-26, 2017 CINVESTAV-Zacatenco, Ciudad de México Motivation Understanding

More information

Toward Baryon Distributions Amplitudes

Toward Baryon Distributions Amplitudes Toward Baryon Distributions Amplitudes Cédric Mezrag INFN Roma1 September 13 th, 2018 Cédric Mezrag (INFN) Baryon DAs September 13 th, 2018 1 / 28 Chapter 1: Dyson-Schwinger equations Cédric Mezrag (INFN)

More information

Quark tensor and axial charges within the Schwinger-Dyson formalism

Quark tensor and axial charges within the Schwinger-Dyson formalism Quark tensor and axial charges within the Schwinger-Dyson formalism, Takahiro M. Doi, Shotaro Imai, Hideo Suganuma Department of Physics, Graduate School of Science, Kyoto University, Kitashirakawa-oiwake,

More information

Distribution Amplitudes of the Nucleon and its resonances

Distribution Amplitudes of the Nucleon and its resonances Distribution Amplitudes of the Nucleon and its resonances C. Mezrag Argonne National Laboratory November 16 th, 2016 In collaboration with: C.D. Roberts and J. Segovia C. Mezrag (ANL) Nucleon DA November

More information

Richard Williams. Hèlios Sanchis-Alepuz

Richard Williams. Hèlios Sanchis-Alepuz Richard Williams Hèlios Sanchis-Alepuz Introduction 2 Idea: Information on hadron properties encoded in Green s functions EM form-factors Dyson-Schwinger Approach Nonpert. Covariant Multi-scale Symmetries

More information

Faddeev equations: a view of baryon properties

Faddeev equations: a view of baryon properties E-mail: diana.nicmorus@uni-graz.at G. Eichmann E-mail: ge.eichmann@uni-graz.at A. Krassnigg E-mail: andreas.krassnigg@uni-graz.at R. Alkofer E-mail: reinhard.alkofer@uni-graz.at We present a calculation

More information

Quark-Gluon Vertex Dressing And Meson Masses Beyond Ladder-Rainbow Truncation.

Quark-Gluon Vertex Dressing And Meson Masses Beyond Ladder-Rainbow Truncation. Quark-Gluon Vertex Dressing And Meson Masses Beyond Ladder-Rainbow Truncation. nucl-th/0605057 H.H. Matevosyan 1,2, A.W. Thomas 2, P.C. Tandy 3 1 Department of Physics & Astronomy, Louisiana State University

More information

Covariance, dynamics and symmetries, and hadron form factors

Covariance, dynamics and symmetries, and hadron form factors Covariance, dynamics and symmetries, and hadron form factors Craig D. Roberts cdroberts@anl.gov Physics Division Argonne National Laboratory Exclusive Reactions at High Momentum Transfer, 21-24May/07,

More information

Hadron Phenomenology and QCDs DSEs

Hadron Phenomenology and QCDs DSEs Hadron Phenomenology and QCDs DSEs Lecture 3: Relativistic Scattering and Bound State Equations Ian Cloët University of Adelaide & Argonne National Laboratory Collaborators Wolfgang Bentz Tokai University

More information

Introduction to Strong Interactions and the Hadronic Spectrum

Introduction to Strong Interactions and the Hadronic Spectrum Introduction to Strong Interactions and the Hadronic Spectrum Milan Vujinovic University of Graz, Graz, Austria Support by FWF Doctoral Program W1203 Hadrons in Vacuum, Nuclei and Stars Institute of Physics,

More information

Aspects of Light-Front Hadron Physics Where DSEs and Lattice-QCD Meet

Aspects of Light-Front Hadron Physics Where DSEs and Lattice-QCD Meet Aspects of Light-Front Hadron Physics Where DSEs and Lattice-QCD Meet Peter C. Tandy Dept of Physics Kent State University USA 1 Topics Parton Distribution Amplitudes (pion, kaon). Close contact with lattice-qcd

More information

Triple-gluon and quark-gluon vertex from lattice QCD in Landau gauge

Triple-gluon and quark-gluon vertex from lattice QCD in Landau gauge Triple-gluon and quark-gluon vertex from lattice QCD in Landau gauge André Sternbeck Friedrich-Schiller-Universität Jena, Germany Lattice 2016, Southampton (UK) Overview in collaboration with 1) Motivation

More information

Richard Williams C. S. Fischer, W. Heupel, H. Sanchis-Alepuz

Richard Williams C. S. Fischer, W. Heupel, H. Sanchis-Alepuz Richard Williams C. S. Fischer, W. Heupel, H. Sanchis-Alepuz Overview 2 1.Motivation and Introduction 4. 3PI DSE results 2. DSEs and BSEs 3. npi effective action 6. Outlook and conclusion 5. 3PI meson

More information

ASPECTS OF NON-PERTURBATIVE QCD FOR HADRON PHYSICS (99 pp.) Quenched lattice-qcd data on the dressed-quark Schwinger function can be correlated

ASPECTS OF NON-PERTURBATIVE QCD FOR HADRON PHYSICS (99 pp.) Quenched lattice-qcd data on the dressed-quark Schwinger function can be correlated Mandar S. Bhagwat,Ph.D.,April 12, 2005 NUCLEAR PHYSICS ASPECTS OF NON-PERTURBATIVE QCD FOR HADRON PHYSICS (99 pp.) Director of Dissertation: Peter C. Tandy Quenched lattice-qcd data on the dressed-quark

More information

Bethe Salpeter Meson Masses Beyond Ladder Approximation. Abstract

Bethe Salpeter Meson Masses Beyond Ladder Approximation. Abstract Kent State U preprint no. KSUCNR-204-02 Bethe Salpeter Meson Masses Beyond Ladder Approximation P. Watson, 1, W. Cassing, 1, and P. C. Tandy 2, 1 Institute for Theoretical Physics, University of Giessen,

More information

QCD Phases with Functional Methods

QCD Phases with Functional Methods QCD Phases with Mario PhD-Advisors: Bernd-Jochen Schaefer Reinhard Alkofer Karl-Franzens-Universität Graz Institut für Physik Fachbereich Theoretische Physik Rab, September 2010 QCD Phases with Table of

More information

Explanations and Predictions from QCD s DSEs

Explanations and Predictions from QCD s DSEs Explanations and Predictions from QCD s DSEs Jorge Segovia, Ian C. Cloët and Craig D. Roberts Argonne National Laboratory Chen Chen and Shaolong Wan University of Science and Technology of China Physics

More information

Nucleon, Delta and Nucleon to Delta Electromagnetic Form Factors in DSEs

Nucleon, Delta and Nucleon to Delta Electromagnetic Form Factors in DSEs Nucleon, Delta and Nucleon to Delta Electromagnetic Form Factors in DSEs Jorge Segovia, Ian C. Cloët and Craig D. Roberts Argonne National Laboratory Chen Chen and Shaolong Wan University of Science and

More information

RECENT ADVANCES IN THE CALCULATION OF HADRON FORM FACTORS USING DYSON-SCHWINGER EQUATIONS OF QCD

RECENT ADVANCES IN THE CALCULATION OF HADRON FORM FACTORS USING DYSON-SCHWINGER EQUATIONS OF QCD RECENT ADVANCES IN THE CALCULATION OF HADRON FORM FACTORS USING DYSON-SCHWINGER EQUATIONS OF QCD Jorge Segovia Argonne National Laboratory Thomas Jefferson National Accelerator Facility Newport News (Virginia)

More information

Charmed mesons at finite temperature and chemical potential

Charmed mesons at finite temperature and chemical potential Charmed mesons at finite temperature and chemical potential Fernando E. Serna 1,a and Gastão Krein 1,b 1 Instituto de Física Teórica, Universidade Estadual Paulista Rua Dr. Bento Teobaldo Ferraz, 271 -

More information

PHENIX measurements of bottom and charm quark production

PHENIX measurements of bottom and charm quark production Journal of Physics: Conference Series PAPER OPEN ACCESS PHENIX measurements of bottom and charm quark production To cite this article: Timothy Rinn and PHENIX Collaboration 2018 J. Phys.: Conf. Ser. 1070

More information

Hadronic light-by-light from Dyson-Schwinger equations

Hadronic light-by-light from Dyson-Schwinger equations Hadronic light-by-light from Dyson-Schwinger equations Christian S. Fischer Justus Liebig Universität Gießen 23rd of October 2014 Together with Richard Williams, Gernot Eichmann, Tobias Goecke, Jan Haas

More information

arxiv:nucl-th/ v1 2 Jul 1997

arxiv:nucl-th/ v1 2 Jul 1997 Preprint Numbers: ANL-PHY-8753-TH-97 nucl-th/9707003 KSUCNR-103-97 Pion mass and decay constant Pieter Maris, a Craig D. Roberts a and Peter C. Tandy b arxiv:nucl-th/9707003v1 Jul 1997 a Physics Division,

More information

On bound states in gauge theories with different matter content

On bound states in gauge theories with different matter content On bound states in gauge theories with different matter content Reinhard Alkofer Institute of Physics, Department of Theoretical Physics, University of Graz Bound states in QCD and beyond St. Goar, March

More information

γnn Electrocouplings in Dyson-Schwinger Equations

γnn Electrocouplings in Dyson-Schwinger Equations γnn Electrocouplings in Dyson-Schwinger Equations Jorge Segovia Technische Universität München Physik-Department T30f T30f Theoretische Teilchenund Kernphysik Main collaborators: Craig D. Roberts (Argonne),

More information

Sivers, Boer-Mulders and transversity distributions in the difference cross sections in SIDIS

Sivers, Boer-Mulders and transversity distributions in the difference cross sections in SIDIS Journal of Physics: Conference Series PAPER OPEN ACCESS Sivers, Boer-Mulders and transversity distributions in the difference cross sections in SIDIS To cite this article: Ekaterina Christova and Elliot

More information

Λ QCD and Light Quarks Contents Symmetries of the QCD Lagrangian Chiral Symmetry and Its Breaking Parity and Handedness Parity Doubling Explicit Chira

Λ QCD and Light Quarks Contents Symmetries of the QCD Lagrangian Chiral Symmetry and Its Breaking Parity and Handedness Parity Doubling Explicit Chira Lecture 5 QCD Symmetries & Their Breaking From Quarks to Hadrons Adnan Bashir, IFM, UMSNH, Mexico August 2013 Hermosillo Sonora Λ QCD and Light Quarks Contents Symmetries of the QCD Lagrangian Chiral Symmetry

More information

Craig Roberts. Physics Division

Craig Roberts. Physics Division Craig Roberts Physics Division Universal Truths Spectrum of hadrons (ground, excited and exotic states), and hadron elastic and transition form factors provide unique information about long-range interaction

More information

Goldstone bosons in the CFL phase

Goldstone bosons in the CFL phase Goldstone bosons in the CFL phase Verena Werth 1 Michael Buballa 1 Micaela Oertel 2 1 Institut für Kernphysik, Technische Universität Darmstadt 2 Observatoire de Paris-Meudon Dense Hadronic Matter and

More information

Partial overview of Dyson-Schwinger approach to QCD and some applications to structure of hadrons a

Partial overview of Dyson-Schwinger approach to QCD and some applications to structure of hadrons a Partial overview of Dyson-Schwinger approach to QCD and some applications to structure of hadrons a p. 1/30 Partial overview of Dyson-Schwinger approach to QCD and some applications to structure of hadrons

More information

Bethe Salpeter studies of mesons beyond rainbow-ladder Complutense Unviversity of Madrid

Bethe Salpeter studies of mesons beyond rainbow-ladder Complutense Unviversity of Madrid Bethe Salpeter studies of mesons beyond rainbow-ladder Complutense Unviversity of Madrid Richard Williams C. S. Fischer and RW, Phys. Rev. D 78 2008 074006, [arxiv:0808.3372] C. S. Fischer and RW, Phys.

More information

The Infrared Behavior of Landau Gauge Yang-Mills Theory in d=2, 3 and 4 Dimensions

The Infrared Behavior of Landau Gauge Yang-Mills Theory in d=2, 3 and 4 Dimensions The Infrared Behavior of Landau Gauge Yang-Mills Theory in d=2, 3 and 4 Dimensions Markus Huber 1 R. Alkofer 1 C. S. Fischer 2 K. Schwenzer 1 1 Institut für Physik, Karl-Franzens Universität Graz 2 Institut

More information

Quantum Field Theory 2 nd Edition

Quantum Field Theory 2 nd Edition Quantum Field Theory 2 nd Edition FRANZ MANDL and GRAHAM SHAW School of Physics & Astromony, The University of Manchester, Manchester, UK WILEY A John Wiley and Sons, Ltd., Publication Contents Preface

More information

Quantum Field Theory. and the Standard Model. !H Cambridge UNIVERSITY PRESS MATTHEW D. SCHWARTZ. Harvard University

Quantum Field Theory. and the Standard Model. !H Cambridge UNIVERSITY PRESS MATTHEW D. SCHWARTZ. Harvard University Quantum Field Theory and the Standard Model MATTHEW D. Harvard University SCHWARTZ!H Cambridge UNIVERSITY PRESS t Contents v Preface page xv Part I Field theory 1 1 Microscopic theory of radiation 3 1.1

More information

Azimuthal anisotropy of the identified charged hadrons in Au+Au collisions at S NN. = GeV at RHIC

Azimuthal anisotropy of the identified charged hadrons in Au+Au collisions at S NN. = GeV at RHIC Journal of Physics: Conference Series PAPER OPEN ACCESS Azimuthal anisotropy of the identified charged hadrons in Au+Au collisions at S NN = 39-200 GeV at RHIC To cite this article: S S Vdovkina 2017 J.

More information

Gernot Eichmann. The Analytic Structure of the Quark Propagator in the Covariant Faddeev Equation of the Nucleon

Gernot Eichmann. The Analytic Structure of the Quark Propagator in the Covariant Faddeev Equation of the Nucleon Gernot Eichmann The Analytic Structure of the Quark Propagator in the Covariant Faddeev Equation of the Nucleon Diplomarbeit zur Erlangung des Magistergrades der Naturwissenschaften verfasst am Institut

More information

Richard Williams. Collaborators: Alkofer, Eichmann, Fischer, Heupel, Sanchis-Alepuz

Richard Williams. Collaborators: Alkofer, Eichmann, Fischer, Heupel, Sanchis-Alepuz Richard Williams Collaborators: Alkofer, Eichmann, Fischer, Heupel, Sanchis-Alepuz 2 baryons mesons glueballs hybrids tetraquarks pentaquarks Extracting hadron poles from Green s functions 3 Extracting

More information

HLbl from a Dyson Schwinger Approach

HLbl from a Dyson Schwinger Approach HLbl from a Dyson Schwinger Approach Richard Williams KFUni Graz Tobias Göcke TU Darmstadt Christian Fischer Uni Gießen Dissertantenseminar, March 16 th 2011, Graz 1 / 45 Introduction Table of contents

More information

The thermo-magnetic quark-gluon vertex

The thermo-magnetic quark-gluon vertex The thermo-magnetic quark-gluon vertex María Elena Tejeda-Yeomans Departamento de Física, Universidad de Sonora, México in collaboration with A. Ayala (UNAM), J. Cobos-Martínez (UMICH), M. Loewe and R.

More information

New results on N* spectrum/structure with CLAS and preparation for the CLAS12 era

New results on N* spectrum/structure with CLAS and preparation for the CLAS12 era New results on N* spectrum/structure with CLAS and preparation for the CLAS12 era V.I. Mokeev, Jefferson Laboratory INT Workshop ``Spectrum and Structure of Excited Nucleons from Exclusive Electroproduction,

More information

Nucleon and Delta Elastic and Transition Form Factors

Nucleon and Delta Elastic and Transition Form Factors Nucleon and Delta Elastic and Transition Form Factors Based on: - Phys. Rev. C88 (013) 0301(R), - Few-Body Syst. 54 (013) 1-33, - Few-body Syst. 55 (014) 1185-1. Jorge Segovia Instituto Universitario de

More information

QCD and the Nambu Jona-Lasinio Model

QCD and the Nambu Jona-Lasinio Model Lecture 1 QCD and the Nambu Jona-Lasinio Model Ian Cloët The University of Adelaide & Argonne National Laboratory CSSM Summer School Non-perturbative Methods in Quantum Field Theory 11 th 15 th February

More information

Hadronic contributions to the muon g-2

Hadronic contributions to the muon g-2 Hadronic contributions to the muon g-2 RICHARD WILLIAMS (HIRSCHEGG 2014) 1 Overview Introduction Hadronic Vacuum Polarisation Hadronic Light-by-Light Scattering Conclusions 2 Overview Introduction Hadronic

More information

Introduction to perturbative QCD and factorization

Introduction to perturbative QCD and factorization Introduction to perturbative QCD and factorization Part 1 M. Diehl Deutsches Elektronen-Synchroton DESY Ecole Joliot Curie 2018 DESY Plan of lectures 0. Brief introduction 1. Renormalisation, running coupling,

More information

Ruben Sandapen (Acadia & Mt. A) in collaboration with M. Ahmady & F. Chishtie. September 5 th 2016

Ruben Sandapen (Acadia & Mt. A) in collaboration with M. Ahmady & F. Chishtie. September 5 th 2016 Holographic Distribution Amplitudes for mesons Ruben Sandapen (Acadia & Mt. A) in collaboration with M. Ahmady & F. Chishtie Diffraction 2016 Progress in QCD session September 5 th 2016 1 Outline Overview

More information

Structure of Generalized Parton Distributions

Structure of Generalized Parton Distributions =Hybrids Generalized Parton Distributions A.V. Radyushkin June 2, 201 Hadrons in Terms of Quarks and Gluons =Hybrids Situation in hadronic physics: All relevant particles established QCD Lagrangian is

More information

Multiple Scattering with fully coherent scattering in pa and AA collisions

Multiple Scattering with fully coherent scattering in pa and AA collisions Journal of Physics: Conference Series PAPER OPEN ACCESS Multiple Scattering with fully coherent scattering in pa and AA collisions To cite this article: Haitham Zaraket 217 J. Phys.: Conf. Ser. 85 126

More information

Scattering amplitudes from lattice QCD

Scattering amplitudes from lattice QCD Scattering amplitudes from lattice QCD David Wilson Old Dominion University Based on work in collaboration with J.J. Dudek, R.G. Edwards and C.E. Thomas. Jefferson lab theory center 20th October 2014.

More information

Pions are Special Contents Chiral Symmetry and Its Breaking Symmetries and Conservation Laws Goldstone Theorem The Potential Linear Sigma Model Wigner

Pions are Special Contents Chiral Symmetry and Its Breaking Symmetries and Conservation Laws Goldstone Theorem The Potential Linear Sigma Model Wigner Lecture 3 Pions as Goldstone Bosons of Chiral Symmetry Breaking Adnan Bashir, IFM, UMSNH, Mexico August 2013 Hermosillo Sonora Pions are Special Contents Chiral Symmetry and Its Breaking Symmetries and

More information

M. Sc. Physics ( ) From Gomal University, D. I. Khan (K. P. K), Pakistan.

M. Sc. Physics ( ) From Gomal University, D. I. Khan (K. P. K), Pakistan. Aftab Ahmad Current Address: Institute of Physics and Mathematics UMSNH Morelia Mexico (IFM-UMSNH). Cell# +(52) 4434383317. Email: aftabahmad@ifm.umich.mx: aftab.gu@gmail.com. Permanent Address: Department

More information

QCD at finite density with Dyson-Schwinger equations

QCD at finite density with Dyson-Schwinger equations QCD at finite density with Dyson-Schwinger equations Daniel Müller, Michael Buballa, Jochen Wambach Quark Gluon Plasma meets Cold Atoms Episode III August 3, 212 TU Darmstadt 1 Outline Motivation Dyson-Schwinger

More information

and C 3 P 0 model in the Charming Strange Sector

and C 3 P 0 model in the Charming Strange Sector Journal of Physics: Conference Series PAPER OPEN ACCESS Differences Between The 3 P 0 and C 3 P 0 model in the Charming Strange Sector To cite this article: D T da Silva et al 2015 J. Phys.: Conf. Ser.

More information

Recent BaBar results on CP Violation in B decays

Recent BaBar results on CP Violation in B decays Journal of Physics: Conference Series OPEN ACCESS Recent BaBar results on CP Violation in B decays To cite this article: Arantza Oyanguren 2013 J. Phys.: Conf. Ser. 447 012029 View the article online for

More information

Nonequilibrium dynamics and transport near the chiral phase transition of a quark-meson model

Nonequilibrium dynamics and transport near the chiral phase transition of a quark-meson model FAIRNESS 2013, 15-21 September 1 Nonequilibrium dynamics and transport near the chiral phase transition of a quark-meson model A Meistrenko 1, C Wesp 1, H van Hees 1,2 and C Greiner 1 1 Institut für Theoretische

More information

Tetraquarks and Goldstone boson physics

Tetraquarks and Goldstone boson physics Tetraquarks and Goldstone boson physics Christian S. Fischer Justus Liebig Universität Gießen February 2017 Eichmann, CF, Heupel, PLB 753 (2016) 282-287 Review: Eichmann, Sanchis-Alepuz, Williams, Alkofer,

More information

Light and strange baryon spectrum from functional methods

Light and strange baryon spectrum from functional methods Light and strange baryon spectrum from functional methods Christian S. Fischer Justus Liebig Universität Gießen Review: Eichmann, Sanchis-Alepuz, Williams, Alkofer, CF, PPNP 91, 1-100 [1606.09602] Christian

More information

Particle Physics I Lecture Exam Question Sheet

Particle Physics I Lecture Exam Question Sheet Particle Physics I Lecture Exam Question Sheet Five out of these 16 questions will be given to you at the beginning of the exam. (1) (a) Which are the different fundamental interactions that exist in Nature?

More information

Relativistic studies of few-body systems using the Bethe-Salpeter approach

Relativistic studies of few-body systems using the Bethe-Salpeter approach Relativistic studies of few-body systems using the Bethe-Salpeter approach Jorge H. A. Nogueira Università di Roma La Sapienza and INFN, Sezione di Roma (Italy) Instituto Tecnológico de Aeronáutica, (Brazil)

More information

The dissection of γ v N N and γ v N R electromagnetic form factors

The dissection of γ v N N and γ v N R electromagnetic form factors The dissection of γ v N N and γ v N R electromagnetic form factors Jorge Segovia Technische Universität München Physik-Department-T30f T30f Theoretische Teilchenund Kernphysik Jorge Segovia (jorge.segovia@tum.de)

More information

A New Perspectives on QCD Condensates and Dark Energy. Stan Brodsky. Applications of AdS/QCD and Light-Front Holography to Hadron Physics

A New Perspectives on QCD Condensates and Dark Energy. Stan Brodsky. Applications of AdS/QCD and Light-Front Holography to Hadron Physics Applications of AdS/QCD and Light-Front Holography to Hadron Physics A New Perspectives on QCD Condensates and Dark Energy Experimental and Theoretical Challenges to Probing Dark Energy A Workshop sponsored

More information

Ward-Takahashi Relations: Longitudinal and Transverse

Ward-Takahashi Relations: Longitudinal and Transverse Ward-Takahashi Relations: Longitudinal and Transverse Theoretical Physics Institute University of Alberta, Edmonton, Alberta, T6G 2G7 Canada E:mail khanna@phys.ualberta.ca Ward-Takahashi relations in Abelian

More information

Chiral symmetry breaking in continuum QCD

Chiral symmetry breaking in continuum QCD Chiral symmetry breaking in continuum QCD Mario Mitter Ruprecht-Karls-Universität Heidelberg Trieste, September 206 M. Mitter (U Heidelberg) χsb in continuum QCD Trieste, September 206 / 20 fqcd collaboration

More information

Lightlike solitons with spin

Lightlike solitons with spin Journal of Physics: Conference Series PAPER OPEN ACCESS Lightlike solitons with spin To cite this article: Alexander A. Chernitskii 2016 J. Phys.: Conf. Ser. 678 012016 Related content - On solitons in

More information

Hadron Physics: From Solitons, DSEs, to Light-Front QCD

Hadron Physics: From Solitons, DSEs, to Light-Front QCD Hadron Physics: From Solitons, DSEs, to Light-Front QCD Peter C. Tandy Dept of Physics Kent State University USA 1 Topics Things from the past retony Williams: Solitons, Perturbation Integral Representation,

More information

Citation for published version (APA): Martinus, G. H. (1998). Proton-proton bremsstrahlung in a relativistic covariant model s.n.

Citation for published version (APA): Martinus, G. H. (1998). Proton-proton bremsstrahlung in a relativistic covariant model s.n. University of Groningen Proton-proton bremsstrahlung in a relativistic covariant model Martinus, Gerard Henk IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you

More information

The Role of the Quark-Gluon Vertex in the QCD Phase Transition

The Role of the Quark-Gluon Vertex in the QCD Phase Transition The Role of the Quark-Gluon Vertex in the QCD Phase Transition PhD Seminar, 05.12.2012 Markus Hopfer University of Graz (A. Windisch, R. Alkofer) Outline 1 Motivation A Physical Motivation Calculations

More information

Confined chirally symmetric dense matter

Confined chirally symmetric dense matter Confined chirally symmetric dense matter L. Ya. Glozman, V. Sazonov, R. Wagenbrunn Institut für Physik, FB Theoretische Physik, Universität Graz 28 June 2013 L. Ya. Glozman, V. Sazonov, R. Wagenbrunn (Institut

More information

Virtuality Distributions and γγ π 0 Transition at Handbag Level

Virtuality Distributions and γγ π 0 Transition at Handbag Level and γγ π Transition at Handbag Level A.V. Radyushkin form hard Physics Department, Old Dominion University & Theory Center, Jefferson Lab May 16, 214, QCD Evolution 214, Santa Fe Transverse Momentum form

More information

The Gauge Principle Contents Quantum Electrodynamics SU(N) Gauge Theory Global Gauge Transformations Local Gauge Transformations Dynamics of Field Ten

The Gauge Principle Contents Quantum Electrodynamics SU(N) Gauge Theory Global Gauge Transformations Local Gauge Transformations Dynamics of Field Ten Lecture 4 QCD as a Gauge Theory Adnan Bashir, IFM, UMSNH, Mexico August 2013 Hermosillo Sonora The Gauge Principle Contents Quantum Electrodynamics SU(N) Gauge Theory Global Gauge Transformations Local

More information

Heavy Hidden-Flavour Molecules in a Finite Volume

Heavy Hidden-Flavour Molecules in a Finite Volume Heavy Hidden-Flavour Molecules in a Finite Volume Carlos Hidalgo-Duque (IFIC, CSIC Universitat de València) M. Albaladejo, J. Nieves, E. Oset XVI International Conference on Hadron Spectroscopy Marriott

More information

Phases and facets of 2-colour matter

Phases and facets of 2-colour matter Phases and facets of 2-colour matter Jon-Ivar Skullerud with Tamer Boz, Seamus Cotter, Leonard Fister Pietro Giudice, Simon Hands Maynooth University New Directions in Subatomic Physics, CSSM, 10 March

More information

Nucleon Resonance Electro-couplings in Dyson-Schwinger Equations

Nucleon Resonance Electro-couplings in Dyson-Schwinger Equations Nucleon Resonance Electro-couplings in Dyson-Schwinger Equations Jorge Segovia Technische Universität München Physik-Department T30f T30f Theoretische Teilchenund Kernphysik Seminar Theoretical Hadron

More information

Light-Cone Quantization of Electrodynamics

Light-Cone Quantization of Electrodynamics Light-Cone Quantization of Electrodynamics David G. Robertson Department of Physics, The Ohio State University Columbus, OH 43210 Abstract Light-cone quantization of (3+1)-dimensional electrodynamics is

More information

Collective Perspective on Advances in Dyson Schwinger Equation QCD

Collective Perspective on Advances in Dyson Schwinger Equation QCD Commun. Theor. Phys. 58 (2012) 79 134 Vol. 58, No. 1, July 15, 2012 Collective Perspective on Advances in Dyson Schwinger Equation QCD Adnan Bashir, 1,2,3 CHANG Lei, 2 Ian C. Cloët, 4 Bruno El-Bennich,

More information

Spin Densities and Chiral Odd Generalized Parton Distributions

Spin Densities and Chiral Odd Generalized Parton Distributions Spin Densities and Chiral Odd Generalized Parton Distributions Harleen Dahiya Dr. B.R. Ambedkar National Institute of Technology, Jalandhar, PUNJAB 144011 XVI International Conference on Hadron Spectroscopy

More information

Renormalization Group Study of the Chiral Phase Transition

Renormalization Group Study of the Chiral Phase Transition Renormalization Group Study of the Chiral Phase Transition Ana Juričić, Bernd-Jochen Schaefer University of Graz Graz, May 23, 2013 Table of Contents 1 Proper Time Renormalization Group 2 Quark-Meson Model

More information

Effective Field Theory

Effective Field Theory Effective Field Theory Iain Stewart MIT The 19 th Taiwan Spring School on Particles and Fields April, 2006 Physics compartmentalized Quantum Field Theory String Theory? General Relativity short distance

More information

The heavy mesons in Nambu Jona-Lasinio model

The heavy mesons in Nambu Jona-Lasinio model The heavy mesons in Nambu Jona-Lasinio model Xiao-Yu Guo, Xiao-Lin Chen, and Wei-Zhen Deng School of physics and State Key Laboratory of Nuclear Physics and Technology, Peking University, Beijing, 100871,

More information

Exploring the quark-gluon content of hadrons: from mesons to nuclear matters

Exploring the quark-gluon content of hadrons: from mesons to nuclear matters Louisiana State University LSU Digital Commons LSU Doctoral Dissertations Graduate School 007 Exploring the quark-gluon content of hadrons: from mesons to nuclear matters Hrayr Hamlet Matevosyan Louisiana

More information

Chiral Symmetry Breaking. Schwinger-Dyson Equations

Chiral Symmetry Breaking. Schwinger-Dyson Equations Critical End Point of QCD Phase-Diagram: A Schwinger-Dyson Equation Perspective Adnan Bashir Michoacán University, Mexico Collaborators: E. Guadalupe Gutiérrez, A Ahmad, A. Ayala, A. Raya, J.R. Quintero

More information

Critical lines and points. in the. QCD phase diagram

Critical lines and points. in the. QCD phase diagram Critical lines and points in the QCD phase diagram Understanding the phase diagram Phase diagram for m s > m u,d quark-gluon plasma deconfinement quark matter : superfluid B spontaneously broken nuclear

More information

Craig Roberts. Physics Division

Craig Roberts. Physics Division Craig Roberts Physics Division www.phy.anl.gov/theory/staff/cdr.html Universal Truths Spectrum of hadrons (ground, excited and exotic states), and hadron elastic and transition form factors provide unique

More information

Hadron Physics & Quantum Chromodynamics Adnan Bashir, IFM, UMSNH, Mexico August 2013 Hermosillo Sonora

Hadron Physics & Quantum Chromodynamics Adnan Bashir, IFM, UMSNH, Mexico August 2013 Hermosillo Sonora Hadron Physics & Quantum Chromodynamics Adnan Bashir, IFM, UMSNH, Mexico August 2013 Hermosillo Sonora Hadron Physics & QCD Part 1: First Encounter With Hadrons: Introduction to Mesons & Baryons, The Quark

More information

On the Landau gauge three-gluon vertex

On the Landau gauge three-gluon vertex On the Landau gauge three-gluon vertex M. Vujinovic, G. Eichmann, R. Williams, R. Alkofer Karl Franzens University, Graz PhD Seminar talk Graz, Austria, 13.11.2013. M. Vujinovic et al. (KFU, Graz) On the

More information

η π 0 γγ decay in the three-flavor Nambu Jona-Lasinio model

η π 0 γγ decay in the three-flavor Nambu Jona-Lasinio model TIT/HEP-38/NP INS-Rep.-3 η π 0 γγ decay in the three-flavor Nambu Jona-Lasinio model arxiv:hep-ph/96053v 8 Feb 996 Y.Nemoto, M.Oka Department of Physics, Tokyo Institute of Technology, Meguro, Tokyo 5,

More information

Johan Bijnens. Lund University. bijnens bijnens/chpt.html

Johan Bijnens. Lund University.  bijnens  bijnens/chpt.html 1/28 Lund University bijnens@thep.lu.se http://thep.lu.se/ bijnens http://thep.lu.se/ bijnens/chpt.html Workshop on at CLAS Jefferson Lab 5 August 2012 2/28 Outline 1 2 3 4 5 6 7 3/28 The big picture This

More information

Vector mesons in the fireball

Vector mesons in the fireball Symmetries and Self-consistency Vector mesons in the fireball π,... ρ/ω γ e e + Hendrik van Hees Fakultät für Physik Universität Bielefeld Symmetries and Self-consistency p.1 Content Concepts Real time

More information

Renormalon approach to Higher Twist Distribution Amplitudes

Renormalon approach to Higher Twist Distribution Amplitudes Renormalon approach to Higher Twist Distribution Amplitudes Einan Gardi (Cambridge) plan conformal expansion: why, why not cancellation of ambiguities in the OPE example: quadratic UV divergence of twist

More information

Low-energy aspects of amplitude analysis: chiral perturbation theory and dispersion relations

Low-energy aspects of amplitude analysis: chiral perturbation theory and dispersion relations Low-energy aspects of amplitude analysis: chiral perturbation theory and dispersion relations Bastian Kubis Helmholtz-Institut für Strahlen- und Kernphysik (Theorie) Bethe Center for Theoretical Physics

More information

Elementary Particle Physics

Elementary Particle Physics Yorikiyo Nagashima Elementary Particle Physics Volume 2: Foundations of the Standard Model WILEY- VCH WILEY-VCH Verlag GmbH & Co. KGaA Contents Preface XI Acknowledgments XV Color Plates XVII Part One

More information

PAPER 45 THE STANDARD MODEL

PAPER 45 THE STANDARD MODEL MATHEMATICAL TRIPOS Part III Friday, 6 June, 014 1:0 pm to 4:0 pm PAPER 45 THE STANDARD MODEL Attempt no more than THREE questions. There are FOUR questions in total. The questions carry equal weight.

More information

Applicability of Parametrized Form of Fully Dressed Quark Propagator

Applicability of Parametrized Form of Fully Dressed Quark Propagator Commun. Theor. Phys. (Beijing, China) 45 (2006) pp. 675 680 c International Academic Publishers Vol. 45, No. 4, April 15, 2006 Applicability o Parametrized Form o Fully Dressed Quark Propagator ZHOU Li-Juan

More information

QCD at finite density with Dyson-Schwinger equations

QCD at finite density with Dyson-Schwinger equations QCD at finite density with Dyson-Schwinger equations Daniel Müller, Michael Buballa, Jochen Wambach KFU Graz, January 3, 213 January 3, 213 TU Darmstadt 1 Outline Introduction: QCD phase diagram Dyson-Schwinger

More information

Non-Perturbative QCD at Finite Temperature

Non-Perturbative QCD at Finite Temperature Non-Perturbative QCD at Finite Temperature Pok Man Lo University of Pittsburgh Jlab Hugs student talk, 6-20-2008 Pok Man Lo (UPitt) Non-Perturbative QCD at finite Temperature 6-20-2008 1 / 39 personal

More information

You may not start to read the questions printed on the subsequent pages until instructed to do so by the Invigilator.

You may not start to read the questions printed on the subsequent pages until instructed to do so by the Invigilator. MATHEMATICAL TRIPOS Part III Tuesday 5 June 21 1.3 to 4.3 PAPER 63 THE STANDARD MODEL Attempt THREE questions. The questions are of equal weight. You may not start to read the questions printed on the

More information

arxiv: v1 [hep-ph] 31 Jul 2009

arxiv: v1 [hep-ph] 31 Jul 2009 arxiv:0907.5540v1 [hep-ph] 31 Jul 2009 Frascati Physics Series Vol. XLVIII (2009), pp. 19-24 Young Researchers Workshop: Physics Challenges in the LHC Era Frascati, May 11 and 14, 2009 HADRONIC τ DECAYS

More information