N N Transitions from Holographic QCD

Size: px
Start display at page:

Download "N N Transitions from Holographic QCD"

Transcription

1 N N Transitions from Holographic QCD Guy F. de Téramond Universidad de Costa Rica Nucleon Resonance Structure Electroproduction at High Photon Virtualities with the Class 12 Detector Workshop Jefferson Lab, May 16, 211 From Nick Evans N Electroproduction, JLab, May 16, 211 Page 1

2 1 Light Front Dynamics Light-Front Fock Representation Semiclassical Approximation to QCD in the Light Front 2 Light-Front Holographic Mapping Higher Spin Modes in AdS Space Dual QCD Light-Front Wave Equation AdS Bosonic Modes and Meson Spectrum AdS Fermionic Modes and Baryon Spectrum 3 Light-Front Holographic Mapping of Current Matrix Elements Electromagnetic Form Factors Nucleon Elastic Form Factors Nucleon Transition Form Factors N Electroproduction, JLab, May 16, 211 Page 2

3 1 Light Front Dynamics Different possibilities to parametrize space-time [Dirac (1949)] Parametrizations differ by the hypersurface on which the initial conditions are specified. Each evolve with different times and has its own Hamiltonian, but should give the same physical results Forms of Relativistic Dynamics: dynamical vs. kinematical generators [Dirac (1949)] ct Instant form: hypersurface defined by t =, the familiar one z H, K dynamical, L, P kinematical y A1 ct Point form: hypersurface is an hyperboloid P µ dynamical, M µν kinematical y z Front form: hypersurface is tangent to the light cone at τ = t + z/c = ct A2 P, L x, L y dynamical, P +, P, L z, K kinematical z y A3 N Electroproduction, JLab, May 16, 211 Page 3

4 LF quantization is the ideal framework to describe hadronic structure in terms of quarks and gluons: simple vacuum structure allows unambiguous definition of partonic content of a hadron Calculation of a matrix elements P + q J P requires boosting the hadronic bound state from P to P + q : extremely complicated in the instant form, whereas K is trivial in the LF Invariant Hamiltonian equation for bound states similar structure of AdS equations of motion: direct connection of QCD and AdS/CFT possible LF coordinates x + = x + x 3 x = x x 3 light-front time longitudinal space variable k + = k + k 3 longitudinal momentum (k + > ) k = k k 3 light-front energy k x = 1 2 (k+ x + k x + ) k x On shell relation k 2 = m 2 leads to dispersion relation k = k2 +m2 k + N Electroproduction, JLab, May 16, 211 Page 4

5 Light-Front Fock Representation Construct LF Lorentz invariant Hamiltonian equation for the relativistic bound state P µ P µ ψ(p ) = ( P P + P 2 ) ψ(p ) = M 2 ψ(p ) State ψ(p ) is expanded in multi-particle Fock states n of the free LF Hamiltonian ψ = n ψ n n, n = { uud, uudg, uudqq, } with k 2 i = m2 i, k i = (k + i, k i, k i), for each constituent i in state n Fock components ψ n (x i, k i, λ z i ) independent of P + and P and depend only on relative partonic coordinates: momentum fraction x i = k + i /P +, transverse momentum k i and spin λ z i n x i = 1, i=1 n k i =. i=1 N Electroproduction, JLab, May 16, 211 Page 5

6 Semiclassical Approximation to QCD in the Light Front [GdT and S. J. Brodsky, PRL 12, 8161 (29)] Compute M 2 from hadronic matrix element ψ(p ) P µ P µ ψ(p ) =M 2 ψ(p ) ψ(p ) Relevant variable in the limit of zero quark masses ζ = x 1 x n 1 j=1 x j b j the x-weighted transverse impact coordinate of the spectator system (x active quark) For a two-parton system ζ 2 = x(1 x)b 2 To first approximation LF dynamics depend only on the invariant variable ζ, and hadronic properties are encoded in the hadronic mode φ(ζ) from ψ(x, ζ, ϕ) = e ilzϕ X(x) φ(ζ) 2πζ factoring angular ϕ, longitudinal X(x) and transverse mode φ(ζ) (P +, P and J z commute with P ) N Electroproduction, JLab, May 16, 211 Page 6

7 Ultra relativistic limit m q longitudinal modes X(x) decouple (L = L z ) M 2 = dζ φ (ζ) ζ ( d2 dζ 2 1 ) d ζ dζ + L2 φ(ζ) ζ 2 + dζ φ (ζ) U(ζ) φ(ζ) ζ where the confining forces from the interaction terms are summed up in the effective potential U(ζ) LF eigenvalue equation P µ P µ φ = M 2 φ is a LF wave equation for φ ( d2 dζ 2 1 4L2 ) 4ζ }{{ 2 + U(ζ) φ(ζ) = M 2 φ(ζ) }{{}} conf inement kinetic energy of partons Effective light-front Schrödinger equation: relativistic, frame-independent and analytically tractable Eigenmodes φ(ζ) determine the hadronic mass spectrum and represent the probability amplitude to find n-massless partons at transverse impact separation ζ within the hadron at equal light-front time Semiclassical approximation to light-front QCD does not account for particle creation and absorption N Electroproduction, JLab, May 16, 211 Page 7

8 2 Light-Front Holographic Mapping AdS 5 metric: ds 2 }{{} L AdS = R 2 ( ηµν z 2 dx µ dx ν 2 dz ) }{{} L Minkowski A distance L AdS shrinks by a warp factor z/r as observed in Minkowski space (dz = ): L Minkowski z R L AdS Since the AdS metric is invariant under a dilatation of all coordinates x µ λx µ, z λz, the variable z acts like a scaling variable in Minkowski space Short distances x µ x µ map to UV conformal AdS 5 boundary z Large confinement dimensions x µ x µ 1/Λ 2 QCD maps to large IR region of AdS 5, z 1/Λ QCD, thus there is a maximum separation of quarks and a maximum value of z Use the isometries of AdS to map the local interpolating operators at the UV boundary of AdS into the modes propagating inside AdS N Electroproduction, JLab, May 16, 211 Page 8

9 Higher Spin Modes in AdS Space Description of higher spin modes in AdS space (Frondsal, Fradkin and Vasiliev) Action for spin-j field in AdS d+1 in presence of dilaton background ϕ(z) ( x M = (x µ, z) ) S = 1 2 d d x dz g e ϕ(z2 ) ( g NN g M 1M 1 g M J M J DN Φ M1 M J D N Φ M 1 M J µ 2 g M 1M 1 g M J M J ΦM1 M J Φ M 1 M J + ) where D M is the covariant derivative which includes parallel transport [D N, D K ]Φ M1 M J = R L M 1 NKΦ L MJ R L M J NKΦ M1 L Physical hadron has plane-wave and polarization indices along 3+1 physical coordinates Φ P (x, z) µ1 µ J = e ip x Φ(z) µ1 µ J, Φ zµ2 µ J = = Φ µ1 µ 2 z = with four-momentum P µ and invariant hadronic mass P µ P µ =M 2 N Electroproduction, JLab, May 16, 211 Page 9

10 Construct effective action in terms of spin-j modes Φ J with only physical degrees of freedom [ H. G. Dosch, S. J. Brodsky and GdT (in preparation)] Introduce fields with tangent indices Find effective action ˆΦ A1 A 2 A J = e M 1 A 1 e M 2 A 2 e M J A J Φ M1 M 2 M J = ( z R) JΦA1 A 2 A J S = 1 2 d d x dz g e ϕ(z)( g NN η µ 1µ 1 η µ J µ J N ˆΦµ1 µ J N ˆΦµ 1 µ J ) µ 2 η µ 1µ 1 η µ J µ J ˆΦµ1 µ J ˆΦµ 1 µ J upon µ-rescaling Variation of the action gives AdS wave equation for spin-j mode Φ J = Φ µ1 µ J [ ( zd 1 2J e ϕ ) ( ) ] (z) µr 2 e ϕ(z) z z d 1 2J z + Φ J (z) = M 2 Φ J (z) z with ˆΦ J (z) = (z/r) J Φ J (z) and all indices along 3+1 N Electroproduction, JLab, May 16, 211 Page 1

11 Dual QCD Light-Front Wave Equation Φ P (z) ψ(p ) [GdT and S. J. Brodsky, PRL 12, 8161 (29)] Upon substitution z ζ and φ J (ζ) ζ 3/2+J e ϕ(z)/2 Φ J (ζ) in AdS WE [ ( zd 1 2J e ϕ ) ( ) ] (z) µr 2 e ϕ(z) z z d 1 2J z + Φ J (z) = M 2 Φ J (z) z find LFWE (d = 4) ( d2 dζ 2 1 4L2 4ζ 2 ) + U(ζ) φ J (ζ) = M 2 φ J (ζ) with U(ζ) = 1 2 ϕ (z) ϕ (z) 2 + 2J 3 ϕ (z) 2z and (µr) 2 = (2 J) 2 + L 2 AdS Breitenlohner-Freedman bound (µr) 2 4 equivalent to LF QM stability condition L 2 Scaling dimension τ of AdS mode ˆΦ J is τ = 2 + L in agreement with twist scaling dimension of a two parton bound state in QCD and determined by QM stability condition N Electroproduction, JLab, May 16, 211 Page 11

12 Bosonic Modes and Meson Spectrum Soft wall model: linear Regge trajectories [Karch, Katz, Son and Stephanov (26)] Dilaton ϕ(z) = +κ 2 z 2 (Minkowski metrics), ϕ(z) = κ 2 z 2 (Euclidean metrics) Effective potential: U(z) = κ 4 ζ 2 + 2κ 2 (L + S 1) Normalized eigenfunctions φ φ = dζ φ(z) 2 = 1 φ nl (ζ) = κ 1+L 2n! (n+l)! ζ1/2+l e κ2 ζ 2 /2 L L n(κ 2 ζ 2 ) Eigenvalues M 2 n,l,s = 4κ2 (n + L + S/2).8 Φ Ζ a Φ Ζ b Ζ Ζ LFWFs φ n,l (ζ) in physical space time for dilaton exp(κ 2 z 2 ): a) orbital modes and b) radial modes N Electroproduction, JLab, May 16, 211 Page 12

13 4κ 2 for n = 1 4κ 2 for L = 1 2κ 2 for S = 1 6 J PC n=3 n=2 n=1 n= 6 J PC n=3 n=2 n=1 n= f 2 (23) M A5 π(18) π(13) π π 2 (188) π 2 (167) b(1235) L M A1 ρ(17) ω(165) ρ(145) ω(142) ρ(77) ω(782) f 2 (195) a 2 (132) f 2 (127) ρ 3 (169) ω 3 (167) a 4 (24) f 4 (25) L Regge trajectories for the π (κ =.6 GeV) and the I =1 ρ-meson and I = ω-meson families (κ =.54 GeV) N Electroproduction, JLab, May 16, 211 Page 13

14 Fermionic Modes and Baryon Spectrum Same multiplicity of states for mesons and baryons! 4κ 2 for n = 1 4κ 2 for L = 1 2κ 2 for S = 1 6 (a) n=3 n=2 n=1 n= (b) n=3 n=2 n=1 n= M 2 4 N(22) Δ(242) 2 N(171) N(144) N(168) N(172) Δ(16) Δ(195) Δ(195) Δ(192) Δ(191) Δ(1232) A3 N(94) L L Regge trajectories for positive parity N and baryon families (κ =.5 GeV) N Electroproduction, JLab, May 16, 211 Page 14

15 3 Light-Front Holographic Mapping of Current Matrix Elements [S. J. Brodsky and GdT, PRL 96, 2161 (26)], PRD 77, 567 (28)] EM transition matrix element in QCD: local coupling to pointlike constituents ψ(p ) J µ ψ(p ) = (P + P ) µ F (Q 2 ) where Q = P P and J µ = e q qγ µ q EM hadronic matrix element in AdS space from coupling of external EM field propagating in AdS with extended mode Φ(x, z) d 4 x dz g e ϕ(z) A M (x, z)φ P (x, z) M Φ P (x, z) (2π) 4 δ 4 ( P P ) ( ɛ µ P + P ) µ F (Q 2 ) How to recover hard pointlike scattering at large Q out of soft collision of extended objects? [Polchinski and Strassler (22)] Mapping of J + elements at fixed light-front time: Φ P (z) ψ(p ) N Electroproduction, JLab, May 16, 211 Page 15

16 Electromagnetic probe polarized along Minkowski coordinates, (Q 2 = q 2 > ) A(x, z) µ = ɛ µ e iq x V (Q, z), A z = Propagation of external current inside AdS space described by the AdS wave equation [ z 2 2 z z z z 2 Q 2] V (Q, z) = Solution V (Q, z) = zqk 1 (zq) for free current Substitute hadronic modes Φ(x, z) in the AdS EM matrix element Φ P (x, z) = e ip x Φ(z), Φ(z) z τ, z Find form factor in AdS as overlap of normalizable modes dual to the in and out hadrons Φ P and Φ P, with the non-normalizable mode V (Q, z) dual to external source [Polchinski and Strassler (22)]. F (Q 2 ) = R 3 dz z 3 eϕ(z) V (Q, z) Φ 2 J(z) ( 1 Q 2 ) τ 1 J(Q,z), Φ(z) A16 2 z At large Q important contribution to the integral from z 1/Q where Φ z τ and power-law point-like scaling is recovered [Polchinski and Susskind (21)] N Electroproduction, JLab, May 16, 211 Page 16

17 Electromagnetic Form-Factor Drell-Yan-West electromagnetic FF in impact space [Soper (1977)] F (q 2 ) = n n 1 j=1 ( n 1 ) dx j d 2 b j e q exp iq x k b k ψ n (x j, b j ) 2 q k=1 Consider a two-quark π + Fock state ud with e u = 2 3 and e d = F π +(q 2 ) = dx d 2 b e iq b (1 x) ψ ud/π (x, b ) with normalization F + π (q =) = 1 2 Integrating over angle F π +(q 2 ) = 2π 1 dx x(1 x) ) 1 x ζdζj (ζq x ψud/π (x, ζ) 2 where ζ 2 = x(1 x)b 2 N Electroproduction, JLab, May 16, 211 Page 17

18 Compare with electromagnetic FF in AdS space [Polchinski and Strassler (22)] where V (Q, z) = zqk 1 (zq) F (Q 2 ) = R 3 dz z 3 eϕ(z) V (Q, z)φ 2 π + (z) Use the integral representation V (Q, z) = 1 dx J (ζq ) 1 x x Find F (Q 2 ) = R 3 1 ( dz 1 x dx z 3 J zq x ) Φ 2 π + (z) Compare with electromagnetic FF in LF QCD for arbitrary Q. Expressions can be matched only if LFWF is factorized ψ(x, ζ, ϕ) = e imϕ X(x) φ(ζ) 2πζ Find X(x) = x(1 x), φ(ζ) = ( ) ζ 3/2 e ϕ(z)/2 Φ(ζ), z ζ R N Electroproduction, JLab, May 16, 211 Page 18

19 Free current V (Q, z) = zqk 1 (zq) infinite radius (mauve), no pole structure in time-like region Dressed current non-perturbative sum of an infinite number of terms finite radius (blue) Form factor in soft-wall model expressed as N 1 product of poles along vector radial trajectory ( 2 Mρ 4κ 2 (n + 1/2) ) [Brodsky and GdT (28)] F (Q 2 ) = 1 ( )( ) ( ) 1 + Q2 M 1 + Q2 1 + Q2 2 ρ M 2 ρ M 2 ρ N 2 1. F Π q Pion form factor (lowest mode) N Electroproduction, JLab, May 16, 211 Page 19

20 Higher Fock components in pion LFWF π = ψ qq/π qq τ=2 + ψ qqqq/π qqqq τ=4 + Expansion of LFWF up to twist 4 (monopole + tripole) κ =.54 GeV, Γ ρ = 13, Γ ρ = 4, Γ ρ = 3 MeV, P qqqq = 13%.6 Q 2 F Π Q 2 2 M Ρ 2 log F Π Q M Ρ.3 2 M Ρ Q 2 GeV Q 2 GeV Only interaction in LF holographic semiclassical approx is the confinement potential: create Fock states with extra quark-antiquark pairs, no dynamical gluons N Electroproduction, JLab, May 16, 211 Page 2

21 Nucleon Form Factors Light Front Holographic Approach [Brodsky and GdT] EM hadronic matrix element in AdS space from non-local coupling of external EM field in AdS with fermionic mode Ψ P (x, z) d 4 x dz g e ϕ(z) Ψ P (x, z) e M A Γ A A M (x, z)ψ P (x, z) (2π) 4 δ 4 ( P P ) ɛ µ ψ(p ), σ J µ ψ(p ), σ Effective AdS/QCD model [Abidin and Carlson, Phys. Rev. D79, 1153 (29) ] Additional term in the 5-dim action: η d 4 x dz g e ϕ(z) Ψ e M A e N B [ Γ A, Γ B] F MN Ψ Couplings η determined by static quantities N Electroproduction, JLab, May 16, 211 Page 21

22 Compute Dirac form factor using SU(6) flavor symmetry Nucleon AdS wave function in soft-wall model Ψ + (z) = κ2+l R 2 F p 1 (Q2 ) = R 4 dz z 4 V (Q, z)ψ2 +(z) Ψ (z) = κ3+l R 2 1 2n! (n + L)! z7/2+l L L+1 n 2n! n + L + 2 ( κ 2 z 2) (n + L)! z9/2+l L L+2 ( n κ 2 z 2) Bulk-to-boundary propagator [Grigoryan and Radyushkin (27)] Find 1 V (Q, z) = κ 2 z 2 dx (1 x) 2 x Q 2 4κ 2 e κ2 z 2 x/(1 x) F p 1 (Q2 ) = ( 1 + Q2 M 2 ρ 1 )( ) 1 + Q2 M 2 ρ N Electroproduction, JLab, May 16, 211 Page 22

23 Q 4 F p 1 (Q2 ) (GeV 4 ) A Q 2 (GeV 2 ) Data compilation from M. Diehl (26) N Electroproduction, JLab, May 16, 211 Page 23

24 Nucleon Transition Form Factors Compute spin non-flip EM transition N(94) N (144) ( n =, L =, sz = 1 2 n = 1, L =, s z = 1 2) Ψ n=,l= + Ψ n=1,l= + F p 1 (Q2 ) = R 4 dz z 4 Ψn=1,L= + (z)v (Q, z)ψ n=,l= + (z) Find F p 1 N N (Q 2 ) = Q 2 M 2 P ( )( )( ) 1 + Q2 1 + Q2 1 + Q2 M 2 ρ M 2 ρ M 2 ρ N Electroproduction, JLab, May 16, 211 Page 24

25 Data from I. Aznauryan, et al. CLAS (29) N Electroproduction, JLab, May 16, 211 Page 25

Light-Front Holographic QCD: an Overview

Light-Front Holographic QCD: an Overview Light-Front Holographic QCD: an Overview Guy F. de Téramond Universidad de Costa Rica Continuous Advances is QCD University of Minnesota Minneapolis, May 14, 2011 CAQCD, Minneapolis, May 14, 2011 Page

More information

Light-Front Quantization Approach to the Gauge/Gravity Correspondence and Higher Fock States

Light-Front Quantization Approach to the Gauge/Gravity Correspondence and Higher Fock States Light-Front Quantization Approach to the Gauge/Gravity Correspondence and Higher Fock States Guy F. de Téramond University of Costa Rica Southampton High Energy Physics Theory Group University of Southampton

More information

Light-Front Holography and Gauge/Gravity Correspondence: Applications to Hadronic Physics

Light-Front Holography and Gauge/Gravity Correspondence: Applications to Hadronic Physics Light-Front Holography and Gauge/Gravity Correspondence: Applications to Hadronic Physics Guy F. de Téramond University of Costa Rica In Collaboration with Stan Brodsky 4 th International Sakharov Conference

More information

Light-Front Holography and Gauge/Gravity Correspondence: Applications to the Meson and Baryon Spectrum

Light-Front Holography and Gauge/Gravity Correspondence: Applications to the Meson and Baryon Spectrum Light-Front Holography and Gauge/Gravity Correspondence: Applications to the Meson and Baryon Spectrum Guy F. de Téramond University of Costa Rica In Collaboration with Stan Brodsky Light-Cone 009: Relativistic

More information

Light-Front Quantization Approach to the Gauge/Gravity Correspondence and Strongly Coupled Dynamics

Light-Front Quantization Approach to the Gauge/Gravity Correspondence and Strongly Coupled Dynamics Light-Front Quantization Approach to the Gauge/Gravity Correspondence and Strongly Coupled Dynamics Guy F. de Téramond University of Costa Rica Instituto Tecnológico de Aeronáutica São José dos Campos,

More information

Systematics of the Hadron Spectrum from Conformal Quantum Mechanics and Holographic QCD

Systematics of the Hadron Spectrum from Conformal Quantum Mechanics and Holographic QCD Systematics of the Hadron Spectrum from Conformal Quantum Mechanics and Holographic QCD Guy F. de Téramond Universidad de Costa Rica Twelfth Workshop on Non-Perturbative Quantum Chromodynamics Institut

More information

Mapping String States into Partons:

Mapping String States into Partons: Mapping String States into Partons: Form Factors, and the Hadron Spectrum in AdS/QCD Guy F. de Téramond Universidad de Costa Rica In Collaboration with Stan Brodsky Continuous Advances in QCD Minneapolis,

More information

Light-Front Quantization Approach to the Gauge/Gravity Correspondence and Applications to the Light Hadron Spectrum

Light-Front Quantization Approach to the Gauge/Gravity Correspondence and Applications to the Light Hadron Spectrum Light-Front Quantization Approach to the Gauge/Gravity Correspondence and Applications to the Light Hadron Spectrum Guy F. de Téramond Universidad de Costa Rica Ferrara International School Niccolò Cabeo

More information

Nucleon Resonance Spectrum and Form Factors from Superconformal Quantum Mechanics in Holographic QCD

Nucleon Resonance Spectrum and Form Factors from Superconformal Quantum Mechanics in Holographic QCD Nucleon Resonance Spectrum and Form Factors from Superconformal Quantum Mechanics in Holographic QCD Guy F. de Téramond Universidad de Costa Rica Nucleon Resonances: From Photoproduction to High Photon

More information

Gauge/Gravity Duality and Strongly Coupled Light-Front Dynamics

Gauge/Gravity Duality and Strongly Coupled Light-Front Dynamics SLAC-PUB-1459 Gauge/Gravity Duality and Strongly Coupled Light-Front Dynamics Universidad de Costa Rica, San José, Costa Rica E-mail: gdt@asterix.crnet.cr Stanley J. Brodsky SLAC National Accelerator Laboratory

More information

S = 0 (b) S = 0. AdS/QCD. Stan Brodsky, SLAC INT. March 28, Fig: Orbital and radial AdS modes in the soft wall model for κ = 0.6 GeV.

S = 0 (b) S = 0. AdS/QCD. Stan Brodsky, SLAC INT. March 28, Fig: Orbital and radial AdS modes in the soft wall model for κ = 0.6 GeV. 6 5 4 Φ(z) Φ(z) 2-5 2-27 8721A2 4 8 z 2-27 8721A21 4 8 z Fig: Orbital and radial AdS modes in the soft wall model for κ =.6 GeV. (a) S = (b) S = (GeV 2 ) 4 π 2 (167) π (18) 2 b 1 (1235) π (13) π (14) π

More information

x(1 x) b 2 dζ 2 m 2 1 x dζ 2 d dζ 2 + V (ζ) ] + k2 + m2 2 1 x k2 + m2 1 dζ 2 + m2 1 x + m2 2 LF Kinetic Energy in momentum space Holographic Variable

x(1 x) b 2 dζ 2 m 2 1 x dζ 2 d dζ 2 + V (ζ) ] + k2 + m2 2 1 x k2 + m2 1 dζ 2 + m2 1 x + m2 2 LF Kinetic Energy in momentum space Holographic Variable [ d dζ + V (ζ) ] φ(ζ) = M φ(ζ) m 1 de Teramond, sjb x ζ = x(1 x) b m b (1 x) Holographic Variable d dζ k x(1 x) LF Kinetic Energy in momentum space Assume LFWF is a dynamical function of the quark-antiquark

More information

QCD and Light-Front Holography

QCD and Light-Front Holography QCD and Light-Front Holography SLAC-PUB-14258 September 2010 Stanley J. Brodsky SLAC National Accelerator Laboratory Stanford University, Stanford, CA 94309, USA, and CP 3 -Origins, Southern Denmark University,

More information

HUGS Dualities and QCD. Josh Erlich LECTURE 5

HUGS Dualities and QCD. Josh Erlich LECTURE 5 HUGS 2012 Dualities and QCD Josh Erlich LECTURE 5 Outline The meaning of duality in physics (Example: The Ising model) Quark-Hadron duality (experimental and theoretical evidence) Electric-Magnetic Duality

More information

AdS/QCD and Applications of Light-Front Holography

AdS/QCD and Applications of Light-Front Holography SLAC-PUB-14525 AdS/QCD and Applications of Light-Front Holography Stanley J. Brodsky, 1 Fu-Guang Cao, 2 and Guy F. de Téramond 3 1 SLAC National Accelerator Laboratory Stanford University, Stanford, CA

More information

Modified Anti-de-Sitter Metric, Light-Front Quantized QCD, and Conformal Quantum Mechanics

Modified Anti-de-Sitter Metric, Light-Front Quantized QCD, and Conformal Quantum Mechanics GEOMETRY AND PHYSICS II Institut Henri Poincaré, Nov. 8 &9, 013 Modified Anti-de-Sitter Metric, Light-Front Quantized QCD, and Conformal Quantum Mechanics H.G.Dosch Institut für Theoretische Physik der

More information

Light-Front Quantization Approach to the Gauge-Gravity Correspondence and Hadron Spectroscopy

Light-Front Quantization Approach to the Gauge-Gravity Correspondence and Hadron Spectroscopy SLAC-PUB-3875 Light-Front Quantization Approach to the Gauge-Gravity Correspondence and Hadron Spectroscopy Guy F. de Téramond and Stanley J. Brodsky Universidad de Costa Rica, San José, Costa Rica SLAC

More information

arxiv: v1 [hep-th] 19 Dec 2011

arxiv: v1 [hep-th] 19 Dec 2011 AdS/QCD, Light-Front Holography, and Sublimated Gluons arxiv:1112.4212v1 [hep-th] 19 Dec 211 SLAC National Accelerator Laboratory, Stanford University, Stanford, CA 9439, USA E-mail: sjbth@slac.stanford.edu

More information

Conformal Symmetry, Confinement, and Light-Front Holographic QCD. Abstract

Conformal Symmetry, Confinement, and Light-Front Holographic QCD. Abstract SLAC-PUB-15377 Conformal Symmetry, Confinement, and Light-Front Holographic QCD Stanley J. Brodsky, 1 Guy F. de Téramond, 2 and Hans Günter Dosch 3 1 SLAC National Accelerator Laboratory, Stanford University,

More information

arxiv: v2 [hep-ph] 16 Aug 2012

arxiv: v2 [hep-ph] 16 Aug 2012 LIGHT-FRONT HOLOGRAPHY AND THE LIGHT-FRONT SCHRÖDINGER EQUATION STANLEY J. BRODSKY SLAC National Accelerator Laboratory, Stanford University Stanford, CA 9439, USA sjbth@slac.stanford.edu GUY DE TÉRAMOND

More information

A J=0 e 2 qs 0 F (t) Local J=0 fixed pole contribution. Szczepaniak, Llanes- Estrada, sjb

A J=0 e 2 qs 0 F (t) Local J=0 fixed pole contribution. Szczepaniak, Llanes- Estrada, sjb A J=0 e 2 qs 0 F (t) Local J=0 fixed pole contribution Szczepaniak, Llanes- Estrada, sjb Light-cone wavefunction representation of deeply virtual Compton scattering! Stanley J. Brodsky a, Markus Diehl

More information

QCD and Light-Front Dynamics

QCD and Light-Front Dynamics SLAC-PUB-14275 QCD and Light-Front Dynamics SLAC National Accelerator Laboratory Stanford University, Stanford, CA 9439, USA, and CP 3 -Origins, Southern Denmark University, Odense, Denmark E-mail: sjbth@slac.stanford.edu

More information

Ruben Sandapen (Acadia & Mt. A) in collaboration with M. Ahmady & F. Chishtie. September 5 th 2016

Ruben Sandapen (Acadia & Mt. A) in collaboration with M. Ahmady & F. Chishtie. September 5 th 2016 Holographic Distribution Amplitudes for mesons Ruben Sandapen (Acadia & Mt. A) in collaboration with M. Ahmady & F. Chishtie Diffraction 2016 Progress in QCD session September 5 th 2016 1 Outline Overview

More information

towards a holographic approach to the QCD phase diagram

towards a holographic approach to the QCD phase diagram towards a holographic approach to the QCD phase diagram Pietro Colangelo INFN - Sezione di Bari - Italy in collaboration with F. De Fazio, F. Giannuzzi, F. Jugeau and S. Nicotri Continuous Advances in

More information

Supersymmetry across the light and heavy-light hadronic spectrum

Supersymmetry across the light and heavy-light hadronic spectrum Supersymmetry across the light and heavy-light hadronic spectrum Hans Günter Dosch Institut für Theoretische Physik der Universität Heidelberg Based on: G. F. de Teramond, H. G. D., S. J. Brodsky Rev.

More information

Structure of Generalized Parton Distributions

Structure of Generalized Parton Distributions =Hybrids Generalized Parton Distributions A.V. Radyushkin June 2, 201 Hadrons in Terms of Quarks and Gluons =Hybrids Situation in hadronic physics: All relevant particles established QCD Lagrangian is

More information

Light-Front Holographic Quantum Chromodynamics

Light-Front Holographic Quantum Chromodynamics SLAC-PUB-15735 Light-Front Holographic Quantum Chromodynamics Stanley J. Brodsky a, Guy F. de Téramond b, and Hans Günter Dosch c a SLAC National Accelerator Laboratory, Stanford University, Stanford,

More information

The Pion Form Factor in AdS/QCD

The Pion Form Factor in AdS/QCD The Pion Form Factor in AdS/QCD 1 0.8 0.6 F π (Q 2 ) 0.4 Richard Lebed 0.2 0 0 1 2 3 4 5 Q 2 (GeV 2 ) CAQCD 08 May 22, 2008 In collaboration with Herry J. Kwee JHEP 0801, 027 (2008) [arxiv:0708.4054] arxiv:0712.1811

More information

Light-Front Holography and Novel Effects in QCD

Light-Front Holography and Novel Effects in QCD SLAC-PUB-13491 December 28 Light-Front Holography and Novel Effects in QCD Stanley J. Brodsky and Guy F. de Téramond SLAC National Accelerator Laboratory, Stanford University, Stanford, CA 9439, USA Universidad

More information

Internal structure of the pion inspired by the AdS/QCD correspondence

Internal structure of the pion inspired by the AdS/QCD correspondence Internal structure of the pion inspired by the AdS/QCD correspondence Sabrina Cotogno Vrije Universiteit and Nikhef, Amsterdam Supervisor: Prof. P.J.G. Mulders In collaboration with Prof. Alessandro Bacchetta

More information

International Journal of Theoretical Physics, October 2015, Volume 54, Issue 10, pp ABSTRACT

International Journal of Theoretical Physics, October 2015, Volume 54, Issue 10, pp ABSTRACT 1 meson-nucleon coupling constant from the soft-wall AdS/QCD model Narmin Huseynova a,b1 and Shahin Mamedov a a Institute for Physical Problems, Baku State University, Z.Khalilov 3, Baku, AZ-1148, Azerbaijan

More information

QCD and a Holographic Model of Hadrons

QCD and a Holographic Model of Hadrons QCD and a Holographic Model of Hadrons M. Stephanov U. of Illinois at Chicago AdS/QCD p.1/18 Motivation and plan Large N c : planar diagrams dominate resonances are infinitely narrow Effective theory in

More information

Valence quark contributions for the γn P 11 (1440) transition

Valence quark contributions for the γn P 11 (1440) transition Valence quark contributions for the γn P 11 (144) transition Gilberto Ramalho (Instituto Superior Técnico, Lisbon) In collaboration with Kazuo Tsushima 12th International Conference on Meson-Nucleon Physics

More information

Linear Confinement from AdS/QCD. Andreas Karch, University of Washington work with Ami Katz, Dam Son, and Misha Stephanov.

Linear Confinement from AdS/QCD. Andreas Karch, University of Washington work with Ami Katz, Dam Son, and Misha Stephanov. Linear Confinement from AdS/QCD Andreas Karch, University of Washington work with Ami Katz, Dam Son, and Misha Stephanov. Excited Rho Mesons 6 (from PARTICLE DATA BOOK) Experiment 0.933 n 5 m 2 n, GeV

More information

Toward Baryon Distributions Amplitudes

Toward Baryon Distributions Amplitudes Toward Baryon Distributions Amplitudes Cédric Mezrag INFN Roma1 September 13 th, 2018 Cédric Mezrag (INFN) Baryon DAs September 13 th, 2018 1 / 28 Chapter 1: Dyson-Schwinger equations Cédric Mezrag (INFN)

More information

Glueballs at finite temperature from AdS/QCD

Glueballs at finite temperature from AdS/QCD Light-Cone 2009: Relativistic Hadronic and Particle Physics Instituto de Física Universidade Federal do Rio de Janeiro Glueballs at finite temperature from AdS/QCD Alex S. Miranda Work done in collaboration

More information

AdS/QCD and Hadronic Phenomena

AdS/QCD and Hadronic Phenomena and Hadronic Phenomena, November 16, 2007 Stan Brodsky SLAC, Stanford University Research Associate 1964 1966! 1 QCD Lagrangian Yang-Mills Gauge Principle: Invariance under Color Rotation and Phase Change

More information

Covariant quark-diquark model for the N N electromagnetic transitions

Covariant quark-diquark model for the N N electromagnetic transitions Covariant quark-diquark model for the N N electromagnetic transitions Gilberto Ramalho CFTP, Instituto Superior Técnico, Lisbon In collaboration with F. Gross, M.T. Peña and K. Tsushima Nucleon Resonance

More information

Light-Front Holography and Hadronization at the Amplitude Level

Light-Front Holography and Hadronization at the Amplitude Level July 28 SLAC-PUB-1336 Light-Front Holography and Hadronization at the Amplitude Level Stanley J. Brodsky, Guy F. de Téramond and Robert Shrock Stanford Linear Accelerator Center, Stanford University, Stanford,

More information

Hadrons in a holographic approach to finite temperature (and density) QCD

Hadrons in a holographic approach to finite temperature (and density) QCD Hadrons in a holographic approach to finite temperature (and density) QCD Pietro Colangelo INFN - Sezione di Bari - Italy in collaboration with F. De Fazio, F. Giannuzzi, F. Jugeau, S. Nicotri EMMI Workshop:

More information

Seminar presented at the Workshop on Strongly Coupled QCD: The Confinement Problem Rio de Janeiro UERJ November 2011

Seminar presented at the Workshop on Strongly Coupled QCD: The Confinement Problem Rio de Janeiro UERJ November 2011 and and Seminar presented at the Workshop on Strongly Coupled QCD: The Problem Rio de Janeiro UERJ 28-30 November 2011 Work done in collaboration with: N.R.F. Braga, H. L. Carrion, C. N. Ferreira, C. A.

More information

Single Spin Asymmetry at large x F and k T

Single Spin Asymmetry at large x F and k T 1 Single Spin Asymmetry at large x F and k T Paul Hoyer University of Helsinki Workshop on Transverse momentum, spin, and position distributions of partons in hadrons ECT*, 11-15 June 2007 PH and M. Järvinen,

More information

Shape and Structure of the Nucleon

Shape and Structure of the Nucleon Shape and Structure of the Nucleon Volker D. Burkert Jefferson Lab Science & Technology Peer Review June 25-27, 2003 8/7/2003June 25, 2003 Science & Technology Review 1 Outline: From form factors & quark

More information

Introduction to Quantum Chromodynamics (QCD)

Introduction to Quantum Chromodynamics (QCD) Introduction to Quantum Chromodynamics (QCD) Jianwei Qiu Theory Center, Jefferson Lab May 29 June 15, 2018 Lecture One The plan for my four lectures q The Goal: To understand the strong interaction dynamics

More information

Holographic QCD. M. Stephanov. U. of Illinois at Chicago. Holographic QCD p. 1/2

Holographic QCD. M. Stephanov. U. of Illinois at Chicago. Holographic QCD p. 1/2 Holographic QCD p. 1/2 Holographic QCD M. Stephanov U. of Illinois at Chicago Holographic QCD p. 2/2 Motivation and plan Large N c : planar diagrams dominate resonances are infinitely narrow Effective

More information

Measuring transverse size with virtual photons

Measuring transverse size with virtual photons Measuring transverse size with virtual photons 1 Paul Hoyer University of Helsinki Work done with Samu Kurki arxiv:0911.3011 arxiv:1101.4810 How to determine the size of the interaction region in electroproduction

More information

arxiv: v1 [hep-ph] 1 Mar 2017

arxiv: v1 [hep-ph] 1 Mar 2017 GPDs at non-zero skewness in ADS/QCD model arxiv:1703.00348v1 [hep-ph] 1 Mar 2017 Matteo Rinaldi 1 1 Instituto de Fisica Corpuscular (CSIC-Universitat de Valencia), Parc Cientific UV, C/ Catedratico Jose

More information

Holographic study of magnetically induced QCD effects:

Holographic study of magnetically induced QCD effects: Holographic study of magnetically induced QCD effects: split between deconfinement and chiral transition, and evidence for rho meson condensation. Nele Callebaut, David Dudal, Henri Verschelde Ghent University

More information

arxiv: v3 [hep-ph] 20 Oct 2015

arxiv: v3 [hep-ph] 20 Oct 2015 SLAC-PUB-678 Connecting the Hadron Mass Scale to the Fundamental Mass Scale of Quantum Chromodynamics arxiv:49.5488v3 [hep-ph] 2 Oct 25 A. Deur, S. J. Brodsky, 2 G. F. de Teramond. 3 Thomas Jefferson National

More information

Virtuality Distributions and γγ π 0 Transition at Handbag Level

Virtuality Distributions and γγ π 0 Transition at Handbag Level and γγ π Transition at Handbag Level A.V. Radyushkin form hard Physics Department, Old Dominion University & Theory Center, Jefferson Lab May 16, 214, QCD Evolution 214, Santa Fe Transverse Momentum form

More information

THE NUCLEUS AS A QCD LABORATORY: HADRONIZATION, 3D TOMOGRAPHY, AND MORE

THE NUCLEUS AS A QCD LABORATORY: HADRONIZATION, 3D TOMOGRAPHY, AND MORE rhtjhtyhy EINN 2017 NOVEMBER 1, 2017 PAPHOS, CYPRUS THE NUCLEUS AS A QCD LABORATORY: HADRONIZATION, 3D TOMOGRAPHY, AND MORE KAWTAR HAFIDI Argonne National Laboratory is a U.S. Department of Energy laboratory

More information

Baryon Resonance Determination using LQCD. Robert Edwards Jefferson Lab. Baryons 2013

Baryon Resonance Determination using LQCD. Robert Edwards Jefferson Lab. Baryons 2013 Baryon Resonance Determination using LQCD Robert Edwards Jefferson Lab Baryons 2013 Where are the Missing Baryon Resonances? What are collective modes? Is there freezing of degrees of freedom? What is

More information

Spin Densities and Chiral Odd Generalized Parton Distributions

Spin Densities and Chiral Odd Generalized Parton Distributions Spin Densities and Chiral Odd Generalized Parton Distributions Harleen Dahiya Dr. B.R. Ambedkar National Institute of Technology, Jalandhar, PUNJAB 144011 XVI International Conference on Hadron Spectroscopy

More information

DEEP INELASTIC SCATTERING

DEEP INELASTIC SCATTERING DEEP INELASTIC SCATTERING Electron scattering off nucleons (Fig 7.1): 1) Elastic scattering: E = E (θ) 2) Inelastic scattering: No 1-to-1 relationship between E and θ Inelastic scattering: nucleon gets

More information

Particles and Deep Inelastic Scattering

Particles and Deep Inelastic Scattering Particles and Deep Inelastic Scattering Heidi Schellman University HUGS - JLab - June 2010 June 2010 HUGS 1 Course Outline 1. Really basic stuff 2. How we detect particles 3. Basics of 2 2 scattering 4.

More information

A Dyson-Schwinger equation study of the baryon-photon interaction.

A Dyson-Schwinger equation study of the baryon-photon interaction. A Dyson-Schwinger equation study of the baryon-photon interaction. Diana Nicmorus in collaboration with G. Eichmann A. Krassnigg R. Alkofer Jefferson Laboratory, March 24, 2010 What is the nucleon made

More information

Gian Gopal Particle Attributes Quantum Numbers 1

Gian Gopal Particle Attributes Quantum Numbers 1 Particle Attributes Quantum Numbers Intro Lecture Quantum numbers (Quantised Attributes subject to conservation laws and hence related to Symmetries) listed NOT explained. Now we cover Electric Charge

More information

Attempts at relativistic QM

Attempts at relativistic QM Attempts at relativistic QM based on S-1 A proper description of particle physics should incorporate both quantum mechanics and special relativity. However historically combining quantum mechanics and

More information

Introduction to Quantum ChromoDynamics and the parton model

Introduction to Quantum ChromoDynamics and the parton model Introduction to Quantum ChromoDynamics and the parton model Pavel Nadolsky Southern Methodist University Dallas, TX, USA TMD Collaboration Summer School June 22, 2017 Objectives of the lectures Review

More information

High Energy Physics. Lecture 9. Deep Inelastic Scattering Scaling Violation. HEP Lecture 9 1

High Energy Physics. Lecture 9. Deep Inelastic Scattering Scaling Violation. HEP Lecture 9 1 High Energy Physics Lecture 9 Deep Inelastic Scattering Scaling Violation HEP Lecture 9 1 Deep Inelastic Scattering: The reaction equation of DIS is written e+ p e+ X where X is a system of outgoing hadrons

More information

A New Perspectives on QCD Condensates and Dark Energy. Stan Brodsky. Applications of AdS/QCD and Light-Front Holography to Hadron Physics

A New Perspectives on QCD Condensates and Dark Energy. Stan Brodsky. Applications of AdS/QCD and Light-Front Holography to Hadron Physics Applications of AdS/QCD and Light-Front Holography to Hadron Physics A New Perspectives on QCD Condensates and Dark Energy Experimental and Theoretical Challenges to Probing Dark Energy A Workshop sponsored

More information

Probing nucleon structure by using a polarized proton beam

Probing nucleon structure by using a polarized proton beam Workshop on Hadron Physics in China and Opportunities with 12 GeV Jlab July 31 August 1, 2009 Physics Department, Lanzhou University, Lanzhou, China Probing nucleon structure by using a polarized proton

More information

CHIRAL SYMMETRY OF EXCITED HADRONS FROM PHENOMENOLOGY, THEORY AND LATTICE

CHIRAL SYMMETRY OF EXCITED HADRONS FROM PHENOMENOLOGY, THEORY AND LATTICE CHIRAL SYMMETRY OF EXCITED HADRONS FROM PHENOMENOLOGY, THEORY AND LATTICE L. Ya. Glozman Institut für Physik, FB Theoretische Physik, Universität Graz L.Ya. Glozman Contents of the Talk Chiral symmetry

More information

Wigner Distributions and Orbital Angular Momentum of Quarks

Wigner Distributions and Orbital Angular Momentum of Quarks Wigner Distributions and Orbital Angular Momentum of Quarks Asmita Mukherjee Indian Institute of Technology, Mumbai, India Wigner distribution for the quarks Reduced wigner distributions in position and

More information

Distribution Amplitudes of the Nucleon and its resonances

Distribution Amplitudes of the Nucleon and its resonances Distribution Amplitudes of the Nucleon and its resonances C. Mezrag Argonne National Laboratory November 16 th, 2016 In collaboration with: C.D. Roberts and J. Segovia C. Mezrag (ANL) Nucleon DA November

More information

Statistical physics and light-front quantization. JR and S.J. Brodsky, Phys. Rev. D70, (2004) and hep-th/

Statistical physics and light-front quantization. JR and S.J. Brodsky, Phys. Rev. D70, (2004) and hep-th/ Statistical physics and light-front quantization Jörg Raufeisen (Heidelberg U.) JR and S.J. Brodsky, Phys. Rev. D70, 085017 (2004) and hep-th/0409157 Introduction: Dirac s Forms of Hamiltonian Dynamics

More information

QCD Collinear Factorization for Single Transverse Spin Asymmetries

QCD Collinear Factorization for Single Transverse Spin Asymmetries INT workshop on 3D parton structure of nucleon encoded in GPD s and TMD s September 14 18, 2009 QCD Collinear Factorization for Single Transverse Spin Asymmetries Iowa State University Based on work with

More information

Baryonic States in QCD From Gauge/String Duality at Large N C

Baryonic States in QCD From Gauge/String Duality at Large N C SLAC PUB 069 September 004 Baryonic States in QCD From Gauge/String Duality at Large N C Guy F. de Téramond and Stanley J. Brodsky Universidad de Costa Rica, San José, Costa Rica Stanford Linear Accelerator

More information

The Gauge/Gravity correspondence: linking General Relativity and Quantum Field theory

The Gauge/Gravity correspondence: linking General Relativity and Quantum Field theory The Gauge/Gravity correspondence: linking General Relativity and Quantum Field theory Alfonso V. Ramallo Univ. Santiago IFIC, Valencia, April 11, 2014 Main result: a duality relating QFT and gravity Quantum

More information

Scattering Vector Mesons in D4/D8 model

Scattering Vector Mesons in D4/D8 model Scattering Vector Mesons in D4/D8 model Marcus A. C. Torres C. A. Ballon Bayona H. Boschi-Filho N. Braga Instituto de Física Universidade Federal do Rio de Janeiro Light-Cone 2009: Relativistic Hadronic

More information

AdS/QCD and Novel QCD Phenomena

AdS/QCD and Novel QCD Phenomena AdS/QCD and Novel QCD Phenomena Institute for Nuclear Theory Workshop on Hadron Phenomenology Ψ n (x i, k i,λ i ), National Accelerator Laboratory Stanford University Single-spin asymmetries Leading Twist

More information

Pomeron and Gauge/String Duality y

Pomeron and Gauge/String Duality y Pomeron and Gauge/String Duality y Sokendai, Japan--- March 9, 2006 Richard C. Brower Boston University R.C. Brower, Joe Polchiski, Matt Strassler and Chung-I Tan hep-th 0603xxx QCD Theory Space! N = 0

More information

Applications of AdS/CFT correspondence to cold atom physics

Applications of AdS/CFT correspondence to cold atom physics Applications of AdS/CFT correspondence to cold atom physics Sergej Moroz in collaboration with Carlos Fuertes ITP, Heidelberg Outline Basics of AdS/CFT correspondence Schrödinger group and correlation

More information

QCD in the light quark (up & down) sector (QCD-light) has two mass scales M(GeV)

QCD in the light quark (up & down) sector (QCD-light) has two mass scales M(GeV) QCD in the light quark (up & down) sector (QCD-light) has two mass scales M(GeV) 1 m N m ρ Λ QCD 0 m π m u,d In a generic physical system, there are often many scales involved. However, for a specific

More information

Jacopo Ferretti Sapienza Università di Roma

Jacopo Ferretti Sapienza Università di Roma Jacopo Ferretti Sapienza Università di Roma NUCLEAR RESONANCES: FROM PHOTOPRODUCTION TO HIGH PHOTON VIRTUALITIES ECT*, TRENTO (ITALY), -6 OCTOBER 05 Three quark QM vs qd Model A relativistic Interacting

More information

light-cone (LC) variables

light-cone (LC) variables light-cone (LC) variables 4-vector a µ scalar product metric LC basis : transverse metric 24-Apr-13 1 hadron target at rest inclusive DIS target absorbes momentum from γ * ; for example, if q z P z =0

More information

Hadronic Form Factors in Ads/QCD

Hadronic Form Factors in Ads/QCD Hadronic in Ads/QCD A.V. Old Dominion University and Jefferson Lab in collaboration with H.R. Grigoryan (JLab & LSU) May 15, 28 Quark counting rules Hadronic form factors: (1/Q 2 ) nq 1 counting rules

More information

Weak interactions. Chapter 7

Weak interactions. Chapter 7 Chapter 7 Weak interactions As already discussed, weak interactions are responsible for many processes which involve the transformation of particles from one type to another. Weak interactions cause nuclear

More information

Introduction to AdS/CFT

Introduction to AdS/CFT Introduction to AdS/CFT D-branes Type IIA string theory: Dp-branes p even (0,2,4,6,8) Type IIB string theory: Dp-branes p odd (1,3,5,7,9) 10D Type IIB two parallel D3-branes low-energy effective description:

More information

Complex Systems of Hadrons and Nuclei

Complex Systems of Hadrons and Nuclei 1 European Graduate School Complex Systems of Hadrons and Nuclei Copenhagen - Giessen - Helsinki - Jyväskylä -Torino Measuring transverse size with virtual photons In-Medium Effects in Hadronic and Partonic

More information

The Structure of Hadrons

The Structure of Hadrons 1 The Structure of Hadrons Paul Hoyer University of Helsinki CP 3 Inauguration 24 November 2009 What are Hadrons? Strongly interacting elementary particles 2 Hadrons are extended objects and can be classified

More information

Measurements with Polarized Hadrons

Measurements with Polarized Hadrons Aug 15, 003 Lepton-Photon 003 Measurements with Polarized Hadrons T.-A. Shibata Tokyo Institute of Technology Contents: Introduction: Spin of Proton Polarized Deep Inelastic Lepton-Nucleon Scattering 1.

More information

arxiv: v1 [hep-ph] 13 Nov 2017

arxiv: v1 [hep-ph] 13 Nov 2017 Using Light-Front Wave Functions arxiv:7.0460v [hep-ph] 3 Nov 07 Department of Physics, Indian Institute of Technology Bombay; Powai, Mumbai 400076, India E-mail: asmita@phy.iitb.ac.in We report on some

More information

arxiv: v1 [hep-th] 7 Nov 2018

arxiv: v1 [hep-th] 7 Nov 2018 Prepared for submission to JHEP Probing AdS/QCD backgrounds with semi-classical strings arxiv:1811.03141v1 [hep-th] 7 Nov 2018 Saulo Diles a a Campus Salinópolis, Universidade Federal do Pará, 68721-000,

More information

Quantum Field Theory

Quantum Field Theory Quantum Field Theory PHYS-P 621 Radovan Dermisek, Indiana University Notes based on: M. Srednicki, Quantum Field Theory 1 Attempts at relativistic QM based on S-1 A proper description of particle physics

More information

Deep inelastic scattering and the OPE in lattice QCD

Deep inelastic scattering and the OPE in lattice QCD Deep inelastic scattering and the OPE in lattice QCD William Detmold [WD & CJD Lin PRD 73, 014501 (2006)] DIS structure of hadrons Deep-inelastic scattering process critical to development of QCD k, E

More information

Pion Electromagnetic Form Factor in Virtuality Distribution Formalism

Pion Electromagnetic Form Factor in Virtuality Distribution Formalism & s Using s Pion Electromagnetic Form Factor in Distribution Formalism A. Old Dominion University and Jefferson Lab QCD 215 Workshop Jefferson Labs, May 26, 215 Pion Distribution Amplitude & s ϕ π (x):

More information

The nucleon is an excitation of 3 quarks in the QCD vacuum. Understanding the vacuum structure and its properties, such as color confinement, is

The nucleon is an excitation of 3 quarks in the QCD vacuum. Understanding the vacuum structure and its properties, such as color confinement, is The nucleon is an excitation of 3 quarks in the QCD vacuum. Understanding the vacuum structure and its properties, such as color confinement, is essential. Light quarks (up and down) are nearly massless,

More information

Cold atoms and AdS/CFT

Cold atoms and AdS/CFT Cold atoms and AdS/CFT D. T. Son Institute for Nuclear Theory, University of Washington Cold atoms and AdS/CFT p.1/27 History/motivation BCS/BEC crossover Unitarity regime Schrödinger symmetry Plan Geometric

More information

QCD and Light-Front Holography

QCD and Light-Front Holography SLAC-PUB-15288 QCD and Light-Front Holography Stanley J. Brodsky SLAC National Accelerator Laboratory Stanford University, Stanford, CA 94309, USA Guy F. de Téramond Universidad de Costa Rica, San José,

More information

Quark-Hadron Duality in Structure Functions

Quark-Hadron Duality in Structure Functions Approaches to QCD, Oberwoelz, Austria September 10, 2008 Quark-Hadron Duality in Structure Functions Wally Melnitchouk Outline Bloom-Gilman duality Duality in QCD OPE & higher twists Resonances & local

More information

Mass Components of Mesons from Lattice QCD

Mass Components of Mesons from Lattice QCD Mass Components of Mesons from Lattice QCD Ying Chen In collaborating with: Y.-B. Yang, M. Gong, K.-F. Liu, T. Draper, Z. Liu, J.-P. Ma, etc. Peking University, Nov. 28, 2013 Outline I. Motivation II.

More information

Dr Victoria Martin, Prof Steve Playfer Spring Semester 2013

Dr Victoria Martin, Prof Steve Playfer Spring Semester 2013 Particle Physics Dr Victoria Martin, Prof Steve Playfer Spring Semester 2013 Lecture 12: Mesons and Baryons Mesons and baryons Strong isospin and strong hypercharge SU(3) flavour symmetry Heavy quark states

More information

6. QED. Particle and Nuclear Physics. Dr. Tina Potter. Dr. Tina Potter 6. QED 1

6. QED. Particle and Nuclear Physics. Dr. Tina Potter. Dr. Tina Potter 6. QED 1 6. QED Particle and Nuclear Physics Dr. Tina Potter Dr. Tina Potter 6. QED 1 In this section... Gauge invariance Allowed vertices + examples Scattering Experimental tests Running of alpha Dr. Tina Potter

More information

Transport Theoretical Studies of Hadron Attenuation in Nuclear DIS. Model Results Summary & Outlook

Transport Theoretical Studies of Hadron Attenuation in Nuclear DIS. Model Results Summary & Outlook Transport Theoretical Studies of Hadron Attenuation in Nuclear DIS T. Falter, W. Cassing,, K. Gallmeister,, U. Mosel Contents: Motivation Model Results Summary & Outlook Motivation elementary en reaction

More information

Nucleon and photon structure functions at small x in a holographic QCD model

Nucleon and photon structure functions at small x in a holographic QCD model Nucleon and photon structure functions at small x in a holographic QCD model Akira Watanabe (Institute of Physics, Academia Sinica) This talk is based on: AW, Katsuhiko Suzuki, PRD89, 115015 (2014) AW,

More information

Two photon exchange: theoretical issues

Two photon exchange: theoretical issues Two photon exchange: theoretical issues Peter Blunden University of Manitoba International Workshop on Positrons at JLAB March 25-27, 2009 Proton G E /G M Ratio Rosenbluth (Longitudinal-Transverse) Separation

More information

Ultra-Relativistic Heavy Ion Physics (FYSH551), May 31, 2013 Jan Rak and Thorsten Renk

Ultra-Relativistic Heavy Ion Physics (FYSH551), May 31, 2013 Jan Rak and Thorsten Renk Ultra-Relativistic Heavy Ion Physics (FYSH551), May 31, 2013 Jan Rak and Thorsten Renk Final Exam Instructions: Please write clearly. Do not just answer the questions, but document the thoughts leading

More information

Quark Orbital Angular Momentum in the Model

Quark Orbital Angular Momentum in the Model Quark Orbital Angular Momentum in the Model Barbara Pasquini, Feng Yuan Pavia, INFN, Italy LBNL and RBRC-BNL, USA Ref: Pasquini, Yuan, work in progress 9/22/2010 1 Proton Spin Sum Quark spin ~30% DIS,

More information

QCD on the lattice - an introduction

QCD on the lattice - an introduction QCD on the lattice - an introduction Mike Peardon School of Mathematics, Trinity College Dublin Currently on sabbatical leave at JLab HUGS 2008 - Jefferson Lab, June 3, 2008 Mike Peardon (TCD) QCD on the

More information