Light-Front Quantization Approach to the Gauge/Gravity Correspondence and Higher Fock States

Size: px
Start display at page:

Download "Light-Front Quantization Approach to the Gauge/Gravity Correspondence and Higher Fock States"

Transcription

1 Light-Front Quantization Approach to the Gauge/Gravity Correspondence and Higher Fock States Guy F. de Téramond University of Costa Rica Southampton High Energy Physics Theory Group University of Southampton October 8, 2010 From Nick Evans SHEP, University of Southampton, October 8, 2010 Page 1

2 I. Introduction Lattice QCD Gravity Gauge/Gravity Correspondence and Light-Front QCD II. Higher Spin Modes in AdS Space III. Light Front Dynamics Light-Front Fock Representation Semiclassical Approximation to QCD in the Light Front IV. Light-Front Holographic Mapping Fermionic Modes V. Light-Front Holographic Mapping of Current Matrix Elements Electromagnetic Form Factors VI. Higher Fock Components Detailed Structure of Space-and Time Like Pion Form Factor SHEP, University of Southampton, October 8, 2010 Page 2

3 I. Introduction QCD fundamental theory of quarks and gluons QCD Lagrangian follows from the gauge invariance of the theory ψ(x) e iαa (x)t a ψ(x), [ T a, T b] = if abc T c Find QCD Lagrangian L QCD = 1 4g 2 Tr (Gµν G µν ) + iψd µ γ µ ψ + mψψ where D µ = µ igt a A a µ, Ga µν = µ A a ν ν A a µ + f abc A b µa c ν Quarks and gluons interactions from color charge, but... gluons also interact with each other: strongly coupled non-abelian gauge theory color confinement Most challenging problem of strong interaction dynamics: determine the composition of hadrons in terms of their fundamental QCD quark and gluon degrees of freedom SHEP, University of Southampton, October 8, 2010 Page 3

4 Lattice QCD Lattice numerical simulations at the teraflop/sec scale (resolution L/a) Sums over quark paths with billions of dimensions LQCD (2009) > 1 petaflop/sec a L Dynamical properties in Minkowski space-time not amenable to Euclidean lattice computations SHEP, University of Southampton, October 8, 2010 Page 4

5 Gravity Space curvature determined by the mass-energy present following Einstein s equations R µν 1 2 R g µν = κ T µν }{{}}{{} matter geometry R µν Ricci tensor, R space curvature g µν metric tensor ( ds 2 = g µν dx µ dx ν ) T µν energy-momentum tensor κ = 8πG/c 4, Matter curves space and space determines how matter moves! Annalen der Physik 49 (1916) p. 30 SHEP, University of Southampton, October 8, 2010 Page 5

6 Gauge Gravity Correspondence and Light-Front QCD The AdS/CFT correspondence [Maldacena (1998)] between gravity on AdS space and conformal field theories in physical spacetime has led to a semiclassical approximation for strongly-coupled QCD, which provides analytical insights into the confining dynamics of QCD Light-front (LF) quantization is the ideal framework to describe hadronic structure in terms of quarks and gluons: simple vacuum structure allows unambiguous definition of the partonic content of a hadron, exact formulae for form factors, physics of angular momentum of constituents... Light-front holography provides a remarkable connection between the equations of motion in AdS and the bound-state LF Hamiltonian equation in QCD [GdT and S. J. Brodsky, PRL 102, (2009)] Isomorphism of SO(4, 2) group of conformal transformations with generators P µ, M µν, K µ, D, with the group of isometries of AdS 5, a space of maximal symmetry, negative curvature and a four-dim boundary: Minkowski space Isometry group: most general group of transformations which leave invariant the distance between two points. Ej: S N O(N + 1) Dim: N(N + 1)/2 Dim isometry group of AdS d+1 is (d + 1)(d + 2)/2 SHEP, University of Southampton, October 8, 2010 Page 6

7 SHEP, University of Southampton, October 8, 2010 Page 7

8 AdS 5 metric: ds 2 }{{} L AdS = R 2 ( ηµν z 2 dx µ dx ν 2 dz ) }{{} L Minkowski A distance L AdS shrinks by a warp factor z/r as observed in Minkowski space (dz = 0): L Minkowski z R L AdS Since the AdS metric is invariant under a dilatation of all coordinates x µ λx µ, z λz, the variable z acts like a scaling variable in Minkowski space Short distances x µ x µ 0 maps to UV conformal AdS 5 boundary z 0 Large confinement dimensions x µ x µ 1/Λ 2 QCD maps to large IR region of AdS 5, z 1/Λ QCD, thus there is a maximum separation of quarks and a maximum value of z Use the isometries of AdS to map the local interpolating operators at the UV boundary of AdS into the modes propagating inside AdS SHEP, University of Southampton, October 8, 2010 Page 8

9 Nonconformal metric dual to a confining gauge theory ds 2 = R2 z 2 eϕ(z) ( η µν dx µ dx ν dz 2) where ϕ(z) 0 at small z for geometries which are asymptotically AdS 5 Gravitational potential energy for object of mass m V = mc 2 g 00 = mc 2 R eϕ(z)/2 z Consider warp factor exp(±κ 2 z 2 ) Plus solution: V (z) increases exponentially confining any object in modified AdS metrics to distances z 1/κ SHEP, University of Southampton, October 8, 2010 Page 9

10 II. Higher Spin Modes in AdS Space Description of higher spin modes in AdS space (Frondsal, Fradkin and Vasiliev) Lagrangian for scalar field in AdS d+1 in presence of dilaton background ϕ(z) ( x M = (x µ, z) ) S = 1 2 d d x dz g e ϕ(z)( g NN g M 1M 1 g M J M J DN Φ M1 M J D N Φ M 1 M J µ 2 g M 1M 1 g M J M J ΦM1 M J Φ M 1 M J + ) where D M is the covariant derivative which includes parallel transport [D N, D K ]Φ M1 M J = R L M 1 NKΦ L MJ R L M J NKΦ M1 L Physical hadron has plane-wave and polarization indices along 3+1 physical coordinates Φ P (x, z) µ1 µ J = e ip x Φ(z) µ1 µ J, Φ zµ2 µ J = = Φ µ1 µ 2 z = 0 with four-momentum P µ and invariant hadronic mass P µ P µ =M 2 Construct effective action in terms of spin-j modes Φ J with only physical degrees of freedom SHEP, University of Southampton, October 8, 2010 Page 10

11 Lagrangian for scalar field in AdS d+1 S = d d x dz g e ϕ(z) ( g MN M Φ N Φ µ 2 Φ Φ ) Factor out plane waves along 3+1: [ zd 1 e ϕ(z) z Φ P (x µ, z) = e ip x Φ(z) ( e ϕ ) ( ) ] (z) µr 2 z d 1 z + Φ(z) = M 2 Φ(z) z where P µ P µ = M 2 invariant mass of physical hadron with four-momentum P µ Spin-J mode Φ µ1 µ J with all indices along 3+1 and shifted dimensions Φ J (z) z J Φ(z) Find AdS wave equation [ zd 1 2J e ϕ(z) z ( e ϕ ) (z) z d 1 2J z + ( ) ] µr 2 Φ J (z) = M 2 Φ J (z) z SHEP, University of Southampton, October 8, 2010 Page 11

12 III. Light Front Dynamics Different possibilities to parametrize space-time [Dirac (1949)] Parametrizations differ by the hypersurface on which the initial conditions are specified. Each evolve with different times and has its own Hamiltonian, but should give the same physical results Instant form: hypersurface defined by t = 0, the familiar one Front form: hypersurface is tangent to the light cone at τ = t + z/c = 0 x + = x 0 + x 3 x = x 0 x 3 light-front time longitudinal space variable k + = k 0 + k 3 longitudinal momentum (k + > 0) k = k 0 k 3 light-front energy k x = 1 2 (k+ x + k x + ) k x On shell relation k 2 = m 2 leads to dispersion relation k = k2 +m2 k + SHEP, University of Southampton, October 8, 2010 Page 12

13 QCD Lagrangian L QCD = 1 4g 2 Tr (Gµν G µν ) + iψd µ γ µ ψ + mψψ LF Momentum Generators P = (P +, P, P ) in terms of dynamical fields ψ, A P = 1 dx d 2 x ψ γ + (i ) 2 + m 2 2 i + ψ + interactions P + = dx d 2 x ψ γ + i + ψ P = 1 dx d 2 x ψ γ + i ψ 2 LF Hamiltonian P generates LF time translations [ ψ(x), P ] = i and the generators P + and P are kinematical x + ψ(x) SHEP, University of Southampton, October 8, 2010 Page 13

14 Light-Front Fock Representation Dirac field ψ, expanded in terms of ladder operators on the initial surface x + = x 0 + x 3 P = dq + d 2 q ( q 2 + m 2 ) (2π) 3 q + b λ (q)b λ(q) + interactions λ Construct LF Lorentz invariant Hamiltonian equation for the relativistic bound state P µ P µ ψ(p ) = ( P P + P 2 ) ψ(p ) = M 2 ψ(p ) State ψ(p ) is expanded in multi-particle Fock states n of the free LF Hamiltonian ψ = n ψ n n, n = { uud, uudg, uudqq, } with k 2 i = m2 i, k i = (k + i, k i, k i), for each constituent i in state n Fock components ψ n (x i, k i, λ z i ) independent of P + and P and depend only on relative partonic coordinates: momentum fraction x i = k + i /P +, transverse momentum k i and spin λ z i n x i = 1, i=1 n k i = 0. i=1 SHEP, University of Southampton, October 8, 2010 Page 14

15 Semiclassical Approximation to QCD in the Light Front [GdT and S. J. Brodsky, PRL 102, (2009)] Compute M 2 from hadronic matrix element ψ(p ) P µ P µ ψ(p ) =M 2 ψ(p ) ψ(p ) Find M 2 = n [dxi ][ d 2 ] k i l ( k 2 l + m 2 l x q ) ψ n (x i, k i ) 2 + interactions Semiclassical approximation to QCD: with k 2 i = m2 i ψ n (k 1, k 2,..., k n ) φ n ( (k1 + k k n ) 2 }{{} for each constituent Functional dependence of Fock state n given by invariant mass M 2 n = ( n a=1 k µ a ) 2 = a M 2 n k 2 a + m2 a x a Key variable controlling bound state: off-energy shell E = M 2 M 2 n ) SHEP, University of Southampton, October 8, 2010 Page 15

16 In terms of n 1 independent transverse impact coordinates b j, j = 1, 2,..., n 1, M 2 = n 1 dx j d 2 b j ψn(x i, b i ) ( 2 + ) m2 b l l ψ n (x i, b i ) + interactions x n j=1 q l Relevant variable conjugate to invariant mass ζ = x 1 x n 1 j=1 x j b j the x-weighted transverse impact coordinate of the spectator system (x active quark) For a two-parton system ζ 2 = x(1 x)b 2 To first approximation LF dynamics depend only on the invariant variable ζ, and hadronic properties are encoded in the hadronic mode φ(ζ) from ψ(x, ζ, ϕ) = e imϕ X(x) φ(ζ) 2πζ factoring angular ϕ, longitudinal X(x) and transverse mode φ(ζ) SHEP, University of Southampton, October 8, 2010 Page 16

17 Ultra relativistic limit m q 0 longitudinal modes X(x) decouple (L = L z ) M 2 = dζ φ (ζ) ζ ( d2 dζ 2 1 ) d ζ dζ + L2 φ(ζ) ζ 2 + dζ φ (ζ) U(ζ) φ(ζ) ζ where the confining forces from the interaction terms is summed up in the effective potential U(ζ) LF eigenvalue equation P µ P µ φ = M 2 φ is a LF wave equation for φ ( d2 dζ 2 1 4L2 ) 4ζ }{{ 2 + U(ζ) φ(ζ) = M 2 φ(ζ) }{{}} conf inement kinetic energy of partons Effective light-front Schrödinger equation: relativistic, frame-independent and analytically tractable Eigenmodes φ(ζ) determine the hadronic mass spectrum and represent the probability amplitude to find n-massless partons at transverse impact separation ζ within the hadron at equal light-front time Semiclassical approximation to light-front QCD does not account for particle creation and absorption but can be implemented in the LF Hamiltonian EOM or by applying the L-S formalism SHEP, University of Southampton, October 8, 2010 Page 17

18 III. Light-Front Holographic Mapping Φ P (z) ψ(p ) LF Holographic mapping found originally matching expressions of EM and gravitational form factors of hadrons in AdS and LF QCD [Brodsky and GdT (2006, 2008)] Upon substitution z ζ and φ J (ζ) ζ 3/2+J e ϕ(z)/2 Φ J (ζ) in AdS WE [ ( zd 1 2J e ϕ ) ( ) ] (z) µr 2 e ϕ(z) z z d 1 2J z + Φ J (z) = M 2 Φ J (z) z find LFWE (d = 4) ( d2 dζ 2 1 4L2 4ζ 2 ) + U(ζ) φ J (ζ) = M 2 φ J (ζ) with U(ζ) = 1 2 ϕ (z) ϕ (z) 2 + 2J 3 ϕ (z) 2z and (µr) 2 = (2 J) 2 + L 2 AdS Breitenlohner-Freedman bound (µr) 2 4 equivalent to LF QM stability condition L 2 0 Scaling dimension τ of AdS mode Φ J is τ = 2 + L in agreement with twist scaling dimension of a two parton bound state in QCD SHEP, University of Southampton, October 8, 2010 Page 18

19 Positive dilaton background ϕ = κ 2 z 2 : U(z) = κ 4 ζ 2 + 2κ 2 (L + S 1) Normalized eigenfunctions φ φ = dζ φ(z) 2 = 1 φ nl (ζ) = κ 1+L 2n! (n+l)! ζ1/2+l e κ2 ζ 2 /2 L L n(κ 2 ζ 2 ) Eigenvalues M 2 n,l,s = 4κ 2 (n + L + S/2) 0.8 Φ Ζ a Φ Ζ b Ζ Ζ LFWFs φ n,l (ζ) in physical spacetime for dilaton exp(κ 2 z 2 ): a) orbital modes and b) radial modes SHEP, University of Southampton, October 8, 2010 Page 19

20 4κ 2 for n = 1 4κ 2 for L = 1 2κ 2 for S = 1 6 J PC n=3 n=2 n=1 n=0 6 J PC n=3 n=2 n=1 n=0 f 2 (2300) M A5 π(1800) π(1300) π 0 π 2 (1880) π 2 (1670) b(1235) L M A1 ρ(1700) ω(1650) ρ(1450) ω(1420) ρ(770) ω(782) 0 f 2 (1950) a 2 (1320) f 2 (1270) ρ 3 (1690) ω 3 (1670) a 4 (2040) f 4 (2050) L Regge trajectories for the π (κ = 0.6 GeV) and the I =1 ρ-meson and I =0 ω-meson families (κ = 0.54 GeV) SHEP, University of Southampton, October 8, 2010 Page 20

21 Fermionic Modes From Nick Evans Soft wall model equivalent to Dirac equation in presence of a holographic linear confining potential [ i Solution (µr = ν + 1/2, ν = L + 1) ) ] (zη lm Γ l m + 2Γ z + µr + κ 2 z Ψ(x l ) = 0. Ψ + (z) z 5 2 +ν e κ2 z 2 /2 L ν n(κ 2 z 2 ) Ψ (z) z 7 2 +ν e κ2 z 2 /2 L ν+1 n (κ 2 z 2 ) Eigenvalues (how to fix the overall energy scale, see arxiv: ) M 2 = 4κ 2 (n + L + 1) Obtain spin-j mode Φ µ1 µ J 1/2, J > 1 2, with all indices along 3+1 from Ψ by shifting dimensions SHEP, University of Southampton, October 8, 2010 Page 21

22 Same multiplicity of states for mesons and baryons! 4κ 2 for n = 1 4κ 2 for L = 1 2κ 2 for S = 1 6 (a) n=3 n=2 n=1 n=0 (b) n=3 n=2 n=1 n=0 M 2 4 N(2200) Δ(2420) 2 N(1710) N(1440) N(1680) N(1720) Δ(1600) Δ(1950) Δ(1905) Δ(1920) Δ(1910) Δ(1232) A3 N(940) L L Parent and daughter 56 Regge trajectories for the N and baryon families for κ = 0.5 GeV spectrum identical to Forkel, Beyer and Frederico and Forkel and Klempt SHEP, University of Southampton, October 8, 2010 Page 22

23 V. Light-Front Holographic Mapping of Current Matrix Elements [S. J. Brodsky and GdT, PRL 96, (2006)] EM transition matrix element in QCD: local coupling to pointlike constituents where Q = P P and J µ = e q qγ µ q ψ(p ) J µ ψ(p ) = (P + P )F (Q 2 ) EM hadronic matrix element in AdS space from non-local coupling of external EM field propagating in AdS with extended mode Φ(x, z) d 4 x dz g A l (x, z)φ P (x, z) l Φ P (x, z) Are the transition amplitudes related? How to recover hard pointlike scattering at large Q out of soft collision of extended objects? [Polchinski and Strassler (2002)] Mapping at fixed light-front time: Φ P (z) ψ(p ) SHEP, University of Southampton, October 8, 2010 Page 23

24 Electromagnetic probe polarized along Minkowski coordinates, (Q 2 = q 2 > 0) A(x, z) µ = ɛ µ e iq x V (Q, z), A z = 0 Propagation of external current inside AdS space described by the AdS wave equation [ z 2 2 z z z z 2 Q 2] V (Q, z) = 0 Solution V (Q, z) = zqk 1 (zq) Substitute hadronic modes Φ(x, z) in the AdS EM matrix element Φ P (x, z) = e ip x Φ(z), Φ(z) z τ, z 0 Find form factor in AdS as overlap of normalizable modes dual to the in and out hadrons Φ P and Φ P, with the non-normalizable mode V (Q, z) dual to external source [Polchinski and Strassler (2002)]. F (Q 2 ) = R 3 dz z 3 V (Q, z) Φ2 J(z) ( 1 Q 2 ) τ 1 J(Q,z), Φ(z) A16 2 z At large Q important contribution to the integral from z 1/Q where Φ z τ and power-law point-like scaling is recovered [Polchinski and Susskind (2001)] SHEP, University of Southampton, October 8, 2010 Page 24

25 Electromagnetic Form-Factor [S. J. Brodsky and GdT, PRL 96, (2006); PRD 77, (2008)] Drell-Yan-West electromagnetic FF in impact space [Soper (1977)] F (q 2 ) = n n 1 j=1 ( n 1 ) dx j d 2 b j e q exp iq x k b k ψ n (x j, b j ) 2 q k=1 Consider a two-quark π + Fock state ud with e u = 2 3 and e d = F π +(q 2 ) = dx d 2 b e iq b (1 x) ψ ud/π (x, b ) with normalization F + π (q =0) = Integrating over angle F π +(q 2 ) = 2π 1 0 dx x(1 x) ) 1 x ζdζj 0 (ζq x ψud/π (x, ζ) 2 where ζ 2 = x(1 x)b 2 SHEP, University of Southampton, October 8, 2010 Page 25

26 Compare with electromagnetic FF in AdS space where V (Q, z) = zqk 1 (zq) F (Q 2 ) = R 3 dz z 3 V (Q, z)φ2 π + (z) Use the integral representation V (Q, z) = 1 0 dx J 0 (ζq ) 1 x x Find F (Q 2 ) = R ( dz 1 x dx z 3 J 0 zq x ) Φ 2 π + (z) Compare with electromagnetic FF in LF QCD for arbitrary Q. Expressions can be matched only if LFWF is factorized ψ(x, ζ, ϕ) = e imϕ X(x) φ(ζ) 2πζ Find X(x) = x(1 x), φ(ζ) = ( ) ζ 3/2 Φ(ζ), ζ z R Same results from mapping of gravitational form factor [S. J. Brodsky and GdT, PRD 78, (2008)] SHEP, University of Southampton, October 8, 2010 Page 26

27 Expand X(x) in Gegenbauer polynomials (DA evolution equation [Lepage and Brodsky (1980)]) X(x) = x(1 x) = x(1 x) n=0 a n C 3/2 n (2x 1) Normalization 1 0 dx x(1 x) X2 (x) = n P n = 1 C λ n C λ m = 1 0 dx x λ 1/2 (1 x) λ 1/2 C λ n(2x 1)C λ m(2x 1) = 21 4λ πγ(n + 2λ) n!(n + λ)γ 2 (λ) Compute asymptotic probability P n=0 (Q ) P n=0 = π ( a 0 = 3π 4 ) SHEP, University of Southampton, October 8, 2010 Page 27

28 VI. Higher Fock Components [GdT and S. J Brodsky, arxiv: [hep-ph]] LF Lorentz invariant Hamiltonian equation for the relativistic bound state system P µ P µ ψ(p ) = M 2 ψ(p ), where P µ P µ = P P + P 2 H LF H LF sum of kinetic energy of partons H 0 LF plus an interaction H I, H LF = H 0 LF + H I Expand in Fock eigenstates of HLF 0 : ( n M 2 i=1 an infinite number of coupled integral equations ψ = n ψ n n, ) k 2 i + m2 ψ n = x i m n V m ψ m Only interaction in AdS/QCD is the confinement potential In QFT the resulting LF interaction is the 4-point effective interaction H I = ψψv (ζ 2 )ψψ wich leads to qq qq, qq qq, q qqq and q qqq Create Fock states with extra quark-antiquark pairs. No mixing with qqg Fock states (g s ψγ Aψ) Explain the dominance of quark interchange in large angle elastic scattering SHEP, University of Southampton, October 8, 2010 Page 28

29 Detailed Structure of Space-and Time Like Pion Form Factor Holographic variable for n-parton hadronic bound state ζ = x 1 x n 1 j=1 x j b j the x-weighted transverse impact coordinate of the spectator system (x active quark) Form factor in soft-wall model expressed as N 1 product of poles along vector radial trajectory ( 2 Mρ 4κ 2 (n + 1/2) ) [Brodsky and GdT (2008)] F (Q 2 ) = 1 ( )( ) ( ) 1 + Q2 1 + Q2 1 + Q2 M 2 ρ M 2 ρ M 2 ρ N 2 Higher Fock components in pion LFWF π = ψ qq/π qq τ=2 + ψ qqqq/π qqqq τ=4 + Expansion of LFWF up to twist 4 (monopole + tripole) κ = 0.54 GeV, Γ ρ = 130, Γ ρ = 400, Γ ρ = 300 MeV, P qqqq = 13% SHEP, University of Southampton, October 8, 2010 Page 29

30 0.6 Q 2 F Π Q 2 2 M Ρ 2 log F Π Q M Ρ M Ρ Q 2 GeV Q 2 GeV SHEP, University of Southampton, October 8, 2010 Page 30

N N Transitions from Holographic QCD

N N Transitions from Holographic QCD N N Transitions from Holographic QCD Guy F. de Téramond Universidad de Costa Rica Nucleon Resonance Structure Electroproduction at High Photon Virtualities with the Class 12 Detector Workshop Jefferson

More information

Light-Front Quantization Approach to the Gauge/Gravity Correspondence and Strongly Coupled Dynamics

Light-Front Quantization Approach to the Gauge/Gravity Correspondence and Strongly Coupled Dynamics Light-Front Quantization Approach to the Gauge/Gravity Correspondence and Strongly Coupled Dynamics Guy F. de Téramond University of Costa Rica Instituto Tecnológico de Aeronáutica São José dos Campos,

More information

Light-Front Holographic QCD: an Overview

Light-Front Holographic QCD: an Overview Light-Front Holographic QCD: an Overview Guy F. de Téramond Universidad de Costa Rica Continuous Advances is QCD University of Minnesota Minneapolis, May 14, 2011 CAQCD, Minneapolis, May 14, 2011 Page

More information

Light-Front Holography and Gauge/Gravity Correspondence: Applications to Hadronic Physics

Light-Front Holography and Gauge/Gravity Correspondence: Applications to Hadronic Physics Light-Front Holography and Gauge/Gravity Correspondence: Applications to Hadronic Physics Guy F. de Téramond University of Costa Rica In Collaboration with Stan Brodsky 4 th International Sakharov Conference

More information

Light-Front Holography and Gauge/Gravity Correspondence: Applications to the Meson and Baryon Spectrum

Light-Front Holography and Gauge/Gravity Correspondence: Applications to the Meson and Baryon Spectrum Light-Front Holography and Gauge/Gravity Correspondence: Applications to the Meson and Baryon Spectrum Guy F. de Téramond University of Costa Rica In Collaboration with Stan Brodsky Light-Cone 009: Relativistic

More information

Systematics of the Hadron Spectrum from Conformal Quantum Mechanics and Holographic QCD

Systematics of the Hadron Spectrum from Conformal Quantum Mechanics and Holographic QCD Systematics of the Hadron Spectrum from Conformal Quantum Mechanics and Holographic QCD Guy F. de Téramond Universidad de Costa Rica Twelfth Workshop on Non-Perturbative Quantum Chromodynamics Institut

More information

Light-Front Quantization Approach to the Gauge/Gravity Correspondence and Applications to the Light Hadron Spectrum

Light-Front Quantization Approach to the Gauge/Gravity Correspondence and Applications to the Light Hadron Spectrum Light-Front Quantization Approach to the Gauge/Gravity Correspondence and Applications to the Light Hadron Spectrum Guy F. de Téramond Universidad de Costa Rica Ferrara International School Niccolò Cabeo

More information

Mapping String States into Partons:

Mapping String States into Partons: Mapping String States into Partons: Form Factors, and the Hadron Spectrum in AdS/QCD Guy F. de Téramond Universidad de Costa Rica In Collaboration with Stan Brodsky Continuous Advances in QCD Minneapolis,

More information

Gauge/Gravity Duality and Strongly Coupled Light-Front Dynamics

Gauge/Gravity Duality and Strongly Coupled Light-Front Dynamics SLAC-PUB-1459 Gauge/Gravity Duality and Strongly Coupled Light-Front Dynamics Universidad de Costa Rica, San José, Costa Rica E-mail: gdt@asterix.crnet.cr Stanley J. Brodsky SLAC National Accelerator Laboratory

More information

Nucleon Resonance Spectrum and Form Factors from Superconformal Quantum Mechanics in Holographic QCD

Nucleon Resonance Spectrum and Form Factors from Superconformal Quantum Mechanics in Holographic QCD Nucleon Resonance Spectrum and Form Factors from Superconformal Quantum Mechanics in Holographic QCD Guy F. de Téramond Universidad de Costa Rica Nucleon Resonances: From Photoproduction to High Photon

More information

S = 0 (b) S = 0. AdS/QCD. Stan Brodsky, SLAC INT. March 28, Fig: Orbital and radial AdS modes in the soft wall model for κ = 0.6 GeV.

S = 0 (b) S = 0. AdS/QCD. Stan Brodsky, SLAC INT. March 28, Fig: Orbital and radial AdS modes in the soft wall model for κ = 0.6 GeV. 6 5 4 Φ(z) Φ(z) 2-5 2-27 8721A2 4 8 z 2-27 8721A21 4 8 z Fig: Orbital and radial AdS modes in the soft wall model for κ =.6 GeV. (a) S = (b) S = (GeV 2 ) 4 π 2 (167) π (18) 2 b 1 (1235) π (13) π (14) π

More information

Light-Front Quantization Approach to the Gauge-Gravity Correspondence and Hadron Spectroscopy

Light-Front Quantization Approach to the Gauge-Gravity Correspondence and Hadron Spectroscopy SLAC-PUB-3875 Light-Front Quantization Approach to the Gauge-Gravity Correspondence and Hadron Spectroscopy Guy F. de Téramond and Stanley J. Brodsky Universidad de Costa Rica, San José, Costa Rica SLAC

More information

Modified Anti-de-Sitter Metric, Light-Front Quantized QCD, and Conformal Quantum Mechanics

Modified Anti-de-Sitter Metric, Light-Front Quantized QCD, and Conformal Quantum Mechanics GEOMETRY AND PHYSICS II Institut Henri Poincaré, Nov. 8 &9, 013 Modified Anti-de-Sitter Metric, Light-Front Quantized QCD, and Conformal Quantum Mechanics H.G.Dosch Institut für Theoretische Physik der

More information

AdS/QCD and Applications of Light-Front Holography

AdS/QCD and Applications of Light-Front Holography SLAC-PUB-14525 AdS/QCD and Applications of Light-Front Holography Stanley J. Brodsky, 1 Fu-Guang Cao, 2 and Guy F. de Téramond 3 1 SLAC National Accelerator Laboratory Stanford University, Stanford, CA

More information

HUGS Dualities and QCD. Josh Erlich LECTURE 5

HUGS Dualities and QCD. Josh Erlich LECTURE 5 HUGS 2012 Dualities and QCD Josh Erlich LECTURE 5 Outline The meaning of duality in physics (Example: The Ising model) Quark-Hadron duality (experimental and theoretical evidence) Electric-Magnetic Duality

More information

QCD and Light-Front Holography

QCD and Light-Front Holography QCD and Light-Front Holography SLAC-PUB-14258 September 2010 Stanley J. Brodsky SLAC National Accelerator Laboratory Stanford University, Stanford, CA 94309, USA, and CP 3 -Origins, Southern Denmark University,

More information

arxiv: v1 [hep-th] 19 Dec 2011

arxiv: v1 [hep-th] 19 Dec 2011 AdS/QCD, Light-Front Holography, and Sublimated Gluons arxiv:1112.4212v1 [hep-th] 19 Dec 211 SLAC National Accelerator Laboratory, Stanford University, Stanford, CA 9439, USA E-mail: sjbth@slac.stanford.edu

More information

Conformal Symmetry, Confinement, and Light-Front Holographic QCD. Abstract

Conformal Symmetry, Confinement, and Light-Front Holographic QCD. Abstract SLAC-PUB-15377 Conformal Symmetry, Confinement, and Light-Front Holographic QCD Stanley J. Brodsky, 1 Guy F. de Téramond, 2 and Hans Günter Dosch 3 1 SLAC National Accelerator Laboratory, Stanford University,

More information

x(1 x) b 2 dζ 2 m 2 1 x dζ 2 d dζ 2 + V (ζ) ] + k2 + m2 2 1 x k2 + m2 1 dζ 2 + m2 1 x + m2 2 LF Kinetic Energy in momentum space Holographic Variable

x(1 x) b 2 dζ 2 m 2 1 x dζ 2 d dζ 2 + V (ζ) ] + k2 + m2 2 1 x k2 + m2 1 dζ 2 + m2 1 x + m2 2 LF Kinetic Energy in momentum space Holographic Variable [ d dζ + V (ζ) ] φ(ζ) = M φ(ζ) m 1 de Teramond, sjb x ζ = x(1 x) b m b (1 x) Holographic Variable d dζ k x(1 x) LF Kinetic Energy in momentum space Assume LFWF is a dynamical function of the quark-antiquark

More information

Ruben Sandapen (Acadia & Mt. A) in collaboration with M. Ahmady & F. Chishtie. September 5 th 2016

Ruben Sandapen (Acadia & Mt. A) in collaboration with M. Ahmady & F. Chishtie. September 5 th 2016 Holographic Distribution Amplitudes for mesons Ruben Sandapen (Acadia & Mt. A) in collaboration with M. Ahmady & F. Chishtie Diffraction 2016 Progress in QCD session September 5 th 2016 1 Outline Overview

More information

QCD and Light-Front Dynamics

QCD and Light-Front Dynamics SLAC-PUB-14275 QCD and Light-Front Dynamics SLAC National Accelerator Laboratory Stanford University, Stanford, CA 9439, USA, and CP 3 -Origins, Southern Denmark University, Odense, Denmark E-mail: sjbth@slac.stanford.edu

More information

A J=0 e 2 qs 0 F (t) Local J=0 fixed pole contribution. Szczepaniak, Llanes- Estrada, sjb

A J=0 e 2 qs 0 F (t) Local J=0 fixed pole contribution. Szczepaniak, Llanes- Estrada, sjb A J=0 e 2 qs 0 F (t) Local J=0 fixed pole contribution Szczepaniak, Llanes- Estrada, sjb Light-cone wavefunction representation of deeply virtual Compton scattering! Stanley J. Brodsky a, Markus Diehl

More information

arxiv: v2 [hep-ph] 16 Aug 2012

arxiv: v2 [hep-ph] 16 Aug 2012 LIGHT-FRONT HOLOGRAPHY AND THE LIGHT-FRONT SCHRÖDINGER EQUATION STANLEY J. BRODSKY SLAC National Accelerator Laboratory, Stanford University Stanford, CA 9439, USA sjbth@slac.stanford.edu GUY DE TÉRAMOND

More information

towards a holographic approach to the QCD phase diagram

towards a holographic approach to the QCD phase diagram towards a holographic approach to the QCD phase diagram Pietro Colangelo INFN - Sezione di Bari - Italy in collaboration with F. De Fazio, F. Giannuzzi, F. Jugeau and S. Nicotri Continuous Advances in

More information

Light-Front Holography and Novel Effects in QCD

Light-Front Holography and Novel Effects in QCD SLAC-PUB-13491 December 28 Light-Front Holography and Novel Effects in QCD Stanley J. Brodsky and Guy F. de Téramond SLAC National Accelerator Laboratory, Stanford University, Stanford, CA 9439, USA Universidad

More information

Glueballs at finite temperature from AdS/QCD

Glueballs at finite temperature from AdS/QCD Light-Cone 2009: Relativistic Hadronic and Particle Physics Instituto de Física Universidade Federal do Rio de Janeiro Glueballs at finite temperature from AdS/QCD Alex S. Miranda Work done in collaboration

More information

Light-Front Holographic Quantum Chromodynamics

Light-Front Holographic Quantum Chromodynamics SLAC-PUB-15735 Light-Front Holographic Quantum Chromodynamics Stanley J. Brodsky a, Guy F. de Téramond b, and Hans Günter Dosch c a SLAC National Accelerator Laboratory, Stanford University, Stanford,

More information

QCD and a Holographic Model of Hadrons

QCD and a Holographic Model of Hadrons QCD and a Holographic Model of Hadrons M. Stephanov U. of Illinois at Chicago AdS/QCD p.1/18 Motivation and plan Large N c : planar diagrams dominate resonances are infinitely narrow Effective theory in

More information

Statistical physics and light-front quantization. JR and S.J. Brodsky, Phys. Rev. D70, (2004) and hep-th/

Statistical physics and light-front quantization. JR and S.J. Brodsky, Phys. Rev. D70, (2004) and hep-th/ Statistical physics and light-front quantization Jörg Raufeisen (Heidelberg U.) JR and S.J. Brodsky, Phys. Rev. D70, 085017 (2004) and hep-th/0409157 Introduction: Dirac s Forms of Hamiltonian Dynamics

More information

The Gauge/Gravity correspondence: linking General Relativity and Quantum Field theory

The Gauge/Gravity correspondence: linking General Relativity and Quantum Field theory The Gauge/Gravity correspondence: linking General Relativity and Quantum Field theory Alfonso V. Ramallo Univ. Santiago IFIC, Valencia, April 11, 2014 Main result: a duality relating QFT and gravity Quantum

More information

Supersymmetry across the light and heavy-light hadronic spectrum

Supersymmetry across the light and heavy-light hadronic spectrum Supersymmetry across the light and heavy-light hadronic spectrum Hans Günter Dosch Institut für Theoretische Physik der Universität Heidelberg Based on: G. F. de Teramond, H. G. D., S. J. Brodsky Rev.

More information

Light-Front Holography and Hadronization at the Amplitude Level

Light-Front Holography and Hadronization at the Amplitude Level July 28 SLAC-PUB-1336 Light-Front Holography and Hadronization at the Amplitude Level Stanley J. Brodsky, Guy F. de Téramond and Robert Shrock Stanford Linear Accelerator Center, Stanford University, Stanford,

More information

AdS/QCD and Hadronic Phenomena

AdS/QCD and Hadronic Phenomena and Hadronic Phenomena, November 16, 2007 Stan Brodsky SLAC, Stanford University Research Associate 1964 1966! 1 QCD Lagrangian Yang-Mills Gauge Principle: Invariance under Color Rotation and Phase Change

More information

Toward Baryon Distributions Amplitudes

Toward Baryon Distributions Amplitudes Toward Baryon Distributions Amplitudes Cédric Mezrag INFN Roma1 September 13 th, 2018 Cédric Mezrag (INFN) Baryon DAs September 13 th, 2018 1 / 28 Chapter 1: Dyson-Schwinger equations Cédric Mezrag (INFN)

More information

Seminar presented at the Workshop on Strongly Coupled QCD: The Confinement Problem Rio de Janeiro UERJ November 2011

Seminar presented at the Workshop on Strongly Coupled QCD: The Confinement Problem Rio de Janeiro UERJ November 2011 and and Seminar presented at the Workshop on Strongly Coupled QCD: The Problem Rio de Janeiro UERJ 28-30 November 2011 Work done in collaboration with: N.R.F. Braga, H. L. Carrion, C. N. Ferreira, C. A.

More information

Linear Confinement from AdS/QCD. Andreas Karch, University of Washington work with Ami Katz, Dam Son, and Misha Stephanov.

Linear Confinement from AdS/QCD. Andreas Karch, University of Washington work with Ami Katz, Dam Son, and Misha Stephanov. Linear Confinement from AdS/QCD Andreas Karch, University of Washington work with Ami Katz, Dam Son, and Misha Stephanov. Excited Rho Mesons 6 (from PARTICLE DATA BOOK) Experiment 0.933 n 5 m 2 n, GeV

More information

A Brief Introduction to AdS/CFT Correspondence

A Brief Introduction to AdS/CFT Correspondence Department of Physics Universidad de los Andes Bogota, Colombia 2011 Outline of the Talk Outline of the Talk Introduction Outline of the Talk Introduction Motivation Outline of the Talk Introduction Motivation

More information

International Journal of Theoretical Physics, October 2015, Volume 54, Issue 10, pp ABSTRACT

International Journal of Theoretical Physics, October 2015, Volume 54, Issue 10, pp ABSTRACT 1 meson-nucleon coupling constant from the soft-wall AdS/QCD model Narmin Huseynova a,b1 and Shahin Mamedov a a Institute for Physical Problems, Baku State University, Z.Khalilov 3, Baku, AZ-1148, Azerbaijan

More information

Internal structure of the pion inspired by the AdS/QCD correspondence

Internal structure of the pion inspired by the AdS/QCD correspondence Internal structure of the pion inspired by the AdS/QCD correspondence Sabrina Cotogno Vrije Universiteit and Nikhef, Amsterdam Supervisor: Prof. P.J.G. Mulders In collaboration with Prof. Alessandro Bacchetta

More information

Holographic study of magnetically induced QCD effects:

Holographic study of magnetically induced QCD effects: Holographic study of magnetically induced QCD effects: split between deconfinement and chiral transition, and evidence for rho meson condensation. Nele Callebaut, David Dudal, Henri Verschelde Ghent University

More information

The Pion Form Factor in AdS/QCD

The Pion Form Factor in AdS/QCD The Pion Form Factor in AdS/QCD 1 0.8 0.6 F π (Q 2 ) 0.4 Richard Lebed 0.2 0 0 1 2 3 4 5 Q 2 (GeV 2 ) CAQCD 08 May 22, 2008 In collaboration with Herry J. Kwee JHEP 0801, 027 (2008) [arxiv:0708.4054] arxiv:0712.1811

More information

Deep inelastic scattering and the OPE in lattice QCD

Deep inelastic scattering and the OPE in lattice QCD Deep inelastic scattering and the OPE in lattice QCD William Detmold [WD & CJD Lin PRD 73, 014501 (2006)] DIS structure of hadrons Deep-inelastic scattering process critical to development of QCD k, E

More information

Hadrons in a holographic approach to finite temperature (and density) QCD

Hadrons in a holographic approach to finite temperature (and density) QCD Hadrons in a holographic approach to finite temperature (and density) QCD Pietro Colangelo INFN - Sezione di Bari - Italy in collaboration with F. De Fazio, F. Giannuzzi, F. Jugeau, S. Nicotri EMMI Workshop:

More information

Valence quark contributions for the γn P 11 (1440) transition

Valence quark contributions for the γn P 11 (1440) transition Valence quark contributions for the γn P 11 (144) transition Gilberto Ramalho (Instituto Superior Técnico, Lisbon) In collaboration with Kazuo Tsushima 12th International Conference on Meson-Nucleon Physics

More information

Termodynamics and Transport in Improved Holographic QCD

Termodynamics and Transport in Improved Holographic QCD Termodynamics and Transport in Improved Holographic QCD p. 1 Termodynamics and Transport in Improved Holographic QCD Francesco Nitti APC, U. Paris VII Large N @ Swansea July 07 2009 Work with E. Kiritsis,

More information

Virtuality Distributions and γγ π 0 Transition at Handbag Level

Virtuality Distributions and γγ π 0 Transition at Handbag Level and γγ π Transition at Handbag Level A.V. Radyushkin form hard Physics Department, Old Dominion University & Theory Center, Jefferson Lab May 16, 214, QCD Evolution 214, Santa Fe Transverse Momentum form

More information

Spin Densities and Chiral Odd Generalized Parton Distributions

Spin Densities and Chiral Odd Generalized Parton Distributions Spin Densities and Chiral Odd Generalized Parton Distributions Harleen Dahiya Dr. B.R. Ambedkar National Institute of Technology, Jalandhar, PUNJAB 144011 XVI International Conference on Hadron Spectroscopy

More information

Baryon Resonance Determination using LQCD. Robert Edwards Jefferson Lab. Baryons 2013

Baryon Resonance Determination using LQCD. Robert Edwards Jefferson Lab. Baryons 2013 Baryon Resonance Determination using LQCD Robert Edwards Jefferson Lab Baryons 2013 Where are the Missing Baryon Resonances? What are collective modes? Is there freezing of degrees of freedom? What is

More information

Applications of AdS/CFT correspondence to cold atom physics

Applications of AdS/CFT correspondence to cold atom physics Applications of AdS/CFT correspondence to cold atom physics Sergej Moroz in collaboration with Carlos Fuertes ITP, Heidelberg Outline Basics of AdS/CFT correspondence Schrödinger group and correlation

More information

Pion Electromagnetic Form Factor in Virtuality Distribution Formalism

Pion Electromagnetic Form Factor in Virtuality Distribution Formalism & s Using s Pion Electromagnetic Form Factor in Distribution Formalism A. Old Dominion University and Jefferson Lab QCD 215 Workshop Jefferson Labs, May 26, 215 Pion Distribution Amplitude & s ϕ π (x):

More information

Holographic study of magnetically induced ρ meson condensation

Holographic study of magnetically induced ρ meson condensation Holographic study of magnetically induced ρ meson condensation Nele Callebaut Ghent University November 13, 2012 QCD in strong magnetic fields, Trento Overview 1 Introduction 2 Holographic set-up The Sakai-Sugimoto

More information

Mass Components of Mesons from Lattice QCD

Mass Components of Mesons from Lattice QCD Mass Components of Mesons from Lattice QCD Ying Chen In collaborating with: Y.-B. Yang, M. Gong, K.-F. Liu, T. Draper, Z. Liu, J.-P. Ma, etc. Peking University, Nov. 28, 2013 Outline I. Motivation II.

More information

Measuring transverse size with virtual photons

Measuring transverse size with virtual photons Measuring transverse size with virtual photons 1 Paul Hoyer University of Helsinki Work done with Samu Kurki arxiv:0911.3011 arxiv:1101.4810 How to determine the size of the interaction region in electroproduction

More information

Structure of Generalized Parton Distributions

Structure of Generalized Parton Distributions =Hybrids Generalized Parton Distributions A.V. Radyushkin June 2, 201 Hadrons in Terms of Quarks and Gluons =Hybrids Situation in hadronic physics: All relevant particles established QCD Lagrangian is

More information

Attempts at relativistic QM

Attempts at relativistic QM Attempts at relativistic QM based on S-1 A proper description of particle physics should incorporate both quantum mechanics and special relativity. However historically combining quantum mechanics and

More information

The Uses of Conformal Symmetry in QCD

The Uses of Conformal Symmetry in QCD The Uses of Conformal Symmetry in QCD V. M. Braun University of Regensburg DESY, 23 September 2006 based on a review V.M. Braun, G.P. Korchemsky, D. Müller, Prog. Part. Nucl. Phys. 51 (2003) 311 Outline

More information

AdS/CFT duality. Agnese Bissi. March 26, Fundamental Problems in Quantum Physics Erice. Mathematical Institute University of Oxford

AdS/CFT duality. Agnese Bissi. March 26, Fundamental Problems in Quantum Physics Erice. Mathematical Institute University of Oxford AdS/CFT duality Agnese Bissi Mathematical Institute University of Oxford March 26, 2015 Fundamental Problems in Quantum Physics Erice What is it about? AdS=Anti de Sitter Maximally symmetric solution of

More information

Gauge/Gravity Duality: Applications to Condensed Matter Physics. Johanna Erdmenger. Julius-Maximilians-Universität Würzburg

Gauge/Gravity Duality: Applications to Condensed Matter Physics. Johanna Erdmenger. Julius-Maximilians-Universität Würzburg Gauge/Gravity Duality: Applications to Condensed Matter Physics. Johanna Erdmenger Julius-Maximilians-Universität Würzburg 1 New Gauge/Gravity Duality group at Würzburg University Permanent members 2 Gauge/Gravity

More information

8.821 String Theory Fall 2008

8.821 String Theory Fall 2008 MIT OpenCourseWare http://ocw.mit.edu 8.821 String Theory Fall 2008 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. 8.821 F2008 Lecture 03: The decoupling

More information

Particle Physics I Lecture Exam Question Sheet

Particle Physics I Lecture Exam Question Sheet Particle Physics I Lecture Exam Question Sheet Five out of these 16 questions will be given to you at the beginning of the exam. (1) (a) Which are the different fundamental interactions that exist in Nature?

More information

Particles and Deep Inelastic Scattering

Particles and Deep Inelastic Scattering Particles and Deep Inelastic Scattering Heidi Schellman University HUGS - JLab - June 2010 June 2010 HUGS 1 Course Outline 1. Really basic stuff 2. How we detect particles 3. Basics of 2 2 scattering 4.

More information

Fixed Angle Scattering and the Transverse Structure of Hadrons

Fixed Angle Scattering and the Transverse Structure of Hadrons Fixed Angle Scattering and the Transverse Structure of Hadrons Exclusive Reactions at High Momentum Transfer Jefferson Accelerator Facility, May. 18, 2010 George Sterman, Stony Brook Some classic results

More information

Scattering Vector Mesons in D4/D8 model

Scattering Vector Mesons in D4/D8 model Scattering Vector Mesons in D4/D8 model Marcus A. C. Torres C. A. Ballon Bayona H. Boschi-Filho N. Braga Instituto de Física Universidade Federal do Rio de Janeiro Light-Cone 2009: Relativistic Hadronic

More information

N=4 SYM in High Energy Collision and the Kalb-Ramond Odderon in AdS/CFT

N=4 SYM in High Energy Collision and the Kalb-Ramond Odderon in AdS/CFT N=4 SYM in High Energy Collision and the Kalb-Ramond Odderon in AdS/CFT Chung-I Tan Brown University Dec. 19, 2008 Miami R. Brower, J. Polchinski, M. Strassler, and C-I Tan, The Pomeron and Gauge/String

More information

Light-Front Hadronic Models

Light-Front Hadronic Models Light-Front Hadronic Models Siraj Kunhammed Wayne Polyzou Department of Physics and Astronomy The University of Iowa May 17, 2018 Siraj Kunhammed Wayne Polyzou (Department of Physics Light-Front and Astronomy

More information

Non-SUSY BSM: Lecture 1/2

Non-SUSY BSM: Lecture 1/2 Non-SUSY BSM: Lecture 1/2 Generalities Benasque September 26, 2013 Mariano Quirós ICREA/IFAE Mariano Quirós (ICREA/IFAE) Non-SUSY BSM: Lecture 1/2 1 / 31 Introduction Introduction There are a number of

More information

light-cone (LC) variables

light-cone (LC) variables light-cone (LC) variables 4-vector a µ scalar product metric LC basis : transverse metric 24-Apr-13 1 hadron target at rest inclusive DIS target absorbes momentum from γ * ; for example, if q z P z =0

More information

Themodynamics at strong coupling from Holographic QCD

Themodynamics at strong coupling from Holographic QCD Themodynamics at strong coupling from Holographic QCD p. 1 Themodynamics at strong coupling from Holographic QCD Francesco Nitti APC, U. Paris VII Excited QCD Les Houches, February 23 2011 Work with E.

More information

Holographic QCD. M. Stephanov. U. of Illinois at Chicago. Holographic QCD p. 1/2

Holographic QCD. M. Stephanov. U. of Illinois at Chicago. Holographic QCD p. 1/2 Holographic QCD p. 1/2 Holographic QCD M. Stephanov U. of Illinois at Chicago Holographic QCD p. 2/2 Motivation and plan Large N c : planar diagrams dominate resonances are infinitely narrow Effective

More information

HIGHER SPIN PROBLEM IN FIELD THEORY

HIGHER SPIN PROBLEM IN FIELD THEORY HIGHER SPIN PROBLEM IN FIELD THEORY I.L. Buchbinder Tomsk I.L. Buchbinder (Tomsk) HIGHER SPIN PROBLEM IN FIELD THEORY Wroclaw, April, 2011 1 / 27 Aims Brief non-expert non-technical review of some old

More information

Lectures April 29, May

Lectures April 29, May Lectures 25-26 April 29, May 4 2010 Electromagnetism controls most of physics from the atomic to the planetary scale, we have spent nearly a year exploring the concrete consequences of Maxwell s equations

More information

Lecture: Lorentz Invariant Dynamics

Lecture: Lorentz Invariant Dynamics Chapter 5 Lecture: Lorentz Invariant Dynamics In the preceding chapter we introduced the Minkowski metric and covariance with respect to Lorentz transformations between inertial systems. This was shown

More information

Gian Gopal Particle Attributes Quantum Numbers 1

Gian Gopal Particle Attributes Quantum Numbers 1 Particle Attributes Quantum Numbers Intro Lecture Quantum numbers (Quantised Attributes subject to conservation laws and hence related to Symmetries) listed NOT explained. Now we cover Electric Charge

More information

A New Perspectives on QCD Condensates and Dark Energy. Stan Brodsky. Applications of AdS/QCD and Light-Front Holography to Hadron Physics

A New Perspectives on QCD Condensates and Dark Energy. Stan Brodsky. Applications of AdS/QCD and Light-Front Holography to Hadron Physics Applications of AdS/QCD and Light-Front Holography to Hadron Physics A New Perspectives on QCD Condensates and Dark Energy Experimental and Theoretical Challenges to Probing Dark Energy A Workshop sponsored

More information

Analog Duality. Sabine Hossenfelder. Nordita. Sabine Hossenfelder, Nordita Analog Duality 1/29

Analog Duality. Sabine Hossenfelder. Nordita. Sabine Hossenfelder, Nordita Analog Duality 1/29 Analog Duality Sabine Hossenfelder Nordita Sabine Hossenfelder, Nordita Analog Duality 1/29 Dualities A duality, in the broadest sense, identifies two theories with each other. A duality is especially

More information

Pomeron and Gauge/String Duality y

Pomeron and Gauge/String Duality y Pomeron and Gauge/String Duality y Sokendai, Japan--- March 9, 2006 Richard C. Brower Boston University R.C. Brower, Joe Polchiski, Matt Strassler and Chung-I Tan hep-th 0603xxx QCD Theory Space! N = 0

More information

lattice QCD and the hadron spectrum Jozef Dudek ODU/JLab

lattice QCD and the hadron spectrum Jozef Dudek ODU/JLab lattice QCD and the hadron spectrum Jozef Dudek ODU/JLab the light meson spectrum relatively simple models of hadrons: bound states of constituent quarks and antiquarks the quark model empirical meson

More information

Distribution Amplitudes of the Nucleon and its resonances

Distribution Amplitudes of the Nucleon and its resonances Distribution Amplitudes of the Nucleon and its resonances C. Mezrag Argonne National Laboratory November 16 th, 2016 In collaboration with: C.D. Roberts and J. Segovia C. Mezrag (ANL) Nucleon DA November

More information

What are the Low-Q and Large-x Boundaries of Collinear QCD Factorization Theorems?

What are the Low-Q and Large-x Boundaries of Collinear QCD Factorization Theorems? What are the Low-Q and Large-x Boundaries of Collinear QCD Factorization Theorems? Presented by Eric Moffat Old Dominion University Paper written in collaboration with Wally Melnitchouk, Ted Rogers, and

More information

How I learned to stop worrying and love the tachyon

How I learned to stop worrying and love the tachyon love the tachyon Max Planck Institute for Gravitational Physics Potsdam 6-October-2008 Historical background Open string field theory Closed string field theory Experimental Hadron physics Mesons mass

More information

2.4 Parity transformation

2.4 Parity transformation 2.4 Parity transformation An extremely simple group is one that has only two elements: {e, P }. Obviously, P 1 = P, so P 2 = e, with e represented by the unit n n matrix in an n- dimensional representation.

More information

arxiv: v1 [hep-ph] 1 Mar 2017

arxiv: v1 [hep-ph] 1 Mar 2017 GPDs at non-zero skewness in ADS/QCD model arxiv:1703.00348v1 [hep-ph] 1 Mar 2017 Matteo Rinaldi 1 1 Instituto de Fisica Corpuscular (CSIC-Universitat de Valencia), Parc Cientific UV, C/ Catedratico Jose

More information

Nucleon Deformation from Lattice QCD Antonios Tsapalis

Nucleon Deformation from Lattice QCD Antonios Tsapalis Nucleon Deformation from Lattice QCD Antonios Tsapalis National Technical University of Athens School of Applied Mathematics and Physical Sciences & Hellenic Naval Academy 5 th Vienna Central European

More information

Introduction to AdS/CFT

Introduction to AdS/CFT Introduction to AdS/CFT D-branes Type IIA string theory: Dp-branes p even (0,2,4,6,8) Type IIB string theory: Dp-branes p odd (1,3,5,7,9) 10D Type IIB two parallel D3-branes low-energy effective description:

More information

Quark-gluon plasma from AdS/CFT Correspondence

Quark-gluon plasma from AdS/CFT Correspondence Quark-gluon plasma from AdS/CFT Correspondence Yi-Ming Zhong Graduate Seminar Department of physics and Astronomy SUNY Stony Brook November 1st, 2010 Yi-Ming Zhong (SUNY Stony Brook) QGP from AdS/CFT Correspondence

More information

Complex Systems of Hadrons and Nuclei

Complex Systems of Hadrons and Nuclei 1 European Graduate School Complex Systems of Hadrons and Nuclei Copenhagen - Giessen - Helsinki - Jyväskylä -Torino Measuring transverse size with virtual photons In-Medium Effects in Hadronic and Partonic

More information

Exercise 1 Classical Bosonic String

Exercise 1 Classical Bosonic String Exercise 1 Classical Bosonic String 1. The Relativistic Particle The action describing a free relativistic point particle of mass m moving in a D- dimensional Minkowski spacetime is described by ) 1 S

More information

Exploring Holographic Approaches to QCD p.1

Exploring Holographic Approaches to QCD p.1 Exploring Holographic Approaches to QCD Umut Gürsoy CPhT, École Polytechnique LPT, École Normale Supérieure Caltech - November 9, 2007 U.G., E. Kiritsis, F.Nitti arxiv:0707.1349 U.G., E. Kiritsis arxiv:0707.1324

More information

Asymptotic Symmetries and Holography

Asymptotic Symmetries and Holography Asymptotic Symmetries and Holography Rashmish K. Mishra Based on: Asymptotic Symmetries, Holography and Topological Hair (RKM and R. Sundrum, 1706.09080) Unification of diverse topics IR structure of QFTs,

More information

Thick Brane World. Seyen Kouwn Korea Astronomy and Space Science Institute Korea

Thick Brane World. Seyen Kouwn Korea Astronomy and Space Science Institute Korea Thick Brane World Seyen Kouwn Korea Astronomy and Space Science Institute Korea Introduction - Multidimensional theory 1 Why are the physically observed dimensions of our Universe = 3 + 1 (space + time)?

More information

Cold atoms and AdS/CFT

Cold atoms and AdS/CFT Cold atoms and AdS/CFT D. T. Son Institute for Nuclear Theory, University of Washington Cold atoms and AdS/CFT p.1/27 History/motivation BCS/BEC crossover Unitarity regime Schrödinger symmetry Plan Geometric

More information

Introduction to Quantum Chromodynamics (QCD)

Introduction to Quantum Chromodynamics (QCD) Introduction to Quantum Chromodynamics (QCD) Jianwei Qiu Theory Center, Jefferson Lab May 29 June 15, 2018 Lecture One The plan for my four lectures q The Goal: To understand the strong interaction dynamics

More information

Geometry and Physics. Amer Iqbal. March 4, 2010

Geometry and Physics. Amer Iqbal. March 4, 2010 March 4, 2010 Many uses of Mathematics in Physics The language of the physical world is mathematics. Quantitative understanding of the world around us requires the precise language of mathematics. Symmetries

More information

CHIRAL SYMMETRY OF EXCITED HADRONS FROM PHENOMENOLOGY, THEORY AND LATTICE

CHIRAL SYMMETRY OF EXCITED HADRONS FROM PHENOMENOLOGY, THEORY AND LATTICE CHIRAL SYMMETRY OF EXCITED HADRONS FROM PHENOMENOLOGY, THEORY AND LATTICE L. Ya. Glozman Institut für Physik, FB Theoretische Physik, Universität Graz L.Ya. Glozman Contents of the Talk Chiral symmetry

More information

The Structure of Hadrons

The Structure of Hadrons 1 The Structure of Hadrons Paul Hoyer University of Helsinki CP 3 Inauguration 24 November 2009 What are Hadrons? Strongly interacting elementary particles 2 Hadrons are extended objects and can be classified

More information

Boost-invariant dynamics near and far from equilibrium physics and AdS/CFT.

Boost-invariant dynamics near and far from equilibrium physics and AdS/CFT. Boost-invariant dynamics near and far from equilibrium physics and AdS/CFT. Micha l P. Heller michal.heller@uj.edu.pl Department of Theory of Complex Systems Institute of Physics, Jagiellonian University

More information

Putting String Theory to the Test with AdS/CFT

Putting String Theory to the Test with AdS/CFT Putting String Theory to the Test with AdS/CFT Leopoldo A. Pando Zayas University of Iowa Department Colloquium L = 1 4g 2 Ga µνg a µν + j G a µν = µ A a ν ν A a µ + if a bc Ab µa c ν, D µ = µ + it a

More information

Single Spin Asymmetry at large x F and k T

Single Spin Asymmetry at large x F and k T 1 Single Spin Asymmetry at large x F and k T Paul Hoyer University of Helsinki Workshop on Transverse momentum, spin, and position distributions of partons in hadrons ECT*, 11-15 June 2007 PH and M. Järvinen,

More information

Lecture 9: RR-sector and D-branes

Lecture 9: RR-sector and D-branes Lecture 9: RR-sector and D-branes José D. Edelstein University of Santiago de Compostela STRING THEORY Santiago de Compostela, March 6, 2013 José D. Edelstein (USC) Lecture 9: RR-sector and D-branes 6-mar-2013

More information

Meson-Nucleon Coupling. Nobuhito Maru

Meson-Nucleon Coupling. Nobuhito Maru Meson-Nucleon Coupling from AdS/QCD Nobuhito Maru (Chuo Univ.) with Motoi Tachibana (Saga Univ.) arxiv:94.3816 (Accepted in in EPJC) 7/9/9 workshop@yitp Plan 1: Introduction : Meson sector (review) 3:

More information