Light-Front Hadronic Models

Size: px
Start display at page:

Download "Light-Front Hadronic Models"

Transcription

1 Light-Front Hadronic Models Siraj Kunhammed Wayne Polyzou Department of Physics and Astronomy The University of Iowa May 17, 2018 Siraj Kunhammed Wayne Polyzou (Department of Physics Light-Front and Astronomy Hadronic Models The University of Iowa) May 17, / 17

2 Introduction Table of Contents 1 Introduction 2 3 Meson Model Cont.. 4 String Breaking Vertex Matrix elements of the vertex Vertex strength 5 Dynamics 6 Summary Siraj Kunhammed Wayne Polyzou (Department of Physics Light-Front and Astronomy Hadronic Models The University of Iowa) May 17, / 17

3 Introduction Introduction A class of phenominological models of hadronic systems that have dual represenations as models of mesons and nucleons or constituent quarks. Quarks, antiquarks and gluons in confined color singlets interact by string breaking interaction. The degrees of freedom are gauge invariant sub systems of quarks, antiquarks and gluons Locally and globally color invarant, hence no color indices Model using mass operator with kinetic and potential term Interaction between confined color singelts is by string breaking Fully relativistic model with light front kinematic symmetry Assymptotically linear confinement Vertices can be calculated analytically The role of sea quarks in spectral calculations, lifetime calculations, scattering and electromagnetic calculations Siraj Kunhammed Wayne Polyzou (Department of Physics Light-Front and Astronomy Hadronic Models The University of Iowa) May 17, / 17

4 Table of Contents 1 Introduction 2 3 Meson Model Cont.. 4 String Breaking Vertex Matrix elements of the vertex Vertex strength 5 Dynamics 6 Summary Siraj Kunhammed Wayne Polyzou (Department of Physics Light-Front and Astronomy Hadronic Models The University of Iowa) May 17, / 17

5 Vectors in the irreducible representation space H mj are square integrable functions of the light-front momentum components p = (p +, p ) and the eigenvalues µ of the ˆn component of the light-front spin,j f ˆn, Poincaré transformation on the basis states can be expressed as U(Λ, a) (m, j), p, µ = j µ = j For a non-interacting quark-antiquark pair (m, j) p, µ ψ. (1) (m, j), p, µ e ia p p + p + Dj µ µ [B 1 P = p q + p q M 0 = P 2 Q = P/M 0. f (p /m)λb f (p/m)] (2) The momentum of the quark in the rest frame of the non-interacting quark-anti-quark pair is defined by transforming to the rest frame with a light-front preserving boost The light-front momentum fractions are defined by k = k f = k q = B 1 f (Q)p q k f q = B 1 f (Q)p q. ξ = k+ M 0 = p + q /P+ 1 ξ = p + q /P+ (3) which can be used to express k = p q ξp k + = M 0ξ (4) Siraj Kunhammed Wayne Polyzou (Department of Physics Light-Front and Astronomy Hadronic Models The University of Iowa) May 17, / 17

6 The tensor product and two particle Poincaré irreducible light-front bases are related by νq, ν q,µq,µ q,m,µs With the interaction Poincaré transformation U(Λ, a) ( M, j) P, µ(l, s) = ( M 0, j) P, µ(l, s) = (m q, j q) p q, ν q (m q, j q) p q, ν q D jq νq µq [R fc (k q/m q)]d j q ν q µ q [R fc (k q/m q)] j q, µ q, j q, µ q s, µ s Y m l (ˆk) s, µ s, l, m j, µ p+ q p + q (ωq(kq) + ω q(k q)) ω q(k q)ω q(k q)(p q + + p + q ) (5) j µ = j M = M 0 + V (6) (M, j), P, µ e ia P P + P + Dj µ µ [B 1 f (P /m)λb f (P/m)] (7) Siraj Kunhammed Wayne Polyzou (Department of Physics Light-Front and Astronomy Hadronic Models The University of Iowa) May 17, / 17

7 Meson Model Table of Contents 1 Introduction 2 3 Meson Model Cont.. 4 String Breaking Vertex Matrix elements of the vertex Vertex strength 5 Dynamics 6 Summary Siraj Kunhammed Wayne Polyzou (Department of Physics Light-Front and Astronomy Hadronic Models The University of Iowa) May 17, / 17

8 Meson Model The confined singlets contain quark-antiquark pairs. The Mass operator with the quadratic confining interaction is, M c = k 2 + V c + mq 2 + k 2 + V c + m2 q. (8) The resulting bare meson mass eigenvalues are M nl V c = λ2 4 2 k + V0 (9) m 2q + λ(2n + l + 32 ) + m 2 q + λ(2n + l ) (10) Adding a spin term M nls m 2q + λ(2n + l + 32 ) + m 2 q + λ(2n + l ) + δ l0(a + b (s(s + 1) 3/2))) (11) 2 We can solve for a and b to get the correct π and ρ masses a = 1 4 (3mρ + mπ) m 2 q + λ 3 2 m 2 q + λ 3 2 ) (12) b = m ρ m π (13) Siraj Kunhammed Wayne Polyzou (Department of Physics Light-Front and Astronomy Hadronic Models The University of Iowa) May 17, / 17

9 Meson Model Cont.. The harmonic oscillator wave functions in the coordinate and momentum-space have the form r n, l, m = R nl (r)y lm (ˆr). (14) k n, l, m = R nl (k)y lm (ˆk). (15) The RMS relative momentum and displacement of the pair is 2 r 2 1/2 = λ (2n + l + 3 λ 2 ) k2 1/2 = 2 (2n + l ) (16) In the limit 2n + l gets large, M 2λ r 2 1/2 Mass 2 vs L Mass vs r 14 n=0 n=1 n=2 n=3 12 n=4 4 s=0 s= Mass 2 (Gev) 8 6 Mass(Gev) L <r>' Siraj Kunhammed Wayne Polyzou (Department of Physics Light-Front and Astronomy Hadronic Models The University of Iowa) May 17, / 17

10 String Breaking Table of Contents 1 Introduction 2 3 Meson Model Cont.. 4 String Breaking Vertex Matrix elements of the vertex Vertex strength 5 Dynamics 6 Summary Siraj Kunhammed Wayne Polyzou (Department of Physics Light-Front and Astronomy Hadronic Models The University of Iowa) May 17, / 17

11 String Breaking Vertex String Breaking Vertex This allowes the confined singlets to interact. Its a string breaking interaction that assumes a quark-antiquark pair is created with equal probability at any point on the path between the quark and antiquark causing it to break up into a pir of confined singlets. The string breaking interaction in r space have the form 1 v(r 1, r 2, r 12; r) := γδ(r 2r 12) dηδ λ (r 1 ηr)δ λ (r 2 (1 η)r) (17) The expression for kernel of the vertex as an expansion in harmonic oscillator states is v(r 1, r 2, r 12; r) := g λ δ(r 2r12)( λ 4π )3 4π 3 ( 2 1 λ )3/2 dηe λ 2 r2 12 (η2 +(1 η) 2) η l 1 +2n 1 (1 η) l 2 +2n 2 0 λ ( 2 r12)2n 1 +l 1 +2n 2 +l 2 ψ n 1l 1m 1 (r 1)Yl 1 m (ˆr 1 12)ψ n2 l 2 m 2 (r 2)Y l 2 m (ˆr 2 12) (18) 2n 1!Γ(n 1 + l 1 + 2n 32 ) 2!Γ(n 2 + l ) Siraj Kunhammed Wayne Polyzou (Department of Physics Light-Front and Astronomy Hadronic Models The University of Iowa) May 17, / 17

12 String Breaking Matrix elements of the vertex Matrix Elements of the Vertex Integrating the vertex against three oscillator states n 1, l 1, m 1, n 2, l 2, m 2, r 12 v n, l, m = ψ n 1 l 1 m (r 1 1 )ψ n 2 l 2 m (r 2 2 )v(r 1, r 2, r 12 ; r)ψ nlm (x)dr 1 dr 2 dr = g λ R nl (2r 12 )(2λ) 3/2 ( λ2 r 12 ) 2n 1 +l 1 +2n 2 +l 2 2n 1!Γ(n 1 + l ) 2n 2!Γ(n 2 + l ) e λ 4 r2 12 k 1 +k 2 =2r 1 (l 1 + 2n 1 )!(l 2 + 2n 2 )! k 1!k 2!(l 1 + 2n 1 k 1 )!(l 2 + 2n 2 k 2 )! ( )k 2 ( 1 2 )l 1 +2n 1 +l 2 +2n 2 2r + 1 M( r, 3 2 The following is added to include the spin dependence 2 λr12 + r, 4 )Y lm(ˆr 12 )Y l 1 m (ˆr 1 12 )Y l 2 m (ˆr 2 12 ) (19) 0, 0 1, m l, 1, m s 1, m s 1 2, µ 3, 1 2, µ 4 Y 1 m 1 (ˆr 12 ) (20) Siraj Kunhammed Wayne Polyzou (Department of Physics Light-Front and Astronomy Hadronic Models The University of Iowa) May 17, / 17

13 String Breaking Vertex strength Vertex strength v(r) 2 vs r q 2 v 2 vs q n=0 n=1 n=2 n= n=0 n=1 n=2 n=3 n= r 2 v q 2 v r q Siraj Kunhammed Wayne Polyzou (Department of Physics Light-Front and Astronomy Hadronic Models The University of Iowa) May 17, / 17

14 Dynamics Table of Contents 1 Introduction 2 3 Meson Model Cont.. 4 String Breaking Vertex Matrix elements of the vertex Vertex strength 5 Dynamics 6 Summary Siraj Kunhammed Wayne Polyzou (Department of Physics Light-Front and Astronomy Hadronic Models The University of Iowa) May 17, / 17

15 Dynamics Dynamics The model Hilbert space is the orthogonal direct sum of the one-singlet Hilbert space with the tensor product of two copies of the one-singlet Hilbert space H = H Q (H Q H Q ) (21) The mass operator on H is given by M = M c0 + V (22) and the mass eigenvalue problem has the form ( Mc v 1:2 v 2:1 Mc1 2 + q2 12 M + c2 2 + q2 12 ) ( ψ1 ψ 2 ) ( ψ1 = η ψ 2 ) (23) I to label the one and two singlet channels, and 1 1 v 1:2 v 2:1 Ψ 1 = 0 (24) η M c η Mc1 2 + q Mc2 2 + q2 12 M n := M nls M n1,n 2,q 12 := q M2 + q n 1,l 1,s M2 (25) n 2,l 2,s 2 to label the mass eigenvalues of the bare meson systems. In this notation the mass eigenvalue problem has the form δ nm 1 q 2 dq n v 1:2 n 1, n 2, q n 1, n 2, q v 2:1 m m Ψ 1 = 0. (26) m n 1,n 0 η M 2 n η M n1 n 2 q Siraj Kunhammed Wayne Polyzou (Department of Physics Light-Front and Astronomy Hadronic Models The University of Iowa) May 17, / 17

16 Summary Table of Contents 1 Introduction 2 3 Meson Model Cont.. 4 String Breaking Vertex Matrix elements of the vertex Vertex strength 5 Dynamics 6 Summary Siraj Kunhammed Wayne Polyzou (Department of Physics Light-Front and Astronomy Hadronic Models The University of Iowa) May 17, / 17

17 Summary Summary A simple relativistic quark model with a string breaking enteraction between confined color singlets Study the effect of sea quarks in the spectral calculation, lifetime calculations, scattering and Electromagnetic phenomena. See if it can be extended for baryon studies with diquark approximation THANK YOU Siraj Kunhammed Wayne Polyzou (Department of Physics Light-Front and Astronomy Hadronic Models The University of Iowa) May 17, / 17

Relativistic Quantum Mechanics

Relativistic Quantum Mechanics Relativistic Quantum Mechanics Wayne Polyzou polyzou@uiowa.edu The University of Iowa Relativistic Quantum Mechanics p.1/42 Collaborators F. Coester (ANL), B. Keister (NSF), W. H. Klink (Iowa), G. L. Payne

More information

arxiv: v1 [hep-ph] 22 Jun 2012

arxiv: v1 [hep-ph] 22 Jun 2012 Electroweak hadron structure in point-form dynamics heavy-light systems arxiv:1206.5150v1 [hep-ph] 22 Jun 2012 and Wolfgang Schweiger Institut für Physik, Universität Graz, A-8010 Graz, Austria E-mail:

More information

Gian Gopal Particle Attributes Quantum Numbers 1

Gian Gopal Particle Attributes Quantum Numbers 1 Particle Attributes Quantum Numbers Intro Lecture Quantum numbers (Quantised Attributes subject to conservation laws and hence related to Symmetries) listed NOT explained. Now we cover Electric Charge

More information

Quarks and the Baryons

Quarks and the Baryons Quarks and the Baryons A Review of Chapter 15 of Particles and Nuclei by Povh Evan Phelps University of South Carolina Department of Physics and Astronomy phelps@physics.sc.edu March 18, 2009 Evan Phelps

More information

Jacopo Ferretti Sapienza Università di Roma

Jacopo Ferretti Sapienza Università di Roma Jacopo Ferretti Sapienza Università di Roma NUCLEAR RESONANCES: FROM PHOTOPRODUCTION TO HIGH PHOTON VIRTUALITIES ECT*, TRENTO (ITALY), -6 OCTOBER 05 Three quark QM vs qd Model A relativistic Interacting

More information

arxiv: v1 [nucl-th] 3 Sep 2015

arxiv: v1 [nucl-th] 3 Sep 2015 Relativistic few-body methods W. N. Polyzou Department of Physics and Astronomy The University of Iowa Iowa City, IA 52242, USA arxiv:1509.00928v1 [nucl-th] 3 Sep 2015 Contribution to the 21-st International

More information

Valence quark contributions for the γn P 11 (1440) transition

Valence quark contributions for the γn P 11 (1440) transition Valence quark contributions for the γn P 11 (144) transition Gilberto Ramalho (Instituto Superior Técnico, Lisbon) In collaboration with Kazuo Tsushima 12th International Conference on Meson-Nucleon Physics

More information

Cluster Properties and Relativistic Quantum Mechanics

Cluster Properties and Relativistic Quantum Mechanics Cluster Properties and Relativistic Quantum Mechanics Wayne Polyzou polyzou@uiowa.edu The University of Iowa Cluster Properties p.1/45 Why is quantum field theory difficult? number of degrees of freedom.

More information

Baryonic Spectral Functions at Finite Temperature

Baryonic Spectral Functions at Finite Temperature Baryonic Spectral Functions at Finite Temperature Masayuki Asakawa Department of Physics, Osaka University July 2008 @ XQCD 2008 QCD Phase Diagram T LHC 160-190 MeV 100MeV ~ 10 12 K RHIC crossover CEP(critical

More information

Baryon Resonance Determination using LQCD. Robert Edwards Jefferson Lab. Baryons 2013

Baryon Resonance Determination using LQCD. Robert Edwards Jefferson Lab. Baryons 2013 Baryon Resonance Determination using LQCD Robert Edwards Jefferson Lab Baryons 2013 Where are the Missing Baryon Resonances? What are collective modes? Is there freezing of degrees of freedom? What is

More information

Lecture 9 Valence Quark Model of Hadrons

Lecture 9 Valence Quark Model of Hadrons Lecture 9 Valence Quark Model of Hadrons Isospin symmetry SU(3) flavour symmetry Meson & Baryon states Hadronic wavefunctions Masses and magnetic moments Heavy quark states 1 Isospin Symmetry Strong interactions

More information

Faddeev equations: a view of baryon properties

Faddeev equations: a view of baryon properties E-mail: diana.nicmorus@uni-graz.at G. Eichmann E-mail: ge.eichmann@uni-graz.at A. Krassnigg E-mail: andreas.krassnigg@uni-graz.at R. Alkofer E-mail: reinhard.alkofer@uni-graz.at We present a calculation

More information

Dr Victoria Martin, Spring Semester 2013

Dr Victoria Martin, Spring Semester 2013 Particle Physics Dr Victoria Martin, Spring Semester 2013 Lecture 3: Feynman Diagrams, Decays and Scattering Feynman Diagrams continued Decays, Scattering and Fermi s Golden Rule Anti-matter? 1 Notation

More information

Option 212: UNIT 2 Elementary Particles

Option 212: UNIT 2 Elementary Particles Department of Physics and Astronomy Option 212: UNIT 2 Elementary Particles SCHEDULE 26-Jan-15 13.00pm LRB Intro lecture 28-Jan-15 12.00pm LRB Problem solving (2-Feb-15 10.00am E Problem Workshop) 4-Feb-15

More information

Use of a non-relativistic basis for describing the low energy meson spectrum

Use of a non-relativistic basis for describing the low energy meson spectrum Use of a non-relativistic basis for describing the low energy meson spectrum in collaboration with Dr. Peter O. Hess Dr. Tochtli Yépez-Martínez Dr. Osvaldo Civitarese Dr. Adam Szczepaniak Instituto de

More information

Hadronic Resonances in a Hadronic Picture. Daisuke Jido (Nuclear physics group)

Hadronic Resonances in a Hadronic Picture. Daisuke Jido (Nuclear physics group) Daisuke Jido (Nuclear physics group) Hadrons (particles interacting with strong interactions) are composite objects of quarks and gluons. It has been recently suggested that the structures of some hadrons

More information

Quantum Field Theory. Ling-Fong Li. (Institute) Quark Model 1 / 14

Quantum Field Theory. Ling-Fong Li. (Institute) Quark Model 1 / 14 Quantum Field Theory Ling-Fong Li (Institute) Quark Model 1 / 14 QCD Quark Model Isospin symmetry To a good approximation, nuclear force is independent of the electromagnetic charge carried by the nucleons

More information

Light-Front Holography and Gauge/Gravity Correspondence: Applications to Hadronic Physics

Light-Front Holography and Gauge/Gravity Correspondence: Applications to Hadronic Physics Light-Front Holography and Gauge/Gravity Correspondence: Applications to Hadronic Physics Guy F. de Téramond University of Costa Rica In Collaboration with Stan Brodsky 4 th International Sakharov Conference

More information

Introduction to particle physics Lecture 7

Introduction to particle physics Lecture 7 Introduction to particle physics Lecture 7 Frank Krauss IPPP Durham U Durham, Epiphany term 2009 Outline 1 Deep-inelastic scattering and the structure of protons 2 Elastic scattering Scattering on extended

More information

The SU(3) Group SU(3) and Mesons Contents Quarks and Anti-quarks SU(3) and Baryons Masses and Symmetry Breaking Gell-Mann Okubo Mass Formulae Quark-Mo

The SU(3) Group SU(3) and Mesons Contents Quarks and Anti-quarks SU(3) and Baryons Masses and Symmetry Breaking Gell-Mann Okubo Mass Formulae Quark-Mo Lecture 2 Quark Model The Eight Fold Way Adnan Bashir, IFM, UMSNH, Mexico August 2014 Culiacán Sinaloa The SU(3) Group SU(3) and Mesons Contents Quarks and Anti-quarks SU(3) and Baryons Masses and Symmetry

More information

Phys 622 Problems Chapter 5

Phys 622 Problems Chapter 5 1 Phys 622 Problems Chapter 5 Problem 1 The correct basis set of perturbation theory Consider the relativistic correction to the electron-nucleus interaction H LS = α L S, also known as the spin-orbit

More information

Part 7: Hadrons: quarks and color

Part 7: Hadrons: quarks and color FYSH3, fall Tuomas Lappi tuomas.v.v.lappi@jyu.fi Office: FL49. No fixed reception hours. kl Part 7: Hadrons: quarks and color Introductory remarks In the previous section we looked at the properties of

More information

Particle Physics Outline the concepts of particle production and annihilation and apply the conservation laws to these processes.

Particle Physics Outline the concepts of particle production and annihilation and apply the conservation laws to these processes. Particle Physics 12.3.1 Outline the concept of antiparticles and give examples 12.3.2 Outline the concepts of particle production and annihilation and apply the conservation laws to these processes. Every

More information

Charmed baryon spectroscopy in a quark model

Charmed baryon spectroscopy in a quark model Charmed baryon spectroscopy in a quark model Tokyo tech RCNP A RIKEN B Tetsuya YoshidaMakoto Oka Atsushi Hosaka A Emiko Hiyama B Ktsunori Sadato A Contents Ø Motivation Ø Formalism Ø Result ü Spectrum

More information

Introduction to the Standard Model. 1. e+e- annihilation and QCD. M. E. Peskin PiTP Summer School July 2005

Introduction to the Standard Model. 1. e+e- annihilation and QCD. M. E. Peskin PiTP Summer School July 2005 Introduction to the Standard Model 1. e+e- annihilation and QCD M. E. Peskin PiTP Summer School July 2005 In these lectures, I will describe the phenomenology of the Standard Model of particle physics.

More information

Deep Inelastic Scattering (DIS) Un-ki Yang Dept. of Physics and Astronomy Seoul National University Un-ki Yang - DIS

Deep Inelastic Scattering (DIS) Un-ki Yang Dept. of Physics and Astronomy Seoul National University Un-ki Yang - DIS Deep Inelastic Scattering (DIS) Un-ki Yang Dept. of Physics and Astronomy Seoul National University ukyang@snu.ac.kr Un-ki Yang - DIS 1 Elastic and Inelastic scattering Electron-Proton Scattering P Electron-proton

More information

Poincaré Invariant Calculation of the Three-Body Bound State Energy and Wave Function

Poincaré Invariant Calculation of the Three-Body Bound State Energy and Wave Function Poincaré Invariant Calculation of the Three-Body Bound State Energy and Wave Function q [fm ] 8 6 4 M. R. Hadizadeh, Ch. Elster and W. N. Polyzou log Ψ nr 8 7 7 7 3 3 7 7 3 3 4 6 8 log Ψ r p [fm ] 8 4

More information

Quark Model of Hadrons

Quark Model of Hadrons Quark Model of Hadrons mesons baryons symmetric antisymmetric mixed symmetry Quark Model of Hadrons 2 Why do quarks have color? ground state baryons orbital wave function = symmetic with L=0 SU(3) f x

More information

Meson Regge trajectories in relativistic quantum mechanics

Meson Regge trajectories in relativistic quantum mechanics Meson Regge trajectories in relativistic quantum mechanics arxiv:hep-ph/9912299v1 10 Dec 1999 V.V.Andreev Gomel State University, Gomel 246699, Belarus M.N.Sergeenko Institute of Physics NASB, Minsk 220072,

More information

Physics 4213/5213 Lecture 1

Physics 4213/5213 Lecture 1 August 28, 2002 1 INTRODUCTION 1 Introduction Physics 4213/5213 Lecture 1 There are four known forces: gravity, electricity and magnetism (E&M), the weak force, and the strong force. Each is responsible

More information

Exchange current contributions in null-plane models of elastic electron deuteron scattering

Exchange current contributions in null-plane models of elastic electron deuteron scattering Exchange current contributions in null-plane models of elastic electron deuteron scattering Y. Huang and W. N. Polyzou Department of Physics and Astronomy, The University of Iowa, Iowa City, IA 52242 (Dated:

More information

Standard Model of Particle Physics SS 2012

Standard Model of Particle Physics SS 2012 Lecture: Standard Model of Particle Physics Heidelberg SS 22 Fermi Theory Standard Model of Particle Physics SS 22 2 Standard Model of Particle Physics SS 22 Fermi Theory Unified description of all kind

More information

2007 Section A of examination problems on Nuclei and Particles

2007 Section A of examination problems on Nuclei and Particles 2007 Section A of examination problems on Nuclei and Particles 1 Section A 2 PHYS3002W1 A1. A fossil containing 1 gramme of carbon has a radioactivity of 0.03 disintegrations per second. A living organism

More information

What do g 1 (x) and g 2 (x) tell us about the spin and angular momentum content in the nucleon?

What do g 1 (x) and g 2 (x) tell us about the spin and angular momentum content in the nucleon? What do g 1 (x) and g (x) tell us about the spin and angular momentum content in the nucleon? Franz Gross -- JLab cake seminar, Dec. 7 011 Introduction DIS hadronic tensor Spin puzzle in DIS Part I - covariant

More information

Quark Model History and current status

Quark Model History and current status Quark Model History and current status Manon Bischoff Heavy-Ion Seminar 2013 October 31, 2013 Manon Bischoff Quark Model 1 Outline Introduction Motivation and historical development Group theory and the

More information

The Standard Model (part I)

The Standard Model (part I) The Standard Model (part I) Speaker Jens Kunstmann Student of Physics in 5 th year at Greifswald University, Germany Location Sommerakademie der Studienstiftung, Kreisau 2002 Topics Introduction The fundamental

More information

Monte Carlo Non-Linear Flow modes studies with AMPT

Monte Carlo Non-Linear Flow modes studies with AMPT Monte Carlo Non-Linear Flow modes studies with AMP Daniel Noel Supervised by: Naghmeh Mohammadi 2 July - 31 August 218 1 Introduction Heavy-ion collisions at the Large Hadron Collider (LHC) generate such

More information

Dr Victoria Martin, Prof Steve Playfer Spring Semester 2013

Dr Victoria Martin, Prof Steve Playfer Spring Semester 2013 Particle Physics Dr Victoria Martin, Prof Steve Playfer Spring Semester 2013 Lecture 12: Mesons and Baryons Mesons and baryons Strong isospin and strong hypercharge SU(3) flavour symmetry Heavy quark states

More information

Charmed Baryon spectroscopy at Belle 1. Y. Kato KMI topics. Mainly based on the paper recently accepted by PRD ( arxiv: )

Charmed Baryon spectroscopy at Belle 1. Y. Kato KMI topics. Mainly based on the paper recently accepted by PRD ( arxiv: ) Charmed Baryon spectroscopy at Belle 1 Y. Kato KMI topics Mainly based on the paper recently accepted by PRD ( arxiv:1312.1026) Introduction 2 The mass of matter is almost made of nucleons. But they are

More information

PHY397K - NUCLEAR PHYSICS - 2

PHY397K - NUCLEAR PHYSICS - 2 PHY397K - NUCLEAR PHYSICS - 2 PHY397K - NUCLEAR PHYSICS Spring 2015, Unique numbers: 57115 RLM 5.116, TTH 12:30-2:00 pm Christina Markert Office: RLM: 10.305 Phone: 512 471 8834 Email: cmarkert@physics.utexas.edu

More information

Standard Model of Particle Physics SS 2013

Standard Model of Particle Physics SS 2013 Lecture: Standard Model of Particle Physics Heidelberg SS 23 Fermi Theory Standard Model of Particle Physics SS 23 2 Standard Model of Particle Physics SS 23 Weak Force Decay of strange particles Nuclear

More information

Quark Model. Mass and Charge Patterns in Hadrons. Spin-1/2 baryons: Nucleons: n: MeV; p: MeV

Quark Model. Mass and Charge Patterns in Hadrons. Spin-1/2 baryons: Nucleons: n: MeV; p: MeV Mass and Charge Patterns in Hadrons To tame the particle zoo, patterns in the masses and charges can be found that will help lead to an explanation of the large number of particles in terms of just a few

More information

cgrahamphysics.com Particles that mediate force Book pg Exchange particles

cgrahamphysics.com Particles that mediate force Book pg Exchange particles Particles that mediate force Book pg 299-300 Exchange particles Review Baryon number B Total # of baryons must remain constant All baryons have the same number B = 1 (p, n, Λ, Σ, Ξ) All non baryons (leptons

More information

Light-Front Holographic QCD: an Overview

Light-Front Holographic QCD: an Overview Light-Front Holographic QCD: an Overview Guy F. de Téramond Universidad de Costa Rica Continuous Advances is QCD University of Minnesota Minneapolis, May 14, 2011 CAQCD, Minneapolis, May 14, 2011 Page

More information

D Göttingen, Germany. Abstract

D Göttingen, Germany. Abstract Electric polarizabilities of proton and neutron and the relativistic center-of-mass coordinate R.N. Lee a, A.I. Milstein a, M. Schumacher b a Budker Institute of Nuclear Physics, 60090 Novosibirsk, Russia

More information

1 The pion bump in the gamma reay flux

1 The pion bump in the gamma reay flux 1 The pion bump in the gamma reay flux Calculation of the gamma ray spectrum generated by an hadronic mechanism (that is by π decay). A pion of energy E π generated a flat spectrum between kinematical

More information

Short-Ranged Central and Tensor Correlations. Nuclear Many-Body Systems. Reaction Theory for Nuclei far from INT Seattle

Short-Ranged Central and Tensor Correlations. Nuclear Many-Body Systems. Reaction Theory for Nuclei far from INT Seattle Short-Ranged Central and Tensor Correlations in Nuclear Many-Body Systems Reaction Theory for Nuclei far from Stability @ INT Seattle September 6-, Hans Feldmeier, Thomas Neff, Robert Roth Contents Motivation

More information

Istituto Nazionale Fisica Nucleare

Istituto Nazionale Fisica Nucleare Istituto Nazionale Fisica Nucleare Sezione SANITÀ Istituto Superiore di Sanità Viale Regina Elena 299 I-00161 Roma, Italy INFN-ISS 96/1 January 1996 arxiv:hep-ph/9601321v1 24 Jan 1996 Calculation of the

More information

ψ(t) = U(t) ψ(0). (6.1.1)

ψ(t) = U(t) ψ(0). (6.1.1) Chapter 6 Symmetries 6.1 Quantum dynamics The state, or ket, vector ψ of a physical system completely characterizes the system at a given instant. The corresponding bra vector ψ is the Hermitian conjugate

More information

A Dyson-Schwinger equation study of the baryon-photon interaction.

A Dyson-Schwinger equation study of the baryon-photon interaction. A Dyson-Schwinger equation study of the baryon-photon interaction. Diana Nicmorus in collaboration with G. Eichmann A. Krassnigg R. Alkofer Jefferson Laboratory, March 24, 2010 What is the nucleon made

More information

Nuclear structure I: Introduction and nuclear interactions

Nuclear structure I: Introduction and nuclear interactions Nuclear structure I: Introduction and nuclear interactions Stefano Gandolfi Los Alamos National Laboratory (LANL) National Nuclear Physics Summer School Massachusetts Institute of Technology (MIT) July

More information

arxiv: v1 [hep-ph] 20 Dec 2015

arxiv: v1 [hep-ph] 20 Dec 2015 Radiative decays V Pγ in the instant form of relativistic quantum mechanics arxiv:1601.0678v1 [hep-ph] 0 Dec 015 Alexander Krutov, 1 Roman Polezhaev, Vadim Troitsky Samara State University, Academician

More information

What are the Low-Q and Large-x Boundaries of Collinear QCD Factorization Theorems?

What are the Low-Q and Large-x Boundaries of Collinear QCD Factorization Theorems? What are the Low-Q and Large-x Boundaries of Collinear QCD Factorization Theorems? Presented by Eric Moffat Paper written in collaboration with Wally Melnitchouk, Ted Rogers, and Nobuo Sato arxiv:1702.03955

More information

Covariant quark-diquark model for the N N electromagnetic transitions

Covariant quark-diquark model for the N N electromagnetic transitions Covariant quark-diquark model for the N N electromagnetic transitions Gilberto Ramalho CFTP, Instituto Superior Técnico, Lisbon In collaboration with F. Gross, M.T. Peña and K. Tsushima Nucleon Resonance

More information

What are the Low-Q and Large-x Boundaries of Collinear QCD Factorization Theorems?

What are the Low-Q and Large-x Boundaries of Collinear QCD Factorization Theorems? What are the Low-Q and Large-x Boundaries of Collinear QCD Factorization Theorems? Presented by Eric Moffat Old Dominion University Paper written in collaboration with Wally Melnitchouk, Ted Rogers, and

More information

Introduction to Elementary Particles

Introduction to Elementary Particles David Criffiths Introduction to Elementary Particles Second, Revised Edition WILEY- VCH WILEY-VCH Verlag GmbH & Co. KGaA Preface to the First Edition IX Preface to the Second Edition XI Formulas and Constants

More information

Relativistic Formulation of Reaction Theory

Relativistic Formulation of Reaction Theory Relativistic Formulation of Reaction Theory W. N. Polyzou Department of Physics and Astronomy, The University of Iowa, Iowa City, IA 52242, USA Ch. Elster Institute of Nuclear and Particle Physics, and

More information

Lectures on NRQCD Factorization for Quarkonium Production and Decay

Lectures on NRQCD Factorization for Quarkonium Production and Decay Lectures on NRQCD Factorization for Quarkonium Production and Decay Eric Braaten Ohio State University I. Nonrelativistic QCD II. Annihilation decays III. Inclusive hard production 1 NRQCD Factorization

More information

Exotic Hadrons. O Villalobos Baillie MPAGS PP5 November 2015

Exotic Hadrons. O Villalobos Baillie MPAGS PP5 November 2015 Exotic Hadrons O Villalobos Baillie MPAGS PP5 November 2015 Allowed hadronic states At the beginning of this course, we stated that there are only two allowed combinations of quarks that give bound hadronic

More information

2nd Hadron Spanish Network Days. Universidad Complutense de Madrid (Spain) September 8-9, Rubén Oncala. In collaboration with Prof.

2nd Hadron Spanish Network Days. Universidad Complutense de Madrid (Spain) September 8-9, Rubén Oncala. In collaboration with Prof. 2nd Hadron Spanish Network Days Universidad Complutense de Madrid (Spain) September 8-9, 20016 Rubén Oncala In collaboration with Prof. Joan Soto Heavy Quarkonium is a heavy quark-antiquark pair in a colour

More information

Particle Physics WS 2012/13 ( )

Particle Physics WS 2012/13 ( ) Particle Physics WS 01/13 (3.11.01) Stephanie Hansmann-Menzemer Physikalisches Institut, INF 6, 3.101 Content of Today Structure of the proton: Inelastic proton scattering can be described by elastic scattering

More information

High t form factors & Compton Scattering - quark based models. Gerald A. Miller University of Washington

High t form factors & Compton Scattering - quark based models. Gerald A. Miller University of Washington High t form factors & Compton Scattering - quark based models Gerald A. Miller University of Washington Basic Philosophy- model wave function Ψ Given compute form factors, densities, Compton scattering...

More information

Bethe Salpeter studies of mesons beyond rainbow-ladder

Bethe Salpeter studies of mesons beyond rainbow-ladder Bethe Salpeter studies of mesons beyond rainbow-ladder Richard Williams 1 st June 2010 12th International Conference on Meson-Nucleon Physics and the Structure of the Nucleon College of William and Mary,

More information

Quarks and hadrons. Chapter Quark flavor and color

Quarks and hadrons. Chapter Quark flavor and color Chapter 5 Quarks and hadrons Every atom has its ground state the lowest energy state of its electrons in the presence of the atomic nucleus as well as many excited states which can decay to the ground

More information

N N Transitions from Holographic QCD

N N Transitions from Holographic QCD N N Transitions from Holographic QCD Guy F. de Téramond Universidad de Costa Rica Nucleon Resonance Structure Electroproduction at High Photon Virtualities with the Class 12 Detector Workshop Jefferson

More information

Kern- und Teilchenphysik II Lecture 1: QCD

Kern- und Teilchenphysik II Lecture 1: QCD Kern- und Teilchenphysik II Lecture 1: QCD (adapted from the Handout of Prof. Mark Thomson) Prof. Nico Serra Dr. Marcin Chrzaszcz Dr. Annapaola De Cosa (guest lecturer) www.physik.uzh.ch/de/lehre/phy213/fs2017.html

More information

Istituto Nazionale Fisica Nucleare

Istituto Nazionale Fisica Nucleare Istituto Nazionale Fisica Nucleare Sezione SANITÀ Istituto Superiore di Sanità Viale Regina Elena 99 I-00161 Roma, Italy INFN-ISS 96/8 September 1996 arxiv:nucl-th/9609047v1 1 Sep 1996 Electroproduction

More information

National Nuclear Physics Summer School Lectures on Effective Field Theory. Brian Tiburzi. RIKEN BNL Research Center

National Nuclear Physics Summer School Lectures on Effective Field Theory. Brian Tiburzi. RIKEN BNL Research Center 2014 National Nuclear Physics Summer School Lectures on Effective Field Theory I. Removing heavy particles II. Removing large scales III. Describing Goldstone bosons IV. Interacting with Goldstone bosons

More information

Physics at Hadron Colliders Partons and PDFs

Physics at Hadron Colliders Partons and PDFs Physics at Hadron Colliders Partons and PDFs Marina Cobal Thanks to D. Bettoni Università di Udine 1 2 How to probe the nucleon / quarks? Scatter high-energy lepton off a proton: Deep-Inelastic Scattering

More information

light-cone (LC) variables

light-cone (LC) variables light-cone (LC) variables 4-vector a µ scalar product metric LC basis : transverse metric 24-Apr-13 1 hadron target at rest inclusive DIS target absorbes momentum from γ * ; for example, if q z P z =0

More information

Introduction to Particle Physics. HST July 2016 Luis Alvarez Gaume 1

Introduction to Particle Physics. HST July 2016 Luis Alvarez Gaume 1 Introduction to Particle Physics HST July 2016 Luis Alvarez Gaume 1 Basics Particle Physics describes the basic constituents of matter and their interactions It has a deep interplay with cosmology Modern

More information

Lattice QCD studies of strangeness S = -2 baryon-baryon interactions

Lattice QCD studies of strangeness S = -2 baryon-baryon interactions Lattice QCD studies of strangeness S = -2 baryon-baryon interactions Kenji Sasaki (University of Tsukuba) for HAL QCD collaboration HAL (Hadrons to Atomic nuclei from Lattice) QCD Collaboration S. Aoki

More information

Do you know what is special about quarks?

Do you know what is special about quarks? Quarks and Hadrons Do you know what is special about quarks? Do you know what is special about quarks? They have never been observed directly. We say that they are confined inside the hadrons. Hadrons

More information

Kern- und Teilchenphysik I Lecture 13:Quarks and QCD

Kern- und Teilchenphysik I Lecture 13:Quarks and QCD Kern- und Teilchenphysik I Lecture 13:Quarks and QCD (adapted from the Handout of Prof. Mark Thomson) Prof. Nico Serra Dr. Patrick Owen, Dr. Silva Coutinho http://www.physik.uzh.ch/de/lehre/phy211/hs2016.html

More information

Quark model. Jan 30, 2006 Lecture 8 1

Quark model. Jan 30, 2006 Lecture 8 1 Quark model Jan 30, 2006 Lecture 8 1 Quark model of hadrons!!!! Developed long before QCD was recognized as the appropriate quantum field theory of the strong interactions Postulate that 1.! All baryons

More information

Notes on SU(3) and the Quark Model

Notes on SU(3) and the Quark Model Notes on SU() and the Quark Model Contents. SU() and the Quark Model. Raising and Lowering Operators: The Weight Diagram 4.. Triangular Weight Diagrams (I) 6.. Triangular Weight Diagrams (II) 8.. Hexagonal

More information

The Quark Parton Model

The Quark Parton Model The Quark Parton Model Quark Model Pseudoscalar J P = 0 Mesons Vector J P = 1 Mesons Meson Masses J P = 3 /2 + Baryons J P = ½ + Baryons Resonances Resonance Detection Discovery of the ω meson Dalitz Plots

More information

arxiv:nucl-th/ v3 23 Jul 2001

arxiv:nucl-th/ v3 23 Jul 2001 Covariant axial form factor of the nucleon in a chiral constituent quark model L.Ya. Glozman a,b, M. Radici b, R.F. Wagenbrunn a, S. Boffi b, W. Klink c, and W. Plessas a arxiv:nucl-th/0105028v3 23 Jul

More information

L. David Roper

L. David Roper The Heavy Proton L. David Roper mailto:roperld@vt.edu Introduction The proton is the nucleus of the hydrogen atom, which has one orbiting electron. The proton is the least massive of the baryons. Its mass

More information

Production of triply heavy baryons and six free heavy quarks at

Production of triply heavy baryons and six free heavy quarks at Production of triply heavy baryons and six free heavy quarks at LHC October 25, 2012 OUTLINE. Triply heavy baryons production.overview of the triply heavy baryons..the production of the triply heavy baryons..

More information

1 Nucleon-Nucleon Scattering

1 Nucleon-Nucleon Scattering Lecture Notes: NN Scattering Keegan Sherman 1 Nucleon-Nucleon Scattering In the previous lecture, we were talking about nucleon-nucleon (NN) scattering events and describing them through phase shifts.

More information

A generalization of the Three-Dimensional Harmonic Oscillator Basis for Wave Functions with Non-Gaussian Asymptotic Behavior

A generalization of the Three-Dimensional Harmonic Oscillator Basis for Wave Functions with Non-Gaussian Asymptotic Behavior EJTP 7, No. 23 (21) 137 144 Electronic Journal of Theoretical Physics A generalization of the Three-Dimensional Harmonic Oscillator Basis for Wave Functions with Non-Gaussian Asymptotic Behavior Maurizio

More information

Isospin. K.K. Gan L5: Isospin and Parity 1

Isospin. K.K. Gan L5: Isospin and Parity 1 Isospin Isospin is a continuous symmetry invented by Heisenberg: Explain the observation that the strong interaction does not distinguish between neutron and proton. Example: the mass difference between

More information

DEEP INELASTIC SCATTERING

DEEP INELASTIC SCATTERING DEEP INELASTIC SCATTERING Electron scattering off nucleons (Fig 7.1): 1) Elastic scattering: E = E (θ) 2) Inelastic scattering: No 1-to-1 relationship between E and θ Inelastic scattering: nucleon gets

More information

the excited spectrum of QCD

the excited spectrum of QCD the excited spectrum of QCD the spectrum of excited hadrons let s begin with a convenient fiction : imagine that QCD were such that there was a spectrum of stable excited hadrons e.g. suppose we set up

More information

Few Body Methods in Nuclear Physics - Lecture I

Few Body Methods in Nuclear Physics - Lecture I Few Body Methods in Nuclear Physics - Lecture I Nir Barnea The Hebrew University, Jerusalem, Israel Sept. 2010 Course Outline 1 Introduction - Few-Body Nuclear Physics 2 Gaussian Expansion - The Stochastic

More information

Properties of the proton and neutron in the quark model

Properties of the proton and neutron in the quark model Properties of the proton and neutron in the quark model A good way to introduce the ideas encoded in the quark model is to understand how it simply explains properties of the ground-state baryons and mesons

More information

Fragmentation production of Ω ccc and Ω bbb baryons

Fragmentation production of Ω ccc and Ω bbb baryons Physics Letters B 559 003 39 44 www.elsevier.com/locate/npe Fragmentation production of Ω ccc and Ω bbb baryons M.A. Gomshi Nobary a,b a Department of Physics, Faculty of Science, Razi University, Kermanshah,

More information

Electron-Positron Annihilation

Electron-Positron Annihilation Evidence for Quarks The quark model originally arose from the analysis of symmetry patterns using group theory. The octets, nonets, decuplets etc. could easily be explained with coloured quarks and the

More information

Lecture 11 Weak interactions, Cabbibo-angle. angle. SS2011: Introduction to Nuclear and Particle Physics, Part 2

Lecture 11 Weak interactions, Cabbibo-angle. angle. SS2011: Introduction to Nuclear and Particle Physics, Part 2 Lecture 11 Weak interactions, Cabbibo-angle angle SS2011: Introduction to Nuclear and Particle Physics, Part 2 1 Neutrino-lepton reactions Consider the reaction of neutrino-electron scattering: Feynman

More information

Particle Physics Lecture 1 : Introduction Fall 2015 Seon-Hee Seo

Particle Physics Lecture 1 : Introduction Fall 2015 Seon-Hee Seo Particle Physics Lecture 1 : Introduction Fall 2015 Seon-Hee Seo Particle Physics Fall 2015 1 Course Overview Lecture 1: Introduction, Decay Rates and Cross Sections Lecture 2: The Dirac Equation and Spin

More information

Nuclear forces - a review

Nuclear forces - a review Chapter 1 Nuclear forces - a review The motivation and goals for this book have been discussed in detail in the preface. Part 1 of the book is on Basic Nuclear Structure, where [B152, Bo69, Fe71, Bo75,

More information

Deuteron from CLAS/EG1B Data. Spin Structure Functions of the OUTLINE. Nevzat Guler (for the CLAS Collaboration) Old Dominion University

Deuteron from CLAS/EG1B Data. Spin Structure Functions of the OUTLINE. Nevzat Guler (for the CLAS Collaboration) Old Dominion University Spin Structure Functions of the Deuteron from CLAS/EGB Data Nevzat Guler (for the CLAS Collaboration) Old Dominion University OULINE Formalism Experimental setup Data analysis Results and Conclusion Motivation

More information

Clebsch-Gordan Coefficients

Clebsch-Gordan Coefficients Phy489 Lecture 7 Clebsch-Gordan Coefficients 2 j j j2 m m m 2 j= j j2 j + j j m > j m > = C jm > m = m + m 2 2 2 Two systems with spin j and j 2 and z components m and m 2 can combine to give a system

More information

Back to Gauge Symmetry. The Standard Model of Par0cle Physics

Back to Gauge Symmetry. The Standard Model of Par0cle Physics Back to Gauge Symmetry The Standard Model of Par0cle Physics Laws of physics are phase invariant. Probability: P = ψ ( r,t) 2 = ψ * ( r,t)ψ ( r,t) Unitary scalar transformation: U( r,t) = e iaf ( r,t)

More information

PANDA Experiment. Nordic Winter Meeting on FAIR Björkliden Department of Physics and Astronomy Uppsala University

PANDA Experiment. Nordic Winter Meeting on FAIR Björkliden Department of Physics and Astronomy Uppsala University Department of Physics and Astronomy Uppsala University Nordic Winter Meeting on Phyics @ FAIR Björkliden 1-3-6 1 3 pp Λ c Λ + c 4 5 pp ȲY What are the relevant degrees of freedom to describe a process?

More information

Lattice QCD+QED. Towards a Quantitative Understanding of the Stability of Matter. G. Schierholz. Deutsches Elektronen-Synchrotron DESY

Lattice QCD+QED. Towards a Quantitative Understanding of the Stability of Matter. G. Schierholz. Deutsches Elektronen-Synchrotron DESY Lattice QCD+QED Towards a Quantitative Understanding of the Stability of Matter G. Schierholz Deutsches Elektronen-Synchrotron DESY The Challenge (Mn Mp)QED [MeV] 0-1 -2 1 2 Helium Stars Exp No Fusion

More information

2.4 Parity transformation

2.4 Parity transformation 2.4 Parity transformation An extremely simple group is one that has only two elements: {e, P }. Obviously, P 1 = P, so P 2 = e, with e represented by the unit n n matrix in an n- dimensional representation.

More information

arxiv:hep-ph/ v1 18 Mar 2006

arxiv:hep-ph/ v1 18 Mar 2006 Radiative decays of B c mesons in a Bethe-Salpeter model arxiv:hep-ph/0603139v1 18 Mar 2006 A. Abd El-Hady a,1, J. R. Spence b and J. P. Vary b a) Physics Department, King Khalid University, Abha 9004,

More information

Meson-Nucleon Coupling. Nobuhito Maru

Meson-Nucleon Coupling. Nobuhito Maru Meson-Nucleon Coupling from AdS/QCD Nobuhito Maru (Chuo Univ.) with Motoi Tachibana (Saga Univ.) arxiv:94.3816 (Accepted in in EPJC) 7/9/9 workshop@yitp Plan 1: Introduction : Meson sector (review) 3:

More information