Electron Biprism in the Condenser System for CHIRALTEM Experiment

Size: px
Start display at page:

Download "Electron Biprism in the Condenser System for CHIRALTEM Experiment"

Transcription

1 Fakultät Mathematik und Naturwissenschaften, Institut für Strukturphysik Electron Biprism in the Condenser System for CHIRALTEM Experiment Petr Formánek, Bernd Einenkel, Hannes Lichte Speziallabor Triebenberg Zum Triebenberg 50 D Dresden Germany 1

2 Motivation phase shift k0 k + g 0 q q' direct (Lorentzians) detector interference (Kikuchi band) 2

3 Goals Illuminate specimen with two overlapping coherent electron waves => Interference fringes on a specimen Control the width of the interference area and the fringe spacing Target fringe spacing ~ 200 nm or ~ 0.1 nm Control phase shift between the two waves Phase shift ± p/2 fringe spacing 500 nm width of interference area 3

4 Electron Biprism - Principle of Operation Optical Biprism Electron Biprism 4

5 Biprism holder Controlling the fringe spacing and interference width Optimisation 5

6 Biprism holder Controlling the fringe spacing and interference width Optimisation 6

7 Holography vs. CHIRALTEM Setup C1 C1 Condenser C2 Condenser C2 biprism Objective MC OC OI specimen biprism Objective MC OC OI specimen DIF DIF Projector INT P1 Projector INT P1 P2 P2 7

8 Biprism Holders C2 Aperture holder Standard Triebenberg biprism holder Standard FEI biprism holder 8

9 New Biprism Holder Construction place for 2 apertures 4 mm 2 mm 9

10 New Birpism Holder Construction Technical Drawing M R R

11 Biprism holder Controlling the fringe spacing and interference width Optimisation fringe spacing 500 nm width of interference area 11

12 Electron Biprism - Control of Parameters P 1 P 2 crossover position Width of interference field W = 2bg 0 U bp 2r f (b+a)/a Fringe spacing S = l(a+b)/(2ag 0 U bp ) a Deflection angle g = g 0 U bp g g biprism b b intermediate image plane U bp biprism voltage l wavelength of electron waves g 0 = rad/v interference field 12

13 Optical System of CM200 Microscope Condenser Objective C1 C2 MC OC OI biprism specimen Problems Biprism inside the lens Coupling of condenser & objective Control of parameter a C1, C2 excitation Gun lens, extractor voltage Control of parameter b MC, OC excitation DIF Projector INT P1 a P2 b 13

14 Rotating the Coordinate System Condenser C1 C2 biprism biprism specimen Objective MC OC OI specimen DIF C1 C2 MC OC OI Projector INT P1 Condenser Objective P2 14

15 Thin Biprism Approximation biprism magnetic field electric field 5 mm 10 mm C2 15

16 Biprism in the C2 Lens - An Equivalent Model Program for plotting of beams in a Glaser-field lens Approximation of a thin biprism => Analytical calculation: Biprism in a lens is optically equivalent to biprism behind the lens <=> 16

17 Diffraction Mode Diffraction pattern of <001> silicon 5 nm -1 U bp = -190 V U bp = -140 V U bp = -90 V U bp = -40 V U bp = 0 V U bp = 60 V U bp = 110 V U bp = 160 V U bp = 210 V 17

18 Diffraction Mode distance of splitted reflections in diffraction plane [1/nm] Diffraction pattern of <001> silicon 5 nm -1 U bp = -190 V U bp = -140 V U bp = -90 V U bp = -40 V U bp = 0 V U bp = 60 V biprism voltage U bp [V] Deflection angle g ~ U bp In diffraction plane Dk = nm -1 /V U bp U bp = 110 V U bp = 160 V U bp = 210 V 18

19 Imaging Mode - Biprism Diagram Width of interference field W = A U bp -B Fringe spacing S = C/U bp B = 0: W = CA/S 1000 log W log S w W [nm] 100,, C2 = 0 %,, C2 = 30 %,, C2 = 70 %,, C2 = 100 % Open symbols: SuperTwin objective Filled symbols: Lorentz objective Lines: calculations in thin lens approximation S s [nm] 19

20 Biprism holder Controlling the fringe spacing and interference width Optimisation 20

21 Optical System of the Condenser (FEI CM200) Beam- -limiting aperture biprism C1 C2 MC OC OI f 1 f 2 f 3 f 4 f 4 specimen Imaging equation 1/f = 1/g + 1/b g 1 b 1 Magnification M = 1 - b/f Angular magnification b/g = 1 - g/f g 1 b 1 D 1 D 2 D 3 D 4 Free parameters Lens focal distances: f 1, f 2, f 3, f 4 Biprism voltage: U bp Position of the first crossover: g 1 Imaging conditions Fringe spacing of a certain value Certain number of fringes Parallel illumination of the specimen Maximum intensity at the specimen Certain minimal magnetic field at the specimen 21

22 Condition for the Fringe Spacing Beam- -limiting aperture biprism C1 C2 MC OC OI specimen f 1 f 2 f 3 f 4 f 4 g 1 b 1 g 2 b 2 a b a b D 1 D 2 D 3 S = l a+ b ag U 2 0 bp b + D b Db s= S Ł f3 f4 f3f4 ł f3db f3f4( D3 + b 4) b= D2 - fb 3 4+ ( D3+ b 4) f4- f3f4-db Dgf ( D1+ g1) ff 1 2 a =- f( D + g) + f g + f f -Dg

23 Condition for the Number of Fringes Beam- -limiting aperture biprism C1 C2 MC OC OI specimen f 1 f 2 f 3 f 4 f 4 NS = W N number of fringes a b g 1 b 1 g 2 b D 1 D 2 D 3 Nl( a+ b) = 4abg U - 4 g U r ( a+ b) bp 0 bp f f3db f3f4( D3 + b 4) b= D2 - fb 3 4+ ( D3+ b 4) f4- f3f4-db Dgf ( D1+ g1) ff 1 2 a =- f( D + g) + f g + f f -Dg

24 Condition for the Parallel Illumination Beam- -limiting aperture biprism C1 C2 MC OC OI specimen f 1 f 2 f 3 f 4 f 4 g 4 = f 4 g 1 b 1 g 2 b 2 g 3 b 3 g 4 D 1 D 2 D 3 ( D - f ) f D - f - f a = D 2 a =- - Dgf ( D1+ g1) ff 1 2 f( D + g) + f g + f f -Dg

25 Condition for the Intensity at the Specimen Beam- -limiting aperture biprism C1 C2 MC OC OI specimen f 1 f 2 f 3 f 4 f 4 g 4 => minimum g 1 g 4 g 1 b 1 g 2 b 2 g 3 b 3 g 4 D 1 D 2 D 3 g g D f g D + a = g Ł f1 łł f2 f2 f1- g1łł f3 ł - Dgf ( D1+ g1) ff 1 2 a =- f( D + g) + f g + f f -Dg

26 Summary of All Conditions s 0 a+ b b + D b Db = l Ł ag 0Ubp f3 f4 f3f4 ł Desired fringe spacing s 0 Nl( a+ b) = 4abg U - 4 g U r ( a+ b) Desired number of fringes N bp 0 bp f ( D - f ) f D - f - f a = D 2 Parallel illumination g g D f g D + a fi min Ł f1 łł f2 f2 f1- g1łł f3 ł Maximum intensity f < f Limit of the magnetic field 4 4,lim a =- - Dgf ( D1+ g1) ff 1 2 f( D + g) + f g + f f -Dg b = D - 2 f3db f3f4( D3 + b 4) fb + ( D + b ) f - f f -Db

27 Possible W-S values: Brute Force Method area for CHIRALTEM w [nm] ,, C2 = 0 %,, C2 = 30 %,, C2 = 70 %,, C2 = 100 % Open symbols: SuperTwin objective Filled symbols: Lorentz objective Lines: calculations in thin lens approximation forbidden area s [nm] 27

28 Possible W-S values: Brute Force Method Standard objective lens (SuperTwin) area for CHIRALTEM w [nm] ,, C2 = 0 %,, C2 = 30 %,, C2 = 70 %,, C2 = 100 % Open symbols: SuperTwin objective Filled symbols: Lorentz objective Lines: calculations in thin lens approximation forbidden area s [nm] 28

29 Possible W-S values: Brute Force Method Lorentz objective lens area for CHIRALTEM w [nm] ,, C2 = 0 %,, C2 = 30 %,, C2 = 70 %,, C2 = 100 % Open symbols: SuperTwin objective Filled symbols: Lorentz objective Lines: calculations in thin lens approximation forbidden area s [nm] 29

30 Summary Desired fringe spacing of 200 nm reached with objective lens switched off 30

31 Outlook Optimise hardware to increase intensity Croissant-shape contrast aperture in rotatable holder 10 mm Grid-shape SA aperture 10 mm 31

32 32

33 Acknowledgement Dr. Peter Tiemeijer, FEI Company, for providing information necessary to progress the project 33

Transmission Electron Microscopy

Transmission Electron Microscopy L. Reimer H. Kohl Transmission Electron Microscopy Physics of Image Formation Fifth Edition el Springer Contents 1 Introduction... 1 1.1 Transmission Electron Microscopy... 1 1.1.1 Conventional Transmission

More information

High-Resolution. Transmission. Electron Microscopy

High-Resolution. Transmission. Electron Microscopy Part 4 High-Resolution Transmission Electron Microscopy 186 Significance high-resolution transmission electron microscopy (HRTEM): resolve object details smaller than 1nm (10 9 m) image the interior of

More information

Weak-Beam Dark-Field Technique

Weak-Beam Dark-Field Technique Basic Idea recall bright-field contrast of dislocations: specimen close to Bragg condition, s î 0 Weak-Beam Dark-Field Technique near the dislocation core, some planes curved to s = 0 ) strong Bragg reflection

More information

GEOMETRICAL OPTICS Practical 1. Part II. OPTICAL SYSTEMS

GEOMETRICAL OPTICS Practical 1. Part II. OPTICAL SYSTEMS GEOMETRICAL OPTICS Practical 1. Part II. OPTICAL SYSTEMS 1 Introduction Optical systems can consist of a one element (a one lens or a mirror, a magnifying glass), two or three lenses (an eyepiece, theatrical

More information

Physics 1302, Exam 3 Review

Physics 1302, Exam 3 Review c V Andersen, 2006 1 Physics 1302, Exam 3 Review The following is a list of things you should definitely know for the exam, however, the list is not exhaustive. You are responsible for all the material

More information

Michelson Interferometer

Michelson Interferometer Fakultät für Physik und Geowissenschaften Physikalisches Grundpraktikum O10e Michelson Interferometer Tasks 1. Adjust a Michelson interferometer and determine the wavelength of a He-Ne laser. 2. Measure

More information

Chapter 20: Convergent-beam diffraction Selected-area diffraction: Influence of thickness Selected-area vs. convergent-beam diffraction

Chapter 20: Convergent-beam diffraction Selected-area diffraction: Influence of thickness Selected-area vs. convergent-beam diffraction 1 Chapter 0: Convergent-beam diffraction Selected-area diffraction: Influence of thickness Selected-area diffraction patterns don t generally get much better when the specimen gets thicker. Sometimes a

More information

ELECTRON HOLOGRAPHY OF NANOSTRUCTURED MAGNETIC MATERIALS. Now at: Department of Materials, University of Oxford, Parks Road, Oxford OX1 3PH, UK

ELECTRON HOLOGRAPHY OF NANOSTRUCTURED MAGNETIC MATERIALS. Now at: Department of Materials, University of Oxford, Parks Road, Oxford OX1 3PH, UK ELECTRON HOLOGRAPHY OF NANOSTRUCTURED MAGNETIC MATERIALS R. E. DUNIN-BORKOWSKI a,b, B. KARDYNAL c,d, M. R. MCCARTNEY a, M. R. SCHEINFEIN e,f, DAVID J. SMITH a,e a Center for Solid State Science, Arizona

More information

sin" =1.22 # D "l =1.22 f# D I: In introduction to molecular electron microscopy - Imaging macromolecular assemblies

sin =1.22 # D l =1.22 f# D I: In introduction to molecular electron microscopy - Imaging macromolecular assemblies I: In introduction to molecular electron microscopy - Imaging macromolecular assemblies Yifan Cheng Department of Biochemistry & Biophysics office: GH-S472D; email: ycheng@ucsf.edu 2/20/2015 - Introduction

More information

= 6 (1/ nm) So what is probability of finding electron tunneled into a barrier 3 ev high?

= 6 (1/ nm) So what is probability of finding electron tunneled into a barrier 3 ev high? STM STM With a scanning tunneling microscope, images of surfaces with atomic resolution can be readily obtained. An STM uses quantum tunneling of electrons to map the density of electrons on the surface

More information

AP5301/ Name the major parts of an optical microscope and state their functions.

AP5301/ Name the major parts of an optical microscope and state their functions. Review Problems on Optical Microscopy AP5301/8301-2015 1. Name the major parts of an optical microscope and state their functions. 2. Compare the focal lengths of two glass converging lenses, one with

More information

Optics Optical Testing and Testing Instrumentation Lab

Optics Optical Testing and Testing Instrumentation Lab Optics 513 - Optical Testing and Testing Instrumentation Lab Lab #6 - Interference Microscopes The purpose of this lab is to observe the samples provided using two different interference microscopes --

More information

Transmission Electron Microscope. Experimental Instruction

Transmission Electron Microscope. Experimental Instruction Transmission Electron Microscope Experimental Instruction In advanced practical course [F-Praktikum] Date: April 2017 Contents 1 Task 3 2 Theoretical Basics 3 2.1 Bragg Diffraction......................................

More information

tip conducting surface

tip conducting surface PhysicsAndMathsTutor.com 1 1. The diagram shows the tip of a scanning tunnelling microscope (STM) above a conducting surface. The tip is at a potential of 1.0 V relative to the surface. If the tip is sufficiently

More information

Wave Nature of Matter

Wave Nature of Matter Wave Nature of Matter Wave-Particle Duality de Broglie proposed that particles with momentum could have an associated wavelength (converse of photons having momentum) de Broglie wavelength h λ = p or p

More information

Applied Physics - II

Applied Physics - II F.E. Sem. II Applied Physics - II Time : Hrs.] Prelim Question Paper Solution [Marks : 60 Q.1 Attempt any Five questions of the following : [15] Q.1(a) Fringes of equal thickness are observed in a thin

More information

General Physics II Summer Session 2013 Review Ch - 16, 17, 18

General Physics II Summer Session 2013 Review Ch - 16, 17, 18 95.104 General Physics II Summer Session 2013 Review Ch - 16, 17, 18 A metal ball hangs from the ceiling by an insulating thread. The ball is attracted to a positivecharged rod held near the ball. The

More information

April 10th-12th, 2017

April 10th-12th, 2017 Thomas LaGrange, Ph.D. Faculty Lecturer and Senior Staff Scientist Introduction: Basics of Transmission Electron Microscopy (TEM) TEM Doctoral Course MS-637 April 10th-12th, 2017 Outline 1. What is microcopy?

More information

Matter Waves. Chapter 5

Matter Waves. Chapter 5 Matter Waves Chapter 5 De Broglie pilot waves Electromagnetic waves are associated with quanta - particles called photons. Turning this fact on its head, Louis de Broglie guessed : Matter particles have

More information

Coherence and width of spectral lines with Michelson interferometer

Coherence and width of spectral lines with Michelson interferometer Coherence and width of spectral lines TEP Principle Fraunhofer and Fresnel diffraction, interference, spatial and time coherence, coherence conditions, coherence length for non punctual light sources,

More information

Atomic and nuclear physics

Atomic and nuclear physics Atomic and nuclear physics Atomic shell Normal Zeeman effect LEYBOLD Physics Leaflets Observing the normal Zeeman effect in transverse and longitudinal configuration Spectroscopy with a Fabry-Perot etalon

More information

Einstein Classes, Unit No. 102, 103, Vardhman Ring Road Plaza, Vikas Puri Extn., Outer Ring Road New Delhi , Ph. : ,

Einstein Classes, Unit No. 102, 103, Vardhman Ring Road Plaza, Vikas Puri Extn., Outer Ring Road New Delhi , Ph. : , 1 O P T I C S 1. Define resolving power of a telescope & microscope and give the expression for its resolving power. 2. Explain briefly the formation of mirage in deserts. 3. The radii of curvature of

More information

Computations on Gabor lens having two different field distributions

Computations on Gabor lens having two different field distributions IOSR Journal of Applied Physics (IOSR-JAP) e-issn: 2278-4861.Volume 6, Issue 6 Ver. II (Nov.-Dec. 2014), PP 06-11 Computations on Gabor lens having two different field distributions Saif KamilShnain Department

More information

PHYSICS 253 SAMPLE FINAL EXAM. Student Number. The last two pages of the exam have some equations and some physical constants.

PHYSICS 253 SAMPLE FINAL EXAM. Student Number. The last two pages of the exam have some equations and some physical constants. PHYSICS 253 SAMPLE FINAL EXAM Name Student Number CHECK ONE: Instructor 1 10:00 Instructor 2 1:00 Note that problems 1-19 are worth 2 points each, while problem 20 is worth 15 points and problems 21 and

More information

Scanning Electron Microscopy

Scanning Electron Microscopy Scanning Electron Microscopy Field emitting tip Grid 2kV 100kV Anode ZEISS SUPRA Variable Pressure FESEM Dr Heath Bagshaw CMA bagshawh@tcd.ie Why use an SEM? Fig 1. Examples of features resolvable using

More information

Electron beam scanning

Electron beam scanning Electron beam scanning The Electron beam scanning operates through an electro-optical system which has the task of deflecting the beam Synchronously with cathode ray tube which create the image, beam moves

More information

Ecole Franco-Roumaine : Magnétisme des systèmes nanoscopiques et structures hybrides - Brasov, Modern Analytical Microscopic Tools

Ecole Franco-Roumaine : Magnétisme des systèmes nanoscopiques et structures hybrides - Brasov, Modern Analytical Microscopic Tools 1. Introduction Solid Surfaces Analysis Group, Institute of Physics, Chemnitz University of Technology, Germany 2. Limitations of Conventional Optical Microscopy 3. Electron Microscopies Transmission Electron

More information

Phase microscopy: Fresnel fringes in the TEM

Phase microscopy: Fresnel fringes in the TEM Phase microscopy: Fresnel fringes in the TEM Interferences between waves not being in phase overfocussed 2 waves propagating through different media (sample, vacuum) => difference of mean inner potentials

More information

Lecture 9: Introduction to Diffraction of Light

Lecture 9: Introduction to Diffraction of Light Lecture 9: Introduction to Diffraction of Light Lecture aims to explain: 1. Diffraction of waves in everyday life and applications 2. Interference of two one dimensional electromagnetic waves 3. Typical

More information

Techniques EDX, EELS et HAADF en TEM: possibilités d analyse et applications

Techniques EDX, EELS et HAADF en TEM: possibilités d analyse et applications Techniques EDX, EELS et HAADF en TEM: possibilités d analyse et applications Thomas Neisius Université Paul Cézanne Plan Imaging modes HAADF Example: supported Pt nanoparticles Electron sample interaction

More information

SEM Optics and Application to Current Research

SEM Optics and Application to Current Research SEM Optics and Application to Current Research Azure Avery May 28, 2008 1 Introduction 1.1 History The optical microscope was invented in the early 17th century. Although revolutionary, the earliest microscopes

More information

PHYSICS (042) CLASS-XII ( )

PHYSICS (042) CLASS-XII ( ) PHYSICS (042) CLASS-XII (2012-13) 0 CLASS XII PHYSICS (Theory) Time allowed: 3 hours Maximum Marks: 70 General Instructions: (i) All questions are compulsory. (ii) There is no overall choice. However an

More information

Supplementary Note 1 Description of the sample and thin lamella preparation Supplementary Figure 1 FeRh lamella prepared by FIB and used for in situ

Supplementary Note 1 Description of the sample and thin lamella preparation Supplementary Figure 1 FeRh lamella prepared by FIB and used for in situ Supplementary Note 1 Description of the sample and thin lamella preparation A 5nm FeRh layer was epitaxially grown on a go (1) substrate by DC sputtering using a co-deposition process from two pure Fe

More information

Experiment 3 The Simple Magnifier, Microscope, and Telescope

Experiment 3 The Simple Magnifier, Microscope, and Telescope Experiment 3 The Simple Magnifier, Microscope, and Telescope Introduction Experiments 1 and 2 dealt primarily with the measurement of the focal lengths of simple lenses and spherical s. The question of

More information

Formation of the diffraction pattern in the transmision electron microscope

Formation of the diffraction pattern in the transmision electron microscope Formation of the diffraction pattern in the transmision electron microscope based on: J-P. Morniroli: Large-angle convergent-beam diffraction (LACBED), 2002 Société Française des Microscopies, Paris. Selected

More information

Experiment #4 Nature of Light: Telescope and Microscope and Spectroscope

Experiment #4 Nature of Light: Telescope and Microscope and Spectroscope Experiment #4 Nature of Light: Telescope and Microscope and Spectroscope In this experiment, we are going to learn the basic principles of the telescope and the microscope that make it possible for us

More information

Waves Part III Electromagnetic waves

Waves Part III Electromagnetic waves Waves Part III Electromagnetic waves Electromagnetic (light) waves Transverse waves Transport energy (and momentum) Can travel through vacuum (!) and certain solids, liquids and gases Do not transport

More information

CHEM 681 Seminar Mingqi Zhao April 20, 1998 Room 2104, 4:00 p.m. High Resolution Transmission Electron Microscopy: theories and applications

CHEM 681 Seminar Mingqi Zhao April 20, 1998 Room 2104, 4:00 p.m. High Resolution Transmission Electron Microscopy: theories and applications CHEM 681 Seminar Mingqi Zhao April 20, 1998 Room 2104, 4:00 p.m. High Resolution Transmission Electron Microscopy: theories and applications In materials science, people are always interested in viewing

More information

3. How long will a radioactive isotope, whose half-life is T years, take for its activity to reduce to 1/8 th of its initial value?

3. How long will a radioactive isotope, whose half-life is T years, take for its activity to reduce to 1/8 th of its initial value? No. of printed pages:5 INDIAN SCHOOL SOHAR SECOND TERM EXAM- 2014 PHYSICS THEY CLASS: XII MARKS:70 DATE: 1 /12/2014 TIME:3hrs General Instructions: 1. All questions are compulsory. 2. There are 26 questions

More information

Quarterly. Electron Holography and Rock Magnetism. The IRM. Inside...

Quarterly. Electron Holography and Rock Magnetism. The IRM. Inside... Quarterly The IRM Winter 2007, Vol. 16 No. 4 Inside... page 2 Visiting Fellows Reports page 10 Current Articles Electron Holography and Rock Magnetism Joshua Feinberg 1,2 Richard Harrison 1 Takeshi Kasama

More information

Controlled double-slit electron diffraction

Controlled double-slit electron diffraction 1 Controlled double-slit electron diffraction Roger Bach 1, Damian Pope 2, Sy-Hwang Liou 1 and Herman Batelaan 1 1 Department of Physics and Astronomy, University of Nebraska-Lincoln, Theodore P. Jorgensen

More information

SEM stands for Scanning Electron Microscopy. The earliest known work describing

SEM stands for Scanning Electron Microscopy. The earliest known work describing 1. HISTORY ABOUT SEM SEM stands for Scanning Electron Microscopy. The earliest known work describing the concept of a Scanning Electron Microscope was by M. Knoll (1935) who, along with other pioneers

More information

M2 TP. Low-Energy Electron Diffraction (LEED)

M2 TP. Low-Energy Electron Diffraction (LEED) M2 TP Low-Energy Electron Diffraction (LEED) Guide for report preparation I. Introduction: Elastic scattering or diffraction of electrons is the standard technique in surface science for obtaining structural

More information

object objective lens eyepiece lens

object objective lens eyepiece lens Advancing Physics G495 June 2015 SET #1 ANSWERS Field and Particle Pictures Seeing with electrons The compound optical microscope Q1. Before attempting this question it may be helpful to review ray diagram

More information

Imaging Methods: Breath Patterns

Imaging Methods: Breath Patterns Imaging Methods: Breath Patterns Breath / condensation pattern: By cooling a substrate below the condensation temperature H 2 O will condense in different rates on the substrate with the nucleation rate

More information

Experiment 3 The Simple Magnifier, Microscope, and Telescope

Experiment 3 The Simple Magnifier, Microscope, and Telescope Experiment 3 The Simple Magnifier, Microscope, and Telescope Introduction Experiments 1 and 2 dealt primarily with the measurement of the focal lengths of simple lenses and spherical s. The question of

More information

QUANTUM PHYSICS. Limitation: This law holds well only for the short wavelength and not for the longer wavelength. Raleigh Jean s Law:

QUANTUM PHYSICS. Limitation: This law holds well only for the short wavelength and not for the longer wavelength. Raleigh Jean s Law: Black body: A perfect black body is one which absorbs all the radiation of heat falling on it and emits all the radiation when heated in an isothermal enclosure. The heat radiation emitted by the black

More information

Lecture 11: Introduction to diffraction of light

Lecture 11: Introduction to diffraction of light Lecture 11: Introduction to diffraction of light Diffraction of waves in everyday life and applications Diffraction in everyday life Diffraction in applications Spectroscopy: physics, chemistry, medicine,

More information

Analytical Methods for Materials

Analytical Methods for Materials Analytical Methods for Materials Lesson 21 Electron Microscopy and X-ray Spectroscopy Suggested Reading Leng, Chapter 3, pp. 83-126; Chapter 4, pp. 127-160; Chapter 6, pp. 191-219 P.J. Goodhew, J. Humphreys

More information

A) n 1 > n 2 > n 3 B) n 1 > n 3 > n 2 C) n 2 > n 1 > n 3 D) n 2 > n 3 > n 1 E) n 3 > n 1 > n 2

A) n 1 > n 2 > n 3 B) n 1 > n 3 > n 2 C) n 2 > n 1 > n 3 D) n 2 > n 3 > n 1 E) n 3 > n 1 > n 2 55) The diagram shows the path of a light ray in three different materials. The index of refraction for each material is shown in the upper right portion of the material. What is the correct order for

More information

P5 Revision Questions

P5 Revision Questions P5 Revision Questions Part 2 Question 1 How can microwaves be used to communicate? Answer 1 Sent from transmitter, received and amplified by satellite in space, re-transmitted back to earth and picked

More information

Chapter 4 Imaging Lecture 24

Chapter 4 Imaging Lecture 24 Chapter 4 Imaging Lecture 4 d (110) Final Exam Notice Time and Date: :30 4:30 PM, Wednesday, Dec. 10, 08. Place: Classroom CHEM-10 Coverage: All contents after midterm Open note Term project is due today

More information

EXPERIMENT NO. 8. OBJECT: To determine the wavelength of sodium light by method.

EXPERIMENT NO. 8. OBJECT: To determine the wavelength of sodium light by method. EXPERIMENT NO. 8 OBJECT: To determine the wavelength of sodium light by method. Fresnel s APPARATUS: Optical bench with four uprights, a sodium lamp, Fresnel s, a convex lens and micrometer eyepiece. DIAGRAM:

More information

National Laboratory. 1. Introduction

National Laboratory. 1. Introduction Contents electron optics instrumentation Volume 36E Number 1 July 10, 2001 Performance and Capabilities of JEM-3000F to Advanced Materials Characterization at Brookhaven National Laboratory.............

More information

Population inversion occurs when there are more atoms in the excited state than in the ground state. This is achieved through the following:

Population inversion occurs when there are more atoms in the excited state than in the ground state. This is achieved through the following: Lasers and SemiconductorsTutorial Lasers 1. Fill in the table the differences between spontaneous emission and stimulated emission in atoms: External stimulus Direction of emission Phase & coherence of

More information

I live in this atom, with my other electron brothers

I live in this atom, with my other electron brothers Hello, my name is Electron, John Electron. I am going to tell you how my work is in an electron microscope. I live in this atom, with my other electron brothers The filament crowns the column of the electron

More information

PHY410 Optics Exam #3

PHY410 Optics Exam #3 PHY410 Optics Exam #3 NAME: 1 2 Multiple Choice Section - 5 pts each 1. A continuous He-Ne laser beam (632.8 nm) is chopped, using a spinning aperture, into 500 nanosecond pulses. Compute the resultant

More information

Practical course in scanning electron microscopy

Practical course in scanning electron microscopy Practical course in scanning electron microscopy Fortgeschrittenen Praktikum an der Technischen Universität München Wintersemester 2017/2018 Table of contents 1. Introduction 3 2. Formation of an electron

More information

Chapter 2 Structure and Imaging of a Transmission Electron Microscope (TEM)

Chapter 2 Structure and Imaging of a Transmission Electron Microscope (TEM) Chapter 2 Structure and Imaging of a Transmission Electron Microscope (TEM) In this chapter, we overview the structure of a transmission electron microscope (TEM) for nanoimaging, and mathematical descriptions

More information

Confocal Microscopy Imaging of Single Emitter Fluorescence and Hanbury Brown and Twiss Photon Antibunching Setup

Confocal Microscopy Imaging of Single Emitter Fluorescence and Hanbury Brown and Twiss Photon Antibunching Setup 1 Confocal Microscopy Imaging of Single Emitter Fluorescence and Hanbury Brown and Twiss Photon Antibunching Setup Abstract Jacob Begis The purpose of this lab was to prove that a source of light can be

More information

KENDRIYA VIDYALAYA SANGATHAN, HYDERABAD REGION

KENDRIYA VIDYALAYA SANGATHAN, HYDERABAD REGION KENDRIYA VIDYALAYA SANGATHAN, HYDERABAD REGION SAMPLE PAPER 1 (217-18) SUBJECT: PHYSICS (43) BLUE PRINT : CLASS XII UNIT VSA (1 mark) SA - I (2 marks) SA II (3 marks) VBQ (4 marks) LA (5 marks) Total I

More information

Profs. Y. Takano, P. Avery, S. Hershfield. Final Exam Solution

Profs. Y. Takano, P. Avery, S. Hershfield. Final Exam Solution PHY2049 Fall 2008 Profs. Y. Takano, P. Avery, S. Hershfield Final Exam Solution Note that each problem has three versions, each with different numbers and answers (separated by ). The numbers for each

More information

5. LIGHT MICROSCOPY Abbe s theory of imaging

5. LIGHT MICROSCOPY Abbe s theory of imaging 5. LIGHT MICROSCOPY. We use Fourier optics to describe coherent image formation, imaging obtained by illuminating the specimen with spatially coherent light. We define resolution, contrast, and phase-sensitive

More information

2013 DSE PHYSICS/ COMBINED SCIENCE (PHYSICS) IB-2 H K LAU W I TANG

2013 DSE PHYSICS/ COMBINED SCIENCE (PHYSICS) IB-2 H K LAU W I TANG 2013 DSE PHYSICS/ COMBINED SCIENCE (PHYSICS) IB-2 H K LAU W I TANG QUESTION 7 (a) c = f => 310 8 m s 1 = f (0.02 m) [1M] 1M for correct substitution f = 1.5 10 10 Hz or 15000 MHz [1A] - Mistook the speed

More information

Version 087 EX4 ditmire (58335) 1

Version 087 EX4 ditmire (58335) 1 Version 087 EX4 ditmire (58335) This print-out should have 3 questions. Multiple-choice questions ma continue on the next column or page find all choices before answering. 00 (part of ) 0.0 points A material

More information

OPSE FINAL EXAM Fall 2016 YOU MUST SHOW YOUR WORK. ANSWERS THAT ARE NOT JUSTIFIED WILL BE GIVEN ZERO CREDIT.

OPSE FINAL EXAM Fall 2016 YOU MUST SHOW YOUR WORK. ANSWERS THAT ARE NOT JUSTIFIED WILL BE GIVEN ZERO CREDIT. CLOSED BOOK. Equation Sheet is provided. YOU MUST SHOW YOUR WORK. ANSWERS THAT ARE NOT JUSTIFIED WILL BE GIVEN ZERO CREDIT. ALL NUMERICAL ANSERS MUST HAVE UNITS INDICATED. (Except dimensionless units like

More information

Molecular electron microscopy

Molecular electron microscopy Molecular electron microscopy - Imaging macromolecular assemblies Yifan Cheng Department of Biochemistry & Biophysics office: GH-S427B; email: ycheng@ucsf.edu 2/22/2013 - Introduction of Molecular Microscopy:

More information

The Zeeman Effect refers to the splitting of spectral

The Zeeman Effect refers to the splitting of spectral Calculation of the Bohr Magneton Using the Zeeman Effect Robert Welch Abstract The Zeeman Effect was predicted by Hendrik Lorentz and first observed by Pieter Zeeman in 1896. It refers to the splitting

More information

Spatial Frequency and Transfer Function. columns of atoms, where the electrostatic potential is higher than in vacuum

Spatial Frequency and Transfer Function. columns of atoms, where the electrostatic potential is higher than in vacuum Image Formation Spatial Frequency and Transfer Function consider thin TEM specimen columns of atoms, where the electrostatic potential is higher than in vacuum electrons accelerate when entering the specimen

More information

Displacement and Strain Measurement Using Gratings

Displacement and Strain Measurement Using Gratings Presentation at CSC015 Chung Yuan Christian University March 0-1 Grating, Moire, and Speckle Methods for Measuring Displacement, Shape, Slope, and Curvature Fu-pen Chiang SUNY Distinguished Professor &

More information

Analysis of the signal fall-off in spectral domain optical coherence tomography systems

Analysis of the signal fall-off in spectral domain optical coherence tomography systems Analysis of the signal fall-off in spectral domain optical coherence tomography systems M. Hagen-Eggert 1,2,P.Koch 3, G.Hüttmann 2 1 Medical Laser Center Lübeck, Germany 2 Institute of Biomedical Optics

More information

Quantum Interference and Duality

Quantum Interference and Duality Quantum Interference and Duality Kiyohide NOMURA Department of Physics December 21, 2016 1 / 49 Quantum Physics(Mechanics) Basic notion of Quantum Physics: Wave-Particle Duality Light (electromagnetic

More information

DIFFRACTION PHYSICS THIRD REVISED EDITION JOHN M. COWLEY. Regents' Professor enzeritus Arizona State University

DIFFRACTION PHYSICS THIRD REVISED EDITION JOHN M. COWLEY. Regents' Professor enzeritus Arizona State University DIFFRACTION PHYSICS THIRD REVISED EDITION JOHN M. COWLEY Regents' Professor enzeritus Arizona State University 1995 ELSEVIER Amsterdam Lausanne New York Oxford Shannon Tokyo CONTENTS Preface to the first

More information

b. Which bulb is brightest? Justify your answer.

b. Which bulb is brightest? Justify your answer. Physics 2080 Final Exam Problems Due April 28, 2011 Instructions: This is part of the final exam. Books and notes are allowed, but all work should be YOUR OWN. Do not work in groups; every student should

More information

Lecture 9: Introduction to QM: Review and Examples

Lecture 9: Introduction to QM: Review and Examples Lecture 9: Introduction to QM: Review and Examples S 1 S 2 Lecture 9, p 1 Photoelectric Effect V stop (v) KE e V hf F max stop Binding energy F The work function: F is the minimum energy needed to strip

More information

MSE 321 Structural Characterization

MSE 321 Structural Characterization Auger Spectroscopy Auger Electron Spectroscopy (AES) Scanning Auger Microscopy (SAM) Incident Electron Ejected Electron Auger Electron Initial State Intermediate State Final State Physical Electronics

More information

5. 3P PIV Measurements

5. 3P PIV Measurements Micro PIV Last Class: 1. Data Validation 2. Vector Field Operator (Differentials & Integrals) 3. Standard Differential Scheme 4. Implementation of Differential & Integral quantities with PIV data 5. 3P

More information

Chapter (5) Matter Waves

Chapter (5) Matter Waves Chapter (5) Matter Waves De Broglie wavelength Wave groups Consider a one- dimensional wave propagating in the positive x- direction with a phase speed v p. Where v p is the speed of a point of constant

More information

Characterization of MEMS Devices

Characterization of MEMS Devices MEMS: Characterization Characterization of MEMS Devices Prasanna S. Gandhi Assistant Professor, Department of Mechanical Engineering, Indian Institute of Technology, Bombay, Recap Fabrication of MEMS Conventional

More information

UNIT-5 EM WAVES UNIT-6 RAY OPTICS

UNIT-5 EM WAVES UNIT-6 RAY OPTICS UNIT-5 EM WAVES 2 Marks Question 1. To which regions of electromagnetic spectrum do the following wavelengths belong: (a) 250 nm (b) 1500 nm 2. State any one property which is common to all electromagnetic

More information

Experimental realisation of the weak measurement process

Experimental realisation of the weak measurement process Experimental realisation of the weak measurement process How do you do a strong and weak measurement. Two experiments using photons - Modified Stern-Gerlach - Youngs s 2-slit experiment Preliminary thoughts

More information

LC circuit: Energy stored. This lecture reviews some but not all of the material that will be on the final exam that covers in Chapters

LC circuit: Energy stored. This lecture reviews some but not all of the material that will be on the final exam that covers in Chapters Disclaimer: Chapter 29 Alternating-Current Circuits (1) This lecture reviews some but not all of the material that will be on the final exam that covers in Chapters 29-33. LC circuit: Energy stored LC

More information

Efficient sorting of orbital angular momentum states of light

Efficient sorting of orbital angular momentum states of light CHAPTER 6 Efficient sorting of orbital angular momentum states of light We present a method to efficiently sort orbital angular momentum (OAM) states of light using two static optical elements. The optical

More information

Optics. Measuring the line spectra of inert gases and metal vapors using a prism spectrometer. LD Physics Leaflets P

Optics. Measuring the line spectra of inert gases and metal vapors using a prism spectrometer. LD Physics Leaflets P Optics Spectrometer Prism spectrometer LD Physics Leaflets P5.7.1.1 Measuring the line spectra of inert gases and metal vapors using a prism spectrometer Objects of the experiment Adjusting the prism spectrometer.

More information

CHARACTERIZATION of NANOMATERIALS KHP

CHARACTERIZATION of NANOMATERIALS KHP CHARACTERIZATION of NANOMATERIALS Overview of the most common nanocharacterization techniques MAIN CHARACTERIZATION TECHNIQUES: 1.Transmission Electron Microscope (TEM) 2. Scanning Electron Microscope

More information

Chapter 10: Wave Properties of Particles

Chapter 10: Wave Properties of Particles Chapter 10: Wave Properties of Particles Particles such as electrons may demonstrate wave properties under certain conditions. The electron microscope uses these properties to produce magnified images

More information

For more sample papers visit :

For more sample papers visit : For more sample papers visit : www.4ono.com PHYSCS Paper 1 (THEORY) (Three hours) (Candidates are allowed additional 15 minutes for only reading the paper. They must NOT start writing during this time)

More information

Physical Principles of Electron Microscopy. 2. Electron Optics

Physical Principles of Electron Microscopy. 2. Electron Optics Physical Principles of Electron Microscopy 2. Electron Optics Ray Egerton University of Alberta and National Institute of Nanotechnology Edmonton, Canada www.tem-eels.ca regerton@ualberta.ca Properties

More information

Determination of mean inner potential of germanium using off-axis electron holography

Determination of mean inner potential of germanium using off-axis electron holography 652 Acta Cryst. (1999). A55, 652±658 Determination of mean inner potential of germanium using off-axis electron holography Jing Li, a * M. R. McCartney, b R. E. Dunin-Borkowski b and David J. Smith a a

More information

MIDTERM 3 REVIEW SESSION. Dr. Flera Rizatdinova

MIDTERM 3 REVIEW SESSION. Dr. Flera Rizatdinova MIDTERM 3 REVIEW SESSION Dr. Flera Rizatdinova Summary of Chapter 23 Index of refraction: Angle of reflection equals angle of incidence Plane mirror: image is virtual, upright, and the same size as the

More information

SIMG Optics for Imaging Solutions to Final Exam

SIMG Optics for Imaging Solutions to Final Exam SIMG-733-009 Optics for Imaging Solutions to Final Exam. An imaging system consists of two identical thin lenses each with focal length f = f = +300 mm and diameter d = d =50mm. The lenses are separated

More information

Optical Instruments. Chapter 25. Simple Magnifier. Clicker 1. The Size of a Magnified Image. Angular Magnification 4/12/2011

Optical Instruments. Chapter 25. Simple Magnifier. Clicker 1. The Size of a Magnified Image. Angular Magnification 4/12/2011 Optical Instruments Chapter 25 Optical Instruments Analysis generally involves the laws of reflection and refraction Analysis uses the procedures of geometric optics To explain certain phenomena, the wave

More information

Diffraction at a slit and Heisenberg's uncertainty principle (Item No.: P )

Diffraction at a slit and Heisenberg's uncertainty principle (Item No.: P ) Diffraction at a slit and Heisenberg's uncertainty principle (Item No.: P2230100) Curricular Relevance Area of Expertise: ILIAS Education Level: Physik Topic: Hochschule Subtopic: Licht und Optik Experiment:

More information

November 30th -December 2 nd, st 2nd 3rd. 8:15 7)HRTEM 10) TEM imaging and diffraction examples. 9:15 8)HRTEM 10) Diffraction going further

November 30th -December 2 nd, st 2nd 3rd. 8:15 7)HRTEM 10) TEM imaging and diffraction examples. 9:15 8)HRTEM 10) Diffraction going further Thomas LaGrange, Ph.D. Faculty and Staff Scientist Introduction: Basics of Transmission Electron Microscopy (TEM) TEM Doctoral Course MS-637 November 30th -December 2 nd, 2015 Planning MSE-637 TEM -basics

More information

Characterization of the magnetic properties of a GdBa 2 Cu 3 O 7 /La 0.75 Sr 0.25 MnO 3 superlattice using off-axis electron holography

Characterization of the magnetic properties of a GdBa 2 Cu 3 O 7 /La 0.75 Sr 0.25 MnO 3 superlattice using off-axis electron holography Applied Surface Science 252 (2006) 3977 3983 www.elsevier.com/locate/apsusc Characterization of the magnetic properties of a GdBa 2 Cu 3 O 7 /La 0.75 Sr 0.25 MnO 3 superlattice using off-axis electron

More information

Phys102 Lecture Diffraction of Light

Phys102 Lecture Diffraction of Light Phys102 Lecture 31-33 Diffraction of Light Key Points Diffraction by a Single Slit Diffraction in the Double-Slit Experiment Limits of Resolution Diffraction Grating and Spectroscopy Polarization References

More information

BLUE PRINT FOR MODEL QUESTION PAPER 4

BLUE PRINT FOR MODEL QUESTION PAPER 4 Unit Chapter Teaching Hours Marks allotted (VSA) mark (SA) 3 mark (SA) 5 mark (LA) 5 mark (NP) BLUE PRINT FOR MODEL QUESTION PAPER 4 SUBJECT : PHYSICS (33) CLASS : II PUC Topic Electric Charges and Fields

More information

MEMS Metrology. Prof. Tianhong Cui ME 8254

MEMS Metrology. Prof. Tianhong Cui ME 8254 MEMS Metrology Prof. Tianhong Cui ME 8254 What is metrology? Metrology It is the science of weights and measures Refers primarily to the measurements of length, weight, time, etc. Mensuration- A branch

More information

Information on the Particle Dynamics Analysis (PDA) measurements

Information on the Particle Dynamics Analysis (PDA) measurements Information on the Particle Dynamics Analysis (PDA) measurements Contents Contents... Introduction... Properties of the PDA System... Measurement principles []... Information on the variables in each column

More information

Conventional Transmission Electron Microscopy. Introduction. Text Books. Text Books. EMSE-509 CWRU Frank Ernst

Conventional Transmission Electron Microscopy. Introduction. Text Books. Text Books. EMSE-509 CWRU Frank Ernst Text Books Conventional Transmission Electron Microscopy EMSE-509 CWRU Frank Ernst D. B. Williams and C. B. Carter: Transmission Electron Microscopy, New York: Plenum Press (1996). L. Reimer: Transmission

More information