3.5 Double Angle Identities

Size: px
Start display at page:

Download "3.5 Double Angle Identities"

Transcription

1 3.5. Double Angle Identities Double Angle Identities Learning Objectives Use the double angle identities to solve other identities. Use the double angle identities to solve equations. Deriving the Double Angle Identities One of the formulas for calculating the sum of two angles is: sin(α+β)sinαcosβ+cosαsinβ If α and β are both the same angle in the above formula, then sin(α+α)sinαcosα+cosαsinα sinαsinαcosα This is the double angle formula for the sine function. The same procedure can be used in the sum formula for cosine, start with the sum angle formula: cos(α+β)cosαcosβ sinαsinβ If α and β are both the same angle in the above formula, then cos(α+α)cosαcosα sinαsinα cosαcos α sin α This is one of the double angle formulas for the cosine function. Two more formulas can be derived by using the Pythagorean Identity, sin α+cos α1. sin α1 cos α and likewise cos α1 sin α Using sin α1 cos α : Using cos α1 sin α : cosαcos α sin α cosαcos α sin α cos α (1 cos α) (1 sin α) sin α cos α 1+cos α 1 sin α sin α cos α 1 1 sin α 6

2 Chapter 3. Trigonometric Identities and Equations Therefore, the double angle formulas for cosa are: cosαcos α sin α cosαcos α 1 cosα1 sin α Finally, we can calculate the double angle formula for tangent, using the tangent sum formula: tan(α+β) tanα+tanβ 1 tanαtanβ If α and β are both the same angle in the above formula, then tan(α+α) tanα+tanα 1 tanαtanα tanα tanα 1 tan α Applying the Double Angle Identities Example 1: If sina 5 13 and a is in Quadrant II, find sina, cosa, and tana. Solution: To use sinasinacosa, the value of cosa must be found first.. cos a+sin a1 ( ) 5 cos a cos a cos a ,cosa±1 13 However since a is in Quadrant II, cosa is negative or cosa For cosa, use cos(a)cos a sin a ( ) ( 5 sinasinacosa 1 ) sina ( cos(a) 1 ) ( ) 5 or cos(a)

3 3.5. Double Angle Identities For tana, use tana tana 5. From above, tana 1 tan 13 a 1 13 Example : Find cos4θ. tan(a) ( 5 1 Solution: Think of cos4θ as cos(θ+θ). ) cos4θcos(θ+θ)cosθcosθ sinθsinθcos θ sin θ Now, use the double angle formulas for both sine and cosine. For cosine, you can pick which formula you would like to use. In general, because we are proving a cosine identity, stay with cosine. (cos θ 1) (sinθcosθ) 4cos 4 θ 4cos θ+1 4sin θcos θ 4cos 4 θ 4cos θ+1 4(1 cos θ)cos θ 4cos 4 θ 4cos θ+1 4cos θ+4cos 4 θ 8cos 4 θ 8cos θ+1 Example 3: If cotx 4 3 and x is an acute angle, find the exact value of tanx. Solution: Cotangent and tangent are reciprocal functions, tanx 1 cotx and tanx 3 4. tanx tanx 1 tan x ( ) Example 4: Given sin(x) 3 and x is in Quadrant I, find the value of sinx. Solution: Using the double angle formula, sin x sin x cos x. Because we do not know cos x, we need to solve for cosx in the Pythagorean Identity, cosx 1 sin x. Substitute this into our formula and solve for sinx. 8 sinxsinxcosx 3 sinx 1 sin x ( ) ) ( sinx 1 sin x sin x(1 sin x) 4 9 4sin x 4sin 4 x

4 Chapter 3. Trigonometric Identities and Equations At this point we need to get rid of the fraction, so multiply both sides by the reciprocal. ( ) sin x 4sin 4 x 19sin x 9sin 4 x 09sin 4 x 9sin x+1 Now, this is in the form of a quadratic equation, even though it is a quartic. Set a sin x, making the equation 9a 9a+10. Once we have solved for a, then we can substitute sin x back in and solve for x. In the Quadratic Formula, a9,b 9,c1. 9± ( 9) 4(9)(1) (9) 9± ± ± ± 5 6 So, a or This means that sin x or.173 so sinx or sinx.357. Example 5: Prove tanθ 1 cosθ sinθ Solution: Substitute in the double angle formulas. Use cosθ1 sin θ, since it will produce only one term in the numerator. tanθ 1 (1 sin θ) sinθcosθ sin θ sinθcosθ sinθ cosθ tanθ Solving Equations with Double Angle Identities Much like the previous sections, these problems all involve similar steps to solve for the variable. trigonometric function, using any of the identities and formulas you have accumulated thus far. Example 6: Find all solutions to the equation sinxcosx in the interval[0,π] Solution: Apply the double angle formula sin x sin x cos x Isolate the 9

5 3.5. Double Angle Identities sinxcosxcosx sinxcosx cosxcosx cosx sinxcosx cosx0 cosx(sinx 1)0 Factor out cosx Then cosx0 or sinx 10 cosx0 or sinx sinx 1 sinx 1 The values for cosx0 in the interval[0,π] are x π and x 3π and the values for sinx 1 in the interval[0,π] are x π 6 and x 5π 6. Thus, there are four solutions. Example 7: Solve the trigonometric equation sin x sin x such that( π x < π) Solution: Using the sine double angle formula: sinxsinx sinxcosx sinx sinxcosx sinx0 sinx(cosx 1)0 ց cosx 10 cosx1 sinx0 x0, π cosx 1 x π 3, π 3 Example 8: Find the exact value of cosx given cosx if x is in the second quadrant. Solution: Use the double-angle formula with cosine only. 30

6 Chapter 3. Trigonometric Identities and Equations cosxcos x 1 ( cosx 13 ) 1 14 ( ) 169 cosx ( ) 338 cosx cosx cosx Example 9: Solve the trigonometric equation 4sinθcosθ 3 over the interval[0,π). Solution: Pull out a from the left-hand side and this is the formula for sinx. 4sinθcosθ 3 (sinθcosθ) 3 (sinθcosθ)sinθ sinθ 3 3 sinθ The solutions for θ are π 3, π 3, 7π 3, 8π 3, dividing each of these by, we get the solutions for θ, which are π 6, π 3, 7π 6, 8π 6. Points to Consider Are there similar formulas that can be derived for other angles? Can technology be used to either solve these trigonometric equations or to confirm the solutions? Review Questions 1. If sinx 4 5 and x is in Quad II, find the exact values of cosx,sinx and tanx. Find the exact value of cos 15 sin Verify the identity: cos3θ4cos 3 θ 3cosθ 4. Verify the identity: sint tant tant cost 5. If sinx 9 41 and x is in Quad III, find the exact values of cosx,sinx and tanx 6. Find all solutions to sinx+sinx0 if 0 x<π 7. Find all solutions to cos x cosx0 if 0 x<π 8. If tanx 3 4 and 0 < x<90, use the double angle formulas to determine each of the following: a. tanx b. sin x 31

7 3.5. Double Angle Identities c. cosx 9. Use the double angle formulas to prove that the following equations are identities. a. cscxcsc xtanx b. cos 4 θ sin 4 θcosθ c. sinx 1+cosx tanx 10. Solve the trigonometric equation cosx 1sin x such that[0,π) 11. Solve the trigonometric equation cos x cos x such that 0 x < π 1. Prove cscxtanxsec x. 13. Solve sinx cosx1 for x in the interval[0,π). 14. Solve the trigonometric equation sin x cosx such that 0 x<π Review Answers 1. If sinx 4 5 and in Quadrant II, then cosine and tangent are negative. Also, by the Pythagorean Theorem, the third side is 3(b 5 4 ). So, cosx 3 5 and tanx 4 3. Using this, we can find sinx,cosx, and tan x. sinxsinxcosx This is one of the forms for cosx. cosx1 sin x tanx tanx 1 tan x ( ) ( ) cos 15 sin 15 cos(15 ) cos Step 1: Use the cosine sum formula cos3θ4cos 3 θ 3cosθ cos(θ+θ)cosθcosθ sinθsinθ Step : Use double angle formulas for cosθ and sinθ (cos θ 1)cosθ (sinθcosθ)sinθ 3

8 Chapter 3. Trigonometric Identities and Equations Step 3: Distribute and simplify. cos 3 θ cosθ sin θcosθ cosθ( cos θ+sin θ+1) cosθ[ cos θ+(1 cos θ)+1] cosθ[ cos θ+ cos θ+1] cosθ( 4cos θ+3) 4cos 3 θ 3cosθ Substitute 1 cos θ for sin θ 4. Step 1: Expand sint using the double angle formula. Step : change tant and find a common denominator. 5. If sinx 9 41 So, 6. Step 1: Expand sin x sint tant tant cost sint cost tant tant cost sint cost sint cost sint cos t sint cost sint(cos t 1) cost sint cost (cos t 1) tant cost and in Quadrant III, then cosx and tanx 9 40 (Pythagorean Theorem, b 41 ( 9) ). cosx cos x 1 ( sinxsinxcosx 40 ) 1 tanx sinx 41 cosx Step : Separate and solve each for x sinx+sinx0 sinxcosx+sinx0 sinx(cosx+1)0 cosx sinx0 cosx 1 x0,π or x π 3, 4π 3 33

9 3.5. Double Angle Identities 7. Expand cosx and simplify cos x cosx0 cos x (cos x 1)0 cos x+10 cos x1 cosx±1 cosx1 when x0, and cosx 1 when xπ. Therefore, the solutions are x0,π. 8. a b c a. cscx x sinx cscx x sinxcosx 1 cscx x ( sinxcosx )( ) sinx 1 cscx x sinx sinxcosx cscx x sinx sin xcosx cscx x 1 sin x sinx cosx cscx xcsc xtanx b. cos 4 θ sin 4 θ(cos θ+sin θ)(cos θ sin θ) cos 4 sin 4 θ1(cos θ sin θ) cosθcos θ sin θ cos 4 θ sin 4 θcosθ 34 c. sinx 1+cosx sinxcosx 1+(1 sin x) sinx 1+cosx sinxcosx sin x sinx 1+cosx sinxcosx (1 sin x) sinx 1+cosx sinxcosx cos x sinx 1+cosx sinx cosx sinx 1+cosx tanx

10 Chapter 3. Trigonometric Identities and Equations 10. cosx 1sin x (1 sin x) 1sin x sin xsin x 03sin x 0sin x 0sinx x0,π 11. cosxcosx cos x 1cosx cos x cosx 10 (cosx+1)(cosx 1)0 ց ց cosx+10 or cosx 10 cosx 1 cosx1 cosx 1 1. cosx1 when x0 and cosx 1 when x π 3. cscxtanxsec x sinx sinx cosx 1 cos x sinxcosx sinx cosx 1 cos x 1 cos x 1 cos x 35

11 3.5. Double Angle Identities sinx cosx1 sinxcosx (1 sin x)1 sinxcosx 1+sin x1 sinxcosx+sin x sinxcosx+sin x1 sinxcosx1 sin x sinxcosxcos x ( ) ± 1 cos x cosxcos x ( 1 cos x ) cos xcos 4 x cos x cos 4 xcos 4 x cos x cos 4 x0 cos x(1 cos x)0 ւ ց 1 cos x0 cos x0 cos x 1 cosx0 or cos x 1 x π, 3π cosx± x π 4, 5π 4 Note: If we go back to the equation sinxcosx cos x, we can see that sinxcosx must be positive or zero, since cos x is always positive or zero. For this reason, sinx and cosx must have the same sign (or one of them must be zero), which means that x cannot be in the second or fourth quadrants. This is why 3π 4 and 7π 4 are not valid solutions. 14. Use the double angle identity for cosx. sin x cosx sin x cosx sin x 1 sin x 3sin x3 sin x1 sinx±1 x π, 3π 36

3.1 Fundamental Identities

3.1 Fundamental Identities www.ck.org Chapter. Trigonometric Identities and Equations. Fundamental Identities Introduction We now enter into the proof portion of trigonometry. Starting with the basic definitions of sine, cosine,

More information

Trigonometric Identities and Equations

Trigonometric Identities and Equations Trigonometric Identities and Equations Art Fortgang, (ArtF) Lori Jordan, (LoriJ) Say Thanks to the Authors Click http://www.ck.org/saythanks (No sign in required) To access a customizable version of this

More information

Sum-to-Product and Product-to-Sum Formulas

Sum-to-Product and Product-to-Sum Formulas Sum-to-Product and Product-to-Sum Formulas By: OpenStaxCollege The UCLA marching band (credit: Eric Chan, Flickr). A band marches down the field creating an amazing sound that bolsters the crowd. That

More information

6.1: Verifying Trigonometric Identities Date: Pre-Calculus

6.1: Verifying Trigonometric Identities Date: Pre-Calculus 6.1: Verifying Trigonometric Identities Date: Pre-Calculus Using Fundamental Identities to Verify Other Identities: To verify an identity, we show that side of the identity can be simplified so that it

More information

PRE-CALCULUS TRIG APPLICATIONS UNIT Simplifying Trigonometric Expressions

PRE-CALCULUS TRIG APPLICATIONS UNIT Simplifying Trigonometric Expressions What is an Identity? PRE-CALCULUS TRIG APPLICATIONS UNIT Simplifying Trigonometric Expressions What is it used for? The Reciprocal Identities: sin θ = cos θ = tan θ = csc θ = sec θ = ctn θ = The Quotient

More information

Practice 14. imathesis.com By Carlos Sotuyo

Practice 14. imathesis.com By Carlos Sotuyo Practice 4 imathesis.com By Carlos Sotuyo Suggested solutions for Miscellaneous exercises 0, problems 5-0, pages 53 to 55 from Pure Mathematics, by Hugh Neil and Douglas Quailing, Cambridge University

More information

Trigonometric Identities

Trigonometric Identities Trigonometric Identities Bradley Hughes Larry Ottman Lori Jordan Mara Landers Andrea Hayes Brenda Meery Art Fortgang Say Thanks to the Authors Click http://www.ck1.org/saythanks (No sign in required) To

More information

Math Analysis Chapter 5 Notes: Analytic Trigonometric

Math Analysis Chapter 5 Notes: Analytic Trigonometric Math Analysis Chapter 5 Notes: Analytic Trigonometric Day 9: Section 5.1-Verifying Trigonometric Identities Fundamental Trig Identities Reciprocal Identities: 1 1 1 sin u = cos u = tan u = cscu secu cot

More information

secθ 1 cosθ The pythagorean identities can also be expressed as radicals

secθ 1 cosθ The pythagorean identities can also be expressed as radicals Basic Identities Section Objectives: Students will know how to use fundamental trigonometric identities to evaluate trigonometric functions and simplify trigonometric expressions. We use trig. identities

More information

CK- 12 Algebra II with Trigonometry Concepts 1

CK- 12 Algebra II with Trigonometry Concepts 1 14.1 Graphing Sine and Cosine 1. A.,1 B. (, 1) C. 3,0 D. 11 1, 6 E. (, 1) F. G. H. 11, 4 7, 1 11, 3. 3. 5 9,,,,,,, 4 4 4 4 3 5 3, and, 3 3 CK- 1 Algebra II with Trigonometry Concepts 1 4.ans-1401-01 5.

More information

CK-12 Trigonometry - Second Edition, Solution Key

CK-12 Trigonometry - Second Edition, Solution Key CK-1 Trigonometry - Second Edition, Solution Key CK-1 Foundation Say Thanks to the Authors Click http://www.ck1.org/saythanks (No sign in required) www.ck1.org To access a customizable version of this

More information

TOPIC GENERAL SOLUTIONS OF TRIGONOMETRIC EQUATIONS VIRUPAXI. B.DODAMANI

TOPIC GENERAL SOLUTIONS OF TRIGONOMETRIC EQUATIONS VIRUPAXI. B.DODAMANI TOPIC GENERAL SOLUTIONS OF TRIGONOMETRIC EQUATIONS VIRUPAXI. B.DODAMANI Lecturer in Mathematics Govt Chintamanrao P.U College Belgaum Ph:9448705877 Email:virupaxi.dodamani@rediffmail.com 1) One of the

More information

Sum and Difference Identities

Sum and Difference Identities Sum and Difference Identities By: OpenStaxCollege Mount McKinley, in Denali National Park, Alaska, rises 20,237 feet (6,168 m) above sea level. It is the highest peak in North America. (credit: Daniel

More information

3.1 Fundamental Identities

3.1 Fundamental Identities www.ck.org Chapter. Trigonometric Identities and Equations. Fundamental Identities Introduction We now enter into the proof portion of trigonometry. Starting with the basic definitions of sine, cosine,

More information

1.3 Basic Trigonometric Functions

1.3 Basic Trigonometric Functions www.ck1.org Chapter 1. Right Triangles and an Introduction to Trigonometry 1. Basic Trigonometric Functions Learning Objectives Find the values of the six trigonometric functions for angles in right triangles.

More information

Using this definition, it is possible to define an angle of any (positive or negative) measurement by recognizing how its terminal side is obtained.

Using this definition, it is possible to define an angle of any (positive or negative) measurement by recognizing how its terminal side is obtained. Angle in Standard Position With the Cartesian plane, we define an angle in Standard Position if it has its vertex on the origin and one of its sides ( called the initial side ) is always on the positive

More information

Solving Equations. Pure Math 30: Explained! 255

Solving Equations. Pure Math 30: Explained!   255 Solving Equations Pure Math : Explained! www.puremath.com 55 Part One - Graphically Solving Equations Solving trigonometric equations graphically: When a question asks you to solve a system of trigonometric

More information

Core Mathematics 3 Trigonometry

Core Mathematics 3 Trigonometry Edexcel past paper questions Core Mathematics 3 Trigonometry Edited by: K V Kumaran Email: kvkumaran@gmail.com Core Maths 3 Trigonometry Page 1 C3 Trigonometry In C you were introduced to radian measure

More information

weebly.com/ Core Mathematics 3 Trigonometry

weebly.com/ Core Mathematics 3 Trigonometry http://kumarmaths. weebly.com/ Core Mathematics 3 Trigonometry Core Maths 3 Trigonometry Page 1 C3 Trigonometry In C you were introduced to radian measure and had to find areas of sectors and segments.

More information

Practice 14. imathesis.com By Carlos Sotuyo

Practice 14. imathesis.com By Carlos Sotuyo Practice 4 imathesis.com By Carlos Sotuyo Suggested solutions for Miscellaneous exercises 0, problems 5-0, pages 53 to 55 from Pure Mathematics, by Hugh Neil and Douglas Quailing, Cambridge University

More information

Lesson 33 - Trigonometric Identities. Pre-Calculus

Lesson 33 - Trigonometric Identities. Pre-Calculus Lesson 33 - Trigonometric Identities Pre-Calculus 1 (A) Review of Equations An equation is an algebraic statement that is true for only several values of the variable The linear equation 5 = 2x 3 is only

More information

Unit 6 Trigonometric Identities Prove trigonometric identities Solve trigonometric equations

Unit 6 Trigonometric Identities Prove trigonometric identities Solve trigonometric equations Unit 6 Trigonometric Identities Prove trigonometric identities Solve trigonometric equations Prove trigonometric identities, using: Reciprocal identities Quotient identities Pythagorean identities Sum

More information

Section 7.3 Double Angle Identities

Section 7.3 Double Angle Identities Section 7.3 Double Angle Identities 3 Section 7.3 Double Angle Identities Two special cases of the sum of angles identities arise often enough that we choose to state these identities separately. Identities

More information

Unit 6 Trigonometric Identities

Unit 6 Trigonometric Identities Unit 6 Trigonometric Identities Prove trigonometric identities Solve trigonometric equations Prove trigonometric identities, using: Reciprocal identities Quotient identities Pythagorean identities Sum

More information

Chapter 5 Notes. 5.1 Using Fundamental Identities

Chapter 5 Notes. 5.1 Using Fundamental Identities Chapter 5 Notes 5.1 Using Fundamental Identities 1. Simplify each expression to its lowest terms. Write the answer to part as the product of factors. (a) sin x csc x cot x ( 1+ sinσ + cosσ ) (c) 1 tanx

More information

NOTES 10: ANALYTIC TRIGONOMETRY

NOTES 10: ANALYTIC TRIGONOMETRY NOTES 0: ANALYTIC TRIGONOMETRY Name: Date: Period: Mrs. Nguyen s Initial: LESSON 0. USING FUNDAMENTAL TRIGONOMETRIC IDENTITIES FUNDAMENTAL TRIGONOMETRIC INDENTITIES Reciprocal Identities sin csc cos sec

More information

Math 5 Trigonometry Chapter 4 Test Fall 08 Name Show work for credit. Write all responses on separate paper. Do not use a calculator.

Math 5 Trigonometry Chapter 4 Test Fall 08 Name Show work for credit. Write all responses on separate paper. Do not use a calculator. Math 5 Trigonometry Chapter Test Fall 08 Name Show work for credit. Write all responses on separate paper. Do not use a calculator. 23 1. Consider an arclength of t = travelled counter-clockwise around

More information

A-Level Mathematics TRIGONOMETRY. G. David Boswell - R2S Explore 2019

A-Level Mathematics TRIGONOMETRY. G. David Boswell - R2S Explore 2019 A-Level Mathematics TRIGONOMETRY G. David Boswell - R2S Explore 2019 1. Graphs the functions sin kx, cos kx, tan kx, where k R; In these forms, the value of k determines the periodicity of the trig functions.

More information

Pre- Calculus Mathematics Trigonometric Identities and Equations

Pre- Calculus Mathematics Trigonometric Identities and Equations Pre- Calculus Mathematics 12 6.1 Trigonometric Identities and Equations Goal: 1. Identify the Fundamental Trigonometric Identities 2. Simplify a Trigonometric Expression 3. Determine the restrictions on

More information

Trigonometry Trigonometry comes from the Greek word meaning measurement of triangles Angles are typically labeled with Greek letters

Trigonometry Trigonometry comes from the Greek word meaning measurement of triangles Angles are typically labeled with Greek letters Trigonometry Trigonometry comes from the Greek word meaning measurement of triangles Angles are typically labeled with Greek letters α( alpha), β ( beta), θ ( theta) as well as upper case letters A,B,

More information

Chapter 5 Analytic Trigonometry

Chapter 5 Analytic Trigonometry Chapter 5 Analytic Trigonometry Overview: 5.1 Using Fundamental Identities 5.2 Verifying Trigonometric Identities 5.3 Solving Trig Equations 5.4 Sum and Difference Formulas 5.5 Multiple-Angle and Product-to-sum

More information

Chapter 1. Functions 1.3. Trigonometric Functions

Chapter 1. Functions 1.3. Trigonometric Functions 1.3 Trigonometric Functions 1 Chapter 1. Functions 1.3. Trigonometric Functions Definition. The number of radians in the central angle A CB within a circle of radius r is defined as the number of radius

More information

Analytic Trigonometry

Analytic Trigonometry Chapter 5 Analytic Trigonometry Course Number Section 5.1 Using Fundamental Identities Objective: In this lesson you learned how to use fundamental trigonometric identities to evaluate trigonometric functions

More information

Lesson 22 - Trigonometric Identities

Lesson 22 - Trigonometric Identities POP QUIZ Lesson - Trigonometric Identities IB Math HL () Solve 5 = x 3 () Solve 0 = x x 6 (3) Solve = /x (4) Solve 4 = x (5) Solve sin(θ) = (6) Solve x x x x (6) Solve x + = (x + ) (7) Solve 4(x ) = (x

More information

The 2014 Integration Bee Solutions and comments. Mike Hirschhorn. u 4 du = 1 5 u5 +C = 1 5 (x3 1) 5 +C cosx dx = 1 2 x 1 2 sinx+c.

The 2014 Integration Bee Solutions and comments. Mike Hirschhorn. u 4 du = 1 5 u5 +C = 1 5 (x3 1) 5 +C cosx dx = 1 2 x 1 2 sinx+c. The Integration Bee Solutions and comments Qualifying Round Mike Hirschhorn. x x dx u du 5 u5 +C 5 x 5 +C.. 5 x ] x dx 5 x.. sin x dx cosx dx x sinx+c.. a +x dx a tan x +C. a 5. x x+ dx 7 x+ dx x 7 log

More information

MA40S Pre-calculus UNIT C Trigonometric Identities CLASS NOTES Analyze Trigonometric Identities Graphically and Verify them Algebraically

MA40S Pre-calculus UNIT C Trigonometric Identities CLASS NOTES Analyze Trigonometric Identities Graphically and Verify them Algebraically 1 MA40S Pre-calculus UNIT C Trigonometric Identities CLASS NOTES Analyze Trigonometric Identities Graphically and Verify them Algebraically Definition Trigonometric identity Investigate 1. Using the diagram

More information

8.3 Trigonometric Substitution

8.3 Trigonometric Substitution 8.3 8.3 Trigonometric Substitution Three Basic Substitutions Recall the derivative formulas for the inverse trigonometric functions of sine, secant, tangent. () () (3) d d d ( sin x ) = ( tan x ) = +x

More information

( ) Trigonometric identities and equations, Mixed exercise 10

( ) Trigonometric identities and equations, Mixed exercise 10 Trigonometric identities and equations, Mixed exercise 0 a is in the third quadrant, so cos is ve. The angle made with the horizontal is. So cos cos a cos 0 0 b sin sin ( 80 + 4) sin 4 b is in the fourth

More information

Section 6.2 Trigonometric Functions: Unit Circle Approach

Section 6.2 Trigonometric Functions: Unit Circle Approach Section. Trigonometric Functions: Unit Circle Approach The unit circle is a circle of radius centered at the origin. If we have an angle in standard position superimposed on the unit circle, the terminal

More information

REDUCTION FORMULA. Learning Outcomes and Assessment Standards

REDUCTION FORMULA. Learning Outcomes and Assessment Standards Lesson 5 REDUCTION FORMULA Learning Outcomes and Assessment Standards Learning Outcome 3: Space, shape and measurement Assessment Standard Derive the reduction formulae for: sin(90 o ± α), cos(90 o ± α)

More information

WORKBOOK. MATH 30. PRE-CALCULUS MATHEMATICS.

WORKBOOK. MATH 30. PRE-CALCULUS MATHEMATICS. WORKBOOK. MATH 30. PRE-CALCULUS MATHEMATICS. DEPARTMENT OF MATHEMATICS AND COMPUTER SCIENCE Contributor: U.N.Iyer Department of Mathematics and Computer Science, CP 315, Bronx Community College, University

More information

Using the Definitions of the Trigonometric Functions

Using the Definitions of the Trigonometric Functions 1.4 Using the Definitions of the Trigonometric Functions Reciprocal Identities Signs and Ranges of Function Values Pythagorean Identities Quotient Identities February 1, 2013 Mrs. Poland Objectives Objective

More information

a 2 = 5 Þ 2cos y + sin y = Þ 2cos y = sin y 5-1 Þ tan y = 3 a

a 2 = 5 Þ 2cos y + sin y = Þ 2cos y = sin y 5-1 Þ tan y = 3 a Trigonometry and Modelling Mixed Exercise a i ii sin40 cos0 - cos40 sin0 sin(40-0 ) sin0 cos - sin cos 4 cos - sin 4 sin As cos(x - y) sin y cos xcos y + sin xsin y sin y () Draw a right-angled triangle,

More information

Chapter 4/5 Part 2- Trig Identities and Equations

Chapter 4/5 Part 2- Trig Identities and Equations Chapter 4/5 Part 2- Trig Identities and Equations Lesson Package MHF4U Chapter 4/5 Part 2 Outline Unit Goal: By the end of this unit, you will be able to solve trig equations and prove trig identities.

More information

These items need to be included in the notebook. Follow the order listed.

These items need to be included in the notebook. Follow the order listed. * Use the provided sheets. * This notebook should be your best written work. Quality counts in this project. Proper notation and terminology is important. We will follow the order used in class. Anyone

More information

SET 1. (1) Solve for x: (a) e 2x = 5 3x

SET 1. (1) Solve for x: (a) e 2x = 5 3x () Solve for x: (a) e x = 5 3x SET We take natural log on both sides: ln(e x ) = ln(5 3x ) x = 3 x ln(5) Now we take log base on both sides: log ( x ) = log (3 x ln 5) x = log (3 x ) + log (ln(5)) x x

More information

Pre-Calc Trig ~1~ NJCTL.org. Unit Circle Class Work Find the exact value of the given expression. 7. Given the terminal point ( 3, 2 10.

Pre-Calc Trig ~1~ NJCTL.org. Unit Circle Class Work Find the exact value of the given expression. 7. Given the terminal point ( 3, 2 10. Unit Circle Class Work Find the exact value of the given expression. 1. cos π 3. sin 7π 3. sec π 3. tan 5π 6 5. cot 15π 6. csc 9π 7. Given the terminal point ( 3, 10 ) find tanθ 7 7 8. Given the terminal

More information

Example Use reference angle and appropriate sign to find the exact value of each expression.

Example Use reference angle and appropriate sign to find the exact value of each expression. Example..4. Use reference angle and appropriate sign to find the exact value of each expression. (1) sin 11π and cos 11π () sin150 6 6 () cos ( ) 7π (4) tan 8π 6 Solution. (1) The reference angle of 11π

More information

4.3 Inverse Trigonometric Properties

4.3 Inverse Trigonometric Properties www.ck1.org Chapter. Inverse Trigonometric Functions. Inverse Trigonometric Properties Learning Objectives Relate the concept of inverse functions to trigonometric functions. Reduce the composite function

More information

Solving equations UNCORRECTED PAGE PROOFS

Solving equations UNCORRECTED PAGE PROOFS 1 Solving equations 1.1 Kick off with CAS 1. Polynomials 1.3 Trigonometric symmetry properties 1.4 Trigonometric equations and general solutions 1.5 Literal equations and simultaneous equations 1.6 Review

More information

2 Trigonometric functions

2 Trigonometric functions Theodore Voronov. Mathematics 1G1. Autumn 014 Trigonometric functions Trigonometry provides methods to relate angles and lengths but the functions we define have many other applications in mathematics..1

More information

Trigonometric Functions () 1 / 28

Trigonometric Functions () 1 / 28 Trigonometric Functions () 1 / 28 Trigonometric Moel On a certain ay, ig tie at Pacific Beac was at minigt. Te water level at ig tie was 9.9 feet an later at te following low tie, te tie eigt was 0.1 ft.

More information

6.1 The Inverse Sine, Cosine, and Tangent Functions Objectives

6.1 The Inverse Sine, Cosine, and Tangent Functions Objectives Objectives 1. Find the Exact Value of an Inverse Sine, Cosine, or Tangent Function. 2. Find an Approximate Value of an Inverse Sine Function. 3. Use Properties of Inverse Functions to Find Exact Values

More information

5, tan = 4. csc = Simplify: 3. Simplify: 4. Factor and simplify: cos x sin x cos x

5, tan = 4. csc = Simplify: 3. Simplify: 4. Factor and simplify: cos x sin x cos x Precalculus Final Review 1. Given the following values, evaluate (if possible) the other four trigonometric functions using the fundamental trigonometric identities or triangles csc = - 3 5, tan = 4 3.

More information

Math 1060 Midterm 2 Review Dugopolski Trigonometry Edition 3, Chapter 3 and 4

Math 1060 Midterm 2 Review Dugopolski Trigonometry Edition 3, Chapter 3 and 4 Math 1060 Midterm Review Dugopolski Trigonometry Edition, Chapter and.1 Use identities to find the exact value of the function for the given value. 1) sin α = and α is in quadrant II; Find tan α. Simplify

More information

Section 7.2 Addition and Subtraction Identities. In this section, we begin expanding our repertoire of trigonometric identities.

Section 7.2 Addition and Subtraction Identities. In this section, we begin expanding our repertoire of trigonometric identities. Section 7. Addition and Subtraction Identities 47 Section 7. Addition and Subtraction Identities In this section, we begin expanding our repertoire of trigonometric identities. Identities The sum and difference

More information

Chapter 7: Trigonometric Equations and Identities

Chapter 7: Trigonometric Equations and Identities Chapter 7: Trigonometric Equations and Identities In the last two chapters we have used basic definitions and relationships to simplify trigonometric expressions and equations. In this chapter we will

More information

Inverse Trig Functions

Inverse Trig Functions 6.6i Inverse Trigonometric Functions Inverse Sine Function Does g(x) = sin(x) have an inverse? What restriction would we need to make so that at least a piece of this function has an inverse? Given f (x)

More information

One of the powerful themes in trigonometry is that the entire subject emanates from a very simple idea: locating a point on the unit circle.

One of the powerful themes in trigonometry is that the entire subject emanates from a very simple idea: locating a point on the unit circle. 2.24 Tanz and the Reciprocals Derivatives of Other Trigonometric Functions One of the powerful themes in trigonometry is that the entire subject emanates from a very simple idea: locating a point on the

More information

Chapter 5: Trigonometric Functions of Angles Homework Solutions

Chapter 5: Trigonometric Functions of Angles Homework Solutions Chapter : Trigonometric Functions of Angles Homework Solutions Section.1 1. D = ( ( 1)) + ( ( )) = + 8 = 100 = 10. D + ( ( )) + ( ( )) = + = 1. (x + ) + (y ) =. (x ) + (y + 7) = r To find the radius, we

More information

Honors AP Calculus BC Trig Integration Techniques 13 December 2013

Honors AP Calculus BC Trig Integration Techniques 13 December 2013 Honors AP Calculus BC Name: Trig Integration Techniques 13 December 2013 Integration Techniques Antidifferentiation Substitutiion (antidifferentiation of the Chain rule) Integration by Parts (antidifferentiation

More information

Since 1 revolution = 1 = = Since 1 revolution = 1 = =

Since 1 revolution = 1 = = Since 1 revolution = 1 = = Fry Texas A&M University Math 150 Chapter 8A Fall 2015! 207 Since 1 revolution = 1 = = Since 1 revolution = 1 = = Convert to revolutions (or back to degrees and/or radians) a) 45! = b) 120! = c) 450! =

More information

Trig Identities, Solving Trig Equations Answer Section

Trig Identities, Solving Trig Equations Answer Section Trig Identities, Solving Trig Equations Answer Section MULTIPLE CHOICE. ANS: B PTS: REF: Knowledge and Understanding OBJ: 7. - Compound Angle Formulas. ANS: A PTS: REF: Knowledge and Understanding OBJ:

More information

The goal of today is to determine what u-substitution to use for trigonometric integrals. The most common substitutions are the following:

The goal of today is to determine what u-substitution to use for trigonometric integrals. The most common substitutions are the following: Trigonometric Integrals The goal of today is to determine what u-substitution to use for trigonometric integrals. The most common substitutions are the following: Substitution u sinx u cosx u tanx u secx

More information

Next, we ll use all of the tools we ve covered in our study of trigonometry to solve some equations.

Next, we ll use all of the tools we ve covered in our study of trigonometry to solve some equations. Section 6.3 - Solving Trigonometric Equations Next, we ll use all of the tools we ve covered in our study of trigonometry to solve some equations. These are equations from algebra: Linear Equation: Solve:

More information

Trigonometric Identities and Equations

Trigonometric Identities and Equations Chapter 4 Trigonometric Identities and Equations Trigonometric identities describe equalities between related trigonometric expressions while trigonometric equations ask us to determine the specific values

More information

Chapter 5 Trigonometric Functions of Angles

Chapter 5 Trigonometric Functions of Angles Chapter 5 Trigonometric Functions of Angles Section 3 Points on Circles Using Sine and Cosine Signs Signs I Signs (+, +) I Signs II (+, +) I Signs II (, +) (+, +) I Signs II (, +) (+, +) I III Signs II

More information

Math Trigonometry Final Exam

Math Trigonometry Final Exam Math 1613 - Trigonometry Final Exam Name: Instructions: Please show all of your work. If you need more room than the problem allows, use a new plain white sheet of paper with the problem number printed

More information

1 Solving equations 1.1 Kick off with CAS 1. Polynomials 1. Trigonometric symmetry properties 1.4 Trigonometric equations and general solutions 1.5 Literal and simultaneous equations 1.6 Review 1.1 Kick

More information

Find all solutions cos 6. Find all solutions. 7sin 3t Find all solutions on the interval [0, 2 ) sin t 15cos t sin.

Find all solutions cos 6. Find all solutions. 7sin 3t Find all solutions on the interval [0, 2 ) sin t 15cos t sin. 7.1 Solving Trigonometric Equations with Identities In this section, we explore the techniques needed to solve more complex trig equations: By Factoring Using the Quadratic Formula Utilizing Trig Identities

More information

Famous IDs: Sum-Angle Identities

Famous IDs: Sum-Angle Identities 07 notes Famous IDs: Sum-Angle Identities Main Idea We continue to expand the list of very famous trigonometric identities, and to practice our proving skills. We now prove the second most famous/most

More information

June 9 Math 1113 sec 002 Summer 2014

June 9 Math 1113 sec 002 Summer 2014 June 9 Math 1113 sec 002 Summer 2014 Section 6.5: Inverse Trigonometric Functions Definition: (Inverse Sine) For x in the interval [ 1, 1] the inverse sine of x is denoted by either and is defined by the

More information

A List of Definitions and Theorems

A List of Definitions and Theorems Metropolitan Community College Definition 1. Two angles are called complements if the sum of their measures is 90. Two angles are called supplements if the sum of their measures is 180. Definition 2. One

More information

Trigonometric Identities and Equations

Trigonometric Identities and Equations Chapter 4 Trigonometric Identities and Equations Trigonometric identities describe equalities between related trigonometric expressions while trigonometric equations ask us to determine the specific values

More information

Chapter 7: Trigonometric Equations and Identities

Chapter 7: Trigonometric Equations and Identities Section 7. Solving Trigonometric Equations and Identities 5 Chapter 7: Trigonometric Equations and Identities In the last two chapters we have used basic definitions and relationships to simplify trigonometric

More information

Chapter 7: Trigonometric Equations and Identities

Chapter 7: Trigonometric Equations and Identities Chapter 7: Trigonometric Equations and Identities In the last two chapters we have used basic definitions and relationships to simplify trigonometric expressions and equations. In this chapter we will

More information

Honors Algebra 2 Chapter 14 Page 1

Honors Algebra 2 Chapter 14 Page 1 Section. (Introduction) Graphs of Trig Functions Objectives:. To graph basic trig functions using t-bar method. A. Sine and Cosecant. y = sinθ y y y y 0 --- --- 80 --- --- 30 0 0 300 5 35 5 35 60 50 0

More information

Review Problems for Test 2

Review Problems for Test 2 Review Problems for Test Math 0 009 These problems are meant to help you study. The presence of a problem on this sheet does not imply that there will be a similar problem on the test. And the absence

More information

(Section 4.7: Inverse Trig Functions) 4.82 PART F: EVALUATING INVERSE TRIG FUNCTIONS. Think:

(Section 4.7: Inverse Trig Functions) 4.82 PART F: EVALUATING INVERSE TRIG FUNCTIONS. Think: PART F: EVALUATING INVERSE TRIG FUNCTIONS Think: (Section 4.7: Inverse Trig Functions) 4.82 A trig function such as sin takes in angles (i.e., real numbers in its domain) as inputs and spits out outputs

More information

THE COMPOUND ANGLE IDENTITIES

THE COMPOUND ANGLE IDENTITIES TRIGONOMETRY THE COMPOUND ANGLE IDENTITIES Question 1 Prove the validity of each of the following trigonometric identities. a) sin x + cos x 4 4 b) cos x + + 3 sin x + 2cos x 3 3 c) cos 2x + + cos 2x cos

More information

D. 6. Correct to the nearest tenth, the perimeter of the shaded portion of the rectangle is:

D. 6. Correct to the nearest tenth, the perimeter of the shaded portion of the rectangle is: Trigonometry PART 1 Machine Scored Answers are on the back page Full, worked out solutions can be found at MATH 0-1 PRACTICE EXAM 1. An angle in standard position θ has reference angle of 0 with sinθ

More information

2017 FAMAT State Convention. Alpha Trigonometry

2017 FAMAT State Convention. Alpha Trigonometry 017 FAMAT State Convention Alpha Trigonometry 1 On this test, select the best answer choice for each question. If you believe that the correct answer is not among the choices, or that the question is flawed,

More information

Math Section 4.3 Unit Circle Trigonometry

Math Section 4.3 Unit Circle Trigonometry Math 10 - Section 4. Unit Circle Trigonometry An angle is in standard position if its vertex is at the origin and its initial side is along the positive x axis. Positive angles are measured counterclockwise

More information

For a semi-circle with radius r, its circumfrence is πr, so the radian measure of a semi-circle (a straight line) is

For a semi-circle with radius r, its circumfrence is πr, so the radian measure of a semi-circle (a straight line) is Radian Measure Given any circle with radius r, if θ is a central angle of the circle and s is the length of the arc sustained by θ, we define the radian measure of θ by: θ = s r For a semi-circle with

More information

Analytic Trigonometry. Copyright Cengage Learning. All rights reserved.

Analytic Trigonometry. Copyright Cengage Learning. All rights reserved. Analytic Trigonometry Copyright Cengage Learning. All rights reserved. 7.1 Trigonometric Identities Copyright Cengage Learning. All rights reserved. Objectives Simplifying Trigonometric Expressions Proving

More information

sin cos 1 1 tan sec 1 cot csc Pre-Calculus Mathematics Trigonometric Identities and Equations

sin cos 1 1 tan sec 1 cot csc Pre-Calculus Mathematics Trigonometric Identities and Equations Pre-Calculus Mathematics 12 6.1 Trigonometric Identities and Equations Goal: 1. Identify the Fundamental Trigonometric Identities 2. Simplify a Trigonometric Expression 3. Determine the restrictions on

More information

Chapter 4 Trigonometric Functions

Chapter 4 Trigonometric Functions Chapter 4 Trigonometric Functions Overview: 4.1 Radian and Degree Measure 4.2 Trigonometric Functions: The Unit Circle 4.3 Right Triangle Trigonometry 4.4 Trigonometric Functions of Any Angle 4.5 Graphs

More information

Chapter 7. 1 a The length is a function of time, so we are looking for the value of the function when t = 2:

Chapter 7. 1 a The length is a function of time, so we are looking for the value of the function when t = 2: Practice questions Solution Paper type a The length is a function of time, so we are looking for the value of the function when t = : L( ) = 0 + cos ( ) = 0 + cos ( ) = 0 + = cm We are looking for the

More information

MTH 112: Elementary Functions

MTH 112: Elementary Functions 1/19 MTH 11: Elementary Functions Section 6.6 6.6:Inverse Trigonometric functions /19 Inverse Trig functions 1 1 functions satisfy the horizontal line test: Any horizontal line crosses the graph of a 1

More information

Analytic Trigonometry. Copyright Cengage Learning. All rights reserved.

Analytic Trigonometry. Copyright Cengage Learning. All rights reserved. Analytic Trigonometry Copyright Cengage Learning. All rights reserved. 7.4 Basic Trigonometric Equations Copyright Cengage Learning. All rights reserved. Objectives Basic Trigonometric Equations Solving

More information

5.1: Angles and Radian Measure Date: Pre-Calculus

5.1: Angles and Radian Measure Date: Pre-Calculus 5.1: Angles and Radian Measure Date: Pre-Calculus *Use Section 5.1 (beginning on pg. 482) to complete the following Trigonometry: measurement of triangles An angle is formed by two rays that have a common

More information

Algebra 2/Trig AIIT.17 Trig Identities Notes. Name: Date: Block:

Algebra 2/Trig AIIT.17 Trig Identities Notes. Name: Date: Block: Algebra /Trig AIIT.7 Trig Identities Notes Mrs. Grieser Name: Date: Block: Trigonometric Identities When two trig expressions can be proven to be equal to each other, the statement is called a trig identity

More information

The six trigonometric functions

The six trigonometric functions PRE-CALCULUS: by Finney,Demana,Watts and Kennedy Chapter 4: Trigonomic Functions 4.: Trigonomic Functions of Acute Angles What you'll Learn About Right Triangle Trigonometry/ Two Famous Triangles Evaluating

More information

FUNDAMENTAL TRIGONOMETRIC INDENTITIES 1 = cos. sec θ 1 = sec. = cosθ. Odd Functions sin( t) = sint. csc( t) = csct tan( t) = tant

FUNDAMENTAL TRIGONOMETRIC INDENTITIES 1 = cos. sec θ 1 = sec. = cosθ. Odd Functions sin( t) = sint. csc( t) = csct tan( t) = tant NOTES 8: ANALYTIC TRIGONOMETRY Name: Date: Period: Mrs. Nguyen s Initial: LESSON 8.1 TRIGONOMETRIC IDENTITIES FUNDAMENTAL TRIGONOMETRIC INDENTITIES Reciprocal Identities sinθ 1 cscθ cosθ 1 secθ tanθ 1

More information

More with Angles Reference Angles

More with Angles Reference Angles More with Angles Reference Angles A reference angle is the angle formed by the terminal side of an angle θ, and the (closest) x axis. A reference angle, θ', is always 0 o

More information

C3 Exam Workshop 2. Workbook. 1. (a) Express 7 cos x 24 sin x in the form R cos (x + α) where R > 0 and 0 < α < 2

C3 Exam Workshop 2. Workbook. 1. (a) Express 7 cos x 24 sin x in the form R cos (x + α) where R > 0 and 0 < α < 2 C3 Exam Workshop 2 Workbook 1. (a) Express 7 cos x 24 sin x in the form R cos (x + α) where R > 0 and 0 < α < 2 π. Give the value of α to 3 decimal places. (b) Hence write down the minimum value of 7 cos

More information

Welcome to AP Calculus!!!

Welcome to AP Calculus!!! Welcome to AP Calculus!!! In preparation for next year, you need to complete this summer packet. This packet reviews & expands upon the concepts you studied in Algebra II and Pre-calculus. Make sure you

More information

π π π π Trigonometry Homework Booklet 1. Convert 5.3 radians to degrees. A B C D Determine the period of 15

π π π π Trigonometry Homework Booklet 1. Convert 5.3 radians to degrees. A B C D Determine the period of 15 Trigonometry Homework Booklet 1. Convert 5.3 radians to degrees. A. 0.09 B. 0.18 C. 151.83 D. 303.67. Determine the period of y = 6cos x + 8. 15 15 A. B. C. 15 D. 30 15 3. Determine the exact value of

More information

MATH 2412 Sections Fundamental Identities. Reciprocal. Quotient. Pythagorean

MATH 2412 Sections Fundamental Identities. Reciprocal. Quotient. Pythagorean MATH 41 Sections 5.1-5.4 Fundamental Identities Reciprocal Quotient Pythagorean 5 Example: If tanθ = and θ is in quadrant II, find the exact values of the other 1 trigonometric functions using only fundamental

More information

SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question. and θ is in quadrant IV. 1)

SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question. and θ is in quadrant IV. 1) Chapter 5-6 Review Math 116 Name SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question. Use the fundamental identities to find the value of the trigonometric

More information