Unit 6 Trigonometric Identities Prove trigonometric identities Solve trigonometric equations

Size: px
Start display at page:

Download "Unit 6 Trigonometric Identities Prove trigonometric identities Solve trigonometric equations"

Transcription

1 Unit 6 Trigonometric Identities Prove trigonometric identities Solve trigonometric equations

2 Prove trigonometric identities, using: Reciprocal identities Quotient identities Pythagorean identities Sum or difference identities (restricted to sine, cosine and tangent) Double-angle identities (restricted to sine, cosine and tangent)

3 TRIG IDENTITIES You should be able to explain the difference between a trigonometric equation and a trigonometric identity. An identity is true for all permissible values, whereas an equation is only true for a smaller subset of the permissible values. This difference can be demonstrated with the aid of graphing technology.

4 For example: This can be solved by using the graphs 1 of y sin x and y The solutions to are x = 30 and x = 150, which are the x-values of the intersection points. 1 sin x,0 x sin x,0 x Thus this is not an identity because it is only true for certain values of x.

5 Solve: sin x = tan x cos x. This can be solved by using the graphs of: y = sin x and y = tan x cos x These graphs are almost identical. The only differences in the graphs occur at the points (90, 1) and (270, 1). Why? They are non-permissible values of x.

6 Therefore, sin x = tan x cos x is an identity since the expressions are equivalent for all permissible values.

7 Note: There may be some points for which identities are not equivalent. These non-permissible values for identities occur where one of the expressions is undefined.

8 In the previous example, y = tan x cos x is not defined when x = n, n Ι since y = tan x is undefined at these values. Non-permissible values often occur when a trigonometric expression contains: A rational expression, resulting in values that give a denominator of zero Tangent, cotangent, secant and cosecant, since these expressions all have non-permissible values in their domains.

9 Practice: Determine graphically if the following are identities. Use Technology Identify the non-permissible values. ( i ) sin cos tan 2sin ( ) tan 1 sec cos ( iii ) sec sin 2 2 ii

10 ( i ) sin cos tan 2sin y y y sin cos tan y 2sin x x Non-permissible values? Is this an identity?

11 ( ) tan 1 sec 2 2 ii y y 2 2 y=t an 1 y sec x x Non-permissible values? Is this an identity?

12 cos ( iii ) sec sin y y cos sin y y sec x x Non-permissible values? Is this an identity?

13 We can also verify numerically that an identity is valid by substituting numerical values into both sides of the equation. Example: Verify whether the following are identities. A) sin cos B) (use degrees) 2 2 sin cos 1 (use radians)

14 Example: Verify whether the following are identities. 2 2 C) tan 1 sec D) cot 1 csc 2 2 (use degrees) (use radians) NOTE: This approach is insufficient to conclude that the equation is an identity because only a limited number of values were substituted for θ, and there may be a certain group of numbers for which this identity does not hold. To prove the identity is true using this method would require verifying ALL of the values in the domain (an infinite number). This type of reasoning is called inductive reasoning.

15 Proofs! A proof is a deductive argument that is used to show the validity of a mathematical statement. Deductive reasoning occurs when general principles or rules are applied to specific situations.

16 Deductive reasoning is the process of coming up with a conclusion based on facts that have already been shown to be true. The facts that can be used to prove your conclusion deductively may come from accepted definitions, properties, laws or rules. The truth of the premises guarantees the truth of the conclusion.

17 Find the fifth term in the sequence Inductive Reasoning 1. 3, 5, 7, 9,... Deductive Reasoning 1. t n =2n , 12, 27, 48, t n = 3n , 14, 21, 28, Dates of in year

18 What is the next number in this sequence? 15, 16, 18, 19, 25, 26, 28, 29,

19 Trig Proofs Trig proofs (and simplifications of trig expressions) are based on the definition of the 6 trigonometric functions and the Fundamental Trigonometric Identities.

20 Definition of the 6 trigonometric functions 1 x y P(x, y) Sine fn: Cosine fn Tangent fn Cotangent Secant fn Cosecant fn y sin 1 x cos 1 y tan x x cot y 1 sec x 1 csc y

21 Fundamental Trigonometric Identities. Reciprocal Quotient Pythagorean 1 sin csc 1 cos sec 1 tan cot 1 cot tan 1 sec cos 1 csc sin tan sin cos cot cos sin 2 2 sin cos 1 tan 1 sec 2 2 cot 1 csc 2 2 Note: These identities can be proven using the definitions of the trig functions.

22 Caution The Pythagorean identities can be expressed in different ways: 2 2 sin cos 1 tan 2 1 sec 2 cot 2 1 csc 2 1 cos sin sin cos 2 2

23 Simplify expressions using the Pythagorean identities, the reciprocal identities, and the quotient identities Strategies that you might use to begin the simplifications: Replace a squared term with a Pythagorean identity Write the expression in terms of sine or cosine For expressions involving addition or subtraction, it may be necessary to use a common denominator to simplify a fraction Factor Multiply by a conjugate to obtain a Pythagorean identity

24 You may also be asked to determine any nonpermissible values of the variable in an expression. For example, identify the non-permissible values of θ in sin cos cot, and then simplify the expression. Solution: The non-permissible values are when sin 0. Why? cot cos sin kk,

25 Simplify : sin cos cot In this case we write the expression in terms of sine or cosine

26 NOTE: Students often find simplifying trigonometric expressions more challenging than proving trigonometric identities because they may be uncertain of when an expression is simplified as much as possible. However, developing a good foundation with simplifying expressions makes the transition to proving trigonometric identities easier.

27 Simplify the following A) sin x secx In this case we write the expression in terms of sine or cosine

28 B) Simplify the following 2 1 cos sin In this case we use a Pythagorean Identity and simplify

29 C) sec sec sin 2 In this case we factor and then use a Pythagorean Identity

30 2 sec x D) tan x In this case we have choices We could use a Pythagorean Identity and simplify Or we could change each term to sin and cos

31 sin cos E) 1 cos sin What do we do here? Multiply by a conjugate to obtain a Pythagorean identity

32 F) tanx sinx 1 cosx What do we do here? First we change everything to sin x and cos x sinx sinx cosx 1 cosx Now we have choice. 1. We can add the numerator by finding a lowest common denominator and then simplify. 2. We can multiply both the numerator and denominator by the LCD of all of the fractions WITHIN the overall fraction.

33 1. We can add the numerator by finding a lowest common denominator and then simplify sinx sinx cosx 1 cosx

34 2. We can multiply both the numerator and denominator by the LCD of all of the fractions WITHIN the overall fraction. sinx sinx cosx 1 cosx

35 Page 296 # 1 a) d) 3b) c) 4, 7, 8c), 9, 10

36

37 Warm UP Factor and simplify 1. sin sin cos 2 x x x sin 2 x

38 Factor and simplify 2. 2 tan x 3tanx 4 sinx tanx sinx

39 Proving Identities The fundamental trigonometric identities are used to establish other relationships among trigonometric functions. To verify an identity, we show that one side is equal to the other side. Left Side = Right Side LS = RS

40 Each side is manipulated independently of the other side. It is incorrect to perform operations across the equal sign, such as: multiplying or dividing, adding or subtracting each side by an expression or cross multiplying or raising both sides to an exponent. These operations are only possible if the equation is true. Until we verify, or prove the identity to be true, we do not know if both sides are equal

41 Prove that the following are Identities using the definitions of the trig function on the unit circle A) cos 1 sec B) tan sin cos

42 2 2 C) sin cos 1 D) tan 2 1 sec 2

43 Guidelines for Proving Trigonometric Identities We usually start with side that contains the more complicated expression. If you substitute one or more fundamental identities on the more complicated side you will often be able to rewrite it in a form identical to that of the other side.

44 Rewriting the complicated side in terms of sines and cosines is often helpful. If sums or differences appear on one side, use the least common denominator and combine fractions In other cases factoring is useful. It may be necessary to multiply a fraction by a conjugate to obtain a Pythagorean Identity

45 There is no one method that can be used to prove every identity. In fact there are often many different methods that may be used. However, one method may be shorter and more efficient than another. The more identities you prove, the more confident and efficient you will become. Practice! Practice! Practice!

46 DON T BE AFRAID to stop and start over again if you are not getting anywhere. Creative puzzle solvers know that strategies leading to dead ends often provide good problem-solving ideas.

47 Prove the following A) secx cot x cscx Which side is the more complicated side? Left Lets work on the left side and change to sines and cosines.

48 B) sinx tan x cosx secx Which side is the more complicated side? Left Lets work on the left side and change to sines and cosines.

49 3 2 C) cos cos cos sin Which side is the more complicated side? Right Lets work on the right side and factor out the Greatest Common Factor

50 D) 2sec Which side is the more complicated side? Right cos 1 sin 1 sin cos Lets work on the right side add the fractions by using the LCD

51 sin 1 cos E) 1 cos sin Which side is the more complicated side? same Lets work on the left side and multiply by the conjugate

52 2 2 2 F) cos sin 2cos 1 In this case we change the sine into cosine using a Pythagorean Identity

53 sint cost G) sint cost tant cott In this case we change everything to sin and cos

54 sint H) cott csct 1 cost

55 1 1 2 I) 2 cot t 1 cost 1 cost

56 J) 2 1 sec sec 1 2 3sec 5sec 2 5sec 2

57 Text Page #1 b) c), 2-4, 7b), 9, 10b), 11 b)c)

58 OTHER TRIG STUFF Even-Odd Identities (Negative Angle): sinx sin x cscx cscx cos x cosx secx sec x tan x tan x cotx cot x

59 OTHER TRIG STUFF Addition and Subtraction Rules: sin a b sina cosb sinb cosa sin a b sina cosb sinb cosa OR sin a b sina cosb sinb cosa

60 Addition and Subtraction Rules: cos a b cosa cosb sina sinb cos a b cosa cosb sina sinb OR cosa b cosa cosb sina sinb

61 PROOF: cos a b cosa cosb sina sinb This one of those interesting proofs. We need to use the: Law of Cosines And the distance formula between 2 points

62 PROOF: cos a b cosa cosb sina sinb

63 PROOF: cos a b cosa cosb sina sinb

64 PROOF: cos a b cosa cosb sina sinb Replace b by b in cos a b cosa cosb sina sinb

65 PROOF: sin a b sina cosb sinb cosa Replace a by 2 a in cos a b cosa cosb sina sinb

66 PROOF: sin a b sina cosb sinb cosa Replace b by b in sin a b sina cosb sinb cosa

67 Addition Formula for Tan tan PROOF: tana tanb a b 1 tanatanb

68 Subtraction Formula for Tan tan a tana tan b 1 tanatan b b

69 Applications of the Angle Addition Formulae Finding exact values Deriving double and half angle formula Proving Identities In Calculus: Trig derivatives (3208) Trig substitution in integration. (1001)

70 EXAMPLES: 1. Find the exact values of: A) cos 15 o B) sin 75 o

71 C) sin 12

72 D) 7 tan 12

73 E) sin 60 o cos 30 o + sin 30 o cos 60 o How can we verify that this is true?

74 F) o tan15 tan30 o 1 tan15 tan30 o o

75 G) Aand B are both in Quadrant II, cos A 5 13 and sinb 3 5. Determine the exact value of cos A B.

76 2. Simplify A) sin sin 2 2

77 B) tan

78 Identities 3. A)Prove: sin x cos x cosx 6 3

79 B) Prove: cos cos 2cos cos

80

81 PROVE: sina b A) tana tanb cosacosb B) cos a b cos a b 2sina cosb C) sin x cos x sin x cos x sin x Find the exact value of: 9 23 D) sin E ) cos F )sin o

82 B) cos a b cos a b 2sina cosb

83 Double Angle Formulae sin2

84 cos2

85 tan2

86 Examples 1. Find the exact values of: A) 2sin15 o cos15 o 2 2 B) cos sin 8 8

87 A 2. Simplify: x x 4tan ) sin cos B) tan 2

88 C ) cos2x sin sin2x 2 x

89 3. PROVE: 1 cos2a A) tan 1 cos2a 2 A

90 tan2btan B B) sin2b tan2b tanb

91 C ) sin sin

92 D) 2sin cos sin

93 4 2 E x x x ) cos4 8cos 8cos 1

94 sin2x F )Show that can be 1 cos2x simplfied tocotx

95 Suppose: sin and Find the exact value of: A) sin 2 B) cos 2 C) tan2

96 Half Angle Formulae Not on Public but good to know Consider: cos2 = 2cos 2-1 x Let x 2 2

97 Half Angle Formulae Consider: cos2 = 1 2sin 2 x Let x 2 2

98 Examples: Find the exact value of: A) sin 15 o B) cos 75 o

99 Page #7A), 8, 9, 10A)C), 11A) 12, 13, 15,16,17

100 Last Section for Chapter 6 (6.4) SOLVE, ALGEBRAICALLY AND GRAPHICALLY, FIRST AND SECOND DEGREE TRIGONOMETRIC EQUATIONS

101 The identities encountered earlier in this unit can now be applied to solve trigonometric equations.

102 Examples: 1. Find the solutions of for 0 x < 360. sin2 x 3cosx Solution: Graphically A) Identify each curve B) What are the points of intersection?

103 1. Find the solutions of sin2 x 3cosx for 0 x < 360. Solution: Algebraically What are the solutions with an unrestricted domain, in radians?

104 2. Solve cos2x 1 cos x for 0 x 360, giving exact solutions where possible. Write the general solution in degrees and radian measure.

105 : 3. Solve the trigonometric equation shown below for : 0x 2 sin3x cosx cos3x sinx 3 2

106 4. Solve: cos 2x + sin 2 x = , for the domain 0 x < 360.

107 Identifying and Repairing Errors 1. Identify and repair the mistake A solution has been lost as a result of dividing both sides of the equation by sin x.

108 2. A student s solution for tan 2 x = sec x tan 2 x for 0 x < π is shown below: Identify and explain the error(s). How many mark should the student get if this question was worth 4 marks?

109

110 Page 320 #1, 2A) B) C), 3, 5 Page 321 #6,9,11,14,

Unit 6 Trigonometric Identities

Unit 6 Trigonometric Identities Unit 6 Trigonometric Identities Prove trigonometric identities Solve trigonometric equations Prove trigonometric identities, using: Reciprocal identities Quotient identities Pythagorean identities Sum

More information

CK- 12 Algebra II with Trigonometry Concepts 1

CK- 12 Algebra II with Trigonometry Concepts 1 14.1 Graphing Sine and Cosine 1. A.,1 B. (, 1) C. 3,0 D. 11 1, 6 E. (, 1) F. G. H. 11, 4 7, 1 11, 3. 3. 5 9,,,,,,, 4 4 4 4 3 5 3, and, 3 3 CK- 1 Algebra II with Trigonometry Concepts 1 4.ans-1401-01 5.

More information

Using this definition, it is possible to define an angle of any (positive or negative) measurement by recognizing how its terminal side is obtained.

Using this definition, it is possible to define an angle of any (positive or negative) measurement by recognizing how its terminal side is obtained. Angle in Standard Position With the Cartesian plane, we define an angle in Standard Position if it has its vertex on the origin and one of its sides ( called the initial side ) is always on the positive

More information

CHAPTERS 5-7 TRIG. FORMULAS PACKET

CHAPTERS 5-7 TRIG. FORMULAS PACKET CHAPTERS 5-7 TRIG. FORMULAS PACKET PRE-CALCULUS SECTION 5-2 IDENTITIES Reciprocal Identities sin x = ( 1 / csc x ) csc x = ( 1 / sin x ) cos x = ( 1 / sec x ) sec x = ( 1 / cos x ) tan x = ( 1 / cot x

More information

sin cos 1 1 tan sec 1 cot csc Pre-Calculus Mathematics Trigonometric Identities and Equations

sin cos 1 1 tan sec 1 cot csc Pre-Calculus Mathematics Trigonometric Identities and Equations Pre-Calculus Mathematics 12 6.1 Trigonometric Identities and Equations Goal: 1. Identify the Fundamental Trigonometric Identities 2. Simplify a Trigonometric Expression 3. Determine the restrictions on

More information

Chapter 1. Functions 1.3. Trigonometric Functions

Chapter 1. Functions 1.3. Trigonometric Functions 1.3 Trigonometric Functions 1 Chapter 1. Functions 1.3. Trigonometric Functions Definition. The number of radians in the central angle A CB within a circle of radius r is defined as the number of radius

More information

SESSION 6 Trig. Equations and Identities. Math 30-1 R 3. (Revisit, Review and Revive)

SESSION 6 Trig. Equations and Identities. Math 30-1 R 3. (Revisit, Review and Revive) SESSION 6 Trig. Equations and Identities Math 30-1 R 3 (Revisit, Review and Revive) 1 P a g e 2 P a g e Mathematics 30-1 Learning Outcomes Specific Outcome 5: Solve, algebraically and graphically, first

More information

1.3 Basic Trigonometric Functions

1.3 Basic Trigonometric Functions www.ck1.org Chapter 1. Right Triangles and an Introduction to Trigonometry 1. Basic Trigonometric Functions Learning Objectives Find the values of the six trigonometric functions for angles in right triangles.

More information

MA40S Pre-calculus UNIT C Trigonometric Identities CLASS NOTES Analyze Trigonometric Identities Graphically and Verify them Algebraically

MA40S Pre-calculus UNIT C Trigonometric Identities CLASS NOTES Analyze Trigonometric Identities Graphically and Verify them Algebraically 1 MA40S Pre-calculus UNIT C Trigonometric Identities CLASS NOTES Analyze Trigonometric Identities Graphically and Verify them Algebraically Definition Trigonometric identity Investigate 1. Using the diagram

More information

Trigonometric Identities and Equations

Trigonometric Identities and Equations Chapter 4 Trigonometric Identities and Equations Trigonometric identities describe equalities between related trigonometric expressions while trigonometric equations ask us to determine the specific values

More information

6.1 Reciprocal, Quotient, and Pythagorean Identities.notebook. Chapter 6: Trigonometric Identities

6.1 Reciprocal, Quotient, and Pythagorean Identities.notebook. Chapter 6: Trigonometric Identities Chapter 6: Trigonometric Identities 1 Chapter 6 Complete the following table: 6.1 Reciprocal, Quotient, and Pythagorean Identities Pages 290 298 6.3 Proving Identities Pages 309 315 Measure of

More information

3.1 Fundamental Identities

3.1 Fundamental Identities www.ck.org Chapter. Trigonometric Identities and Equations. Fundamental Identities Introduction We now enter into the proof portion of trigonometry. Starting with the basic definitions of sine, cosine,

More information

Trigonometric Identities and Equations

Trigonometric Identities and Equations Chapter 4 Trigonometric Identities and Equations Trigonometric identities describe equalities between related trigonometric expressions while trigonometric equations ask us to determine the specific values

More information

6.1: Reciprocal, Quotient & Pythagorean Identities

6.1: Reciprocal, Quotient & Pythagorean Identities Math Pre-Calculus 6.: Reciprocal, Quotient & Pythagorean Identities A trigonometric identity is an equation that is valid for all values of the variable(s) for which the equation is defined. In this chapter

More information

Section 6.2 Trigonometric Functions: Unit Circle Approach

Section 6.2 Trigonometric Functions: Unit Circle Approach Section. Trigonometric Functions: Unit Circle Approach The unit circle is a circle of radius centered at the origin. If we have an angle in standard position superimposed on the unit circle, the terminal

More information

Section 6.2 Notes Page Trigonometric Functions; Unit Circle Approach

Section 6.2 Notes Page Trigonometric Functions; Unit Circle Approach Section Notes Page Trigonometric Functions; Unit Circle Approach A unit circle is a circle centered at the origin with a radius of Its equation is x y = as shown in the drawing below Here the letter t

More information

TRIGONOMETRY OUTCOMES

TRIGONOMETRY OUTCOMES TRIGONOMETRY OUTCOMES C10. Solve problems involving limits of trigonometric functions. C11. Apply derivatives of trigonometric functions. C12. Solve problems involving inverse trigonometric functions.

More information

The Other Trigonometric

The Other Trigonometric The Other Trigonometric Functions By: OpenStaxCollege A wheelchair ramp that meets the standards of the Americans with Disabilities Act must make an angle with the ground whose tangent is or less, regardless

More information

Using the Definitions of the Trigonometric Functions

Using the Definitions of the Trigonometric Functions 1.4 Using the Definitions of the Trigonometric Functions Reciprocal Identities Signs and Ranges of Function Values Pythagorean Identities Quotient Identities February 1, 2013 Mrs. Poland Objectives Objective

More information

NOTES 10: ANALYTIC TRIGONOMETRY

NOTES 10: ANALYTIC TRIGONOMETRY NOTES 0: ANALYTIC TRIGONOMETRY Name: Date: Period: Mrs. Nguyen s Initial: LESSON 0. USING FUNDAMENTAL TRIGONOMETRIC IDENTITIES FUNDAMENTAL TRIGONOMETRIC INDENTITIES Reciprocal Identities sin csc cos sec

More information

Trigonometry Trigonometry comes from the Greek word meaning measurement of triangles Angles are typically labeled with Greek letters

Trigonometry Trigonometry comes from the Greek word meaning measurement of triangles Angles are typically labeled with Greek letters Trigonometry Trigonometry comes from the Greek word meaning measurement of triangles Angles are typically labeled with Greek letters α( alpha), β ( beta), θ ( theta) as well as upper case letters A,B,

More information

June 9 Math 1113 sec 002 Summer 2014

June 9 Math 1113 sec 002 Summer 2014 June 9 Math 1113 sec 002 Summer 2014 Section 6.5: Inverse Trigonometric Functions Definition: (Inverse Sine) For x in the interval [ 1, 1] the inverse sine of x is denoted by either and is defined by the

More information

Pre- Calculus Mathematics Trigonometric Identities and Equations

Pre- Calculus Mathematics Trigonometric Identities and Equations Pre- Calculus Mathematics 12 6.1 Trigonometric Identities and Equations Goal: 1. Identify the Fundamental Trigonometric Identities 2. Simplify a Trigonometric Expression 3. Determine the restrictions on

More information

UNIT ONE ADVANCED TRIGONOMETRY MATH 611B 15 HOURS

UNIT ONE ADVANCED TRIGONOMETRY MATH 611B 15 HOURS UNIT ONE ADVANCED TRIGONOMETRY MATH 611B 15 HOURS Revised Feb 6, 03 18 SCO: By the end of grade 1, students will be expected to: B10 analyse and apply the graphs of the sine and cosine functions C39 analyse

More information

Algebra 2/Trig AIIT.17 Trig Identities Notes. Name: Date: Block:

Algebra 2/Trig AIIT.17 Trig Identities Notes. Name: Date: Block: Algebra /Trig AIIT.7 Trig Identities Notes Mrs. Grieser Name: Date: Block: Trigonometric Identities When two trig expressions can be proven to be equal to each other, the statement is called a trig identity

More information

Coach Stones Expanded Standard Pre-Calculus Algorithm Packet Page 1 Section: P.1 Algebraic Expressions, Mathematical Models and Real Numbers

Coach Stones Expanded Standard Pre-Calculus Algorithm Packet Page 1 Section: P.1 Algebraic Expressions, Mathematical Models and Real Numbers Coach Stones Expanded Standard Pre-Calculus Algorithm Packet Page 1 Section: P.1 Algebraic Expressions, Mathematical Models and Real Numbers CLASSIFICATIONS OF NUMBERS NATURAL NUMBERS = N = {1,2,3,4,...}

More information

1 Chapter 2 Perform arithmetic operations with polynomial expressions containing rational coefficients 2-2, 2-3, 2-4

1 Chapter 2 Perform arithmetic operations with polynomial expressions containing rational coefficients 2-2, 2-3, 2-4 NYS Performance Indicators Chapter Learning Objectives Text Sections Days A.N. Perform arithmetic operations with polynomial expressions containing rational coefficients. -, -5 A.A. Solve absolute value

More information

PRE-CALCULUS TRIG APPLICATIONS UNIT Simplifying Trigonometric Expressions

PRE-CALCULUS TRIG APPLICATIONS UNIT Simplifying Trigonometric Expressions What is an Identity? PRE-CALCULUS TRIG APPLICATIONS UNIT Simplifying Trigonometric Expressions What is it used for? The Reciprocal Identities: sin θ = cos θ = tan θ = csc θ = sec θ = ctn θ = The Quotient

More information

Core Mathematics 3 Trigonometry

Core Mathematics 3 Trigonometry Edexcel past paper questions Core Mathematics 3 Trigonometry Edited by: K V Kumaran Email: kvkumaran@gmail.com Core Maths 3 Trigonometry Page 1 C3 Trigonometry In C you were introduced to radian measure

More information

Functions and their Graphs

Functions and their Graphs Chapter One Due Monday, December 12 Functions and their Graphs Functions Domain and Range Composition and Inverses Calculator Input and Output Transformations Quadratics Functions A function yields a specific

More information

For a semi-circle with radius r, its circumfrence is πr, so the radian measure of a semi-circle (a straight line) is

For a semi-circle with radius r, its circumfrence is πr, so the radian measure of a semi-circle (a straight line) is Radian Measure Given any circle with radius r, if θ is a central angle of the circle and s is the length of the arc sustained by θ, we define the radian measure of θ by: θ = s r For a semi-circle with

More information

Math 5 Trigonometry Chapter 4 Test Fall 08 Name Show work for credit. Write all responses on separate paper. Do not use a calculator.

Math 5 Trigonometry Chapter 4 Test Fall 08 Name Show work for credit. Write all responses on separate paper. Do not use a calculator. Math 5 Trigonometry Chapter Test Fall 08 Name Show work for credit. Write all responses on separate paper. Do not use a calculator. 23 1. Consider an arclength of t = travelled counter-clockwise around

More information

NYS Algebra II and Trigonometry Suggested Sequence of Units (P.I's within each unit are NOT in any suggested order)

NYS Algebra II and Trigonometry Suggested Sequence of Units (P.I's within each unit are NOT in any suggested order) 1 of 6 UNIT P.I. 1 - INTEGERS 1 A2.A.1 Solve absolute value equations and inequalities involving linear expressions in one variable 1 A2.A.4 * Solve quadratic inequalities in one and two variables, algebraically

More information

Lesson 33 - Trigonometric Identities. Pre-Calculus

Lesson 33 - Trigonometric Identities. Pre-Calculus Lesson 33 - Trigonometric Identities Pre-Calculus 1 (A) Review of Equations An equation is an algebraic statement that is true for only several values of the variable The linear equation 5 = 2x 3 is only

More information

Honors Algebra 2 Chapter 14 Page 1

Honors Algebra 2 Chapter 14 Page 1 Section. (Introduction) Graphs of Trig Functions Objectives:. To graph basic trig functions using t-bar method. A. Sine and Cosecant. y = sinθ y y y y 0 --- --- 80 --- --- 30 0 0 300 5 35 5 35 60 50 0

More information

Sum and Difference Identities

Sum and Difference Identities Sum and Difference Identities By: OpenStaxCollege Mount McKinley, in Denali National Park, Alaska, rises 20,237 feet (6,168 m) above sea level. It is the highest peak in North America. (credit: Daniel

More information

Math Section 4.3 Unit Circle Trigonometry

Math Section 4.3 Unit Circle Trigonometry Math 10 - Section 4. Unit Circle Trigonometry An angle is in standard position if its vertex is at the origin and its initial side is along the positive x axis. Positive angles are measured counterclockwise

More information

As we know, the three basic trigonometric functions are as follows: Figure 1

As we know, the three basic trigonometric functions are as follows: Figure 1 Trigonometry Basic Functions As we know, the three basic trigonometric functions are as follows: sin θ = cos θ = opposite hypotenuse adjacent hypotenuse tan θ = opposite adjacent Where θ represents an

More information

4-3 Trigonometric Functions on the Unit Circle

4-3 Trigonometric Functions on the Unit Circle Find the exact value of each trigonometric function, if defined. If not defined, write undefined. 9. sin The terminal side of in standard position lies on the positive y-axis. Choose a point P(0, 1) on

More information

5 Trigonometric Functions

5 Trigonometric Functions 5 Trigonometric Functions 5.1 The Unit Circle Definition 5.1 The unit circle is the circle of radius 1 centered at the origin in the xyplane: x + y = 1 Example: The point P Terminal Points (, 6 ) is on

More information

A. Incorrect! For a point to lie on the unit circle, the sum of the squares of its coordinates must be equal to 1.

A. Incorrect! For a point to lie on the unit circle, the sum of the squares of its coordinates must be equal to 1. Algebra - Problem Drill 19: Basic Trigonometry - Right Triangle No. 1 of 10 1. Which of the following points lies on the unit circle? (A) 1, 1 (B) 1, (C) (D) (E), 3, 3, For a point to lie on the unit circle,

More information

Pre-Calculus II: Trigonometry Exam 1 Preparation Solutions. Math&142 November 8, 2016

Pre-Calculus II: Trigonometry Exam 1 Preparation Solutions. Math&142 November 8, 2016 Pre-Calculus II: Trigonometry Exam 1 Preparation Solutions Math&1 November 8, 016 1. Convert the angle in degrees to radian. Express the answer as a multiple of π. a 87 π rad 180 = 87π 180 rad b 16 π rad

More information

One of the powerful themes in trigonometry is that the entire subject emanates from a very simple idea: locating a point on the unit circle.

One of the powerful themes in trigonometry is that the entire subject emanates from a very simple idea: locating a point on the unit circle. 2.24 Tanz and the Reciprocals Derivatives of Other Trigonometric Functions One of the powerful themes in trigonometry is that the entire subject emanates from a very simple idea: locating a point on the

More information

The American School of Marrakesh. AP Calculus AB Summer Preparation Packet

The American School of Marrakesh. AP Calculus AB Summer Preparation Packet The American School of Marrakesh AP Calculus AB Summer Preparation Packet Summer 2016 SKILLS NEEDED FOR CALCULUS I. Algebra: *A. Exponents (operations with integer, fractional, and negative exponents)

More information

secθ 1 cosθ The pythagorean identities can also be expressed as radicals

secθ 1 cosθ The pythagorean identities can also be expressed as radicals Basic Identities Section Objectives: Students will know how to use fundamental trigonometric identities to evaluate trigonometric functions and simplify trigonometric expressions. We use trig. identities

More information

6.1: Verifying Trigonometric Identities Date: Pre-Calculus

6.1: Verifying Trigonometric Identities Date: Pre-Calculus 6.1: Verifying Trigonometric Identities Date: Pre-Calculus Using Fundamental Identities to Verify Other Identities: To verify an identity, we show that side of the identity can be simplified so that it

More information

ACCESS TO SCIENCE, ENGINEERING AND AGRICULTURE: MATHEMATICS 1 MATH00030 SEMESTER / Trigonometry

ACCESS TO SCIENCE, ENGINEERING AND AGRICULTURE: MATHEMATICS 1 MATH00030 SEMESTER / Trigonometry ACCESS TO SCIENCE, ENGINEERING AND AGRICULTURE: MATHEMATICS 1 MATH0000 SEMESTER 1 017/018 DR. ANTHONY BROWN 5. Trigonometry 5.1. Parity and Co-Function Identities. In Section 4.6 of Chapter 4 we looked

More information

10.7 Trigonometric Equations and Inequalities

10.7 Trigonometric Equations and Inequalities 0.7 Trigonometric Equations and Inequalities 79 0.7 Trigonometric Equations and Inequalities In Sections 0., 0. and most recently 0., we solved some basic equations involving the trigonometric functions.

More information

weebly.com/ Core Mathematics 3 Trigonometry

weebly.com/ Core Mathematics 3 Trigonometry http://kumarmaths. weebly.com/ Core Mathematics 3 Trigonometry Core Maths 3 Trigonometry Page 1 C3 Trigonometry In C you were introduced to radian measure and had to find areas of sectors and segments.

More information

FUNDAMENTAL TRIGONOMETRIC INDENTITIES 1 = cos. sec θ 1 = sec. = cosθ. Odd Functions sin( t) = sint. csc( t) = csct tan( t) = tant

FUNDAMENTAL TRIGONOMETRIC INDENTITIES 1 = cos. sec θ 1 = sec. = cosθ. Odd Functions sin( t) = sint. csc( t) = csct tan( t) = tant NOTES 8: ANALYTIC TRIGONOMETRY Name: Date: Period: Mrs. Nguyen s Initial: LESSON 8.1 TRIGONOMETRIC IDENTITIES FUNDAMENTAL TRIGONOMETRIC INDENTITIES Reciprocal Identities sinθ 1 cscθ cosθ 1 secθ tanθ 1

More information

Chapter 5 Analytic Trigonometry

Chapter 5 Analytic Trigonometry Chapter 5 Analytic Trigonometry Section 1 Section 2 Section 3 Section 4 Section 5 Using Fundamental Identities Verifying Trigonometric Identities Solving Trigonometric Equations Sum and Difference Formulas

More information

2 Trigonometric functions

2 Trigonometric functions Theodore Voronov. Mathematics 1G1. Autumn 014 Trigonometric functions Trigonometry provides methods to relate angles and lengths but the functions we define have many other applications in mathematics..1

More information

6.5 Trigonometric Equations

6.5 Trigonometric Equations 6. Trigonometric Equations In this section, we discuss conditional trigonometric equations, that is, equations involving trigonometric functions that are satisfied only by some values of the variable (or

More information

10.7 Trigonometric Equations and Inequalities

10.7 Trigonometric Equations and Inequalities 0.7 Trigonometric Equations and Inequalities 857 0.7 Trigonometric Equations and Inequalities In Sections 0. 0. and most recently 0. we solved some basic equations involving the trigonometric functions.

More information

Topic Outline for Integrated Algebra 2 and Trigonometry-R One Year Program with Regents in June

Topic Outline for Integrated Algebra 2 and Trigonometry-R One Year Program with Regents in June Topic Outline for Integrated Algebra 2 and Trigonometry-R One Year Program with Regents in June Integrated Algebra 2 & Trigonometry - R Semester 1 1. Rational Expressions 7 Days A. Factoring A2.A.7 Factor

More information

SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question. and θ is in quadrant IV. 1)

SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question. and θ is in quadrant IV. 1) Chapter 5-6 Review Math 116 Name SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question. Use the fundamental identities to find the value of the trigonometric

More information

Algebra 2 and Trigonometry

Algebra 2 and Trigonometry Algebra 2 and Trigonometry Number Sense and Operations Strand Students will understand meanings of operations and procedures, and how they relate to one another. Operations A2.N.1 Evaluate numerical expressions

More information

AP CALCULUS SUMMER WORKSHEET

AP CALCULUS SUMMER WORKSHEET AP CALCULUS SUMMER WORKSHEET DUE: First Day of School Aug. 19, 2010 Complete this assignment at your leisure during the summer. It is designed to help you become more comfortable with your graphing calculator,

More information

Grade 11 or 12 Pre-Calculus

Grade 11 or 12 Pre-Calculus Grade 11 or 12 Pre-Calculus Strands 1. Polynomial, Rational, and Radical Relationships 2. Trigonometric Functions 3. Modeling with Functions Strand 1: Polynomial, Rational, and Radical Relationships Standard

More information

A. Incorrect! This equality is true for all values of x. Therefore, this is an identity and not a conditional equation.

A. Incorrect! This equality is true for all values of x. Therefore, this is an identity and not a conditional equation. CLEP-Precalculus - Problem Drill : Trigonometric Identities No. of 0 Instructions: () Read the problem and answer choices carefully () Work the problems on paper as. Which of the following equalities is

More information

Math Analysis Chapter 5 Notes: Analytic Trigonometric

Math Analysis Chapter 5 Notes: Analytic Trigonometric Math Analysis Chapter 5 Notes: Analytic Trigonometric Day 9: Section 5.1-Verifying Trigonometric Identities Fundamental Trig Identities Reciprocal Identities: 1 1 1 sin u = cos u = tan u = cscu secu cot

More information

Math Section 4.3 Unit Circle Trigonometry

Math Section 4.3 Unit Circle Trigonometry Math 10 - Section 4. Unit Circle Trigonometry An angle is in standard position if its vertex is at the origin and its initial side is along the positive x axis. Positive angles are measured counterclockwise

More information

Analytic Trigonometry

Analytic Trigonometry Chapter 5 Analytic Trigonometry Course Number Section 5.1 Using Fundamental Identities Objective: In this lesson you learned how to use fundamental trigonometric identities to evaluate trigonometric functions

More information

The Other Trigonometric Functions

The Other Trigonometric Functions OpenStax-CNX module: m4974 The Other Trigonometric Functions OpenStax College This work is produced by OpenStax-CNX and licensed under the Creative Commons Attribution License 4.0 In this section, you

More information

AP Calculus BC Chapter 8: Integration Techniques, L Hopital s Rule and Improper Integrals

AP Calculus BC Chapter 8: Integration Techniques, L Hopital s Rule and Improper Integrals AP Calculus BC Chapter 8: Integration Techniques, L Hopital s Rule and Improper Integrals 8. Basic Integration Rules In this section we will review various integration strategies. Strategies: I. Separate

More information

Inverse Trig Functions

Inverse Trig Functions 6.6i Inverse Trigonometric Functions Inverse Sine Function Does g(x) = sin(x) have an inverse? What restriction would we need to make so that at least a piece of this function has an inverse? Given f (x)

More information

A-Level Mathematics TRIGONOMETRY. G. David Boswell - R2S Explore 2019

A-Level Mathematics TRIGONOMETRY. G. David Boswell - R2S Explore 2019 A-Level Mathematics TRIGONOMETRY G. David Boswell - R2S Explore 2019 1. Graphs the functions sin kx, cos kx, tan kx, where k R; In these forms, the value of k determines the periodicity of the trig functions.

More information

Core 3 (A2) Practice Examination Questions

Core 3 (A2) Practice Examination Questions Core 3 (A) Practice Examination Questions Trigonometry Mr A Slack Trigonometric Identities and Equations I know what secant; cosecant and cotangent graphs look like and can identify appropriate restricted

More information

The function x² + y² = 1, is the algebraic function that describes a circle with radius = 1.

The function x² + y² = 1, is the algebraic function that describes a circle with radius = 1. 8.3 The Unit Circle Outline Background Trig Function Information Unit circle Relationship between unit circle and background information 6 Trigonometric Functions Values of 6 Trig Functions The Unit Circle

More information

AP CALCULUS SUMMER WORKSHEET

AP CALCULUS SUMMER WORKSHEET AP CALCULUS SUMMER WORKSHEET DUE: First Day of School, 2011 Complete this assignment at your leisure during the summer. I strongly recommend you complete a little each week. It is designed to help you

More information

Solutions for Trigonometric Functions of Any Angle

Solutions for Trigonometric Functions of Any Angle Solutions for Trigonometric Functions of Any Angle I. Souldatos Answers Problem... Consider the following triangle with AB = and AC =.. Find the hypotenuse.. Find all trigonometric numbers of angle B..

More information

Welcome to AP Calculus!!!

Welcome to AP Calculus!!! Welcome to AP Calculus!!! In preparation for next year, you need to complete this summer packet. This packet reviews & expands upon the concepts you studied in Algebra II and Pre-calculus. Make sure you

More information

5.3 Properties of Trigonometric Functions Objectives

5.3 Properties of Trigonometric Functions Objectives Objectives. Determine the Domain and Range of the Trigonometric Functions. 2. Determine the Period of the Trigonometric Functions. 3. Determine the Signs of the Trigonometric Functions in a Given Quadrant.

More information

The goal of today is to determine what u-substitution to use for trigonometric integrals. The most common substitutions are the following:

The goal of today is to determine what u-substitution to use for trigonometric integrals. The most common substitutions are the following: Trigonometric Integrals The goal of today is to determine what u-substitution to use for trigonometric integrals. The most common substitutions are the following: Substitution u sinx u cosx u tanx u secx

More information

Section 5.4 The Other Trigonometric Functions

Section 5.4 The Other Trigonometric Functions Section 5.4 The Other Trigonometric Functions Section 5.4 The Other Trigonometric Functions In the previous section, we defined the e and coe functions as ratios of the sides of a right triangle in a circle.

More information

( ) a (graphical) transformation of y = f ( x )? x 0,2π. f ( 1 b) = a if and only if f ( a ) = b. f 1 1 f

( ) a (graphical) transformation of y = f ( x )? x 0,2π. f ( 1 b) = a if and only if f ( a ) = b. f 1 1 f Warm-Up: Solve sinx = 2 for x 0,2π 5 (a) graphically (approximate to three decimal places) y (b) algebraically BY HAND EXACTLY (do NOT approximate except to verify your solutions) x x 0,2π, xscl = π 6,y,,

More information

10.7 Trigonometric Equations and Inequalities

10.7 Trigonometric Equations and Inequalities 0.7 Trigonometric Equations and Inequalities 857 0.7 Trigonometric Equations and Inequalities In Sections 0., 0. and most recently 0., we solved some basic equations involving the trigonometric functions.

More information

MAT137 - Term 2, Week 5

MAT137 - Term 2, Week 5 MAT137 - Term 2, Week 5 Test 3 is tomorrow, February 3, at 4pm. See the course website for details. Today we will: Talk more about integration by parts. Talk about integrating certain combinations of trig

More information

Summer Review Packet for Students Entering AP Calculus BC. Complex Fractions

Summer Review Packet for Students Entering AP Calculus BC. Complex Fractions Summer Review Packet for Students Entering AP Calculus BC Comple Fractions When simplifying comple fractions, multiply by a fraction equal to 1 which has a numerator and denominator composed of the common

More information

Practice Questions for Midterm 2 - Math 1060Q - Fall 2013

Practice Questions for Midterm 2 - Math 1060Q - Fall 2013 Eam Review Practice Questions for Midterm - Math 060Q - Fall 0 The following is a selection of problems to help prepare ou for the second midterm eam. Please note the following: anthing from Module/Chapter

More information

Trigonometric Identities and Equations

Trigonometric Identities and Equations Trigonometric Identities and Equations Art Fortgang, (ArtF) Lori Jordan, (LoriJ) Say Thanks to the Authors Click http://www.ck.org/saythanks (No sign in required) To access a customizable version of this

More information

Chapter 4/5 Part 2- Trig Identities and Equations

Chapter 4/5 Part 2- Trig Identities and Equations Chapter 4/5 Part 2- Trig Identities and Equations Lesson Package MHF4U Chapter 4/5 Part 2 Outline Unit Goal: By the end of this unit, you will be able to solve trig equations and prove trig identities.

More information

Lesson 22 - Trigonometric Identities

Lesson 22 - Trigonometric Identities POP QUIZ Lesson - Trigonometric Identities IB Math HL () Solve 5 = x 3 () Solve 0 = x x 6 (3) Solve = /x (4) Solve 4 = x (5) Solve sin(θ) = (6) Solve x x x x (6) Solve x + = (x + ) (7) Solve 4(x ) = (x

More information

Next, we ll use all of the tools we ve covered in our study of trigonometry to solve some equations.

Next, we ll use all of the tools we ve covered in our study of trigonometry to solve some equations. Section 6.3 - Solving Trigonometric Equations Next, we ll use all of the tools we ve covered in our study of trigonometry to solve some equations. These are equations from algebra: Linear Equation: Solve:

More information

12) y = -2 sin 1 2 x - 2

12) y = -2 sin 1 2 x - 2 Review -Test 1 - Unit 1 and - Math 41 Name SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question. Find and simplify the difference quotient f(x + h) - f(x),

More information

Trig Identities, Solving Trig Equations Answer Section

Trig Identities, Solving Trig Equations Answer Section Trig Identities, Solving Trig Equations Answer Section MULTIPLE CHOICE. ANS: B PTS: REF: Knowledge and Understanding OBJ: 7. - Compound Angle Formulas. ANS: A PTS: REF: Knowledge and Understanding OBJ:

More information

NAME DATE PERIOD. Trigonometric Identities. Review Vocabulary Complete each identity. (Lesson 4-1) 1 csc θ = 1. 1 tan θ = cos θ sin θ = 1

NAME DATE PERIOD. Trigonometric Identities. Review Vocabulary Complete each identity. (Lesson 4-1) 1 csc θ = 1. 1 tan θ = cos θ sin θ = 1 5-1 Trigonometric Identities What You ll Learn Scan the text under the Now heading. List two things that you will learn in the lesson. 1. 2. Lesson 5-1 Active Vocabulary Review Vocabulary Complete each

More information

Trigonometry LESSON SIX - Trigonometric Identities I Lesson Notes

Trigonometry LESSON SIX - Trigonometric Identities I Lesson Notes LESSON SIX - Trigonometric Identities I Example Understanding Trigonometric Identities. a) Why are trigonometric identities considered to be a special type of trigonometric equation? Trigonometric Identities

More information

Trigonometric Identities Exam Questions

Trigonometric Identities Exam Questions Trigonometric Identities Exam Questions Name: ANSWERS January 01 January 017 Multiple Choice 1. Simplify the following expression: cos x 1 cot x a. sin x b. cos x c. cot x d. sec x. Identify a non-permissible

More information

!"#$%&'(#)%"*#%*+"),-$.)#/*01#2-31#)(.*4%5)(*6).#* * *9)"&*#2-*5$%5%.-&*#%5)(*8).#*9%$*1*'"),-$.)#/*31#2-31#)(.*5$-51$1#)%"*(%'$.

!#$%&'(#)%*#%*+),-$.)#/*01#2-31#)(.*4%5)(*6).#* * *9)&*#2-*5$%5%.-&*#%5)(*8).#*9%$*1*'),-$.)#/*31#2-31#)(.*5$-51$1#)%*(%'$. !"#$%&'(#)%"*#%*+"),-$.)#/*0#-3#)(.*4%5)(*6).#* * 78-.-*9)"&*#-*5$%5%.-&*#%5)(*8).#*9%$**'"),-$.)#/*3#-3#)(.*5$-5$#)%"*(%'$.-:* ;)(*(%'8&**#).* )"#$%&'(#)%":*!*3*##()">**B$#-$*8$>-C*7DA*9)8-*%9*.%3-*5%..)

More information

TO EARN ANY CREDIT, YOU MUST SHOW STEPS LEADING TO THE ANSWER

TO EARN ANY CREDIT, YOU MUST SHOW STEPS LEADING TO THE ANSWER Prof. Israel N. Nwaguru MATH 11 CHAPTER,,, AND - REVIEW WORKOUT EACH PROBLEM NEATLY AND ORDERLY ON SEPARATE SHEET THEN CHOSE THE BEST ANSWER TO EARN ANY CREDIT, YOU MUST SHOW STEPS LEADING TO THE ANSWER

More information

Precalculus Review. Functions to KNOW! 1. Polynomial Functions. Types: General form Generic Graph and unique properties. Constants. Linear.

Precalculus Review. Functions to KNOW! 1. Polynomial Functions. Types: General form Generic Graph and unique properties. Constants. Linear. Precalculus Review Functions to KNOW! 1. Polynomial Functions Types: General form Generic Graph and unique properties Constants Linear Quadratic Cubic Generalizations for Polynomial Functions - The domain

More information

DuVal High School Summer Review Packet AP Calculus

DuVal High School Summer Review Packet AP Calculus DuVal High School Summer Review Packet AP Calculus Welcome to AP Calculus AB. This packet contains background skills you need to know for your AP Calculus. My suggestion is, you read the information and

More information

Algebra 2 Khan Academy Video Correlations By SpringBoard Activity

Algebra 2 Khan Academy Video Correlations By SpringBoard Activity SB Activity Activity 1 Creating Equations 1-1 Learning Targets: Create an equation in one variable from a real-world context. Solve an equation in one variable. 1-2 Learning Targets: Create equations in

More information

Algebra 2 Khan Academy Video Correlations By SpringBoard Activity

Algebra 2 Khan Academy Video Correlations By SpringBoard Activity SB Activity Activity 1 Creating Equations 1-1 Learning Targets: Create an equation in one variable from a real-world context. Solve an equation in one variable. 1-2 Learning Targets: Create equations in

More information

Exercise Set 6.2: Double-Angle and Half-Angle Formulas

Exercise Set 6.2: Double-Angle and Half-Angle Formulas Exercise Set : Double-Angle and Half-Angle Formulas Answer the following π 1 (a Evaluate sin π (b Evaluate π π (c Is sin = (d Graph f ( x = sin ( x and g ( x = sin ( x on the same set of axes (e Is sin

More information

Solving Equations. Pure Math 30: Explained! 255

Solving Equations. Pure Math 30: Explained!   255 Solving Equations Pure Math : Explained! www.puremath.com 55 Part One - Graphically Solving Equations Solving trigonometric equations graphically: When a question asks you to solve a system of trigonometric

More information

Math 005A Prerequisite Material Answer Key

Math 005A Prerequisite Material Answer Key Math 005A Prerequisite Material Answer Key 1. a) P = 4s (definition of perimeter and square) b) P = l + w (definition of perimeter and rectangle) c) P = a + b + c (definition of perimeter and triangle)

More information

Practice 14. imathesis.com By Carlos Sotuyo

Practice 14. imathesis.com By Carlos Sotuyo Practice 4 imathesis.com By Carlos Sotuyo Suggested solutions for Miscellaneous exercises 0, problems 5-0, pages 53 to 55 from Pure Mathematics, by Hugh Neil and Douglas Quailing, Cambridge University

More information

Objectives List. Important Students should expect test questions that require a synthesis of these objectives.

Objectives List. Important Students should expect test questions that require a synthesis of these objectives. MATH 1040 - of One Variable, Part I Textbook 1: : Algebra and Trigonometry for ET. 4 th edition by Brent, Muller Textbook 2:. Early Transcendentals, 3 rd edition by Briggs, Cochran, Gillett, Schulz s List

More information