Incidence Matrices of Directed Graphs of Groups and their up-down Pregroups

Size: px
Start display at page:

Download "Incidence Matrices of Directed Graphs of Groups and their up-down Pregroups"

Transcription

1 SQU Jounal fo Sn ( Sultan Qaboos Unvst DOI: Indn ats of Dtd aphs of oups th up-down Poups Wadhah S Jassm Dpatmnt of athmats Fault of Sn Soan Unvst Soan Ebl Iaq Emal: wadhahasm@mathssoandud ABSTRACT: Th am of ths wo s to v a dfnton of th ndn mats of th dtd aph of oups onstut an up-down poup of th ndn mats of th dtd aph of oups thn v an alothm fo th up-down poup of th dtd aph of oups Kwods: Indn mat of -labld aph; up-down poup; dtd aph of oups ndn mat of a dtd aph of oups مصفوفات الوقوع لبيانات الزمر الموجه و أعلى - أسفل ما قبل زمرها وضاح س جاسم الملخص: هدف بحثنا هذا هو اعطاء تعريف لمصفوفات الوقوع لبيانات الزمرالموجه وأعلى أسفل ما قبل زمرها بناء أعلى أسفل ما قبل زمره لمصفوفات الوقوع لبيانات الزمر الموجه ومن ثم اعطاء خوارزمية لبناء أعلى أسفل ما قبل زمره لبيانات الزمر الموجه الكلمات المفتاحية: الزمر الموجه مصفوفة الوقوع للبيان المحمول بعناصر ا لمجموعه أعلى - أسفل ما قبل زمره بيانات الزمر الموجه ومصفوفة الوقوع لبيان Intoduton I n [] w av th dfnton of th ndn ats of - Labld aphs In [2] [3] w av th dfnton of th dtd aph of oups onstutd aph of oups fo poups dtl fom th odd t of poups fom that dtd aph of oups w onstutd th up-down poups thn w showd thos two poups a somoph In [4] Rmln av an ampl of a poup P of fnt hht; h sad but Jm Sha I spnt a v lon vnn wth th omput vfd th poup aoms I ba ths pont n mnd In [2] [3] w hav a dt mthod to obtan ampls of poups n th fom of up-down poups fom an dtd aph of oups but somtms thos aphs of oups a la thn wll ta a lon tm to fnd thos up-down poups In [] w dfnd th ndn mats of -labld aphs Th man am of ths wo s to psnt th dtd aph of fnt oups n tms of th ndn mats of -labld aphs so that b addn tan ondtons to allow th ndn mats of th -labld aph to b mo onfdnt wth th dfnton of th dtd aph of oups; w an thn wt a omput poam to od all lmnts of th up-down poup of that dtd aph of oups as an applaton of th ndn mats of -labld aph Thfo ths pap s dvdd nto s stons In ston 2 w v th bas onpts of aphs poups ndn mats of -labld aphs In ston 3 w v th dfnton of ndn mats of dtd aphs of oups In ston 4 w onstut th up-down poup of th ndn mats of th dtd aph of oups In ston 5 w dfn an alothm on th ndn mats of th dtd aph of oups so w an thn wt a omput poam fo ths alothm 2 Bas onpts 2 Poups Th da of poups os ba to Ba [5] th dfnton of poup was vn ndpndntl b Stallns [6] n 97 Th tho of poups has bn dvlopd b [4] Stallns [6] Hoa [7] Hoa Jassm [3] oths W now tun to th onal dfnton of poups [6] 40

2 INCIDENCE ATRICES OF DIRECTED RAPHS Lt P b a st wth an lmnt P a mappn of a subst D of P P nto P dnotd b ( W shall sa that s dfnd nstad of ( D Suppos that th s an nvoluton on P dnotd b suh that th follown aoms hold: P: = fo all P P2: fo all P P3: If s dfnd thn s dfnd ( P4: f z a dfnd thn (z s dfnd f onl f (z s dfnd n whh as th two a qual w wll sa z s dfnd P5: Fo an w z n P f w z a dfnd thn th w o z s dfnd Hoa [7] showd that w ould pov aom P3 abov b usn th follown poposton aoms P P2 P4 Dfnton 22 [7]: Fo an P put L( {a P: a s dfnd} W wt f L( L( f L( L( L( L( ~ f L( L( It s la that ~ s an quvaln laton ompatbl wth Th follown sults a tan fom Stallns [6] Rmln [4] (S [7] fo shot poofs Poposton 23 ( If o thn a dfnd ( If a a a dfnd thn (a(a s dfnd f onl f s dfnd n whh as th a qual B usn aom P5 abov (whh wll b dnotd b P5( Rmln [4] povd ondtons P5( P5( of Lmma 24 blow Lmma 24 [7] Th follown ondtons on lmnts of P a quvalnt: P5( If w z a dfnd thn th w o z s dfnd P5( If a a a dfnd but s not thn a < a < P5( If s dfnd thn o Thfo w wll sa P s a poup f t satsfs aoms P P2 P4 th ondtons of Lmma 24 abov Th unvsal oup of a poup P [3] s dnotd b U (P has th follown psntaton P; whnv s dfnd fo P Now f P s a poup thn (P s t - l patal odn; that s P/~ has a mnmum lmnt fo an z n P z z w hav o oov Rmln n [4] dfnd that fo an lmnt n P w sa that has fnt hht n 0 f th sts a mamal totall odd subst { 0 n } of P suh that 0 n H also showd that th lmnts of P fom an od t (dnotd b O whos vts [] a th quvaln lasss of th lmnts of P und ~ whos ds a fomd b onn ah vt [] of hht n > 0 to th unqu vt [] of hht n satsfn [ ] [ ] all ds of O a dtd awa th bas vt [ 0 ] of hht 0 In [8] Stallns onstutd an { a b} up down poup fo a f oup F natd b of nfnt hht h showd that U(P th unvsal oup of a poup P s somoph to F In [23] w av th dfnton of a dtd aph of oups whh onssts of a dtd aph Y wth a bas vt v a spannn t T whos ds a dtd awa fom th bas vt v toth wth a oup v fo ah vt v fo ah dtd d Y a suboup of ( ( whh s mbddd n b whh s dfnd b ( a a a wh s th ( v Y T v labld of th d It s dnotd b W also onstutd a dtd aph of oups of P dtl fom th od t O of P thn showd that th fundamntal oup ( Y T v v of a aph of oups s somoph to U(P W onstutd an up down poup Q dtl fom th ( v Y T v dtd aph of oups of a poup P w showd that U(Q s somoph to ( v Y T v U ( Q U ( P thn that 4

3 WADHAH S JASSI 25 Indn ats of Labld aphs In [] w av th dfnton of th ndn mats of Labld aphs (wh an -labld aph s a dtd aph wth ah d labld b an lmnt of th subst of th oup F natn th oup F som dfntons sults latd to t Rall that fom aph tho th dtd aphs a wthout loops baus w annot dfn th ndn mats of dtd aphs Th ndn mats of dtd aphs a wth n vts m ds ( t s n m [ ] mats n m wh suh that: 0 f f f v s v ( notndn v ( wth Sn all ds n Labld aphs a labld th ndn mats of th dtd aphs do not dal wth th labln of ds w wll put mo ondtons on th ndn mats of dtd aphs as blow to obtan th dfnton of th ndn mats of th - Labld aphs { a b} Dfnton 26: Lt b an Labld aph wthout loops (wh thn th ndn mat of th Labld aph s an n m f v [ ] ndn mat n m ( labls wh wth nts suh that 0 f v f v s ( not ndnt wth labls ( th Cal ost aph NB Indn mats of Labld aphs wll b dnotd b ( F of th oup F natd b F (H of th Cal ost aph labld aphs (H of th suboup H of F th podut of o aphs Fo ampl: th Cal aph of th suboup H of F th o aph ~ ( H ( K a - { a b} Now f th Labld aph has loops wth labln a o b thn hoos a md pont on all ds labld a o b to ma all of thm two ds labld aa o bb sptvl Thfo n th st of ths wo w wll assum that all Labld aphs a wthout loops ( Dfnton 27: Lt b an ndn mat of Labld aph If wth non zo nts n suh that thn mat of Labld aph ( ( dosn't ontan an ow s alld a foldd ndn Now w v th bas dfntons som sults on th ndn mat of Labld aph vn n [] ( Lt b an n m [ ] ndn mat of Labld aphs lt b a ow a ( olumn n sptvl If s a non zo nt n th ow thn s alld an ndn ow wth th olumn at th non zo nt f th non zo nt thn th ow s s( alld th statn ow (dnotd b of th olumn th ow s alld th ndn ow ( dnotd b ( of th olumn f If th ows a ndnt wth olumn at th non zo nts sptvl thn w sa that th ows a adant If h a two dstnt olumns n ( suh that th ow s ndn wth th olumns h at th non zo nts h h sptvl (wh thn w sa that h a adant olumns Fo ah olumn th s an nvs olumn dnotd b s( ( ( s( suh that Th d of a ow of ( as 42

4 ( INCIDENCE ATRICES OF DIRECTED RAPHS s th numb of th olumns ndnt to d( s dnotd b If th ow s ndnt wth at last s alld a banh ow If th ow th dstnt olumns h at th non zo nts thn th ow s ndnt wth onl on olumn at th non- zo nt all oth nts of a zo thn th ow s alld an solatd ow A sal n s a fnt squn of fom 2 S 2 2 s ( wh ( s( 2 S Th statn ow of a sal 2 2 s th statn ow of th olumn th ndn ow of th sal S s th ndn ow of th olumn w sa that S s a sal fom to S s 2 s( S ( S a sal of lnth fo If thn th sal s alld a losd sal If th sal S s dud losd thn S s alld a ut o a l If has no l thn s alld a fost ndn mat of Labld aph Γ Two ows n ( a alld onntd f th s a sal S ( n ontann oov ( s alld onntd f an two ows n ( a onntd b a sal S If ( Labld aph Γ Lt b a subaph of Γ thn of ows olumns of hav th sam mann n pop subndn mat of ( If ( b at last on sal S n ( ( ( s a onntd fost thn a substs of as th do n ( ( ( ( ( ( f s a olumn n ( If ( ( A omponnt of s a subndn mat of ( ( thn s alld spannn t of f an ndn mat of - Labld aph Γ ( ( ( s alld a t ndn mat of ( s alld a subndn mat of f th st s( ( thn ( ( thn ( s alld a s a mamal onntd subndn mat of v two ows n ( a ond s alld spannn ndn mat of ( s a spannn t ndn mat Th nvs of ( ( s Now b dt alulatons th dfntons abov w an pov th follown sults Lmma 28: If olumns ( s a t ndn mat of Labld aph Γ wth n ows thn 3 Indn mats of dtd aphs of fnt oups ( has n Dfnton 3: An ndn mat of a dtd aph of fnt oups onssts of an ndn mat of - ( labld aph (T wth a spannn t mat of - labld aph a bas ow toth wth a fnt oup fo ah ow a fnt oup fo ah olumn suh that: ( Th olumns of a dtd awa fom ; 2 Eah olumn oup s a suboup of ( ; 3 Eah olumn oup s mbddd n t ( b a fd monomophsm dfnd b ( a a a s( = s th non- zo ntan of of ( / ( T It s dnotd b ( ( Y ( T NB: An ndn mat of a aph of oups ma b mad nto an ndn mat of a dtd aph of oups (T that b hoosn a bas ow an ontaton on olumns thn dntfn wth th ma of ( und th ( lvant monomophsm 43

5 Fo ah dtd olumn s( olumn wth statn ow a th nts of th olumn NB W wll dnot that ( ( t n b (wh (T s qual to o - f WADHAH S JASSI ( ( s( suh that f lt ( b lt t s( wh (T s n ( t a nonzo nts of ( t t ( b th nvs t suh Eampl: In ths ampl w wll v a dtd aph of oups thn onstut th ndn mat of ths dtd aph of oups ( ( Y ( T Lt th dtd aph of oups ( v Y T v b as follows: { a a} V 7 V4{ a b a b} { a} 8 { a} V 6 { a} 7 { } 4 V { b } 3 b V 5 3 { b} { } 6 5 {} 2 { b} V V {} V { } {} 2 b {} { b} { b} {} {} {} { a} { a} Fu Th dtd aph of oups onstutd n [3] p72 of th poup vn n [4] p ( ( Y ( T {} Th ndn mat of th abov dtd aph of oups { b} { b b} {} { a b a b} { a} { a a} s as blow: Fu 2 Th ndn mat of th dtd aph of oups vn n Fu abov 44

6 INCIDENCE ATRICES OF DIRECTED RAPHS 4 Th up-down poup of an ndn mat of a dtd aph of fnt oups In ths ston w onstut th up- down poup of th ndn mat of a dtd aph of oups as blow; Lt ( Th fundamntal oup of ; a b th ndn mat of a dtd aph of oups ( ( ( a a (Y has th follown psntaton: ( T ( ( Y ( T lt ( Y/ ( T Now fo ah dtd olumn lt b also dnotd b dnot th nvs olumn wth s( ( ( s( ; also lt b of fom w n n n wh 2 n 2 n s a ut at wth ows 2 n sa wh ah s n A wod of ths fom an subwod of t s dud f t ontans no subwod a ( o a wh a (a If t dos ontan suh a subwod w an usn th latons substtut o a sptvl to obtan a shot wod of th vn fom psntn th sam lmnt Thus ah lmnt of th fundamntal oup s psntd b a dud wod w of ths fom Its nvs s psntabl b th wod w dfnd n th usual wa oov b [3] th dud wod psntn an lmnt s unqu modulo a susson of ntlavn a a h substtutn ( h fo a o v vsa fo an Lt ( b th ndn ( ( ( mat of th dtd aph of oups Y T q lt 2 n b an upwad ( 2 sal n whh s a fnt squn of olumns dtd awa of th bas ow Lt th ows of th sal q b w n A wod of tp q s a wod 2 2 n n n wh n v wod w must b dud s( s th non- zo nt of th statn ow of th q olumn Now Lt 2 q 2 h b upwad sals n ( both statn at w Lt w h h q b wods of tp q sptvl wh h Th wod w s alld an ntal subwod of th wod w wttn w w f hn fo f s an lmnt of fo ah Lmma 4: Th laton " s an ntal subwod of " s both tanstv t ndn mat l that s w w thn w w f w w w w thn th w w o w w Poof: Th sult follows dtl fom th dfnton Now lt q 2 ndn at th sam ow lt tp q q sptvl suh that th lmnts q 2 w h w w h b upwad sals n ( both of thm statn at w h b wods of a n thn suh a wod ww s alld an up down wod b Fo ampl th wod s an up-down wod fom Fu 2 dvd fom th upwad sals q wth ows 5 q wth ows 2 4 & 5 Q( ( Lt b th st of all up-down wods of th ndn mat of a dtd aph of oups ( Rdun an up-down wod n ( vs anoth up-down Thfo w assum that suh a wod s dud W us w w to dnot an up-down wod Lmma 42: Lt w w zz ( ww ( zz Q( ( b dud up-down wods thn s n f onl f w s an ntal smnt of z o z s an ntal smnt of w Poof: Sn th wods w w zz ( ww ( zz btwn th last of w th fst on of z a both dud so duton an onl ta pla n th wod 45

7 oov ( ww ( zz ( ww WADHAH S JASSI dus to an up-down wod f onl f th all ( zz n w o all n z a lmnatd whn puttn n dud fom Ths happns f onl f w s an ntal smnt of z o z s an ntal smnt of w sptvl Now w show that Q( ( L( ww Dfn Q( ( satsfs ondtons { uu ; uu P 2 Q( ( s a subst of P It mans to b shown that Q( ( Q( ( } ww Q( ( s a poup Sn P 4 ww fo Lmma 43: Lt w w zz b dud up-down wods thn w z Poof: Suppos that w z To show w w zz w must show that ( uu ( zz Q( ( s n uu Q( ( fo som of u o u s an ntal smnt of z ( z u u z o Lmma 4 w hav w u u w o thn b Lmma 42 aan Q( ( ( zz L L( ww Thfo s a subst of Hn w zz Q( ( Thom 44: s a poup Q( ( Q( ( ( ( so P satsfs ondton 5 as bfo mpls that w w zz L( zz s a subst of L ww ( thn b Lmma 42 z s an ntal smnt sptvl Sn w w z ( uu ( ww If n th as b s dfnd n P 5 ( of Lmma 24 ( ww ( zz Poof: To show s a poup w wll show that satsfs ondton Thfo lt w w zz Q( ( b dud up-down wods n suppos that Q( ( dfnd n Hn b Lmma 42 w hav z w o w z Thus b Lmma 43 w w o zz ww ( Thfo ondton P 5 Q( ( of Lmma 24 holds n Dfnton 45: Th st of all up down wods of th ndn mat of a dtd aph of oups alld th up- down poup of ( ( Y ( T s zz Q( ( th Indn mat of a dtd aph of oups wh Q s th up- down poup of th dtd aph of oups as shown n [2] [] Thom 46: Th Unvsal oup of ( fundamntal oup ( Poof: Sn v lmnt n Q( ( Q( ( (T spans (Y s dtd awa fom Q( ( ( ( podut of lmnts of s an lmnt n (t s dnotd b ( v lmnt of oov th patal multplaton n U( Q( ( ( ( ( Q( ( s s somoph to th sn th t ndn mat an b wttn as a mpls th latons of 5 An alothm fo th up-down Poup of ndn mats of dtd aphs of oups Lt ( ( ( Y ( T b th ndn mat of a dtd aph of oups thn w us th psntaton of th dtd aph of oups of an up-down poup to wt down all th lmnts of th up-down poup of that aph of oups b appln th follown alothm Th stps a vn blow: w I Fnd all up wods 2 n n n of tp upwad sals q ( n n n wh n s th non- zo ntan of th ow whh s th statn of th olumn as dfnd abov thn pod stp II; w w II If two up wods 2 n n n 2 m m m ndn at th sam ow ( ow ontans non-zo ntans of foms thn mas on of thm an up wod w sa 2 m m w m 2 n n n mas th oth up wod down wod b hann th dton of all olumns ts ntan w to b n n n b dntfn thm w t an up-down wod w w m m m n n n n n n (wh Thn pod to stp III; 46

8 INCIDENCE ATRICES OF DIRECTED RAPHS w 2 If th up wods 2 n n n nd at an solatd ow thn han th dton of all olumns w ts labl to b n n n b dntfn thm wth th ow that both of thm nd wth thn w t an up-down wod ww 2 n n n n n n = 2 n n n n n n n n n ( wh Thn pod to stp III; III If th s no oth up-down wod thn stop w Poposton 5: All up wods 2 n n n of tp upwad sals n ( ( ( Y ( T w a sam as all up wods 2 n n n of tp ( upwad paths n Y T v ( Poof: Sn all vts v ds n Y T v a psntd b ows olumns n ( assoatd vt oups v d oups a psntd b ow oups olumns oups sptvl wth ntans of th labld ( of th ds of Y T v suh that f T f Y T Thfo th dton th labln of olumns of ( a sam as n ( w Hn all up wods 2 n n n of tp upwad sals n ( a w sam as all up wods 2 n n ( n of tp upwad paths n Y T v Poposton 52: Th alothm must stop Poof: Sn th sz of ( s n m all vt oups d oups a fnt so ( s fnt ndn mat B stp I w t all dud up- wods b stp II w t all up- down dud wods thn b stp III w wll t all up- down dud wods Sn th on - labld aph dos not ontan loops so th st of all dud up-down wods s fnt thn th alothm must b stop aft a fnt tm 6 Conluson W hav vn a nw applaton fo th ndn mats of -labld aphs Ths applaton s th ndn mats of dtd aph of fnt oups Thfo w hav addd tan ondtons to allow th ndn of - labld aphs to b mo onfdnt wth th dfnton of th dtd aph of fnt oups B ths wa w an wt a omput poam to od all lmnts of th up- down poups of that th dtd aphs of fnt oups Rfns Jassm WS Indn ats of -Labld aphs an applaton Sultan Qaboos Unvst Jounal fo Sn Hoa AH Jassm WS Dtd aphs of oups th up-down poups Fault of Sn Bulltn Sana'a Unvst Jassm WS Poups aphs of oups PhD Thss Bmnham Unvst Rmln F Poups Bass S tho Aman athmatal Sot mos Ba R F Sums of oups th nalzatons III Aman Jounal of athmats Stallns JP oup tho Th dm anfolds Yal onoaphs 97 7 Hoa AH Poups Lnth funtons Podns of th Cambd Phlosophal Sot Stallns JP Adan oups Poups Essas n oup tho SRI Publatons 8d B S stn Abdu KA Rpsntn Co aphs Nolas's Alothm S Thss Bahdad Unvst Chswll I Abstat Lnth funtons n oups Podns of th Cambd Phlosophal Sot Jassm WS Dtd Co aphs th up-down poups Al-ustansa Jounal of Sn (4: Lndon RC Lnth funtons n oups athmata Snava S JP 968 oups dsts Coll d Fan Tanslaton Ts Spn Vla 980 Rvd 0 Sptmb 205 Aptd 7 Dmb

Chapter 3 Binary Image Analysis. Comunicação Visual Interactiva

Chapter 3 Binary Image Analysis. Comunicação Visual Interactiva Chapt 3 Bnay Iag Analyss Counação Vsual Intatva Most oon nghbohoods Pxls and Nghbohoods Nghbohood Vznhança N 4 Nghbohood N 8 Us of ass Exapl: ogn nput output CVI - Bnay Iag Analyss Exapl 0 0 0 0 0 output

More information

Analysis of a M/G/1/K Queue with Vacations Systems with Exhaustive Service, Multiple or Single Vacations

Analysis of a M/G/1/K Queue with Vacations Systems with Exhaustive Service, Multiple or Single Vacations Analyss of a M/G// uu wth aatons Systms wth Ehaustv Sv, Multpl o Sngl aatons W onsd h th fnt apaty M/G// uu wth th vaaton that th sv gos fo vaatons whn t s dl. Ths sv modl s fd to as on povdng haustv sv,

More information

Homework: Due

Homework: Due hw-.nb: //::9:5: omwok: Du -- Ths st (#7) s du on Wdnsday, //. Th soluton fom Poblm fom th xam s found n th mdtm solutons. ü Sakua Chap : 7,,,, 5. Mbach.. BJ 6. ü Mbach. Th bass stats of angula momntum

More information

Structure and Features

Structure and Features Thust l Roll ans Thust Roll ans Stutu an atus Thust ans onsst of a psly ma a an olls. Thy hav hh ty an hh loa apats an an b us n small spas. Thust l Roll ans nopoat nl olls, whl Thust Roll ans nopoat ylnal

More information

Load Equations. So let s look at a single machine connected to an infinite bus, as illustrated in Fig. 1 below.

Load Equations. So let s look at a single machine connected to an infinite bus, as illustrated in Fig. 1 below. oa Euatons Thoughout all of chapt 4, ou focus s on th machn tslf, thfo w wll only pfom a y smpl tatmnt of th ntwok n o to s a complt mol. W o that h, but alz that w wll tun to ths ssu n Chapt 9. So lt

More information

Grid Transformations for CFD Calculations

Grid Transformations for CFD Calculations Coll of Ennn an Comput Scnc Mchancal Ennn Dpatmnt ME 69 Computatonal lu Dnamcs Spn Tct: 5754 Instuct: La Catto Intoucton G Tansfmatons f CD Calculatons W want to ca out ou CD analss n altnatv conat sstms.

More information

COHORT MBA. Exponential function. MATH review (part2) by Lucian Mitroiu. The LOG and EXP functions. Properties: e e. lim.

COHORT MBA. Exponential function. MATH review (part2) by Lucian Mitroiu. The LOG and EXP functions. Properties: e e. lim. MTH rviw part b Lucian Mitroiu Th LOG and EXP functions Th ponntial function p : R, dfind as Proprtis: lim > lim p Eponntial function Y 8 6 - -8-6 - - X Th natural logarithm function ln in US- log: function

More information

Estimation of a Random Variable

Estimation of a Random Variable Estimation of a andom Vaiabl Obsv and stimat. ˆ is an stimat of. ζ : outcom Estimation ul ˆ Sampl Spac Eampl: : Pson s Hight, : Wight. : Ailin Company s Stock Pic, : Cud Oil Pic. Cost of Estimation Eo

More information

An action with positive kinetic energy term for general relativity. T. Mei

An action with positive kinetic energy term for general relativity. T. Mei An ton wt post nt ny t fo n tty T (Dptnt of Jon Cnt Cn o Unsty Wn H PRO Pop s Rp of Cn E-: to@nn tow@pwn ) Astt: At fst w stt so sts n X: 7769 n tn sn post nt ny oont onton n y X: 7769 w psnt n ton wt

More information

Section 6.1. Question: 2. Let H be a subgroup of a group G. Then H operates on G by left multiplication. Describe the orbits for this operation.

Section 6.1. Question: 2. Let H be a subgroup of a group G. Then H operates on G by left multiplication. Describe the orbits for this operation. MAT 444 H Barclo Spring 004 Homwork 6 Solutions Sction 6 Lt H b a subgroup of a group G Thn H oprats on G by lft multiplication Dscrib th orbits for this opration Th orbits of G ar th right costs of H

More information

Rectification and Depth Computation

Rectification and Depth Computation Dpatmnt of Comput Engnng Unvst of Cafona at Santa Cuz Rctfcaton an Dpth Computaton CMPE 64: mag Anass an Comput Vson Spng 0 Ha ao 4/6/0 mag cosponncs Dpatmnt of Comput Engnng Unvst of Cafona at Santa Cuz

More information

5- Scattering Stationary States

5- Scattering Stationary States Lctu 19 Pyscs Dpatmnt Yamou Unvsty 1163 Ibd Jodan Pys. 441: Nucla Pyscs 1 Pobablty Cunts D. Ndal Esadat ttp://ctaps.yu.du.jo/pyscs/couss/pys641/lc5-3 5- Scattng Statonay Stats Rfnc: Paagaps B and C Quantum

More information

Lecture 7 Diffusion. Our fluid equations that we developed before are: v t v mn t

Lecture 7 Diffusion. Our fluid equations that we developed before are: v t v mn t Cla ot fo EE6318/Phy 6383 Spg 001 Th doumt fo tutoal u oly ad may ot b opd o dtbutd outd of EE6318/Phy 6383 tu 7 Dffuo Ou flud quato that w dvlopd bfo a: f ( )+ v v m + v v M m v f P+ q E+ v B 13 1 4 34

More information

E F. and H v. or A r and F r are dual of each other.

E F. and H v. or A r and F r are dual of each other. A Duality Thom: Consid th following quations as an xampl = A = F μ ε H A E A = jωa j ωμε A + β A = μ J μ A x y, z = J, y, z 4π E F ( A = jω F j ( F j β H F ωμε F + β F = ε M jβ ε F x, y, z = M, y, z 4π

More information

Lecture 3.2: Cosets. Matthew Macauley. Department of Mathematical Sciences Clemson University

Lecture 3.2: Cosets. Matthew Macauley. Department of Mathematical Sciences Clemson University Lctu 3.2: Costs Matthw Macauly Dpatmnt o Mathmatical Scincs Clmson Univsity http://www.math.clmson.du/~macaul/ Math 4120, Modn Algba M. Macauly (Clmson) Lctu 3.2: Costs Math 4120, Modn Algba 1 / 11 Ovviw

More information

( V ) 0 in the above equation, but retained to keep the complete vector identity for V in equation.

( V ) 0 in the above equation, but retained to keep the complete vector identity for V in equation. Cuvlna Coodnats Outln:. Otogonal cuvlna coodnat systms. Dffntal opatos n otogonal cuvlna coodnat systms. Dvatvs of t unt vctos n otogonal cuvlna coodnat systms 4. Incompssbl N-S quatons n otogonal cuvlna

More information

Period vs. Length of a Pendulum

Period vs. Length of a Pendulum Gaphcal Mtho n Phc Gaph Intptaton an Lnazaton Pat 1: Gaphng Tchnqu In Phc w u a vat of tool nclung wo, quaton, an gaph to mak mol of th moton of objct an th ntacton btwn objct n a tm. Gaph a on of th bt

More information

Exercises in functional iteration: the function f(x) = ln(2-exp(-x))

Exercises in functional iteration: the function f(x) = ln(2-exp(-x)) Eiss in funtional itation: th funtion f ln2-p- A slfstudy usin fomal powsis and opato-matis Gottfid Hlms 0.2.200 updat 2.02.20. Dfinition Th funtion onsidd is an ampl tan fom a pivat onvsation with D.Gisl

More information

9.5 Complex variables

9.5 Complex variables 9.5 Cmpl varabls. Cnsdr th funtn u v f( ) whr ( ) ( ), f( ), fr ths funtn tw statmnts ar as fllws: Statmnt : f( ) satsf Cauh mann quatn at th rgn. Statmnt : f ( ) ds nt st Th rrt statmnt ar (A) nl (B)

More information

CBSE , ˆj. cos CBSE_2015_SET-1. SECTION A 1. Given that a 2iˆ ˆj. We need to find. 3. Consider the vector equation of the plane.

CBSE , ˆj. cos CBSE_2015_SET-1. SECTION A 1. Given that a 2iˆ ˆj. We need to find. 3. Consider the vector equation of the plane. CBSE CBSE SET- SECTION. Gv tht d W d to fd 7 7 Hc, 7 7 7. Lt,. W ow tht.. Thus,. Cosd th vcto quto of th pl.. z. - + z = - + z = Thus th Cts quto of th pl s - + z = Lt d th dstc tw th pot,, - to th pl.

More information

CIVL 7/ D Boundary Value Problems - Axisymmetric Elements 1/8

CIVL 7/ D Boundary Value Problems - Axisymmetric Elements 1/8 CIVL 7/8 -D Bounday Valu Poblms - xsymmtc Elmnts /8 xsymmtc poblms a somtms fd to as adally symmtc poblms. hy a gomtcally th-dmnsonal but mathmatcally only two-dmnsonal n th physcs of th poblm. In oth

More information

STRIPLINES. A stripline is a planar type transmission line which is well suited for microwave integrated circuitry and photolithographic fabrication.

STRIPLINES. A stripline is a planar type transmission line which is well suited for microwave integrated circuitry and photolithographic fabrication. STIPLINES A tiplin i a plana typ tanmiion lin hih i ll uitd fo mioav intgatd iuity and photolithogaphi faiation. It i uually ontutd y thing th nt onduto of idth, on a utat of thikn and thn oving ith anoth

More information

A STUDY OF PROPERTIES OF SOFT SET AND ITS APPLICATIONS

A STUDY OF PROPERTIES OF SOFT SET AND ITS APPLICATIONS Intnational sach Jounal of Engining and Tchnology IJET -ISSN: 2395-0056 Volum: 05 Issu: 01 Jan-2018 wwwijtnt p-issn: 2395-0072 STDY O POPETIES O SOT SET ND ITS PPLITIONS Shamshad usain 1 Km Shivani 2 1MPhil

More information

Physics 111. Lecture 38 (Walker: ) Phase Change Latent Heat. May 6, The Three Basic Phases of Matter. Solid Liquid Gas

Physics 111. Lecture 38 (Walker: ) Phase Change Latent Heat. May 6, The Three Basic Phases of Matter. Solid Liquid Gas Physics 111 Lctu 38 (Walk: 17.4-5) Phas Chang May 6, 2009 Lctu 38 1/26 Th Th Basic Phass of Matt Solid Liquid Gas Squnc of incasing molcul motion (and ngy) Lctu 38 2/26 If a liquid is put into a sald contain

More information

GRAVITATION. (d) If a spring balance having frequency f is taken on moon (having g = g / 6) it will have a frequency of (a) 6f (b) f / 6

GRAVITATION. (d) If a spring balance having frequency f is taken on moon (having g = g / 6) it will have a frequency of (a) 6f (b) f / 6 GVITTION 1. Two satllits and o ound a plant P in cicula obits havin adii 4 and spctivly. If th spd of th satllit is V, th spd of th satllit will b 1 V 6 V 4V V. Th scap vlocity on th sufac of th ath is

More information

Heisenberg Model. Sayed Mohammad Mahdi Sadrnezhaad. Supervisor: Prof. Abdollah Langari

Heisenberg Model. Sayed Mohammad Mahdi Sadrnezhaad. Supervisor: Prof. Abdollah Langari snbrg Modl Sad Mohammad Mahd Sadrnhaad Survsor: Prof. bdollah Langar bstract: n ths rsarch w tr to calculat analtcall gnvalus and gnvctors of fnt chan wth ½-sn artcls snbrg modl. W drov gnfuctons for closd

More information

September 27, Introduction to Ordinary Differential Equations. ME 501A Seminar in Engineering Analysis Page 1. Outline

September 27, Introduction to Ordinary Differential Equations. ME 501A Seminar in Engineering Analysis Page 1. Outline Introucton to Ornar Dffrntal Equatons Sptmbr 7, 7 Introucton to Ornar Dffrntal Equatons Larr artto Mchancal Engnrng AB Smnar n Engnrng Analss Sptmbr 7, 7 Outln Rvw numrcal solutons Bascs of ffrntal quatons

More information

The angle between L and the z-axis is found from

The angle between L and the z-axis is found from Poblm 6 This is not a ifficult poblm but it is a al pain to tansf it fom pap into Mathca I won't giv it to you on th quiz, but know how to o it fo th xam Poblm 6 S Figu 6 Th magnitu of L is L an th z-componnt

More information

Anouncements. Conjugate Gradients. Steepest Descent. Outline. Steepest Descent. Steepest Descent

Anouncements. Conjugate Gradients. Steepest Descent. Outline. Steepest Descent. Steepest Descent oucms Couga Gas Mchal Kazha (6.657) Ifomao abou h Sma (6.757) hav b pos ol: hp://www.cs.hu.u/~msha Tch Spcs: o M o Tusay afoo. o Two paps scuss ach w. o Vos fo w s caa paps u by Thusay vg. Oul Rvw of Sps

More information

The Matrix Exponential

The Matrix Exponential Th Matrix Exponntial (with xrciss) by Dan Klain Vrsion 28928 Corrctions and commnts ar wlcom Th Matrix Exponntial For ach n n complx matrix A, dfin th xponntial of A to b th matrix () A A k I + A + k!

More information

Scalars and Vectors Scalar

Scalars and Vectors Scalar Scalas and ectos Scala A phscal quantt that s completel chaacteed b a eal numbe (o b ts numecal value) s called a scala. In othe wods a scala possesses onl a magntude. Mass denst volume tempeatue tme eneg

More information

Midterm Exam. CS/ECE 181B Intro to Computer Vision. February 13, :30-4:45pm

Midterm Exam. CS/ECE 181B Intro to Computer Vision. February 13, :30-4:45pm Nam: Midtm am CS/C 8B Into to Comput Vision Fbua, 7 :-4:45pm las spa ouslvs to th dg possibl so that studnts a vnl distibutd thoughout th oom. his is a losd-boo tst. h a also a fw pags of quations, t.

More information

Multi-linear Systems and Invariant Theory. in the Context of Computer Vision and Graphics. Class 4: Mutli-View 3D-from-2D. CS329 Stanford University

Multi-linear Systems and Invariant Theory. in the Context of Computer Vision and Graphics. Class 4: Mutli-View 3D-from-2D. CS329 Stanford University Mult-lna Sytm and Invaant hoy n th Contxt of Comut Von and Gahc Cla 4: Mutl-Vw 3D-fom-D CS39 Stanfod Unvty Amnon Shahua Cla 4 Matal W Wll Cov oday Eola Gomty and Fundamntal Matx h lan+aallax modl and latv

More information

ON THE COMPLEXITY OF K-STEP AND K-HOP DOMINATING SETS IN GRAPHS

ON THE COMPLEXITY OF K-STEP AND K-HOP DOMINATING SETS IN GRAPHS MATEMATICA MONTISNIRI Vol XL (2017) MATEMATICS ON TE COMPLEXITY OF K-STEP AN K-OP OMINATIN SETS IN RAPS M FARAI JALALVAN AN N JAFARI RA partmnt of Mathmatcs Shahrood Unrsty of Tchnology Shahrood Iran Emals:

More information

CBSE SAMPLE PAPER SOLUTIONS CLASS-XII MATHS SET-2 CBSE , ˆj. cos. SECTION A 1. Given that a 2iˆ ˆj. We need to find

CBSE SAMPLE PAPER SOLUTIONS CLASS-XII MATHS SET-2 CBSE , ˆj. cos. SECTION A 1. Given that a 2iˆ ˆj. We need to find BSE SMLE ER SOLUTONS LSS-X MTHS SET- BSE SETON Gv tht d W d to fd 7 7 Hc, 7 7 7 Lt, W ow tht Thus, osd th vcto quto of th pl z - + z = - + z = Thus th ts quto of th pl s - + z = Lt d th dstc tw th pot,,

More information

The Matrix Exponential

The Matrix Exponential Th Matrix Exponntial (with xrciss) by D. Klain Vrsion 207.0.05 Corrctions and commnts ar wlcom. Th Matrix Exponntial For ach n n complx matrix A, dfin th xponntial of A to b th matrix A A k I + A + k!

More information

CBSE-XII-2013 EXAMINATION (MATHEMATICS) The value of determinant of skew symmetric matrix of odd order is always equal to zero.

CBSE-XII-2013 EXAMINATION (MATHEMATICS) The value of determinant of skew symmetric matrix of odd order is always equal to zero. CBSE-XII- EXAMINATION (MATHEMATICS) Cod : 6/ Gnal Instuctions : (i) All qustions a compulso. (ii) Th qustion pap consists of 9 qustions dividd into th sctions A, B and C. Sction A compiss of qustions of

More information

Physics 201 Lecture 4

Physics 201 Lecture 4 Phscs 1 Lectue 4 ltoda: hapte 3 Lectue 4 v Intoduce scalas and vectos v Peom basc vecto aleba (addton and subtacton) v Inteconvet between atesan & Pola coodnates Stat n nteestn 1D moton poblem: ace 9.8

More information

Overview. 1 Recall: continuous-time Markov chains. 2 Transient distribution. 3 Uniformization. 4 Strong and weak bisimulation

Overview. 1 Recall: continuous-time Markov chains. 2 Transient distribution. 3 Uniformization. 4 Strong and weak bisimulation Rcall: continuous-tim Makov chains Modling and Vification of Pobabilistic Systms Joost-Pit Katon Lhstuhl fü Infomatik 2 Softwa Modling and Vification Goup http://movs.wth-aachn.d/taching/ws-89/movp8/ Dcmb

More information

Lucas Test is based on Euler s theorem which states that if n is any integer and a is coprime to n, then a φ(n) 1modn.

Lucas Test is based on Euler s theorem which states that if n is any integer and a is coprime to n, then a φ(n) 1modn. Modul 10 Addtonal Topcs 10.1 Lctur 1 Prambl: Dtrmnng whthr a gvn ntgr s prm or compost s known as prmalty tstng. Thr ar prmalty tsts whch mrly tll us whthr a gvn ntgr s prm or not, wthout gvng us th factors

More information

System Realization Using 2-D Output Measurements

System Realization Using 2-D Output Measurements Systm Ralzaton Usng -D Output asumnts J.E. ou assahustts Insttut of Thnology Lnoln Laboatoy Abstat A two-dmnsonal (-D) systm alzaton va output masumnts s dvlopd. Th thnqu s basd on mult-nput mult-output

More information

Groupoid and Topological Quotient Group

Groupoid and Topological Quotient Group lobal Jounal of Pue and Appled Mathematcs SSN 0973-768 Volume 3 Numbe 7 07 pp 373-39 Reseach nda Publcatons http://wwwpublcatoncom oupod and Topolocal Quotent oup Mohammad Qasm Manna Depatment of Mathematcs

More information

Junction Tree Algorithm 1. David Barber

Junction Tree Algorithm 1. David Barber Juntion Tr Algorithm 1 David Barbr Univrsity Collg London 1 Ths slids aompany th book Baysian Rasoning and Mahin Larning. Th book and dmos an b downloadd from www.s.ul.a.uk/staff/d.barbr/brml. Fdbak and

More information

A general N-dimensional vector consists of N values. They can be arranged as a column or a row and can be real or complex.

A general N-dimensional vector consists of N values. They can be arranged as a column or a row and can be real or complex. Lnr lgr Vctors gnrl -dmnsonl ctor conssts of lus h cn rrngd s column or row nd cn rl or compl Rcll -dmnsonl ctor cn rprsnt poston, loct, or cclrton Lt & k,, unt ctors long,, & rspctl nd lt k h th componnts

More information

cycle that does not cross any edges (including its own), then it has at least

cycle that does not cross any edges (including its own), then it has at least W prov th following thorm: Thorm If a K n is drawn in th plan in such a way that it has a hamiltonian cycl that dos not cross any dgs (including its own, thn it has at last n ( 4 48 π + O(n crossings Th

More information

ADDITIVE INTEGRAL FUNCTIONS IN VALUED FIELDS. Ghiocel Groza*, S. M. Ali Khan** 1. Introduction

ADDITIVE INTEGRAL FUNCTIONS IN VALUED FIELDS. Ghiocel Groza*, S. M. Ali Khan** 1. Introduction ADDITIVE INTEGRAL FUNCTIONS IN VALUED FIELDS Ghiocl Goza*, S. M. Ali Khan** Abstact Th additiv intgal functions with th cofficints in a comlt non-achimdan algbaically closd fild of chaactistic 0 a studid.

More information

We are IntechOpen, the world s leading publisher of Open Access books Built by scientists, for scientists. International authors and editors

We are IntechOpen, the world s leading publisher of Open Access books Built by scientists, for scientists. International authors and editors W a InthOpn, th wold s ladn publsh of Opn Ass books Bult by sntsts, fo sntsts,800 6,000 0M Opn ass books avalabl Intnatonal authos and dtos Downloads Ou authos a amon th 54 Counts dlvd to TOP % most td

More information

9.4 Absorption and Dispersion

9.4 Absorption and Dispersion 9.4 Absoon and Dsson 9.4. loagn Wavs n Conduos un dnsy n a onduo ollowng Oh s law: J Th Maxwll s uaons n a onduo lna da should b: ρ B B B J To sly h suaon w agu ha h hag dsaas uly n a aoso od. Fo h onnuy

More information

Consider a system of 2 simultaneous first order linear equations

Consider a system of 2 simultaneous first order linear equations Soluon of sysms of frs ordr lnar quaons onsdr a sysm of smulanous frs ordr lnar quaons a b c d I has h alrna mar-vcor rprsnaon a b c d Or, n shorhand A, f A s alrady known from con W know ha h abov sysm

More information

Integral Calculus What is integral calculus?

Integral Calculus What is integral calculus? Intgral Calulus What is intgral alulus? In diffrntial alulus w diffrntiat a funtion to obtain anothr funtion alld drivativ. Intgral alulus is onrnd with th opposit pross. Rvrsing th pross of diffrntiation

More information

be two non-empty sets. Then S is called a semigroup if it satisfies the conditions

be two non-empty sets. Then S is called a semigroup if it satisfies the conditions UZZY SOT GMM EGU SEMIGOUPS V. Chinndi* & K. lmozhi** * ssocit Pofsso Dtmnt of Mthmtics nnmli Univsity nnmling Tmilnd ** Dtmnt of Mthmtics nnmli Univsity nnmling Tmilnd bstct: In this w hv discssd bot th

More information

Some Results on Interval Valued Fuzzy Neutrosophic Soft Sets ISSN

Some Results on Interval Valued Fuzzy Neutrosophic Soft Sets ISSN Som Rsults on ntrval Valud uzzy Nutrosophi Soft Sts SSN 239-9725. rokiarani Dpartmnt of Mathmatis Nirmala ollg for Womn oimbator amilnadu ndia. R. Sumathi Dpartmnt of Mathmatis Nirmala ollg for Womn oimbator

More information

Noise in electronic components.

Noise in electronic components. No lto opot5098, JDS No lto opot Th PN juto Th ut thouh a PN juto ha fou opot t: two ffuo ut (hol fo th paa to th aa a lto th oppot to) a thal at oty ha a (hol fo th aa to th paa a lto th oppot to, laka

More information

Exam 2 Solutions. Jonathan Turner 4/2/2012. CS 542 Advanced Data Structures and Algorithms

Exam 2 Solutions. Jonathan Turner 4/2/2012. CS 542 Advanced Data Structures and Algorithms CS 542 Avn Dt Stutu n Alotm Exm 2 Soluton Jontn Tun 4/2/202. (5 ont) Con n oton on t tton t tutu n w t n t 2 no. Wt t mllt num o no tt t tton t tutu oul ontn. Exln you nw. Sn n mut n you o u t n t, t n

More information

Matched Quick Switching Variable Sampling System with Quick Switching Attribute Sampling System

Matched Quick Switching Variable Sampling System with Quick Switching Attribute Sampling System Natur and Sn 9;7( g v, t al, Samlng Systm Mathd Quk Swthng Varabl Samlng Systm wth Quk Swthng Attrbut Samlng Systm Srramahandran G.V, Palanvl.M Dartmnt of Mathmats, Dr.Mahalngam Collg of Engnrng and Thnology,

More information

Maximum Matching Width: new characterizations and a fast algorithm for dominating set

Maximum Matching Width: new characterizations and a fast algorithm for dominating set Maxmum Matcn Wdt: nw caractrzatons and a ast alortm or domnatn st 정지수 (KAIST) jont work wt Sv Hortmo Sætr and Jan Arn Tll (Unvrsty o Brn) 1st Koran Worksop on Grap Tory 2015.8.27. KAIST Grap wdt paramtrs

More information

Winnie flies again. Winnie s Song. hat. A big tall hat Ten long toes A black magic wand A long red nose. nose. She s Winnie Winnie the Witch.

Winnie flies again. Winnie s Song. hat. A big tall hat Ten long toes A black magic wand A long red nose. nose. She s Winnie Winnie the Witch. Wnn f gn ht Wnn Song A g t ht Tn ong to A k g wnd A ong d no. no Sh Wnn Wnn th Wth. y t d to A ong k t Bg gn y H go wth Wnn Whn h f. wnd ootk H Wu Wu th t. Ptu Dtony oo hopt oon okt hng gd ho y ktod nh

More information

u x v x dx u x v x v x u x dx d u x v x u x v x dx u x v x dx Integration by Parts Formula

u x v x dx u x v x v x u x dx d u x v x u x v x dx u x v x dx Integration by Parts Formula 7. Intgration by Parts Each drivativ formula givs ris to a corrsponding intgral formula, as w v sn many tims. Th drivativ product rul yilds a vry usful intgration tchniqu calld intgration by parts. Starting

More information

P a g e 5 1 of R e p o r t P B 4 / 0 9

P a g e 5 1 of R e p o r t P B 4 / 0 9 P a g e 5 1 of R e p o r t P B 4 / 0 9 J A R T a l s o c o n c l u d e d t h a t a l t h o u g h t h e i n t e n t o f N e l s o n s r e h a b i l i t a t i o n p l a n i s t o e n h a n c e c o n n e

More information

EE750 Advanced Engineering Electromagnetics Lecture 17

EE750 Advanced Engineering Electromagnetics Lecture 17 EE75 Avan Engnrng Eltromagnt Ltur 7 D EM W onr a D ffrntal quaton of th form α α β f ut to p on Γ α α. n γ q on Γ whr Γ Γ Γ th ontour nlong th oman an n th unt outwar normal ot that th ounar onton ma a

More information

Potential Games and the Inefficiency of Equilibrium

Potential Games and the Inefficiency of Equilibrium Optmzaton and Control o Ntork Potntal Gam and th Inny o Equlbrum Ljun Chn 3/8/216 Outln Potntal gam q Rv on tratg gam q Potntal gam atom and nonatom Inny o qulbrum q Th pr o anarhy and lh routng q Rour

More information

Math 656 March 10, 2011 Midterm Examination Solutions

Math 656 March 10, 2011 Midterm Examination Solutions Math 656 March 0, 0 Mdtrm Eamnaton Soltons (4pts Dr th prsson for snh (arcsnh sng th dfnton of snh w n trms of ponntals, and s t to fnd all als of snh (. Plot ths als as ponts n th compl plan. Mak sr or

More information

= x. ˆ, eˆ. , eˆ. 5. Curvilinear Coordinates. See figures 2.11 and Cylindrical. Spherical

= x. ˆ, eˆ. , eˆ. 5. Curvilinear Coordinates. See figures 2.11 and Cylindrical. Spherical Mathmatics Riw Polm Rholog 5. Cuilina Coodinats Clindical Sphical,,,,,, φ,, φ S figus 2. and 2.2 Ths coodinat sstms a otho-nomal, but th a not constant (th a with position). This causs som non-intuiti

More information

Grand Canonical Ensemble

Grand Canonical Ensemble Th nsmbl of systms mmrsd n a partcl-hat rsrvor at constant tmpratur T, prssur P, and chmcal potntal. Consdr an nsmbl of M dntcal systms (M =,, 3,...M).. Thy ar mutually sharng th total numbr of partcls

More information

( ) ( ) Chapter 1 Exercise 1A. x 3. 1 a x. + d. 1 1 e. 2 a. x x 2. 2 a. + 3 x. 3 2x. x 1. 3 a. 4 a. Exercise 1C. x + x + 3. Exercise 1B.

( ) ( ) Chapter 1 Exercise 1A. x 3. 1 a x. + d. 1 1 e. 2 a. x x 2. 2 a. + 3 x. 3 2x. x 1. 3 a. 4 a. Exercise 1C. x + x + 3. Exercise 1B. answrs Chaptr Ers A a + + + + + + + + + + + + g a a a 6 h + + + + + + + + + + + + + + + + ( + ) + 6 + + + + + + 8 + 0 + Ers B a + + + + + + + + + g h j a a + + + + + + + + + + + + + + + + + + + + + + +

More information

Homework 1: Solutions

Homework 1: Solutions Howo : Solutos No-a Fals supposto tst but passs scal tst lthouh -f th ta as slowss [S /V] vs t th appaac of laty alty th path alo whch slowss s to b tat to obta tavl ts ps o th ol paat S o V as a cosquc

More information

Order Statistics from Exponentiated Gamma. Distribution and Associated Inference

Order Statistics from Exponentiated Gamma. Distribution and Associated Inference It J otm Mth Scc Vo 4 9 o 7-9 Od Stttc fom Eottd Gmm Dtto d Aoctd Ifc A I Shw * d R A Bo G og of Edcto PO Bo 369 Jddh 438 Sd A G og of Edcto Dtmt of mthmtc PO Bo 469 Jddh 49 Sd A Atct Od tttc fom ottd

More information

Determination of slot leakage inductance for three-phase induction motor winding using an analytical method

Determination of slot leakage inductance for three-phase induction motor winding using an analytical method ACHIVES OF EECTICA EGIEEIG VO 6 pp 569-59 DOI 78/--6 Dtnton of ot ntn fo t-p nton oto wnn n n nt to JA STASZAK Dptnt of Et Mn n Mton St K Unvt of Tnoo Tą PP 7 K Pon -: j@tp v: v: 5 Att: T t nto o pon fo

More information

Aakash. For Class XII Studying / Passed Students. Physics, Chemistry & Mathematics

Aakash. For Class XII Studying / Passed Students. Physics, Chemistry & Mathematics Aakash A UNIQUE PPRTUNITY T HELP YU FULFIL YUR DREAMS Fo Class XII Studying / Passd Studnts Physics, Chmisty & Mathmatics Rgistd ffic: Aakash Tow, 8, Pusa Road, Nw Dlhi-0005. Ph.: (0) 4763456 Fax: (0)

More information

Thomas Whitham Sixth Form

Thomas Whitham Sixth Form Thomas Whitham Sith Form Pur Mathmatics Unit C Algbra Trigonomtr Gomtr Calculus Vctor gomtr Pag Algbra Molus functions graphs, quations an inqualitis Graph of f () Draw f () an rflct an part of th curv

More information

8-node quadrilateral element. Numerical integration

8-node quadrilateral element. Numerical integration Fnt Elmnt Mthod lctur nots _nod quadrlatral lmnt Pag of 0 -nod quadrlatral lmnt. Numrcal ntgraton h tchnqu usd for th formulaton of th lnar trangl can b formall tndd to construct quadrlatral lmnts as wll

More information

LECTURE 6 TRANSFORMATION OF RANDOM VARIABLES

LECTURE 6 TRANSFORMATION OF RANDOM VARIABLES LECTURE 6 TRANSFORMATION OF RANDOM VARIABLES TRANSFORMATION OF FUNCTION OF A RANDOM VARIABLE UNIVARIATE TRANSFORMATIONS TRANSFORMATION OF RANDOM VARIABLES If s a rv wth cdf F th Y=g s also a rv. If w wrt

More information

and integrated over all, the result is f ( 0) ] //Fourier transform ] //inverse Fourier transform

and integrated over all, the result is f ( 0) ] //Fourier transform ] //inverse Fourier transform NANO 70-Nots Chapt -Diactd bams Dlta uctio W d som mathmatical tools to dvlop a physical thoy o lcto diactio. Idal cystals a iiit this, so th will b som iiitis lii about. Usually, th iiit quatity oly ists

More information

Folding of Regular CW-Complexes

Folding of Regular CW-Complexes Ald Mathmatcal Scncs, Vol. 6,, no. 83, 437-446 Foldng of Rgular CW-Comlxs E. M. El-Kholy and S N. Daoud,3. Dartmnt of Mathmatcs, Faculty of Scnc Tanta Unvrsty,Tanta,Egyt. Dartmnt of Mathmatcs, Faculty

More information

Thomas Whitham Sixth Form

Thomas Whitham Sixth Form Thomas Whitham Sith Form Pur Mathmatics Cor rvision gui Pag Algbra Moulus functions graphs, quations an inqualitis Graph of f () Draw f () an rflct an part of th curv blow th ais in th ais. f () f () f

More information

DOI: /jam.v14i2.7401

DOI: /jam.v14i2.7401 Nutrosoph Soft oduls Kml Vlyv Sd Byrmov Dprtmnt of Algbr nd Gomtry of Bku Stt Unvrsty ZKhllov str AZ48 Bku Azrbjn Abstrt kml607@mlru bysd@gmlom olodtsov nttd th onpt of soft sts n [7] j t l dfnd som oprtons

More information

NEW ATTACKS ON TAKAGI CRYPTOSYSTEM

NEW ATTACKS ON TAKAGI CRYPTOSYSTEM Jounal of Algba umb Thoy: Advancs and Alcatons Volum 8 umb - 7 Pags 5-59 Avalabl at htt://scntfcadvancscon DOI: htt://dxdoog/86/antaa_785 EW ATTACKS O TAKAGI CRYPTOSYSTEM MUHAMMAD REAL KAMEL ARIFFI SADIQ

More information

ORBITAL TO GEOCENTRIC EQUATORIAL COORDINATE SYSTEM TRANSFORMATION. x y z. x y z GEOCENTRIC EQUTORIAL TO ROTATING COORDINATE SYSTEM TRANSFORMATION

ORBITAL TO GEOCENTRIC EQUATORIAL COORDINATE SYSTEM TRANSFORMATION. x y z. x y z GEOCENTRIC EQUTORIAL TO ROTATING COORDINATE SYSTEM TRANSFORMATION ORITL TO GEOCENTRIC EQUTORIL COORDINTE SYSTEM TRNSFORMTION z i i i = (coωcoω in Ωcoiinω) (in Ωcoω + coωcoiinω) iniinω ( coωinω in Ωcoi coω) ( in Ωinω + coωcoicoω) in icoω in Ωini coωini coi z o o o GEOCENTRIC

More information

TMMI37, vt2, Lecture 8; Introductory 2-dimensional elastostatics; cont.

TMMI37, vt2, Lecture 8; Introductory 2-dimensional elastostatics; cont. Lctr 8; ntrodctor 2-dimnsional lastostatics; cont. (modifid 23--3) ntrodctor 2-dimnsional lastostatics; cont. W will now contin or std of 2-dim. lastostatics, and focs on a somwhat mor adancd lmnt thn

More information

Extinction Ratio and Power Penalty

Extinction Ratio and Power Penalty Application Not: HFAN-.. Rv.; 4/8 Extinction Ratio and ow nalty AVALABLE Backgound Extinction atio is an impotant paamt includd in th spcifications of most fib-optic tanscivs. h pupos of this application

More information

Review of Vector Algebra and Vector Calculus Operations

Review of Vector Algebra and Vector Calculus Operations Revew of Vecto Algeba and Vecto Calculus Opeatons Tpes of vaables n Flud Mechancs Repesentaton of vectos Dffeent coodnate sstems Base vecto elatons Scala and vecto poducts Stess Newton s law of vscost

More information

5/1/2018. Huffman Coding Trees. Huffman Coding Trees. Huffman Coding Trees. Huffman Coding Trees. Huffman Coding Trees. Huffman Coding Trees

5/1/2018. Huffman Coding Trees. Huffman Coding Trees. Huffman Coding Trees. Huffman Coding Trees. Huffman Coding Trees. Huffman Coding Trees /1/018 W usully no strns y ssnn -lnt os to ll rtrs n t lpt (or mpl, 8-t on n ASCII). Howvr, rnt rtrs our wt rnt rquns, w n sv mmory n ru trnsmttl tm y usn vrl-lnt non. T s to ssn sortr os to rtrs tt our

More information

GRAVITATION 4) R. max. 2 ..(1) ...(2)

GRAVITATION 4) R. max. 2 ..(1) ...(2) GAVITATION PVIOUS AMCT QUSTIONS NGINING. A body is pojctd vtically upwads fom th sufac of th ath with a vlocity qual to half th scap vlocity. If is th adius of th ath, maximum hight attaind by th body

More information

Mid Year Examination F.4 Mathematics Module 1 (Calculus & Statistics) Suggested Solutions

Mid Year Examination F.4 Mathematics Module 1 (Calculus & Statistics) Suggested Solutions Mid Ya Eamination 3 F. Matmatics Modul (Calculus & Statistics) Suggstd Solutions Ma pp-: 3 maks - Ma pp- fo ac qustion: mak. - Sam typ of pp- would not b countd twic fom wol pap. - In any cas, no pp maks

More information

Ordinary Differential Equations

Ordinary Differential Equations Basi Nomlatur MAE 0 all 005 Egirig Aalsis Ltur Nots o: Ordiar Diffrtial Equatios Author: Profssor Albrt Y. Tog Tpist: Sakurako Takahashi Cosidr a gral O. D. E. with t as th idpdt variabl, ad th dpdt variabl.

More information

Search sequence databases 3 10/25/2016

Search sequence databases 3 10/25/2016 Sarch squnc databass 3 10/25/2016 Etrm valu distribution Ø Suppos X is a random variabl with probability dnsity function p(, w sampl a larg numbr S of indpndnt valus of X from this distribution for an

More information

Shortest Paths in Graphs. Paths in graphs. Shortest paths CS 445. Alon Efrat Slides courtesy of Erik Demaine and Carola Wenk

Shortest Paths in Graphs. Paths in graphs. Shortest paths CS 445. Alon Efrat Slides courtesy of Erik Demaine and Carola Wenk S 445 Shortst Paths n Graphs lon frat Sls courtsy of rk man an arola Wnk Paths n raphs onsr a raph G = (V, ) wth -wht functon w : R. Th wht of path p = v v v k s fn to xampl: k = w ( p) = w( v, v + ).

More information

ELECTROMAGNETISM, NUCLEAR STRUCTURES & GRAVITATION

ELECTROMAGNETISM, NUCLEAR STRUCTURES & GRAVITATION . l & a s s Vo Flds o as l axwll a l sla () l Fld () l olasao () a Flx s () a Fld () a do () ad è s ( ). F wo Sala Flds s b dd l a s ( ) ad oool a s ( ) a oal o 4 qaos 3 aabls - w o Lal osas - oz abo Lal-Sd

More information

10. The Discrete-Time Fourier Transform (DTFT)

10. The Discrete-Time Fourier Transform (DTFT) Th Discrt-Tim Fourir Transform (DTFT Dfinition of th discrt-tim Fourir transform Th Fourir rprsntation of signals plays an important rol in both continuous and discrt signal procssing In this sction w

More information

Partial Derivatives: Suppose that z = f(x, y) is a function of two variables.

Partial Derivatives: Suppose that z = f(x, y) is a function of two variables. Chaptr Functions o Two Variabls Applid Calculus 61 Sction : Calculus o Functions o Two Variabls Now that ou hav som amiliarit with unctions o two variabls it s tim to start appling calculus to hlp us solv

More information

( ) Differential Equations. Unit-7. Exact Differential Equations: M d x + N d y = 0. Verify the condition

( ) Differential Equations. Unit-7. Exact Differential Equations: M d x + N d y = 0. Verify the condition Diffrntial Equations Unit-7 Eat Diffrntial Equations: M d N d 0 Vrif th ondition M N Thn intgrat M d with rspt to as if wr onstants, thn intgrat th trms in N d whih do not ontain trms in and quat sum of

More information

Computational Vision. Camera Calibration

Computational Vision. Camera Calibration Comutatonal Vson Camea Calbaton uo hate 6 Camea Calbaton Poblem: Estmate amea s etns & ntns aametes MthdU Method: Use mage(s) () o knon sene ools: Geomet amea models SVD and onstaned least-squaes Lne etaton

More information

Economics 600: August, 2007 Dynamic Part: Problem Set 5. Problems on Differential Equations and Continuous Time Optimization

Economics 600: August, 2007 Dynamic Part: Problem Set 5. Problems on Differential Equations and Continuous Time Optimization THE UNIVERSITY OF MARYLAND COLLEGE PARK, MARYLAND Economcs 600: August, 007 Dynamc Part: Problm St 5 Problms on Dffrntal Equatons and Contnuous Tm Optmzaton Quston Solv th followng two dffrntal quatons.

More information

Week 3: Connected Subgraphs

Week 3: Connected Subgraphs Wk 3: Connctd Subgraphs Sptmbr 19, 2016 1 Connctd Graphs Path, Distanc: A path from a vrtx x to a vrtx y in a graph G is rfrrd to an xy-path. Lt X, Y V (G). An (X, Y )-path is an xy-path with x X and y

More information

VTU NOTES QUESTION PAPERS NEWS RESULTS FORUMS

VTU NOTES QUESTION PAPERS NEWS RESULTS FORUMS Diffrntial Equations Unit-7 Eat Diffrntial Equations: M d N d 0 Vrif th ondition M N Thn intgrat M d with rspt to as if wr onstants, thn intgrat th trms in N d whih do not ontain trms in and quat sum of

More information

= y and Normed Linear Spaces

= y and Normed Linear Spaces 304-50 LINER SYSTEMS Lectue 8: Solutos to = ad Nomed Lea Spaces 73 Fdg N To fd N, we eed to chaacteze all solutos to = 0 Recall that ow opeatos peseve N, so that = 0 = 0 We ca solve = 0 ecusvel backwads

More information

Lesson 4: Relative motion, Forces, Newton s laws (sections )

Lesson 4: Relative motion, Forces, Newton s laws (sections ) Lesson 4: Relate moton, Forces, Newton s laws (sectons 3.6-4.4) We start wth a projectle problem. A olf ball s ht from the round at 35 m/s at an anle of 55º. The round s leel.. How lon s the ball n the

More information

Math 34A. Final Review

Math 34A. Final Review Math A Final Rviw 1) Us th graph of y10 to find approimat valus: a) 50 0. b) y (0.65) solution for part a) first writ an quation: 50 0. now tak th logarithm of both sids: log() log(50 0. ) pand th right

More information

Public Key Cryptography PKC january Melbourne - Australia. The Composite Discrete Logarithm and Secure Authentication

Public Key Cryptography PKC january Melbourne - Australia. The Composite Discrete Logarithm and Secure Authentication Public K Cptoaph PKC 000 18-0 janua 000 - Mlboun - Austalia Th Composit Disct Loaithm and Scu Authntication Dépatmnt d Infomatiqu ENS - CNRS Daid.Pointchal@ns.f http://www.di.ns.f/~pointch Oiw Intoduction

More information

Interval Valued Neutrosophic Soft Topological Spaces

Interval Valued Neutrosophic Soft Topological Spaces 8 Interval Valued Neutrosoph Soft Topologal njan Mukherjee Mthun Datta Florentn Smarandah Department of Mathemats Trpura Unversty Suryamannagar gartala-7990 Trpura Indamal: anjan00_m@yahooon Department

More information