September 27, Introduction to Ordinary Differential Equations. ME 501A Seminar in Engineering Analysis Page 1. Outline

Size: px
Start display at page:

Download "September 27, Introduction to Ordinary Differential Equations. ME 501A Seminar in Engineering Analysis Page 1. Outline"

Transcription

1 Introucton to Ornar Dffrntal Equatons Sptmbr 7, 7 Introucton to Ornar Dffrntal Equatons Larr artto Mchancal Engnrng AB Smnar n Engnrng Analss Sptmbr 7, 7 Outln Rvw numrcal solutons Bascs of ffrntal quatons Frst orr quatons Sparabl solutons Gnral soluton for lnar quaton Introucton to scon orr quatons Problms consr Bass of solutons onstant-coffcnt, homognous cas Rvw Numrcal Solutons Basc Dffrntal Equatons Gauss lmnaton s basc approach N pvotng stratgs to ruc roun-off rror n soluton Mofcatons of Gauss lmnaton Gauss-Joran somtms us for fnng nvrs of matr LU mtho gnrall prfrr Dos most of th lmnaton work wthout knowng th rght-han-s (b) vctor D ntgr vctor rqur for pvotng A ffrntal quaton s an quaton that contans rvatvs of a pnnt varabl,.g., () or u(, Dffrntal quaton soluton gvs () or u(, as a functon of npnnt varabl(s) Ornar ffrntal quatons (ODE) hav on npnnt varabl Partal ffrntal quatons (PDE) hav mor than on npnnt varabl Dfntons an Trms Dffrntal quatons hav bounar contons or ntal contons A gnral soluton to th ffrntal quaton s on whch can ft an bounar or ntal conton b ajustng constants n th soluton A soluton that satsfs th ffrntal quaton an th bounar or ntal contons s call a partcular soluton Mor Dfntons an Trms Th orr of a ffrntal quaton s th orr of th hghst rvatv n th quaton A lnar ffrntal quaton s on n whch th pnnt varabl an ts rvatvs all appar n lnar trms A homognous ffrntal quaton s on n whch all trms nvolv th pnnt varabl an ts rvatvs 6 ME A Smnar n Engnrng Analss Pag

2 Introucton to Ornar Dffrntal Equatons Sptmbr 7, 7 Eampls of ODEs : Inpnnt : Dpnnt Applcatons Thr-orr, lnar, homognous Scon-orr, nonlnar, homognous Scon-orr, lnar, non-homognous Thr-orr, non-lnar, non-homognous sn( ) sn( cos( ) 7 Frst orr ffrntal quatons ar oftn us to mol rat procsss Nwton s coolng T/t = -k(t - T ) chmcal ractons, c /t = f(c,t) Nwton s scon law, F = ma las to scon orr quatons for mchancal sstms m t F Dflcton,, of rctangular bam ornt n rcton EI / = f() 8 Sparabl Forms Smpl ffrntal quatons can b wrttn as ntgrals Evn f numrcal quaratur s rqur ths s mor accurat than numrcal soluton of ODE f ( ) f ( ) f ( ) g( f g ( ) ( ) u h h( u) u 9 Lnar Frst-Orr Equaton Th soluton to th frst-orr quaton p Is gvn b th followng rsult h r h r whr h p Th constant,, rqurs th spcfcaton of th valu of at a partcular valu of ;.g., = at =, + Q(, = Is, + Q(, = an act form? From ffrntal of a functon of two varabls, f(,, s f P an Q satsf partal rvatv rlaton If f =, f = f f f f f, Q(, f P Q f f Q P f f Eact Form Q P If,, +Q(, = f W ma not know (or car) what f s, but w us f =, +Q(, to solv th ffrntal quaton W also know that, +Q(, = mans that f = or f = a constant W also know that P an Q ar rvatvs of ths mstrous f functon f f Q P, an Q(, onl f ME A Smnar n Engnrng Analss Pag

3 Introucton to Ornar Dffrntal Equatons Sptmbr 7, 7 Eact Forms II Intgrat f =, + Q(, for constant f (f = ) f = constant,, bcaus f = f f, g( const f g( Q(,, const g( Q(,, h( const Eact Forms III Fnal quaton must b a functon of onl Intgrat ths quaton for g( g( Q(,, h( const g( g Q(, P (, ) const Substtut g( nto quaton for f f f, g( const const f f Eact Forms IV const, g( g( Q(,, const, Q(,, const ombn constants nto a sngl constant Obtan mplct rlatonshp btwn an Solvng Eact P + Q = const, Q(, const, Stp Intgrat, wth constant Stp Tak th rvatv of th stp rsult an subtract t from Q(, Stp Intgrat rsult of stp, that wll b a functon of onl, ovr Stp A rsults of stps an 6 Intgratng Factors Us to ntgrat, + Q(, = f P an Q ar not act Basc a s to fn a factor, F, that multpls th orgnal quaton: FP + FQ = Fn th F factor so that FP an FQ ar act Us tral an rror or FQ FP procss outln n Krszg to fn F 7 Frst-orr Equatons Frst orr rat quaton whr rat s proportonal to amount /t = -k = -k(t-t ) Gnral lnar frst orr quaton for (): / + f() = g() has clos form soluton shown blow s foun from ntal conton p f ( ) p p g( ) 8 ME A Smnar n Engnrng Analss Pag

4 Introucton to Ornar Dffrntal Equatons Sptmbr 7, 7 Estnc an Unqunss Important bcaus w can tr numrcal soluton of an ODE wth no soluton Eamn / = f(, wth ( ) = n a rgon < a an < b Drvat s boun: f(, K Equaton has a soluton n rgon < mn(a, b/k) Unqunss rqurs f/ M 9 Estnc an Unqunss Eampl: =, () = Hr w hav / = f(, = / wth ( = ) = = Rgon s < a an < b Drvatv s not boun at = = Thrfor hav no solutons: f(, K Attmpt soluton s = ln() +, but w cannot appl ths at = = Scon Orr Equatons Frst look at homognous lnar quatons Thn consr nonhomognous quatons Most nonlnar quatons rqur numrcal soluton p( ) q( ) t p( ) q( ) r( ) t,,, t Lnar Homognous n Orr p( ) q( ) t An lnar combnaton of two solutons, an, to ths quaton, = c + c, s also a soluton an prov ths b substtutng c + c combnaton nto orgnal quaton for whch an ar solutons Lnar Homognous n Orr II p( ) q( ) A bass of solutons for ths quaton s an two lnarl npnnt solutons an = c + c s a gnral soluton whr c an c can b us to ft ntal or bounar contons Intal contons spcf () an () Bounar contons spcf (a) an (b) Estnc an Unqunss p( ) q( ) wth K ' K Th ntal valu problm fn abov on th opn ntrval, I, fn as a < < b, has a unqu soluton f p() an q() ar contnuous on th ntrval, I, an s locat on th ntrval, I. Nt sl scusss lnar npnnc of solutons to ths ODE ME A Smnar n Engnrng Analss Pag

5 Introucton to Ornar Dffrntal Equatons Sptmbr 7, 7 Lnar Inpnnc p( ) q( ) wth K ' K Th soluton to th ntal valu problm fn abov can b wrttn as () = k () + k () whr an ar lnarl npnnt For k () + k () =, w must hav k = an k = for an to b lnarl npnnt Wronsk Dtrmnant, W s call th Wronsk trmnant or Wronskan for th ODE unr scusson p( ) q( ) wth K ' K Th solutons to th ODE ar lnarl npnnt f thr s som pont,, n th soluton ntrval for whch W s not 6 onstant offcnts Smplst soluton s whn p() an q() ar constants Th ffrntal quaton for ths cas s shown blow Th soluton s shown on th nt sl c 7 onstant offcnt Soluton ODE solutons ar bas on soluton of charactrstc quaton + a + b = Solutons for ar roots of quaratc Two lnarl-npnnt ODE solutons ar = an = 8 onstant offcnt Soluton Two solutons, = an =, form bass for gnral soluton Gnral soluton s = + an show soluton s corrct b substtutng nto orgnal ODE Fn an from ntal or bounar contons 9 onstant offcnt Soluton Gnral soluton s lnar combnaton of lnarl-npnnt solutons = + = + Drvatvs of th nvual solutons ar = an = - ; = an = Us ths rvatvs (plus = an = ) to vrf nvual solutons Dos? t ME A Smnar n Engnrng Analss Pag

6 Introucton to Ornar Dffrntal Equatons Sptmbr 7, 7 ME A Smnar n Engnrng Analss Pag 6 onstant offcnt Soluton X Dfnton : haractrstc quaton X Ercs Fn th soluton to th followng ODE wth ntal contons that () = an () = Rpat th soluton to th ODE wth bounar contons that () = an () = Ercs Soluton (/) ODE has form scuss prvousl wth α = an β = / Soluton s = + whr,, Appl bounar contons to fn an Ercs Soluton (/) Frst cas () =, () = ) ( ' W can show that () = an () = Ercs Soluton (/) Scon cas () =, () = ) ( W can show that () = an () = hck Gnral Soluton (/) Plug soluton nto orgnal ODE 6 ' ' '

7 Introucton to Ornar Dffrntal Equatons Sptmbr 7, 7 ME A Smnar n Engnrng Analss Pag 7 hck Gnral Soluton (/) 7 6

8-node quadrilateral element. Numerical integration

8-node quadrilateral element. Numerical integration Fnt Elmnt Mthod lctur nots _nod quadrlatral lmnt Pag of 0 -nod quadrlatral lmnt. Numrcal ntgraton h tchnqu usd for th formulaton of th lnar trangl can b formall tndd to construct quadrlatral lmnts as wll

More information

CHAPTER 7d. DIFFERENTIATION AND INTEGRATION

CHAPTER 7d. DIFFERENTIATION AND INTEGRATION CHAPTER 7d. DIFFERENTIATION AND INTEGRATION A. J. Clark School o Engnrng Dpartmnt o Cvl and Envronmntal Engnrng by Dr. Ibrahm A. Assakka Sprng ENCE - Computaton Mthods n Cvl Engnrng II Dpartmnt o Cvl and

More information

Linear Algebra. Definition The inverse of an n by n matrix A is an n by n matrix B where, Properties of Matrix Inverse. Minors and cofactors

Linear Algebra. Definition The inverse of an n by n matrix A is an n by n matrix B where, Properties of Matrix Inverse. Minors and cofactors Dfnton Th nvr of an n by n atrx A an n by n atrx B whr, Not: nar Algbra Matrx Invron atrc on t hav an nvr. If a atrx ha an nvr, thn t call. Proprt of Matrx Invr. If A an nvrtbl atrx thn t nvr unqu.. (A

More information

The Hyperelastic material is examined in this section.

The Hyperelastic material is examined in this section. 4. Hyprlastcty h Hyprlastc matral s xad n ths scton. 4..1 Consttutv Equatons h rat of chang of ntrnal nrgy W pr unt rfrnc volum s gvn by th strss powr, whch can b xprssd n a numbr of dffrnt ways (s 3.7.6):

More information

Jones vector & matrices

Jones vector & matrices Jons vctor & matrcs PY3 Colást na hollscol Corcagh, Ér Unvrst Collg Cork, Irland Dpartmnt of Phscs Matr tratmnt of polarzaton Consdr a lght ra wth an nstantanous -vctor as shown k, t ˆ k, t ˆ k t, o o

More information

Guo, James C.Y. (1998). "Overland Flow on a Pervious Surface," IWRA International J. of Water, Vol 23, No 2, June.

Guo, James C.Y. (1998). Overland Flow on a Pervious Surface, IWRA International J. of Water, Vol 23, No 2, June. Guo, Jams C.Y. (006). Knmatc Wav Unt Hyrograph for Storm Watr Prctons, Vol 3, No. 4, ASCE J. of Irrgaton an Dranag Engnrng, July/August. Guo, Jams C.Y. (998). "Ovrlan Flow on a Prvous Surfac," IWRA Intrnatonal

More information

Heisenberg Model. Sayed Mohammad Mahdi Sadrnezhaad. Supervisor: Prof. Abdollah Langari

Heisenberg Model. Sayed Mohammad Mahdi Sadrnezhaad. Supervisor: Prof. Abdollah Langari snbrg Modl Sad Mohammad Mahd Sadrnhaad Survsor: Prof. bdollah Langar bstract: n ths rsarch w tr to calculat analtcall gnvalus and gnvctors of fnt chan wth ½-sn artcls snbrg modl. W drov gnfuctons for closd

More information

EE750 Advanced Engineering Electromagnetics Lecture 17

EE750 Advanced Engineering Electromagnetics Lecture 17 EE75 Avan Engnrng Eltromagnt Ltur 7 D EM W onr a D ffrntal quaton of th form α α β f ut to p on Γ α α. n γ q on Γ whr Γ Γ Γ th ontour nlong th oman an n th unt outwar normal ot that th ounar onton ma a

More information

Grand Canonical Ensemble

Grand Canonical Ensemble Th nsmbl of systms mmrsd n a partcl-hat rsrvor at constant tmpratur T, prssur P, and chmcal potntal. Consdr an nsmbl of M dntcal systms (M =,, 3,...M).. Thy ar mutually sharng th total numbr of partcls

More information

A Note on Estimability in Linear Models

A Note on Estimability in Linear Models Intrnatonal Journal of Statstcs and Applcatons 2014, 4(4): 212-216 DOI: 10.5923/j.statstcs.20140404.06 A Not on Estmablty n Lnar Modls S. O. Adymo 1,*, F. N. Nwob 2 1 Dpartmnt of Mathmatcs and Statstcs,

More information

Economics 600: August, 2007 Dynamic Part: Problem Set 5. Problems on Differential Equations and Continuous Time Optimization

Economics 600: August, 2007 Dynamic Part: Problem Set 5. Problems on Differential Equations and Continuous Time Optimization THE UNIVERSITY OF MARYLAND COLLEGE PARK, MARYLAND Economcs 600: August, 007 Dynamc Part: Problm St 5 Problms on Dffrntal Equatons and Contnuous Tm Optmzaton Quston Solv th followng two dffrntal quatons.

More information

PART 8. Partial Differential Equations PDEs

PART 8. Partial Differential Equations PDEs he Islamc Unverst of Gaza Facult of Engneerng Cvl Engneerng Department Numercal Analss ECIV 3306 PAR 8 Partal Dfferental Equatons PDEs Chapter 9; Fnte Dfference: Ellptc Equatons Assocate Prof. Mazen Abualtaef

More information

Ερωτήσεις και ασκησεις Κεφ. 10 (για μόρια) ΠΑΡΑΔΟΣΗ 29/11/2016. (d)

Ερωτήσεις και ασκησεις Κεφ. 10 (για μόρια) ΠΑΡΑΔΟΣΗ 29/11/2016. (d) Ερωτήσεις και ασκησεις Κεφ 0 (για μόρια ΠΑΡΑΔΟΣΗ 9//06 Th coffcnt A of th van r Waals ntracton s: (a A r r / ( r r ( (c a a a a A r r / ( r r ( a a a a A r r / ( r r a a a a A r r / ( r r 4 a a a a 0 Th

More information

From Structural Analysis to FEM. Dhiman Basu

From Structural Analysis to FEM. Dhiman Basu From Structural Analyss to FEM Dhman Basu Acknowldgmnt Followng txt books wr consultd whl prparng ths lctur nots: Znkwcz, OC O.C. andtaylor Taylor, R.L. (000). Th FntElmnt Mthod, Vol. : Th Bass, Ffth dton,

More information

n α j x j = 0 j=1 has a nontrivial solution. Here A is the n k matrix whose jth column is the vector for all t j=0

n α j x j = 0 j=1 has a nontrivial solution. Here A is the n k matrix whose jth column is the vector for all t j=0 MODULE 2 Topcs: Lnear ndependence, bass and dmenson We have seen that f n a set of vectors one vector s a lnear combnaton of the remanng vectors n the set then the span of the set s unchanged f that vector

More information

Numerical Solution of Ordinary Differential Equations

Numerical Solution of Ordinary Differential Equations Numercal Methods (CENG 00) CHAPTER-VI Numercal Soluton of Ordnar Dfferental Equatons 6 Introducton Dfferental equatons are equatons composed of an unknown functon and ts dervatves The followng are examples

More information

Solution of Linear System of Equations and Matrix Inversion Gauss Seidel Iteration Method

Solution of Linear System of Equations and Matrix Inversion Gauss Seidel Iteration Method Soluton of Lnear System of Equatons and Matr Inverson Gauss Sedel Iteraton Method It s another well-known teratve method for solvng a system of lnear equatons of the form a + a22 + + ann = b a2 + a222

More information

Journal of Theoretical and Applied Information Technology 10 th January Vol. 47 No JATIT & LLS. All rights reserved.

Journal of Theoretical and Applied Information Technology 10 th January Vol. 47 No JATIT & LLS. All rights reserved. Journal o Thortcal and Appld Inormaton Tchnology th January 3. Vol. 47 No. 5-3 JATIT & LLS. All rghts rsrvd. ISSN: 99-8645 www.att.org E-ISSN: 87-395 RESEARCH ON PROPERTIES OF E-PARTIAL DERIVATIVE OF LOGIC

More information

FREE VIBRATION ANALYSIS OF FUNCTIONALLY GRADED BEAMS

FREE VIBRATION ANALYSIS OF FUNCTIONALLY GRADED BEAMS Journal of Appl Mathatcs an Coputatonal Mchancs, (), 9- FREE VIBRATION ANAYSIS OF FNCTIONAY GRADED BEAMS Stansław Kukla, Jowta Rychlwska Insttut of Mathatcs, Czstochowa nvrsty of Tchnology Czstochowa,

More information

Relate p and T at equilibrium between two phases. An open system where a new phase may form or a new component can be added

Relate p and T at equilibrium between two phases. An open system where a new phase may form or a new component can be added 4.3, 4.4 Phas Equlbrum Dtrmn th slops of th f lns Rlat p and at qulbrum btwn two phass ts consdr th Gbbs functon dg η + V Appls to a homognous systm An opn systm whr a nw phas may form or a nw componnt

More information

External Equivalent. EE 521 Analysis of Power Systems. Chen-Ching Liu, Boeing Distinguished Professor Washington State University

External Equivalent. EE 521 Analysis of Power Systems. Chen-Ching Liu, Boeing Distinguished Professor Washington State University xtrnal quvalnt 5 Analyss of Powr Systms Chn-Chng Lu, ong Dstngushd Profssor Washngton Stat Unvrsty XTRNAL UALNT ach powr systm (ara) s part of an ntrconnctd systm. Montorng dvcs ar nstalld and data ar

More information

A NON-LINEAR MODEL FOR STUDYING THE MOTION OF A HUMAN BODY. Piteşti, , Romania 2 Department of Automotive, University of Piteşti

A NON-LINEAR MODEL FOR STUDYING THE MOTION OF A HUMAN BODY. Piteşti, , Romania 2 Department of Automotive, University of Piteşti ICSV Carns ustrala 9- July 7 NON-LINER MOEL FOR STUYING THE MOTION OF HUMN OY Ncola-oru Stănscu Marna Pandra nl Popa Sorn Il Ştfan-Lucan Tabacu partnt of ppld Mchancs Unvrsty of Ptşt Ptşt 7 Roana partnt

More information

Review - Probabilistic Classification

Review - Probabilistic Classification Mmoral Unvrsty of wfoundland Pattrn Rcognton Lctur 8 May 5, 6 http://www.ngr.mun.ca/~charlsr Offc Hours: Tusdays Thursdays 8:3-9:3 PM E- (untl furthr notc) Gvn lablld sampls { ɛc,,,..., } {. Estmat Rvw

More information

2.8 Variational Approach in Finite Element Formulation [Bathe P ] Principle of Minimum Total Potential Energy

2.8 Variational Approach in Finite Element Formulation [Bathe P ] Principle of Minimum Total Potential Energy .8 Varatona Approach n Fnt Emnt Formuaton [Bath P.-6] In unrstanng th phnomna occurrng n natur, w ar qut us to ffrnta quatons to scrb th phnomna mathmatca bas on basc phsca prncps, nam consrvaton aws n

More information

Introduction to Vapor/Liquid Equilibrium, part 2. Raoult s Law:

Introduction to Vapor/Liquid Equilibrium, part 2. Raoult s Law: CE304, Sprng 2004 Lecture 4 Introducton to Vapor/Lqud Equlbrum, part 2 Raoult s Law: The smplest model that allows us do VLE calculatons s obtaned when we assume that the vapor phase s an deal gas, and

More information

Thomas Whitham Sixth Form

Thomas Whitham Sixth Form Thomas Whitham Sith Form Pur Mathmatics Unit C Algbra Trigonomtr Gomtr Calculus Vctor gomtr Pag Algbra Molus functions graphs, quations an inqualitis Graph of f () Draw f () an rflct an part of th curv

More information

Chapter 7: Conservation of Energy

Chapter 7: Conservation of Energy Lecture 7: Conservaton o nergy Chapter 7: Conservaton o nergy Introucton I the quantty o a subject oes not change wth tme, t means that the quantty s conserve. The quantty o that subject remans constant

More information

VISUALIZATION OF DIFFERENTIAL GEOMETRY UDC 514.7(045) : : Eberhard Malkowsky 1, Vesna Veličković 2

VISUALIZATION OF DIFFERENTIAL GEOMETRY UDC 514.7(045) : : Eberhard Malkowsky 1, Vesna Veličković 2 FACTA UNIVERSITATIS Srs: Mchancs, Automatc Control Robotcs Vol.3, N o, 00, pp. 7-33 VISUALIZATION OF DIFFERENTIAL GEOMETRY UDC 54.7(045)54.75.6:59.688:59.673 Ebrhard Malkowsky, Vsna Vlčkovć Dpartmnt of

More information

Three-Node Euler-Bernoulli Beam Element Based on Positional FEM

Three-Node Euler-Bernoulli Beam Element Based on Positional FEM Avalabl onln at www.scncdrct.com Procda Engnrng 9 () 373 377 Intrnatonal Workshop on Informaton and Elctroncs Engnrng (IWIEE) Thr-Nod Eulr-Brnoull Bam Elmnt Basd on Postonal FEM Lu Jan a *,b, Zhou Shnj

More information

Consider a system of 2 simultaneous first order linear equations

Consider a system of 2 simultaneous first order linear equations Soluon of sysms of frs ordr lnar quaons onsdr a sysm of smulanous frs ordr lnar quaons a b c d I has h alrna mar-vcor rprsnaon a b c d Or, n shorhand A, f A s alrady known from con W know ha h abov sysm

More information

10/7/14. Mixture Models. Comp 135 Introduction to Machine Learning and Data Mining. Maximum likelihood estimation. Mixture of Normals in 1D

10/7/14. Mixture Models. Comp 135 Introduction to Machine Learning and Data Mining. Maximum likelihood estimation. Mixture of Normals in 1D Comp 35 Introducton to Machn Larnng and Data Mnng Fall 204 rofssor: Ron Khardon Mxtur Modls Motvatd by soft k-mans w dvlopd a gnratv modl for clustrng. Assum thr ar k clustrs Clustrs ar not rqurd to hav

More information

Soft k-means Clustering. Comp 135 Machine Learning Computer Science Tufts University. Mixture Models. Mixture of Normals in 1D

Soft k-means Clustering. Comp 135 Machine Learning Computer Science Tufts University. Mixture Models. Mixture of Normals in 1D Comp 35 Machn Larnng Computr Scnc Tufts Unvrsty Fall 207 Ron Khardon Th EM Algorthm Mxtur Modls Sm-Suprvsd Larnng Soft k-mans Clustrng ck k clustr cntrs : Assocat xampls wth cntrs p,j ~~ smlarty b/w cntr

More information

Electrochemical Equilibrium Electromotive Force. Relation between chemical and electric driving forces

Electrochemical Equilibrium Electromotive Force. Relation between chemical and electric driving forces C465/865, 26-3, Lctur 7, 2 th Sp., 26 lctrochmcal qulbrum lctromotv Forc Rlaton btwn chmcal and lctrc drvng forcs lctrochmcal systm at constant T and p: consdr G Consdr lctrochmcal racton (nvolvng transfr

More information

Southern Taiwan University

Southern Taiwan University Chaptr Ordinar Diffrntial Equations of th First Ordr and First Dgr Gnral form:., d +, d 0.a. f,.b I. Sparabl Diffrntial quations Form: d + d 0 C d d E 9 + 4 0 Solution: 9d + 4d 0 9 + 4 C E + d Solution:

More information

Introduction to logistic regression

Introduction to logistic regression Itroducto to logstc rgrsso Gv: datast D { 2 2... } whr s a k-dmsoal vctor of ral-valud faturs or attrbuts ad s a bar class labl or targt. hus w ca sa that R k ad {0 }. For ampl f k 4 a datast of 3 data

More information

The Fourier Transform

The Fourier Transform /9/ Th ourr Transform Jan Baptst Josph ourr 768-83 Effcnt Data Rprsntaton Data can b rprsntd n many ways. Advantag usng an approprat rprsntaton. Eampls: osy ponts along a ln Color spac rd/grn/blu v.s.

More information

36.1 Why is it important to be able to find roots to systems of equations? Up to this point, we have discussed how to find the solution to

36.1 Why is it important to be able to find roots to systems of equations? Up to this point, we have discussed how to find the solution to ChE Lecture Notes - D. Keer, 5/9/98 Lecture 6,7,8 - Rootndng n systems o equatons (A) Theory (B) Problems (C) MATLAB Applcatons Tet: Supplementary notes rom Instructor 6. Why s t mportant to be able to

More information

Differential Equations

Differential Equations UNIT I Diffrntial Equations.0 INTRODUCTION W li in a world of intrrlatd changing ntitis. Th locit of a falling bod changs with distanc, th position of th arth changs with tim, th ara of a circl changs

More information

Note If the candidate believes that e x = 0 solves to x = 0 or gives an extra solution of x = 0, then withhold the final accuracy mark.

Note If the candidate believes that e x = 0 solves to x = 0 or gives an extra solution of x = 0, then withhold the final accuracy mark. . (a) Eithr y = or ( 0, ) (b) Whn =, y = ( 0 + ) = 0 = 0 ( + ) = 0 ( )( ) = 0 Eithr = (for possibly abov) or = A 3. Not If th candidat blivs that = 0 solvs to = 0 or givs an tra solution of = 0, thn withhold

More information

9.5 Complex variables

9.5 Complex variables 9.5 Cmpl varabls. Cnsdr th funtn u v f( ) whr ( ) ( ), f( ), fr ths funtn tw statmnts ar as fllws: Statmnt : f( ) satsf Cauh mann quatn at th rgn. Statmnt : f ( ) ds nt st Th rrt statmnt ar (A) nl (B)

More information

Outlier-tolerant parameter estimation

Outlier-tolerant parameter estimation Outlr-tolrant paramtr stmaton Baysan thods n physcs statstcs machn larnng and sgnal procssng (SS 003 Frdrch Fraundorfr fraunfr@cg.tu-graz.ac.at Computr Graphcs and Vson Graz Unvrsty of Tchnology Outln

More information

The Fundamental Theorem of Algebra. Objective To use the Fundamental Theorem of Algebra to solve polynomial equations with complex solutions

The Fundamental Theorem of Algebra. Objective To use the Fundamental Theorem of Algebra to solve polynomial equations with complex solutions 5-6 The Fundamental Theorem of Algebra Content Standards N.CN.7 Solve quadratc equatons wth real coeffcents that have comple solutons. N.CN.8 Etend polnomal denttes to the comple numbers. Also N.CN.9,

More information

Modelli Clamfim Equazione del Calore Lezione ottobre 2014

Modelli Clamfim Equazione del Calore Lezione ottobre 2014 CLAMFIM Bologna Modell 1 @ Clamfm Equazone del Calore Lezone 17 15 ottobre 2014 professor Danele Rtell danele.rtell@unbo.t 1/24? Convoluton The convoluton of two functons g(t) and f(t) s the functon (g

More information

CHAPTER 33: PARTICLE PHYSICS

CHAPTER 33: PARTICLE PHYSICS Collg Physcs Studnt s Manual Chaptr 33 CHAPTER 33: PARTICLE PHYSICS 33. THE FOUR BASIC FORCES 4. (a) Fnd th rato of th strngths of th wak and lctromagntc forcs undr ordnary crcumstancs. (b) What dos that

More information

HORIZONTAL IMPEDANCE FUNCTION OF SINGLE PILE IN SOIL LAYER WITH VARIABLE PROPERTIES

HORIZONTAL IMPEDANCE FUNCTION OF SINGLE PILE IN SOIL LAYER WITH VARIABLE PROPERTIES 13 th World Confrnc on Earthquak Engnrng Vancouvr, B.C., Canada August 1-6, 4 Papr No. 485 ORIZONTAL IMPEDANCE FUNCTION OF SINGLE PILE IN SOIL LAYER WIT VARIABLE PROPERTIES Mngln Lou 1 and Wnan Wang Abstract:

More information

ME 501A Seminar in Engineering Analysis Page 1

ME 501A Seminar in Engineering Analysis Page 1 umercal Solutons of oundary-value Problems n Os ovember 7, 7 umercal Solutons of oundary- Value Problems n Os Larry aretto Mechancal ngneerng 5 Semnar n ngneerng nalyss ovember 7, 7 Outlne Revew stff equaton

More information

2. Grundlegende Verfahren zur Übertragung digitaler Signale (Zusammenfassung) Informationstechnik Universität Ulm

2. Grundlegende Verfahren zur Übertragung digitaler Signale (Zusammenfassung) Informationstechnik Universität Ulm . Grundlgnd Vrfahrn zur Übrtragung dgtalr Sgnal (Zusammnfassung) wt Dc. 5 Transmsson of Dgtal Sourc Sgnals Sourc COD SC COD MOD MOD CC dg RF s rado transmsson mdum Snk DC SC DC CC DM dg DM RF g physcal

More information

Appendix for Causal Interaction in Factorial Experiments: Application to Conjoint Analysis

Appendix for Causal Interaction in Factorial Experiments: Application to Conjoint Analysis A Appendx for Causal Interacton n Factoral Experments: Applcaton to Conjont Analyss Mathematcal Appendx: Proofs of Theorems A. Lemmas Below, we descrbe all the lemmas, whch are used to prove the man theorems

More information

Fakultät III Wirtschaftswissenschaften Univ.-Prof. Dr. Jan Franke-Viebach

Fakultät III Wirtschaftswissenschaften Univ.-Prof. Dr. Jan Franke-Viebach Unvrstät Sgn Fakultät III Wrtschaftswssnschaftn Unv.-rof. Dr. Jan Frank-Vbach Exam Intrnatonal Fnancal Markts Summr Smstr 206 (2 nd Exam rod) Avalabl tm: 45 mnuts Soluton For your attnton:. las do not

More information

y i x P vap 10 A T SOLUTION TO HOMEWORK #7 #Problem

y i x P vap 10 A T SOLUTION TO HOMEWORK #7 #Problem SOLUTION TO HOMEWORK #7 #roblem 1 10.1-1 a. In order to solve ths problem, we need to know what happens at the bubble pont; at ths pont, the frst bubble s formed, so we can assume that all of the number

More information

u x v x dx u x v x v x u x dx d u x v x u x v x dx u x v x dx Integration by Parts Formula

u x v x dx u x v x v x u x dx d u x v x u x v x dx u x v x dx Integration by Parts Formula 7. Intgration by Parts Each drivativ formula givs ris to a corrsponding intgral formula, as w v sn many tims. Th drivativ product rul yilds a vry usful intgration tchniqu calld intgration by parts. Starting

More information

MAE140 - Linear Circuits - Fall 10 Midterm, October 28

MAE140 - Linear Circuits - Fall 10 Midterm, October 28 M140 - Lnear rcuts - Fall 10 Mdterm, October 28 nstructons () Ths exam s open book. You may use whatever wrtten materals you choose, ncludng your class notes and textbook. You may use a hand calculator

More information

COMPLEX NUMBER PAIRWISE COMPARISON AND COMPLEX NUMBER AHP

COMPLEX NUMBER PAIRWISE COMPARISON AND COMPLEX NUMBER AHP ISAHP 00, Bal, Indonsa, August -9, 00 COMPLEX NUMBER PAIRWISE COMPARISON AND COMPLEX NUMBER AHP Chkako MIYAKE, Kkch OHSAWA, Masahro KITO, and Masaak SHINOHARA Dpartmnt of Mathmatcal Informaton Engnrng

More information

Logistic Regression I. HRP 261 2/10/ am

Logistic Regression I. HRP 261 2/10/ am Logstc Rgrsson I HRP 26 2/0/03 0- am Outln Introducton/rvw Th smplst logstc rgrsson from a 2x2 tabl llustrats how th math works Stp-by-stp xampls to b contnud nxt tm Dummy varabls Confoundng and ntracton

More information

One Dimensional Axial Deformations

One Dimensional Axial Deformations One Dmensonal al Deformatons In ths secton, a specfc smple geometr s consdered, that of a long and thn straght component loaded n such a wa that t deforms n the aal drecton onl. The -as s taken as the

More information

Transfer Functions. Convenient representation of a linear, dynamic model. A transfer function (TF) relates one input and one output: ( ) system

Transfer Functions. Convenient representation of a linear, dynamic model. A transfer function (TF) relates one input and one output: ( ) system Transfer Functons Convenent representaton of a lnear, dynamc model. A transfer functon (TF) relates one nput and one output: x t X s y t system Y s The followng termnology s used: x y nput output forcng

More information

Summary: Solving a Homogeneous System of Two Linear First Order Equations in Two Unknowns

Summary: Solving a Homogeneous System of Two Linear First Order Equations in Two Unknowns Summary: Solvng a Homognous Sysm of Two Lnar Frs Ordr Equaons n Two Unknowns Gvn: A Frs fnd h wo gnvalus, r, and hr rspcv corrspondng gnvcors, k, of h coffcn mar A Dpndng on h gnvalus and gnvcors, h gnral

More information

APPENDIX A Some Linear Algebra

APPENDIX A Some Linear Algebra APPENDIX A Some Lnear Algebra The collecton of m, n matrces A.1 Matrces a 1,1,..., a 1,n A = a m,1,..., a m,n wth real elements a,j s denoted by R m,n. If n = 1 then A s called a column vector. Smlarly,

More information

Lecture 21: Numerical methods for pricing American type derivatives

Lecture 21: Numerical methods for pricing American type derivatives Lecture 21: Numercal methods for prcng Amercan type dervatves Xaoguang Wang STAT 598W Aprl 10th, 2014 (STAT 598W) Lecture 21 1 / 26 Outlne 1 Fnte Dfference Method Explct Method Penalty Method (STAT 598W)

More information

Heating of a solid cylinder immersed in an insulated bath. Thermal diffusivity and heat capacity experimental evaluation.

Heating of a solid cylinder immersed in an insulated bath. Thermal diffusivity and heat capacity experimental evaluation. Hatng of a sold cylndr mmrsd n an nsulatd bath. Thrmal dffusvty and hat capacty xprmntal valuaton. Žtný R., CTU FE Dpartmnt of Procss Engnrng, arch. Introducton Th problm as ntatd by th follong E-mal from

More information

nd the particular orthogonal trajectory from the family of orthogonal trajectories passing through point (0; 1).

nd the particular orthogonal trajectory from the family of orthogonal trajectories passing through point (0; 1). Eamn EDO. Givn th family of curvs y + C nd th particular orthogonal trajctory from th family of orthogonal trajctoris passing through point (0; ). Solution: In th rst plac, lt us calculat th di rntial

More information

Probability and Stochastic Processes: A Friendly Introduction for Electrical and Computer Engineers Roy D. Yates and David J.

Probability and Stochastic Processes: A Friendly Introduction for Electrical and Computer Engineers Roy D. Yates and David J. Probability and Stochastic Procsss: A Frindly Introduction for Elctrical and Computr Enginrs Roy D. Yats and David J. Goodman Problm Solutions : Yats and Goodman,4.3. 4.3.4 4.3. 4.4. 4.4.4 4.4.6 4.. 4..7

More information

3.4 Properties of the Stress Tensor

3.4 Properties of the Stress Tensor cto.4.4 Proprts of th trss sor.4. trss rasformato Lt th compots of th Cauchy strss tsor a coordat systm wth bas vctors b. h compots a scod coordat systm wth bas vctors j,, ar gv by th tsor trasformato

More information

First order differential equation Linear equation; Method of integrating factors

First order differential equation Linear equation; Method of integrating factors First orr iffrntial quation Linar quation; Mtho of intgrating factors Exampl 1: Rwrit th lft han si as th rivativ of th prouct of y an som function by prouct rul irctly. Solving th first orr iffrntial

More information

Equil. Properties of Reacting Gas Mixtures. So far have looked at Statistical Mechanics results for a single (pure) perfect gas

Equil. Properties of Reacting Gas Mixtures. So far have looked at Statistical Mechanics results for a single (pure) perfect gas Shool of roa Engnrng Equl. Prort of Ratng Ga Mxtur So far hav lookd at Stattal Mhan rult for a ngl (ur) rft ga hown how to gt ga rort (,, h, v,,, ) from artton funton () For nonratng rft ga mxtur, gt mxtur

More information

te Finance (4th Edition), July 2017.

te Finance (4th Edition), July 2017. Appndx Chaptr. Tchncal Background Gnral Mathmatcal and Statstcal Background Fndng a bas: 3 2 = 9 3 = 9 1 /2 x a = b x = b 1/a A powr of 1 / 2 s also quvalnt to th squar root opraton. Fndng an xponnt: 3

More information

Folding of Regular CW-Complexes

Folding of Regular CW-Complexes Ald Mathmatcal Scncs, Vol. 6,, no. 83, 437-446 Foldng of Rgular CW-Comlxs E. M. El-Kholy and S N. Daoud,3. Dartmnt of Mathmatcs, Faculty of Scnc Tanta Unvrsty,Tanta,Egyt. Dartmnt of Mathmatcs, Faculty

More information

Chapter 6 Student Lecture Notes 6-1

Chapter 6 Student Lecture Notes 6-1 Chaptr 6 Studnt Lctur Nots 6-1 Chaptr Goals QM353: Busnss Statstcs Chaptr 6 Goodnss-of-Ft Tsts and Contngncy Analyss Aftr compltng ths chaptr, you should b abl to: Us th ch-squar goodnss-of-ft tst to dtrmn

More information

APPENDIX H CONSTANT VOLTAGE BEHIND TRANSIENT REACTANCE GENERATOR MODEL

APPENDIX H CONSTANT VOLTAGE BEHIND TRANSIENT REACTANCE GENERATOR MODEL APPNDIX H CONSAN VOAG BHIND RANSIN RACANC GNRAOR MOD h mprov two gnrator mo uss th constant votag bhn transnt ractanc gnrator mo. hs mo gnors magntc sancy; assums th opratng ractanc of th gnrator s th

More information

Fakultät III Univ.-Prof. Dr. Jan Franke-Viebach

Fakultät III Univ.-Prof. Dr. Jan Franke-Viebach Unv.Prof. r. J. FrankVbach WS 067: Intrnatonal Economcs ( st xam prod) Unvrstät Sgn Fakultät III Unv.Prof. r. Jan FrankVbach Exam Intrnatonal Economcs Wntr Smstr 067 ( st Exam Prod) Avalabl tm: 60 mnuts

More information

DIFFERENTIAL EQUATION

DIFFERENTIAL EQUATION MD DIFFERENTIAL EQUATION Sllabus : Ordinar diffrntial quations, thir ordr and dgr. Formation of diffrntial quations. Solution of diffrntial quations b th mthod of sparation of variabls, solution of homognous

More information

Engineering 323 Beautiful HW #13 Page 1 of 6 Brown Problem 5-12

Engineering 323 Beautiful HW #13 Page 1 of 6 Brown Problem 5-12 Enginring Bautiful HW #1 Pag 1 of 6 5.1 Two componnts of a minicomputr hav th following joint pdf for thir usful liftims X and Y: = x(1+ x and y othrwis a. What is th probability that th liftim X of th

More information

Lucas Test is based on Euler s theorem which states that if n is any integer and a is coprime to n, then a φ(n) 1modn.

Lucas Test is based on Euler s theorem which states that if n is any integer and a is coprime to n, then a φ(n) 1modn. Modul 10 Addtonal Topcs 10.1 Lctur 1 Prambl: Dtrmnng whthr a gvn ntgr s prm or compost s known as prmalty tstng. Thr ar prmalty tsts whch mrly tll us whthr a gvn ntgr s prm or not, wthout gvng us th factors

More information

Lecture 23 APPLICATIONS OF FINITE ELEMENT METHOD TO SCALAR TRANSPORT PROBLEMS

Lecture 23 APPLICATIONS OF FINITE ELEMENT METHOD TO SCALAR TRANSPORT PROBLEMS COMPUTTION FUID DYNMICS: FVM: pplcatons to Scalar Transport Prolms ctur 3 PPICTIONS OF FINITE EEMENT METHOD TO SCR TRNSPORT PROBEMS 3. PPICTION OF FEM TO -D DIFFUSION PROBEM Consdr th stady stat dffuson

More information

Math 656 March 10, 2011 Midterm Examination Solutions

Math 656 March 10, 2011 Midterm Examination Solutions Math 656 March 0, 0 Mdtrm Eamnaton Soltons (4pts Dr th prsson for snh (arcsnh sng th dfnton of snh w n trms of ponntals, and s t to fnd all als of snh (. Plot ths als as ponts n th compl plan. Mak sr or

More information

NEW APPLICATIONS OF THE ABEL-LIOUVILLE FORMULA

NEW APPLICATIONS OF THE ABEL-LIOUVILLE FORMULA NE APPLICATIONS OF THE ABEL-LIOUVILLE FORMULA Mirca I CÎRNU Ph Dp o Mathmatics III Faculty o Applid Scincs Univrsity Polithnica o Bucharst Cirnumirca @yahoocom Abstract In a rcnt papr [] 5 th indinit intgrals

More information

November 5, 2002 SE 180: Earthquake Engineering SE 180. Final Project

November 5, 2002 SE 180: Earthquake Engineering SE 180. Final Project SE 8 Fnal Project Story Shear Frame u m Gven: u m L L m L L EI ω ω Solve for m Story Bendng Beam u u m L m L Gven: m L L EI ω ω Solve for m 3 3 Story Shear Frame u 3 m 3 Gven: L 3 m m L L L 3 EI ω ω ω

More information

a 1and x is any real number.

a 1and x is any real number. Calcls Nots Eponnts an Logarithms Eponntial Fnction: Has th form y a, whr a 0, a an is any ral nmbr. Graph y, Graph y ln y y Th Natral Bas (Elr s nmbr): An irrational nmbr, symboliz by th lttr, appars

More information

What is LP? LP is an optimization technique that allocates limited resources among competing activities in the best possible manner.

What is LP? LP is an optimization technique that allocates limited resources among competing activities in the best possible manner. (C) 998 Gerald B Sheblé, all rghts reserved Lnear Prograng Introducton Contents I. What s LP? II. LP Theor III. The Splex Method IV. Refneents to the Splex Method What s LP? LP s an optzaton technque that

More information

Lecture 26 Finite Differences and Boundary Value Problems

Lecture 26 Finite Differences and Boundary Value Problems 4//3 Leture 6 Fnte erenes and Boundar Value Problems Numeral derentaton A nte derene s an appromaton o a dervatve - eample erved rom Talor seres 3 O! Negletng all terms ger tan rst order O O Tat s te orward

More information

Inner Product. Euclidean Space. Orthonormal Basis. Orthogonal

Inner Product. Euclidean Space. Orthonormal Basis. Orthogonal Inner Product Defnton 1 () A Eucldean space s a fnte-dmensonal vector space over the reals R, wth an nner product,. Defnton 2 (Inner Product) An nner product, on a real vector space X s a symmetrc, blnear,

More information

Variational Approach in FEM Part II

Variational Approach in FEM Part II COIUUM & FIIE ELEME MEHOD aratonal Approach n FEM Part II Prof. Song Jn Par Mchancal Engnrng, POSECH Fnt Elmnt Mthod vs. Ralgh-Rtz Mthod On wants to obtan an appromat solton to mnmz a fnctonal. On of th

More information

Discrete Shells Simulation

Discrete Shells Simulation Dscrt Shlls Smulaton Xaofng M hs proct s an mplmntaton of Grnspun s dscrt shlls, th modl of whch s govrnd by nonlnar mmbran and flxural nrgs. hs nrgs masur dffrncs btwns th undformd confguraton and th

More information

1- Summary of Kinetic Theory of Gases

1- Summary of Kinetic Theory of Gases Dr. Kasra Etmad Octobr 5, 011 1- Summary of Kntc Thory of Gass - Radaton 3- E4 4- Plasma Proprts f(v f ( v m 4 ( kt 3/ v xp( mv kt V v v m v 1 rms V kt v m ( m 1/ v 8kT m 3kT v rms ( m 1/ E3: Prcntag of

More information

u r du = ur+1 r + 1 du = ln u + C u sin u du = cos u + C cos u du = sin u + C sec u tan u du = sec u + C e u du = e u + C

u r du = ur+1 r + 1 du = ln u + C u sin u du = cos u + C cos u du = sin u + C sec u tan u du = sec u + C e u du = e u + C Tchniqus of Intgration c Donald Kridr and Dwight Lahr In this sction w ar going to introduc th first approachs to valuating an indfinit intgral whos intgrand dos not hav an immdiat antidrivativ. W bgin

More information

167 T componnt oftforc on atom B can b drvd as: F B =, E =,K (, ) (.2) wr w av usd 2 = ( ) =2 (.3) T scond drvatv: 2 E = K (, ) = K (1, ) + 3 (.4).2.2

167 T componnt oftforc on atom B can b drvd as: F B =, E =,K (, ) (.2) wr w av usd 2 = ( ) =2 (.3) T scond drvatv: 2 E = K (, ) = K (1, ) + 3 (.4).2.2 166 ppnd Valnc Forc Flds.1 Introducton Valnc forc lds ar usd to dscrb ntra-molcular ntractons n trms of 2-body, 3-body, and 4-body (and gr) ntractons. W mplmntd many popular functonal forms n our program..2

More information

14. MODELING OF THIN-WALLED SHELLS AND PLATES. INTRODUCTION TO THE THEORY OF SHELL FINITE ELEMENT MODELS

14. MODELING OF THIN-WALLED SHELLS AND PLATES. INTRODUCTION TO THE THEORY OF SHELL FINITE ELEMENT MODELS 4. ODELING OF IN-WALLED SELLS AND PLAES. INRODUCION O E EORY OF SELL FINIE ELEEN ODELS Srő: Dr. András Skréns Dr. András Skréns BE odlng of thn-walld shlls and plats. Introducton to th thor of shll fnt

More information

PHYS 705: Classical Mechanics. Canonical Transformation II

PHYS 705: Classical Mechanics. Canonical Transformation II 1 PHYS 705: Classcal Mechancs Canoncal Transformaton II Example: Harmonc Oscllator f ( x) x m 0 x U( x) x mx x LT U m Defne or L p p mx x x m mx x H px L px p m p x m m H p 1 x m p m 1 m H x p m x m m

More information

ACTM State Calculus Competition Saturday April 30, 2011

ACTM State Calculus Competition Saturday April 30, 2011 ACTM State Calculus Competton Saturday Aprl 30, 2011 ACTM State Calculus Competton Sprng 2011 Page 1 Instructons: For questons 1 through 25, mark the best answer choce on the answer sheet provde Afterward

More information

ME 200 Thermodynamics I Spring 2014 Examination 3 Thu 4/10/14 6:30 7:30 PM WTHR 200, CL50 224, PHY 112 LAST NAME FIRST NAME

ME 200 Thermodynamics I Spring 2014 Examination 3 Thu 4/10/14 6:30 7:30 PM WTHR 200, CL50 224, PHY 112 LAST NAME FIRST NAME M 00 hrodynac Sprng 014 xanaton 3 hu 4/10/14 6:30 7:30 PM WHR 00, CL50 4, PHY 11 Crcl your dvon: PHY 11 WHR 00 WHR 00 CL50 4 CL50 4 PHY 11 7:30 Joglkar 9:30 Wagrn 10:30 Gor 1:30 Chn :30 Woodland 4:30 Srcar

More information

Radial Cataphoresis in Hg-Ar Fluorescent Lamp Discharges at High Power Density

Radial Cataphoresis in Hg-Ar Fluorescent Lamp Discharges at High Power Density [NWP.19] Radal Cataphorss n Hg-Ar Fluorscnt Lamp schargs at Hgh Powr nsty Y. Aura, G. A. Bonvallt, J. E. Lawlr Unv. of Wsconsn-Madson, Physcs pt. ABSTRACT Radal cataphorss s a procss n whch th lowr onzaton

More information

Thomas Whitham Sixth Form

Thomas Whitham Sixth Form Thomas Whitham Sith Form Pur Mathmatics Cor rvision gui Pag Algbra Moulus functions graphs, quations an inqualitis Graph of f () Draw f () an rflct an part of th curv blow th ais in th ais. f () f () f

More information

Problem Set 6 Solutions

Problem Set 6 Solutions 6.04/18.06J Mathmatics for Computr Scinc March 15, 005 Srini Dvadas and Eric Lhman Problm St 6 Solutions Du: Monday, March 8 at 9 PM in Room 3-044 Problm 1. Sammy th Shark is a financial srvic providr

More information

Finite Element Modelling of truss/cable structures

Finite Element Modelling of truss/cable structures Pet Schreurs Endhoven Unversty of echnology Department of Mechancal Engneerng Materals echnology November 3, 214 Fnte Element Modellng of truss/cable structures 1 Fnte Element Analyss of prestressed structures

More information

Lecture 3: Phasor notation, Transfer Functions. Context

Lecture 3: Phasor notation, Transfer Functions. Context EECS 5 Fall 4, ctur 3 ctur 3: Phasor notaton, Transfr Functons EECS 5 Fall 3, ctur 3 Contxt In th last lctur, w dscussd: how to convrt a lnar crcut nto a st of dffrntal quatons, How to convrt th st of

More information

Analyzing Frequencies

Analyzing Frequencies Frquncy (# ndvduals) Frquncy (# ndvduals) /3/16 H o : No dffrnc n obsrvd sz frquncs and that prdctd by growth modl How would you analyz ths data? 15 Obsrvd Numbr 15 Expctd Numbr from growth modl 1 1 5

More information

Hidden variable recurrent fractal interpolation function with four function contractivity factors

Hidden variable recurrent fractal interpolation function with four function contractivity factors Hddn varabl rcurrnt fractal ntrpolaton functon wth four functon contractvt factor Chol-Hu Yun Facult of Mathmatc Km Il ung Unvrt Pongang Dmocratc Popl Rpublc of Kora Abtract: In th papr w ntroduc a contructon

More information

Chapter 1. Introduction

Chapter 1. Introduction Chaptr 1 ntroucton 1.1 Avanc Mchatroncs Systs 1.1.1 Montorng an Control of Dstrbut Paratrs Systs Most ngnr systs ar copos of chancal-lctrcallctronc-thral subsysts an hav fwr snsors (unr-snsng) than stats

More information

( ) ( ) Chapter 1 Exercise 1A. x 3. 1 a x. + d. 1 1 e. 2 a. x x 2. 2 a. + 3 x. 3 2x. x 1. 3 a. 4 a. Exercise 1C. x + x + 3. Exercise 1B.

( ) ( ) Chapter 1 Exercise 1A. x 3. 1 a x. + d. 1 1 e. 2 a. x x 2. 2 a. + 3 x. 3 2x. x 1. 3 a. 4 a. Exercise 1C. x + x + 3. Exercise 1B. answrs Chaptr Ers A a + + + + + + + + + + + + g a a a 6 h + + + + + + + + + + + + + + + + ( + ) + 6 + + + + + + 8 + 0 + Ers B a + + + + + + + + + g h j a a + + + + + + + + + + + + + + + + + + + + + + +

More information