( ) ( ) Chapter 1 Exercise 1A. x 3. 1 a x. + d. 1 1 e. 2 a. x x 2. 2 a. + 3 x. 3 2x. x 1. 3 a. 4 a. Exercise 1C. x + x + 3. Exercise 1B.

Size: px
Start display at page:

Download "( ) ( ) Chapter 1 Exercise 1A. x 3. 1 a x. + d. 1 1 e. 2 a. x x 2. 2 a. + 3 x. 3 2x. x 1. 3 a. 4 a. Exercise 1C. x + x + 3. Exercise 1B."

Transcription

1 answrs Chaptr Ers A a g a a a 6 h ( + ) Ers B a g h j a a ( + ) Ers C a

2 a Ers D a a a Ers E a a a a + + Ers F + + ( ) a v v 6 6. Th ar th sam aus 6 6!!! an 6 6! so,!! nspton, th nomnators ar th sam.

3 answrs a mor sltons a C + C + C ts 6 ts 0 ts 7 ts Ers G a 0, 0, 9, 9 n n r n r n n r n r a n n n 7 n n n g n h n 7 a n n 8 n a n n n n a n n + n! n! +! n!! n! + ( ) nn nn n!! nn ( ) nn + ( n )!! nn ( ) + nn ( ) ( n )! nn ( ) [ + ( n ) ]! ( n + ) n( n )! ( n + ) n( n ) ( n )! ( n )! ( n + )! n +! ( n )! - Stunt s own answrs, ut shoul ollow smlar stps to Q part a gvn aov. Ers H a a + a + 6a + a + a a + a m + 6m 6m + 8m 6a + 96a + 6a + 6a g h + 0 g + 60g + 8g a m m + + m m 6 z + 6z + z z z z a 0 r r r 6 70 r r 8 8 r r r r r

4 answrs 7 r ( ) 60 r r r 8 8 r r r r a a a Ers I a ; ; ; ; ; ; g ; 7986 a ; ; Chaptr rvw a ( + ) ( + ) g + a n 7 n n Stunt s own answr, ut shoul ollow smlar stps to Ers G Q. a a + a + 6a + a a a r r r r r ; 0 6 r r r r ( ) ; 0 0 9

5 ANSWERS Chaptr Ers A a sn os sn + os sn 6( + ) g 0 h 9 ( + ) sn a ( 7) (8 7) os ( ) sn ( + )sn ( + ) g h os sn ( ) sn os or sn 6 os or sn tansn sn or tan os os a os (os )sn ( + ) ( + + ) sn (os ) sn os (sn ) os 6sn os 6 os (sn ) sn (sn ) os g ( + sn ) ( + os ) h ( + ) sn ( + + ) + + 6os( + ) sn ( + ) ( + )sn( + ) os ( + ) os(os )sn sn (os ) os( + ) sn ( + ) 7 os Ers B a + sn g 6( + ) h a ln tan + sn os

6 ANSWERS Ers C a 0 os + sn or ( os + sn ) 0 ( ) ( ) os(os sn ) (os 6sn ( )) 7( + ) 6 ( + 7) ( ) ( ) (7 ) g ( + ln ) h os sn ( + ) (os + sn ) a ( ln ) os ( sn + os ) ( ln + ( ) ) sn ( os ) 6 ( os sn ) (7 + ) ( + ) g sn + os h (sn ( ) + os ( )) + ln Whn 0, Whn, grant Proo Ers D a os os sn ( os + sn ) os a a ln 6 ( ) ( ) ( ) os sn ( + ) ( ) ( + ) ( + )( ) ( )( ) ( ) ( + ) ( + )( ) ( ) ln7 (ln 7) ln ( ) 6 6 Whn, 9 ln 7 sn ln Ers E a ( + sn )

7 ANSWERS 680 ( ) ( ) or ( ) () ( + )( ) O () a Mnmum SP (, 9( ln 7)) a Mnmum SP (ln 0, 0( ln 0)) + 6, mnmum SP whn 0, rsng PI whn sn os, mamum SP whn, mnmum SP whn snθ sn θ, mamum SP whn 0 67, mnmum SP whn 0 77 alraton atr sons 8 ms - (lraton) 6 alraton atr hours 60 mph 7 a s(0) 0 mtrs, v(0) 9 ms - a(0) 6 ms - o s nstantanousl at rst atr sons Ers F a s tan s os os ot os ( ) os + ot + + s ( lntan ) a ln s os (tan ) tan( ) 6 os ( ) ot ( ) ot ( ln os + ) ln 8 tan s a ot os (ot( + 7)) os ( + 7) tan ln s tan ' ( + )(s tan os ) (s + ot ) ( + ) s ( + os ) Ers G a 9 + ( ) 6

8 ANSWERS os g tan + + or ( ( + )tan + ) + h ( + ) ( tan ) ( + )tan whn, grant 7 whn t, rat o hang 0 whn, quaton o tangnt: Ers H a g + + tan s h at P (, ), quaton o tangnt: + at (, ), quaton o tangnt: + 0 at (, ), quaton o tangnt: 8 at T (, 7), quaton o tangnt: + Ers I a + ( + ) ( + ) ( ) + ( + ) + + a, Proo Mamum SP (, ) Ers J a Implt Eplt Implt Eplt Implt Eplt ln6 ln6 ln ln ln ln Implt ( ln ) Eplt ln ( ln ) Implt (sn + lnos ) sn Eplt (sn + lnos ) Proo + +

9 answrs whn, quaton o tangnt: 9 9 SP whn 9 0 Ers K t a t + ost + snt ost snt t + t + t t SPs (6, 6); (, 6) whn t, grant Proo whn t 0, quaton o tangnt: a SPs (0, ); (0, ) t, mn SP (0, ); ( t + ) ma SP (0, ) 7 a SP (, ) tt ( + ) ( t )( t + ), 8t ( t + ) mn SP 8 SPs (0 88, 78) an (0 960, 6 708) Ers L whn, quaton o th tangnt: 69 whn t, rat o hang whn θ, statonar pont mnmum TP whn, quaton o th tangnt: 9 whn t, grant o th tangnt 6 a t mn SP whn t t + 7 whn t 9, alraton A( 8 9 ) ms 8 whn, grant o th tangnt 6 9 whn t 0 sons, alraton, A 0 ms 0 a Gratst F whn, ul n km/ltr Last F whn, ul n.9 km/ltr v 00 km/h; v 60 km/h whn t s, rat o hang 808 Vs whn t 0 s, rat o hang 9 Vs Chaptr rvw a ot + (os sn ) (sn os ) ( + ) ( + ) os ( ot ) g os 6 ln 6 h (In + ) ( + ) ln sn sn os os os ln j s ()+ ( tan() + )

10 ANSWERS k s + ln tan + + ln l ot (ot tan ( ) tan os tan ( ) s ot ) 0 ( ) 9 6 8, mn SP whn 00,, ma SP whn 7 (, 6) a atr t 6 sons, v ms alraton 0 ms atr sons an 6 6 at (, ) ( ( 6 ) at (, ) 7 Proo 8 at (, ) an 9 Proo 0 otθ os θ )

11 ANSWERS Chaptr Ers A 7 a ( ) sn + + g os h ( 8t + ) + 6 ( ) j 6 ( ) k os( θ ) l sn( ) a sn ( ) 7 ( + ) a + ( + ) a 9 6 a Ers B a + sn sn + sn q q + os os q a 0 sn ) Ers C a ln ln + + ln 7 g + + h + ln j + k ln + C a.8 (.p.). (.p.) (.p.) ln (.p.) Ers D a tan + tan + 6 8tan +

12 answrs tan + tan + 9 tan + g tan + h os + tan + a (.p.) (.p.) Ers E a sn + sn + sn + tan tan + a 0 67 (.p.) (.p.) 0 0 (.p.) Ers F a ln ln 0 6 ln ln ln ln ln ln( ) + + ln + a 89 (.p.) 7ln + Ers G a sn ( + ) + os + ln + + sn ln os + sn + sn + + sn tan ot + Ers H a ln + + ln os ln + + ( ) +

13 ANSWERS + a ( ) + 8 ( + ) + a ( ) + ( 8) + 6 ( + ) + a ( ln ) + ln(ln ) + sn( ln ) + a ( ln ) + 6 ( ) ( + ) ( + ) + ( ) + 6 ( + 7) os Ers I (.p.) In ln Ers J a sn sn + os os os + a sn sn sn a + ln os + os s s + lnos + Ers K sn os tan + lnos + ( )tan + lnos sn + + Ers L (sn ( ) + os ) + 6 ( sn( ) + os ) + 6 ( ) os sn + (( ) 6 )sn ( 8 )os 8os + 6 ( + ) + 8 Ers M ( + ) + 7 sn sn os os ( sn os ) + ( os + sn) +

14 answrs + sn os sn + ( ossn snos) + 6 snos snos + Ers N A ln unts A 6( ln ) unts A 6 8 unts A unts A 0 unts 6 V unts 7 V m > m, so spaton mts th rqurmnts. 8 V 0 unts 9 a O ( + ) 0 V ltrs 0 V rato ull V unts unts a st () t sn t +. unts s 7 8 s ( 0) n th postv rton Chaptr rvw ln + + ln + + ln ln ( + 6 tan( ) ln os 0 ) 6 tan( + ) sn 0 6 tan (8) 9 09 ln ( + )( + ) ln ln ln tan + 9 a V 6 m Proo V 67 unts

15 ANSWERS Chaptr Compl numrs Ers A a a g + h 7 7 a g h a ± 0, ± ± ± g ± ± h ± 79 ± a,,,, 6, 7, 8, 9 n n n, 8,,, a n, 7,,, a 6 a a Ers B a g 7 h + 7 a a a a Stunt s own rt proo 8 a All ompl numrs wth R(z) 0 z + ; w a +, +, +,, + Ers C h lm a R 6 O 6 7 g 6

16 answrs a z plott at (, ) an z plott at (, ) z plott at (, ) an z plott at (, ) z s a rlton n th -as o z a z, q 0 97 z, q 0 6 z, q 6 z, q 0 z, q 0 78 z, q g z, q 6 h z, q a z 6, q 0 z, q z, q a os + sn + os + sn os sn os + os 6 + sn + sn 6 os sn + 6 a os + sn os + sn os sn os + sn os + sn os + sn g os + sn h 0 os sn z ± Ers D 7 a 6 7 os + sn 8 os + sn os sn + os sn + os + sn os + sn g os + sn h 6 os sn + os + sn j os 9 + sn

17 ANSWERS a g h a, lm z z z z z z z O 6 R z z z z (os + sn ) z z + os sn z z + os sn Th poston vtor o z, z an z hav n rotat n an antlokws rton Stunt s own nvstgaton Stunt s own nvstgaton a os + sn os + sn os + sn os + sn 6 6 n n os + sn 6 6 Ers E a os + sn os + sn 0 os + sn 000 os + sn a 6 a a a os + sn os + sn os + sn 6 6 os + sn os + sn os + sn a Stunt s own rt proo Stunt s own rt proo 7 a os q sn q + sn q os q os q + sn q os q os q sn q sn q sn q os q 8 a os q osq sn q + os q snq sn q os q + sn q os q os q os q sn q sn q os q sn q sn q sn q sn q sn q 9 os q 6os q 0os q + os q 0 os 7q 6os 7 q os q + 6os q 7os q a Smlar to Q8,9,0, Stunt s own rt proo tanθ tanθ tan θ 6tan θ + tan θ

18 ANSWERS Ers F a os sn ; os 7 9 sn 7 + ; 9 os sn Solutons v a rl o raus nto qual stors raans apart. os + sn ; os + sn ; 7 7 os sn + Solutons v a rl o raus nto qual stors raans apart. os + sn ; os + sn ; os + sn ; 8 8 os sn + ; 8 8 os sn + Solutons v a rl o raus nto qual stors raans apart. os + sn ; os + sn ; os sn + Solutons v a rl o raus nto qual stors raans apart. os + sn ; os sn Solutons v a rl o raus nto qual stors raans apart. os + sn ; 0 0 os 0 os 6 + sn ; 0 + sn ; 6 os sn ; os sn Solutons v a rl o raus nto qual stors raans apart. g os + sn ; os 6 + sn ; 6 os sn + ; os sn Solutons v a rl o raus nto qual stors raans apart. h 6 os 9 + sn ; os sn ; 6 os sn Solutons v a rl o raus 6 nto qual stors raans apart. a ; + ;,,,

19 ANSWERS ; os + sn ; os + sn ; os sn + ; os sn + a ; + ; ; + ; + ; ; ; a + ; + ; ; os + sn ; os + sn ; os + sn ; 0 0 os 7 sn + 7 ; 0 0 os sn ; ; os + sn ; 8 8 os 8 + sn ; os sn ; os sn os + sn ; os + sn ; os + sn ; os sn + ; os sn + + ; ; Ers G a ; + ; + ; + ; + ; + ; a ; + ; ; + ; ; + ; ; + ; ; ; + ; a ; ; ; + ; 6; + ; ; + ; ; + ; ; + ; a solutons ; + ; solutons ; + ; solutons ; ; + ; + ; ; + Ers H a Crl C(0, 0), raus unts Crl C(0, 0), raus unts Crl C(, 0), raus unts Crl C(0, ), raus unts Crl C(, ), raus unts

20 ANSWERS Crl C(, ), raus unts g Crl C,, raus unts h Crl C,, raus unts a Straght ln wth quaton Straght ln wth quaton Straght ln wth quaton Straght ln wth quaton a Crl C(0, 0), raus unts O Crl (, 0), raus unts O Crl (0, ), raus unts O Crl (, 0), raus unts O 6 7 a Straght ln wth quaton Straght ln wth quaton Straght ln wth quaton Straght ln wth quaton Chaptr rvw a , Whn a, Whn a, 0 z : Argan agram showng (, ) z : Argan agram showng (, ) os sn a sn 0sn + sn 7 os sn + os sn os sn + 8 ; +, 9 ±, ±

21 ANSWERS Chaptr Ers A a + tan + A whr A ln A 9 whr A ± 8 g ln + h A ( ), whr A a ln + or ln ( + ) ln t + ln os t( t) V P t + t + a A kt whn t hours, 6 atra a h kt + h 0 whn t 0 mnuts a n A kt k 96 (to.p.) t 8 wks (appro. wks 6 as) 6 a n A kt + 8 T 9 C (to s..) t 88 hours (appro. hour mnuts) 7 t 6 7 hours (appro. 6 hours mnuts) 8 a ln9 A, k t 9 as (to narst 0 a) Ers B + ( + ) ( + ) ( sn + ) ( os ) 6 ( ln + ) 7 ( + ) or + 8 ( os ) 9 sn 0 a Proo (Susttut u os ) ( + ) os a G k t ( ) k 0 (.p.) G(0) 09 m m, so th lam s just. at t, G 6 m Ers C a A + B 9 (A + B) A + B 7 (A sn + B os ) (A + B) (A os + B sn ) a sn + os ) ( ) Ers D a A + B (A + B) + + Asn Bos + (A + B) A 6 + B + os

22 ANSWERS ( ) ( ) 6 A + 6 B sn os + os sn a ( ) + os + sn + os ( sn + os ) + sn os Chaptr rvw a ± A( ) ln 6 + or ln 6 + tan ( + ) V t 9 ( + ) A ( +) whr A a m t km gnral soluton, m A kt t. months (to narst 0. months) a T 00 C T. mnuts (to narst 0. mnut) a ( + ) + kt A kt A 0 9t 00, 0 9 t whr t 0 00 t.6 as whn 0. 6 a (sn os + ) + ln ( os ) + os + 7 a (A sn +B os ) A + B 7 (A + B) 6 + (os 6 7 sn 6) sn os

23 answrs Chaptr 6 Ers 6A a,, g, 0, h, a 0, 79 6, 0 6 No vrtal asmptots a No vrtal asmptots, No vrtal asmptots g No vrtal asmptots h s a rpat root o th nomnator, so although + s a ommon ator o th numrator an nomnator, a ator o + rmans n th nomnator atr anllaton. a No vrtal asmptots Ers 6B a a 0 No horzontal asmptots a 0 a 9.8 ms (to.p.) ms v() 9. ms, whh s ar lss than 99% o ms. Th mol s not partularl aurat. Ers 6C a + a a Vrtal an horzontal Horzontal Vrtal an horzontal Vrtal an olqu Vrtal an olqu No asmptots a, 0, 0,,,, Ers 6D a loal mn (0, ), 9 8 loal ma loal ma,, loal mn, 0 9 loal ma (, 7), loal mn (, ) loal mn,, loal ma,, loal mn, 9 loal mn ( 0 79, 89) a pont o horzontal nlton (0, ) pont o horzontal nlton, loal ma (, 0 ), loal mn (0, 0)

24 answrs loal mn (, 0 ), pont o horzontal nlton (0, ) loal mn (0, 0), loal ma (, 0 ) loal mama at + k, 7 loal mnma at + k, or k,,, 0,,, Ers 6E a (0, ) (, 0) (, 7), (, ) No ponts o nlton (0, 0) a (, 0), (, 0), (0, 0), (, 0), (, 0) 7,,,,,,,,,,, 7,,,, 0 6,, 0, 6 6, 0, 7, 6 0, 0, 7, 6 0,, 6 0, 0,, 0, 0 () ( + ) whh nvr quals 0, so no ponts o nlton. Non horzontal pont o nlton at, ( 6,.6), (0, ), ( 6,.8) Ers 6F a ma valu, mn valu 9 ma valu 7, mn valu ma valu 80, mn valu 0 ma valu 6, mn valu 6 ma valu, mn valu 0 ma valu 8, mn valu 0 a ma valu, mn valu 0. ma valu 7 67, mn valu 7 ma valu 9, mn valu 0 7 ma valu 0, mn valu 89 ma valu 0, mn valu 0 ma valu 7, mn valu 0 a ma valu 6, mn valu 0 ma valu, mn valu ma valu, mn valu ma valu, mn valu 0 () tns to an as tns to 0 rom aov an low, rsptvl, so () has no mamum or mnmum valus on th gvn ntrval. Ers 6G a ( ) ( ) () g( ) g() h( ) os (( )) os ( ) os () h() r( t) 6( t) 6 ( t) + ( t) 6t 6 t + t r(t) ( ( t) ( t)) s( t) 6( t) ( t + t ) ( 6t) ( t t) ( 6t) ( t t ) s(t) 6t ( q ) 8( q )sn(( q)) 8q( sn q ) 8q sn q ) (q ) a ( ) q( ) ( ) + ( ) 7 7 ( + 7 ) q() h( q ) tan ( q) + sn ( q) tan q sn q (tan q + sn q ) h(q)

25 answrs s( t) ( t) (( t) ( t) ) t ( t t ) t (t t) s(t) ( ) ( ( ) ) ( ) ( + ) ( ) ( ) ( ( )) ( ) v( t) ( t) os ( t) t os t v(t) a o sum o two o untons nthr (0) 0 so not o, an ( ) 0 () so not vn vn sum o two vn untons (th raton s vn sn t s a prout o two o untons) vn sum o two vn untons (oth sn an os ar vn sn th ar prouts o two o untons an two vn untons, rsptvl) nthr (0) 0 so not o, an ( ) + () so not vn o sum o two o untons h( ) ( ) os ( ) ( ) os + ( os ) h() Th onstant unton 0 s th onl ral valu unton whh s oth vn an o. 6 a Lt () an g() vn untons. Thn ( + g)( ) ( ) + g( ) () + g() ( + g)(), so + g s vn. Lt () an g() o untons. Thn ( + g)( ) ( ) + g( ) () + ( g()) ( + g)(), so + g s o Lt () an g() vn untons. Thn ( g)( ) ( )g( ) ()g() ( g)(), so g s vn. Lt () an g() o untons. Thn ( g)( ) ( )g( ) ( ()) ( g()) ()g() ( g)(), so g s vn. Lt () an vn unton an g() an o unton. Thn ( g)( ) ( )g( ) ()( g()) ()g() ( g)(), so g s o. 7 a Ers 6H a, () s not n,, () not n at thr pont, th lmt as tns to rom low s, ut () () s ontnuous, th lmt as tns to rom low s, ut () 0, th lmt as tns to 0 rom aov os not st g () s ontnuous h, th lmt as tns to 0 rom low s, ut () Ers 6I a ( 0.77,.8) (0, ) (0.77, 0.6)

26 answrs (0, 0) (, 0) (0, 0.) (, 0) ( 0, ) (, ) (, ) (0, 0) (, 0) (0, 0) (, ) g (0, 0.) (, 0) (, 0) (.6, 0) (.6, 0)

27 answrs h Graph s sht lt unts thn own unts. (0, ) (., 0) (.6, 0) ( 0.76, 0) unton s unn whn 0 (, ) Ers 6J a Graph s sht up unts. Graph s omprss horzontall a ator o. (0, ) (0, 0) Graph s sht rght unts. ( + ) ( ( )). Th graph s sht rght unt, thn rlt n th as, thn rlt n th as an sal vrtall a ator o. (, 0) (0, ) (0, ) (, 0)

28 answrs Graph s sal vrtall a ator o, thn sht own unt. Not that ( ) ( 8 ), so th graph s sht rght 8 unts thn sal horzontall a ator o.. 0. ( 0.707, 0) (0.707, 0) (0, ) a Graph s sal vrtall a ator o, thn sht own unts. 6 7 Th graph s sal horzontall a ator o, thn sal vrtall a ator o, thn sht up unt. a Graph s rlt n th as (so no t sn os() s an vn unton) thn sht up unt. (0, ) (, 0) Graph s sht lt unts, thn rlt n th as. (, 0) (0, )

29 answrs (, ) (.7, 0) (0, ) (, ) (0, 0.68) g (0, ) h (, 0)

30 answrs j (0, 0) (, 0) 6 a Ers 6K a (, 0) (, 0) (, ) (, 0) ( 0., 0) (., 0) (, 0) ( 0., 0) (0., 0)

31 answrs (0, ) (, ) (, 0) (, ) a (0,.86) (, 0) (0, ) (, 0) (, 0) (.86, 0) (0, ) (0, ) (0, ) (.6, 0) (, 0) (0, ) (0,.6) (0, 0.69) (0.69, 0) (, 0)

32 answrs a (, ) a (0, ) (, 0)

33 answrs (0, ) (, ) (, 0.) (, 0.) (, 0) (, 0) (, ) (, ) (, 0) a (0, ) (, 0) (0, ) ( 0.68, 0) (, 0) (.68, 0)

34 answrs (0, ) (, 0 ) (0, 9) (, 0) (, 0) ( 0.667, 0.8) (, 0) (0, 0) g (, ) (, 0) (, 0) (0, 0)

35 answrs h 7 a (, ) (0, ) (, ), 0, 0 6 a,,, (, 0) (0, ), (, 0) (, 0) (0, ),,,,, 8 (, ) (, ) (0, ) (, ) (, ) (0, 0) (, 0) 9 a,,, (0, 0) (, 0) (, 0) (0, )

36 answrs For ah valu o, thr ar two possl valus o (.. () s not an njtv unton). Chaptr rvw a,, 0 a 0 (0, ) (, 0) a + (, 0) n + t + 0 (vrtal), + 7 (olqu) loal mn (, 6 7), pont o horzontal nlton (0, 0) 6 a loal ma (, 667), loal mn (, 9), pont o nlton 7 a ma valu, mn valu. ma valu 6, mn valu ma valu, mn valu 8 a Evn sum o two vn untons Nthr g( ) os( ) +, ut g() an g() (0, ) + (, 0) Evn prout o two o untons 9 a,

37 answrs 0 a a (0, ) (, 0) (0, 0) (0, 7) Graph s rlt n th as an sal vrtall a ator o. (, 0) (, ) (0, 0) (6, ) + (0, 0) (, 0) Graph s sht lt unts. (, 0)

38 answrs Graph s rlt n th as, thn sal vrtall a ator o, thn sht own 6 unts. Pro s oul, graph s rlt n th as, thn sal vrtall a ator o. a 7 (0, 6) (, 0) (0, 0.6) a (0, ) Graph s sht lt 6 unts. ( 8, 0) Pro s halv, thn graph s rlt n th as, thn sht up unts.. (0.68, 0)

39 answrs a (0, ) (0, 0) (, 0) (0, ) (0, ) (, 0) (, 0) (0, 6) g (0,.889) (, 0) (, 0) (, 0) (.9, 0) (.9, 0) (, 0)

40 answrs Chaptr 7 Ers 7a a a 8, Not an arthmt squn a, Not an arthmt squn a, 0 7 a, 6 6 g a, h Not an arthmt squn a n + n n + 90n + 0 n n + 0 a 9 a a a, a 0, 7 a, a, a 7, a a, th trm 9 a 8 9th trm 0,,, or,, 9 6 pn Ers 7B a g h 80 8 a 7 a 0 7 a a 7, a 8, a, n + n 0 8 u n 9 n a S n 0n n n or n a 60 S n n( + n) ars 6 a ars ponts 8 a 0 straws 0 trangls Ers 7C a a, r Not a gomtr squn (t s an arthmt squn) a 6, r a, r a, r a, r g Not a gomtr squn a a 800

41 ANSWERS a a a, r a 6, r a, r a 8, r st trm 9 th trm 0 Atr 8 ars 9 ars Da o tranng Ers 7D a (s) g 09 7 h 60 (s) a a 000, m grans ( s..) 0 6 mtrs Ers 7E a S os not st 6 79 S os not st 0 S os not st a a 0 r, S r, u a, r , 6,, 8, or, 0, 0 0, 6 a Ers 7F a a

42 answrs a < < < < a a ; s s tan s tan s tan, < Ers 7G a g a g h a Ers 7H a a ln ln

43 answrs Ers 7I a ( s.. ) g h a r + n r n r r n r 0 r r 6 r r + r 8 r r g r ( r + ) h r r r 0 r a Ers 7J a n ( n + ) n n( n + 7) n n n( 9 + n) a n( n + ) ; 06 n + n ; 9 n n; 977 n n ( ); p + p a n + n + n n + n os (n + ) os 8n + n + n 9 n n + n r + n + n n r r ( n + ) n + n n n +, 6 Smlar stps to Q Ers 7K a n( n + )( n + ) 6 n n n ( + + ) n n 6n ( + + ) n n + n + + n n n n n 9n 6 a n ( n + ) n ( n + ) + n n ( n + ) ( n + ) n n n ( + 7 n )( + + ) n n + 0 n + 7 n + 60

44 ANSWERS a a n( n + )( n + ) ; 80 6 n( n + )( n + )( n + ) ; 0 Chaptr rvw a u n n th trm a a ; 6 a a ; r a a r so S sts sn r < ; 6 6 a a a n( n + )( n + ) n( n + )( n + )( n ) 6

45 answrs Chaptr 8 Matrs Ers 8A a a,,,, a 6 7 a a g a Proo (stunt s own answrs) 8 9 a, 0 s, t Ers 8B a (7) (7) ( + + z) g j k a snθ 8 9 h l 0 6 AB BA

46 answrs a 9 A(BC) (AB)C ( AB) BA a,, a p r q s p r q s 6 a Proo (stunt s own answr) A A I 7 a A A 6I A 6A I 6 8 AB a BA 0 7 AB BA , 8 0 or or Ers 8C a 0 0 a t(ab) tatb 77 t(ba) t(ab) 77 t A t A a 8 a t(ab) tatb 0 t(ba) t(ab) 0 t A t A Ers 8D a a sngular matr

47 answrs Proo (stunt s own answrs) a,,, a t t + 6 t t t 6t 6 t t ± t 8 t 6 a, Proo (stunt s own answrs) A 0A 6I 7 a ± 6 A A, A 8 a m, n A A + I 9 A A A n Ers 8E a t p 0 p p 0 p n p 0 n p 0 t t, t + t 0 7 t A k 6 sngular matr a AB 8I,, z ,, z 0 0 Ers 8F A (, ), B (9, ), C (6, ), D (, ) 0 0 a

48 answrs a Proo (stunt s own answr) k a an 0 (0, ) Ers 8G a z z z 0 z,, z,, z + z z + z z a a 6 s, t s, t s Th sstm s 0 ll-onton as a small hang n onts gv a vr g hang n soluton. 8 B an C 7 Chaptr rvw a g h M a Proo (stunt s own answrs) P 0P 9I a p an q a 6 a + a a

49 answrs 6 7 a (, ) λ 6λ 8 z, λ 7( λ ), 7( λ ) whn l th sstm s nonsstnt an thr ar no solutons. 9 z,, 0 whn t th sstm s runant an th gnral 7z + z soluton s z z,, + 0 Soluton to s 97, Soluton to s 00, 9 Ths shows th sstm s ll-onton as a small hang n ont las to a larg hang n soluton.

50 ANSWERS Chaptr 9 Ers 9A a : : : 8 : : : 6 a,, 8, 8, 8 6, 6, 7 6 Proo (stunt s own answrs) Ers 9B a (a ) a a squar unts squar unts u ± 6( j k) 0 Ers 9C a V 6 a ( ) ( a) (a ) 7 Ers 9D a + z r + t r + t 7 a + z 6 No Ys Ys r + t 0 a z 7 + z z z 0 7 Ers 9E (9,, 0) 8 6 or 0 98 raans a POI (,, ); angl or 0 9 raans o not ntrst POI (, 6, ); angl 70 or 97 raans a (,, 7) (,, ) (, 6, 8); angl 0 89 or 0 9 raans Ers 9F +z a r + j + k + s( j + k) + t( 7j + k) s + t, s 7t, z + s+t, 8, z It ls on th plan wth s an t Proo (stunt s own answrs) a z 9 + z

51 answrs z a 6 6 z 6 Ers 9G a (, 0, ) 7 (, 0, ) 7 7 (,, ) 0 9 (,, 0) 06 (, 9, ) 78 (, 8, ) No ntrston so paralll t an an valu so th ln ls on th plan n n plans ar paralll a + z z z (,, ) 7 a z t, + 7t, + t Plans an ntrst along 8t, + t, z 7t. Plans an ntrst along 8t, + t, z 7t Plans an ar paralll. Chaptr rvw z 6 + z + 7z z 6 7 a t +, t +, z t + + z (, 8, ) 8 No solutons or a an nnt solutons or a, th ln woul l on th plan. 9 a + z z 6 0 a, POI (,, ) (, 0, )

52 ANSWERS Chaptr 0 Ers 0A a quotnt, rmanr q, r 0 q, r q 7, r 7 q, r q, r 0 Ers 0B a a a Ers 0C a a a a a Th rsults shoul th sam or ah mtho (atr lung an runant zros rom th start o th nal nar numr). Both mthos gv 00. No. Th mtho works whn th ntal as s th squar o th as ou ar hangng to. Lt a numr prss n as, an wrt (a n a n- a a 0 ), whr th a ar th gts o. So ah a s an ntgr twn 0 an, nlusv. Rplang ah gt a ts nar onvrson gvs a nar prsson q k r k q k- r k- q r q 0 r 0, whr q an r ar th quotnt an rmanr, rsptvl, whn a s v. W n to show that (q n rnq n- r n- q r q 0 r 0 ) (whr s th nar prsson or ). Sn a, Eulan vson a q + r or all, whr 0 q, r. Thror, usng as 0, 0 n (q n + r n ) + + (q + r ) + (q 0 + r 0 ) n (q n + r n ) + + (q + r ) + (q 0 + r 0 ) n+ q n + n r n q + r + q 0 + r 0 (q n r n q r q 0 r 0 ) as rqur. Th mtho osn t work, ut wll work w us thr nar gts whn onvrtng ah otal gt. Ths works sn 8. Ers 0D a g 90 0 h a 6 6D 6 E F6 6 99B 6

53 ANSWERS g 7 6 h D66 6 DC 6 a 9 6 FF Ers 0E a 8 a 8 a No (g(, 69) 8). No (g(, 69) ). Ys. s th largst ntgr whh vs vr numr n th gvn st. a a Th g s n all ass. m vs a an m vs a +, so w ma wrt a rm an a + sm or som ntgrs r an s. Thn (a + ) a sm rm (s r)m, an sn s r s an ntgr ths mpls that m vs. Us proo nuton. Whn k, g(u, u ) g(, ). Assum tru or k r, so g(u r, u r + ). Lt g(u r +, u r + ). W must show that. Clarl vs u r +, an sn u r + u r + + u r, vs u r + + u r. B part, must also v u r. Sn vs oth u r an u r +, must v g(u r, u r + ) whh quals th nuton hpothss. Thus. So th statmnt hols or k r t hols or k r +, an sn t hols or k, nuton t hols or all k. Conjtur: g(u k, u k + ) or all k. Us proo nuton. Whn k, g(u, u ) g(, ). Assum tru or k r, so g(u r, u r + ). Lt g(u r +, u r + ). W must show that. Clarl vs u, an sn u u + u, r + r + r + r + vs u r + + u r +. B part, must also v u r +. Sn vs oth u r + an u r +, must v g(u r +, u ) ( part ). Thus. r + So th statmnt hols or k r t hols or k r +, an sn t hols or k, nuton t hols or all k. Ers 0F a Sn m vs a, a rm or som ntgr r. Thror ka k(rm) (kr)m, an sn kr s an ntgr ths shows that m vs ka. Sn m vs oth a an, w ma wrt a rm an sm or ntgrs r an s. Thn a + rm + sm (r + s)m, an sn r + s s an ntgr ths shows that m vs a +. Sn m vs oth a an, w ma wrt a rm an sm or ntgrs r an s. Thn a rm sm (r s)m, an sn r s s an ntgr ths shows that m vs a. Ers 0G a p, q p, q p, q p, q p, q 6 p, q 6 a

54 ANSWERS a Sn g(a, ), must v oth a an. Thus w ma wrt a m an n or ntgrs m an n. Hn a + m + n (m + n). Sn m + n s an ntgr, ths shows that vs. Sn g(a, ), th tn Eulan algorthm thr st ntgrs m an n suh that am + n. Suppos that k or som ntgr k. Thn k k(am + n) (km)a + (kn), an takng km an kn gvs th rqur ntgr solutons. A lnar Dophantn quaton a + has ntgr solutons an an onl s a multpl o g(a, ). a 7, 6, 8, 8 Ers 0H a g 9, lm 9 g 8, lm 9008 g 88, lm 060 g, lm g 0, lm 000 g, lm Usng th gvn roots w hav () ( + )( )( )( 6). I a s an ntgr suh that (a), thn sn a +, a, a an a 6 ar stnt ntgrs ths mpls that atorss as a prout o our stnt ntgrs. Howvr, th Funamntal Thorm o Arthmt, th onl atorsatons o nto stnt ntgrs ar an ( ). Ths ontraton shows that thr s no ntgr a suh that (a). a Th quaton a + 7 has ntgr solutons an an onl a s oprm to 7. Sn 7 s prm, a s oprm to 7 an onl a s not a multpl o 7. Thr ar ourtn multpls o 7 twn an 00. Thror thr ar valus o a or whh th quaton has ntgr solutons. Argung as n part a, ut lung multpls o an (sn 6 ), thr ar valus o or whh th quaton has ntgr solutons. Chaptr rvw a F 6 a a g(8, 0) a,,,,,,, 8, 7, Whn k w hav u, whh s o. Assum tru or k r, so u r s o. Thn u r + u r + u r. u r s o an u r s vn, an th sum o an o ntgr wth an vn ntgr s o. Thror u r + s o. So th statmnt hols or k r t hols or k r +, an sn t hols or k nuton t hols or all k. Whn k, g(u, u ) g(, ). Assum tru or k r, so g(u r, u r + ). Lt g(u r +, u r + ). W must show that. Clarl vs u r +, an sn u u + u, vs r + r + r u r + + u r. Hn must also v u r. B part, u r + an u r + ar o, so must o (sn vs oth). Thror vs u r t

55 ANSWERS must v u r. Sn vs oth u r an u r +, must v g(u r, u r + ) whh quals th nuton hpothss. Thus. So th statmnt hols or k r t hols or k r +, an sn t hols or k nuton t hols or all k. g(u k, u k + ) or k 0. Whn k, g(u, u ) g(, ). Assum tru or k r, so g(u r, u r + ). Lt g(u r +, u r + ). W must show that. Clarl vs u r +, an sn u r + u r + + u r +, vs u r + + u. Hn must also v u. B r + part, g(u, u r ), so +. r + r + must v, an hn. So th statmnt hols or k r t hols or k r +, an sn t hols or k nuton t hols or all k. No. As a ountr-ampl, u, u 6, an g(, ) g(0, 796) a a 7,, g, lm 67 a 7, 7, g, lm 808 a,, g 8, lm 0 a,, g, lm 7 a, 7, g 88, lm 960 a 7, 9, g, lm 07

56 ANSWERS Chaptr Ers A a Estntal Unvrsal Unvrsal Estntal Unvrsal a a : a > a, a >, 0. < A M ( ) : t(a) q : q Ers B a > > a 8 a 6 n n () () g φ osφ h φ 0 tanφ 0 a P Q P Q P Q No mplatons. a P Q P Q P Q P Q P Q a No mplatons Q P P Q P Q Q P 6 a I a s an ntgr, thn a For a matr A, A s nvrtl thn ta 0. vs vs. vs onl vs. I B s a squar matr, thn B sts. () 0 sunt or (). g a 0 mpls a 0 or all. h Thr sts a ratonal numr whh vs onl thr sts an ntgr whh vs. 7 a Dav has travll to Europ Dav has travll to Ital. Th oo ng rut s nssar or th oo to a anana. Laura plas amnton onl Laura plas a sport. Ham havng a son s sunt or Ham to a athr. Bran havng a jo mpls Bran works or th loal ounl. Ers C a < z S : z r, rt A M ( ) : A 0 g, : h p : q, pq 0 a or an a an a 0 p : pq 0 or r q.6 or (. an 0) ( s ratonal or ) an ( s ratonal or ) Ers D a 0 0 whh s not postv 0 0 < 0 ( ) < Thr ar no ral numrs suh that 0.

57 ANSWERS a n ( ) 6 ( ) Th unton () + s an ampl wth no ral roots. Lt g(). Thn g() ( ) g( ), ut. Th matr A 0 0 s non-zro ut 0 not nvrtl. Ers E Whn n w hav so th rsult hols. Assum tru or n k. Whn n k + w hav: (k ) + ((k + ) ) k + ((k + ) ) ( n hp) k + k + (k + ) so th rsult hols or n k +. Sn t hols or n, nuton th rsult hols or all n. Whn n w hav 7 >, so th rsult hols. Assum tru or n k. Whn n k + w hav: k + k > k ( n hp) k > (k + ) (sn k > k + or all k ), so th rsult hols or n k +. Sn t hols or n, nuton th rsult hols or all ntgrs gratr than. Whn n w hav + 7 0, so th rsult hols. Assum tru or n k. Whn n k + w hav: (k + ) + 7(k + ) (k + k + 0k + 0k + k + ) + 7k + 7 (k + 7k) + k + 0k + 0k + k + 0 Th rakt trm s a multpl o th nutv hpothss, an all th othr trms n th sum ar larl multpls o. Thror th whol rght-han s s a multpl o, an th rsult hols or n k +. Sn t hols or n, nuton th rsult hols or all n. Whn n w hav , so th rsult hols. Assum tru or n k. Whn n k + w hav: (k +) + + (k+) k+ + k ( k+ + k ) k + k 9( k+ + k ) k (9 ) 9( k+ + k ) k 7 Sn k+ + k s a multpl o 7 th nutv hpothss, th whol rght-han s s a multpl o 7, an th rsult hols or n k +. Sn t hols or n, nuton th rsult hols or all n. Whn n w hav 0 so 0 th rsult hols. Assum tru or n k. Whn n k + w hav: k k k k + 0 k ( n hp) so th rsult hols or n k +. Sn t hols or n, nuton th rsult hols or all n.

58 ANSWERS a 6 Whn n w hav 0 a, so th rsult hols. 0 Assum tru or n k. Whn n k + w hav: k+ a a a k k a a 0 ( n hp) 0 k k + a 0 a a k k a( ) + ( + ) k+ k a 0 k+ k a + 0 k + so th rsult hols or n k +. Sn t hols or n, nuton th rsult hols or all n. 7 Whn n w hav (os q + sn q) os( q) + sn( q), so th rsult hols. Assum tru or n k. Whn n k + w hav: (os q + sn q) k+ (os q + sn q)(os q + sn q) k (os q + sn q)(os kq + sn kq) ( n hp) os q os kq sn q sn kq + (os q sn kq + sn q os kq) os((k + )q) + sn((k + )q) (usng multpl angl ntts or os an sn), so th rsult hols or n k +. Sn t hols or n, nuton th rsult hols or all n. 8 a Whn n w hav ( ) so th rsult hols. Assum tru or n k. Whn n k + w hav: ( ) k+ ( ) k k ( n hp) +k (k+) so th rsult hols or n k +. Sn t hols or n, nuton th rsult hols or all n N. Whn n w hav ln ln ln so th rsult hols. Assum tru or n k. Whn n k + w hav: (k + )ln kln + ln ln k + ln ( n hp) ln k ln k+ so th rsult hols or n k +. Sn t hols or n, nuton th rsult hols or all n. 9 Whn n w hav a a , so th rsult hols. Assum tru or n k. Whn n k + w hav: a k + a k + ( k ) + ( n hp) k + + k + so th rsult hols or n k +. Sn t hols or n, nuton th rsult hols or all n. 0 Whn n w hav u0 u, so ( u0 + ) ( + ) ( + ) th rsult hols. Assum tru or n k. Whn n k + w hav: uk uk + ( u + ) k ( k + ) + ( k + )

59 ANSWERS ( + k + ) (( k + ) + ) so th rsult hols or n k +. Sn t hols or n, nuton th rsult hols or all n. a, m+,, n Conjtur: kk n ( k + ) ( n + ) or all n. Whn n th rsult hols. Assum tru or n m. Whn n m + w hav: kk ( + ) k m kk + ( + ) ( m + )( m + ) k m + + m ( m + )( m + ) ( n hp) mm ( + ) + ( m + )( m + ) m + m + ( m + )( m + ) ( m + )( m + ) ( m + )( m + ) m + m + m + ( m + ) + so th rsult hols or n m +. Sn t hols or n, nuton th rsult hols or all n. a 0,,,, n Conjtur: k ( n! ) or k! k n! all n. Whn n th rsult hols. Assum tru or n m. Whn n m + w hav: m + k k m k k! ( m + ) + k! ( m + )! k m! m + ( n hp) m! ( m + )! ( m! )( m + ) m + ( m + )! ( m + )! ( m + )! - ( m + ) + m ( m + )! ( m + )! ( m + )! so th rsult hols or n m +. Sn t hols or n, nuton th rsult hols or all n. a Whn n th lt-han s s ( ), whl th rght-han s s ( + ), so th rsult hols. Assum tru or n k. Whn n k + w hav: k + k + r k r(r ) r( r ) + ( k + )(( k + ) ) r k ( k + ) + ( k + )( k + ) ( n hp) k + k + k + ( k + k + )( k + ) ( k + )(( k + ) + ) so th rsult hols or n k +. Sn t hols or n, nuton th rsult hols or all n N. Whn n th lt-han s s + + 8, whl th rght-han s s ( + ) 8, so th rsult hols. Assum tru or n k. Whn n k + w hav: (r + r + r) r k (r + r + r) + ( k + ) + ( k + ) + ( k + ) r

60 ANSWERS kk ( + ) + ( k + ) + ( k + ) + ( k + ) ( n hp) ( k + )( k( k + ) + ( k + ) + ( k + ) + ) ( k + )( k + 6k + k + 8) ( k + )( k + ) ( k + )(( k + ) + ) k + so th rsult hols or n k +. Sn t hols or n, nuton th rsult hols or all n. Whn n th lt-han s s ( ), whl th rghthan s s ( ) ( + ) so th rsult hols. Assum tru or n k. Whn n k + w hav: r r r k + ( ) r + ( ) ( k + ) r k r k ( ) kk ( + ) k + + ( ) ( k + ) ( n hp) k k+ ( ) kk ( + ) ( ) ( k + ) + k + ( kk ( + ) + ( k + )) k + (( k + )(( k + ) k) k + (( k + )( k + ) k + (( k + )(( k + ) + ) so th rsult hols or n k +. Sn t hols or n, nuton th rsult hols or all n. Whn n oth ss qual, so th rsult hols. Assum tru or n k. Whn n k + w hav: k + k + ( k + ) k + ( k + ) ( n hp) kk ( + ) ( ) + ( k + ) k ( k + ) ( k + ) + ( k + )( k + ( k + )) ( k + )( k + ) ( + + ( k )( k ) ) k + so th rsult hols or n k +. Sn t hols or n, nuton th rsult hols or all n. Ers F a 0 < 9 < 9 < 9 < 9 8 < 9 Thror < 9 or { 0,,,, }. ( ) ( ) 6 0 ( ) ( ) Thror < 9 or {,, 0,, }. whh s o 7 whh s o whh s o 7 whh s o Thror s an o ntgr n th st {,,,,, 6, 7} thn s an o ntgr.

61 ANSWERS Thror z s a ratonal numr wth {0,, } an {,, }, thn z. a Lt a r + an s or som ntgrs r an s. Thn a + (r + ) + s (r + s) +, so a + s o. Lt a r + an s + or som ntgrs r an s. Thn a + (r + ) + (s + ) r + s + (r + s + ), so a + s vn. Lt a r an s or som ntgrs r an s. Thn a (r)(s) (rs), so a s vn. Lt a r an s + or som ntgrs r an s. Thn a (r)(s + ) (rs + r), so a s vn. Lt a r + an s + or som ntgrs r an s. Thn a (r + )(s + ) (r)(s) + r + s + (rs + r + s) +, so a s o. a Tru a + > a + (a + ) a > (a + ) a (a a) + > (a a) + > Tru a < a (a ) a < (a ) a (a a) < (a a) < > Tru Not that sn a s a natural numr, a > 0. a > a a a > 0 a( ) > 0 > 0 > Fals. A ountr-ampl s a,,. Lt n an o natural numr, an wrt n k + or som ntgr k. Thn n (k + ) k + k + (k + k) +. Sn k + k s a natural numr, ths shows that n s o. Lt m, n. Thn (m + n ) m + mn + n > m + n sn mn s postv. 6 m (k + ) 9k + 6k + 9k + 6k + + (k + k + ) +, so m s qual to an ntgr whh s a multpl o plus, hn s not vsl. 7 Lt m an onsr th prout m(m + )(m + ). Evr son natural numr s vn, so at last on o m, m + an m + must vn, so vsl, so th prout must also vsl. Morovr, vr thr natural numr s vsl, so on o m, m + an m + s vsl, an so th prout must also vsl. I a natural numr s vsl oth an, t s vsl 6.

62 ANSWERS Hn th prout o an thr onsutv natural numrs s vsl 6. 8 Lt r an s onsutv o ntgrs, wth r < s. Thn w ma wrt r k an s k + or som ntgr k. W hav s r (k + ) (k ) k + k + (k k + ) 8k an so s r s a multpl o 8, as rqur. Also, r s (s r ) 8k whh s also a multpl o 8. 9 I, thn larl () (). Now assum that () (). Dvng oth ss o th quaton w gt () (), an sn s an njtv unton ths mpls that. Hn s also an njtv unton. 0 a Tru. Wrt n k or som ntgr k. Thn n (k) 6k (k ), so n s vsl. Fals. s a multpl o, ut s not a multpl o. a Tru. Suppos that A a an suppos wthout loss o gnralt that a 0 (th proo s ssntall hoosng, or to non-zro). Thn ka k a ka k, an k k sn k 0 w must hav ka 0, so ka s a non-zro matr. 0 Fals. Takng A an 0 0 B provs a ountr-ampl. 0 Fals. Takng A an 0 0 B 0 0 provs a 0 ountr-ampl. 0 Fals. I A 0 0 thn t(a) Fals. Takng A 0 0 gvs a ountr-ampl. Lt S n n. Consr S n. Ang S n to tsl ut wth th orr o th son sum rvrs, w hav: S n (n ) + (n ) + n + n + (n ) + (n ) Wrttn ths wa, th sum onssts o n olumns, wth th sum o th two ntrs n ah olumn qual to n +. Hn S n nn ( + ) n(n + ), an so Sn, as rqur. Ers G Suppos that m s not o, so m s vn. Thn w ma wrt m k or som ntgr k. W hav m (k) k (k ) whh s vn, so m s not o. Suppos that s not vn, so s o. Thn w ma wrt k + or som ntgr k. W hav + (k + ) (k + ) + k + k + k + k + k + + (k + k + ) + whh shows that + s o, so not vn.

63 ANSWERS In ah as, assum that th statmnt at last on o an s rratonal s als,.. assum that oth an ar m ratonal numrs, an wrt n an r whr m, n, r, s wth n, r, s 0. s a m r n s m r n s ms nr ns ns ( ms nr) ns Both ms nr an ns, an sn n, s 0, ns 0, so s a ratonal numr, so s not rratonal. m r n s ( ) mr ns Both mr an ns, an sn n, s 0, ns 0, so s a ratonal numr, so s not rratonal. m n ( r s ) ms nr Both ms an nr, an sn n, r 0, nr 0, so s a ratonal numr, so s not rratonal. Suppos that oth an ar lss than or qual to 8. Thn 8 8 6, so s not gratr than 6. Suppos that oth an l outs ( 0, 0 ). Thn > 0 an > 0, so > Hn annot l n th ntrval ( 0, 0 ). 6 Suppos that s not a transnntal numr. Thn s algra, so s th root o som polnomal, sa a n n + a n n + + a + a 0. Thror 0 a n () n + a n () n + + a () + a 0 ( n a n ) n + ( n a n ) n + + (a ) + a 0 whh shows that s a root o th polnomal ( n a n ) n + ( n a n ) n + + (a ) + a 0. Sn all th onts o ths polnomal ar ntgrs, ths shows that s an algra numr, so s not transnntal. Ers H Assum or ontraton that m s not vsl. Thn w ma wrt m k + or m k + or som ntgr k. W show n Eampl.8 that m k + thn m s not vsl, whl n Ers F, Q w show that m k + thn m s not vsl. Thror m s not vsl, thn m s not vsl. Howvr, ths ontrats th at that m s vsl. Thus our ntal assumpton was als, an m s vsl. Suppos or ontraton that + s not rratonal,.. s a ratonal numr. Thn w ma wrt + m or som ntgrs m an n, wth n n 0. W hav ( + ) an also ( + ) ( m n ) m n Thror + 6 m n 6 m n 6 m n n m n 6 n

64 ANSWERS whh mpls that 6 s ratonal, ontratng th at that 6 s rratonal. Thror our ntal assumpton was als, an + s rratonal. Suppos or ontraton that s ratonal, an wrt m n whr m an n ar ntgrs wth no ommon ators. W hav ( m n ) m n an so m n. Thror m s vsl, an w show n Q that ths mpls m must also vsl. Hn w ma wrt m k or som ntgr k, an w hav n m (k) 9k, whh mpls that n k. Thus n s vsl, an so n s also vsl. Thror oth m an n ar vsl. Howvr, w assum that m an n ha no ommon ators ths s a ontraton. Our ntal assumpton must thror als, an s rratonal. Assum or ontraton that log () s ratonal, an wrt log () m or som n ntgrs m an n, wth n 0. Thn log () m n m n n m Howvr, th lt-han s s o, whl th rght-han s s vn, whh s a ontraton. Thror log () s rratonal. Suppos or ontraton that +. Thn ( + ). W hav ( + ) , an so whh mpls 0 8 an thn 0. In turn ths mpls that 0 6, a ontraton. Hn our ntal assumpton was als, an + <. 6 Suppos or ontraton that s not transnntal, so s algra. Thn s th root o som polnomal, sa a n n + a n n + + a + a 0. Thror 0 a n () n + a n () n + + a () + a 0 ( n a n ) n + ( n a n ) n + + (a ) + a 0 whh shows that s a root o th polnomal ( n a n ) n + ( n a n ) n + + (a ) + a 0. Sn all th onts o ths polnomal ar ntgrs, ths shows that s an algra numr, ontratng th at that s transnntal. Hn our ntal assumpton was als, an s transnntal. 7 Suppos or ontraton thr ar a nt numr o prms o th orm n, an lt p, p,, p k a lst o ths prms. Dn p p p k (so n partular s an ntgr o th orm s ). Suppos rst that s vsl a prm o th orm n, an wthout loss o gnralt assum ths prm s p. Thn w ma wrt p or som ntgr, an w hav p p p p k whh rarrangs to gv p p p p p ( p p p ). Ths k k mpls that s vsl p, ontratng th at that s not vsl an prm. Th othr posslt s that s onl vsl prms o th orm n +. Howvr, whn panng a prout o ths orm w s that (n + )(n + ) (n s + ) r + whr r s som ntgr (ths an prov ormall usng nuton, or ampl). Ths ontrats ng an ntgr o th orm s. Sn w hav arrv at a ontraton n ah possl as, our ntal assumpton must als an thr ar an nnt numr o prms o th orm n.

65 ANSWERS 8 Suppos or ontraton that th prson s an nhatant o th slan, so s thr a Knght or a Knav. Frst assum that th prson s a Knght, so alwas tlls th truth. Thn th statmnt I am a lar must tru, so th Knght s a lar. Ths ontrats th at that Knghts alwas tll th truth. Now assum th prson s a Knav, so alwas ls. Thn th statmnt I am a lar must als, so th Knav s not a lar. Ths ontrats th at that Knavs ar lars. Sn oth posslts la to ontratons, th orgnal assumpton must als, an th prson s not an nhatant o th slan. α α α k 9 a Lt m p p... p k th prm omposton o m. α α α k Thn m p p... p k, an w s that a prm p appars n th prm omposton o m t must also appar n th prm omposton o m, so must v m. Whn usng proo ontrapostv w assum m was not vsl, rsptvl, an hk or ah as that m was not vsl, rsptvl. For p thr was on as to onsr, or p thr wr two ass to onsr. For an artrar prm p w annot us ths mtho, as th numr o stuatons to onsr s artrarl larg. Suppos or ontraton that p s m ratonal, an wrt p n whr m an n ar ntgrs wth no ommon ators. W hav m p n ( ) m n an so m pn. Thror m s vsl p, an part a m s also vsl p. Hn w ma wrt m pk or som ntgr k, an w hav pn m (pk) p k, whh mpls that n pk. Thus n s vsl p, an so n s also vsl p. Thror oth m an n ar vsl p. Howvr, w assum that m an n ha no ommon ators ths s a ontraton. Our ntal assumpton must thror als, an p s rratonal. I a s a squar numr whh vs an ntgr m, t n not th as that a vs m. For ampl, vs ut os not v. Chaptr rvw qustons a, () > 0 a : 9a 0 vs 6 vs 0 r 0 r a :, 8 an 0 an ( z, z ) a Th oman A ontans atl k lmnts, an sn s njtv th mag o ah lmnt s stnt. Hn th rang o ontans atl k lmnts. Sn B ontans atl k lmnts, t must th as that th rang o s qual to B. Hn B s surjtv. I s surjtv, thn s njtv. W an prov th ontrapostv statmnt. Suppos that s not njtv. Thn thr st, A suh that ut () (). Ths mpls that th rang o ontans wr than k lmnts, so annot

66 answrs qual th whol o B. Thus s not surjtv. I : A B s a unton, wth A an B ontanng atl k lmnts whr k s a natural numr, thn ng njtv s quvalnt to ng surjtv. W us proo nuton. Whn n w hav 6 >, so th rsult hols. Assum tru or n k. Whn n k + w hav k + k > k ( n hp) k > (k + ) sn k > k + or k. Hn th rsult hols or n k +, an sn t hols or n, nuton th rsult hols or all n. Whn n w hav ( ) ( ), so th rsult hols. Assum tru or n k. Whn n k + w hav k + ( ) ( ) k + (k + ) k(k ) + (k + ) ( n hp) k(k ) 6( k + ) + (k + k + ) ( k + )(k + ) ( k + )(( k + ) ) Hn th rsult hols or n k +, an sn t hols or n, nuton th rsult hols or all natural numrs n. 6 Us proo nuton. Whn n w hav () () so th rsult hols. Assum tru or n k. Whn n k + w hav k + () ( k ()) ( k ) ( n hp) ( k ) k k + Hn th rsult hols or n k +, an sn t hols or n, nuton th rsult hols or all natural numrs n. 7 a Sn vs w ma wrt k or som ntgr k. Thn k k, an so vs. Sn s vn w ma wrt k or som ntgr k. Thn + (k) + (k) k + 6k (k + k) whh shows that + s o. a > a a a > a a > < 0 8 a Fals. Takng A an 0 0 B 0 0 provs a 0 ountr-ampl. Tru. Usng proo ontrapostv, A 0 thn ka k k 0 k 0 k 0 k 0 0 0, so ka a Assum that oth an ar ratonal, so w ma wrt m n an

67 ANSWERS r whr m, n, r, s an n, s s 0. W hav + m r + n s ( ( ) ) m n + ms ns + r s nr ns ( ms + nr) ns Both ms + nr an ns, an sn n, s 0, ns 0, so + s a ratonal numr, so s not rratonal Assum oth an ar lss than or qual to (ut gratr than 0). Thn, so s not gratr than. 0 Assum or ontraton that 6 s a ratonal numr, an wrt 6 m n whr m an n ar ntgrs wth no ommon ators. Thn m 6 n whh mpls that m 6n. Thror 6 vs m, an n partular oth an v m. B rsults stalsh prvousl n ths haptr (s Eampl.9 an Ers H, Q), ths mpls that oth an v m, an so 6 must also v m. Wrtng m 6k or som ntgr k, w now hav 6n m (6k) 6k, an so n 6k an 6 vs n. Thror 6 must also v n, ontratng th at that m an n hav no ommon ators. Our orgnal assumpton was thror als, an 6 s rratonal. For ontraton assum that w an wrt log () m whr m an n ar n ntgrs wth n 0. Thn log () m n n m m n whh s a ontraton as n s o ut m s vn. Thror log () s rratonal.

MA1506 Tutorial 2 Solutions. Question 1. (1a) 1 ) y x. e x. 1 exp (in general, Integrating factor is. ye dx. So ) (1b) e e. e c.

MA1506 Tutorial 2 Solutions. Question 1. (1a) 1 ) y x. e x. 1 exp (in general, Integrating factor is. ye dx. So ) (1b) e e. e c. MA56 utorial Solutions Qustion a Intgrating fator is ln p p in gnral, multipl b p So b ln p p sin his kin is all a Brnoulli quation -- st Sin w fin Y, Y Y, Y Y p Qustion Dfin v / hn our quation is v μ

More information

September 27, Introduction to Ordinary Differential Equations. ME 501A Seminar in Engineering Analysis Page 1. Outline

September 27, Introduction to Ordinary Differential Equations. ME 501A Seminar in Engineering Analysis Page 1. Outline Introucton to Ornar Dffrntal Equatons Sptmbr 7, 7 Introucton to Ornar Dffrntal Equatons Larr artto Mchancal Engnrng AB Smnar n Engnrng Analss Sptmbr 7, 7 Outln Rvw numrcal solutons Bascs of ffrntal quatons

More information

(2) If we multiplied a row of B by λ, then the value is also multiplied by λ(here lambda could be 0). namely

(2) If we multiplied a row of B by λ, then the value is also multiplied by λ(here lambda could be 0). namely . DETERMINANT.. Dtrminnt. Introution:I you think row vtor o mtrix s oorint o vtors in sp, thn th gomtri mning o th rnk o th mtrix is th imnsion o th prlllppi spnn y thm. But w r not only r out th imnsion,

More information

Multiple-Choice Test Runge-Kutta 4 th Order Method Ordinary Differential Equations COMPLETE SOLUTION SET

Multiple-Choice Test Runge-Kutta 4 th Order Method Ordinary Differential Equations COMPLETE SOLUTION SET Multpl-Co Tst Rung-Kutta t Ordr Mtod Ordnar Drntal Equatons COMPLETE SOLUTION SET. To solv t ordnar drntal quaton sn ( Rung-Kutta t ordr mtod ou nd to rwrt t quaton as (A sn ( (B ( sn ( (C os ( (D sn (

More information

The University of Sydney MATH 2009

The University of Sydney MATH 2009 T Unvrsty o Syny MATH 2009 APH THEOY Tutorl 7 Solutons 2004 1. Lt t sonnt plnr rp sown. Drw ts ul, n t ul o t ul ( ). Sow tt s sonnt plnr rp, tn s onnt. Du tt ( ) s not somorp to. ( ) A onnt rp s on n

More information

9.5 Complex variables

9.5 Complex variables 9.5 Cmpl varabls. Cnsdr th funtn u v f( ) whr ( ) ( ), f( ), fr ths funtn tw statmnts ar as fllws: Statmnt : f( ) satsf Cauh mann quatn at th rgn. Statmnt : f ( ) ds nt st Th rrt statmnt ar (A) nl (B)

More information

EE750 Advanced Engineering Electromagnetics Lecture 17

EE750 Advanced Engineering Electromagnetics Lecture 17 EE75 Avan Engnrng Eltromagnt Ltur 7 D EM W onr a D ffrntal quaton of th form α α β f ut to p on Γ α α. n γ q on Γ whr Γ Γ Γ th ontour nlong th oman an n th unt outwar normal ot that th ounar onton ma a

More information

Jones vector & matrices

Jones vector & matrices Jons vctor & matrcs PY3 Colást na hollscol Corcagh, Ér Unvrst Collg Cork, Irland Dpartmnt of Phscs Matr tratmnt of polarzaton Consdr a lght ra wth an nstantanous -vctor as shown k, t ˆ k, t ˆ k t, o o

More information

Weighted Graphs. Weighted graphs may be either directed or undirected.

Weighted Graphs. Weighted graphs may be either directed or undirected. 1 In mny ppltons, o rp s n ssot numrl vlu, ll wt. Usully, t wts r nonntv ntrs. Wt rps my tr rt or unrt. T wt o n s otn rrr to s t "ost" o t. In ppltons, t wt my msur o t lnt o rout, t pty o ln, t nry rqur

More information

Ερωτήσεις και ασκησεις Κεφ. 10 (για μόρια) ΠΑΡΑΔΟΣΗ 29/11/2016. (d)

Ερωτήσεις και ασκησεις Κεφ. 10 (για μόρια) ΠΑΡΑΔΟΣΗ 29/11/2016. (d) Ερωτήσεις και ασκησεις Κεφ 0 (για μόρια ΠΑΡΑΔΟΣΗ 9//06 Th coffcnt A of th van r Waals ntracton s: (a A r r / ( r r ( (c a a a a A r r / ( r r ( a a a a A r r / ( r r a a a a A r r / ( r r 4 a a a a 0 Th

More information

Partial Derivatives: Suppose that z = f(x, y) is a function of two variables.

Partial Derivatives: Suppose that z = f(x, y) is a function of two variables. Chaptr Functions o Two Variabls Applid Calculus 61 Sction : Calculus o Functions o Two Variabls Now that ou hav som amiliarit with unctions o two variabls it s tim to start appling calculus to hlp us solv

More information

Solutions to Homework 5

Solutions to Homework 5 Solutions to Homwork 5 Pro. Silvia Frnánz Disrt Mathmatis Math 53A, Fall 2008. [3.4 #] (a) Thr ar x olor hois or vrtx an x or ah o th othr thr vrtis. So th hromati polynomial is P (G, x) =x (x ) 3. ()

More information

5/1/2018. Huffman Coding Trees. Huffman Coding Trees. Huffman Coding Trees. Huffman Coding Trees. Huffman Coding Trees. Huffman Coding Trees

5/1/2018. Huffman Coding Trees. Huffman Coding Trees. Huffman Coding Trees. Huffman Coding Trees. Huffman Coding Trees. Huffman Coding Trees /1/018 W usully no strns y ssnn -lnt os to ll rtrs n t lpt (or mpl, 8-t on n ASCII). Howvr, rnt rtrs our wt rnt rquns, w n sv mmory n ru trnsmttl tm y usn vrl-lnt non. T s to ssn sortr os to rtrs tt our

More information

N1.1 Homework Answers

N1.1 Homework Answers Camrig Essntials Mathmatis Cor 8 N. Homwork Answrs N. Homwork Answrs a i 6 ii i 0 ii 3 2 Any pairs of numrs whih satisfy th alulation. For xampl a 4 = 3 3 6 3 = 3 4 6 2 2 8 2 3 3 2 8 5 5 20 30 4 a 5 a

More information

SAMPLE CSc 340 EXAM QUESTIONS WITH SOLUTIONS: part 2

SAMPLE CSc 340 EXAM QUESTIONS WITH SOLUTIONS: part 2 AMPLE C EXAM UETION WITH OLUTION: prt. It n sown tt l / wr.7888l. I Φ nots orul or pprotng t vlu o tn t n sown tt t trunton rror o ts pproton s o t or or so onstnts ; tt s Not tt / L Φ L.. Φ.. /. /.. Φ..787.

More information

CS September 2018

CS September 2018 Loil los Distriut Systms 06. Loil los Assin squn numrs to msss All ooprtin prosss n r on orr o vnts vs. physil los: rport tim o y Assum no ntrl tim sour Eh systm mintins its own lol lo No totl orrin o

More information

Evans, Lipson, Wallace, Greenwood

Evans, Lipson, Wallace, Greenwood Camrig Snior Mathmatial Mthos AC/VCE Units 1& Chaptr Quaratis: Skillsht C 1 Solv ah o th ollowing or x: a (x )(x + 1) = 0 x(5x 1) = 0 x(1 x) = 0 x = 9x Solv ah o th ollowing or x: a x + x 10 = 0 x 8x +

More information

Logarithms. Secondary Mathematics 3 Page 164 Jordan School District

Logarithms. Secondary Mathematics 3 Page 164 Jordan School District Logarithms Sondary Mathmatis Pag 6 Jordan Shool Distrit Unit Clustr 6 (F.LE. and F.BF.): Logarithms Clustr 6: Logarithms.6 For ponntial modls, prss as a arithm th solution to a and d ar numrs and th as

More information

Thomas Whitham Sixth Form

Thomas Whitham Sixth Form Thomas Whitham Sith Form Pur Mathmatics Unit C Algbra Trigonomtr Gomtr Calculus Vctor gomtr Pag Algbra Molus functions graphs, quations an inqualitis Graph of f () Draw f () an rflct an part of th curv

More information

Cycles and Simple Cycles. Paths and Simple Paths. Trees. Problem: There is No Completely Standard Terminology!

Cycles and Simple Cycles. Paths and Simple Paths. Trees. Problem: There is No Completely Standard Terminology! Outlin Computr Sin 331, Spnnin, n Surphs Mik Joson Dprtmnt o Computr Sin Univrsity o Clry Ltur #30 1 Introution 2 3 Dinition 4 Spnnin 5 6 Mik Joson (Univrsity o Clry) Computr Sin 331 Ltur #30 1 / 20 Mik

More information

The Hyperelastic material is examined in this section.

The Hyperelastic material is examined in this section. 4. Hyprlastcty h Hyprlastc matral s xad n ths scton. 4..1 Consttutv Equatons h rat of chang of ntrnal nrgy W pr unt rfrnc volum s gvn by th strss powr, whch can b xprssd n a numbr of dffrnt ways (s 3.7.6):

More information

Multiple Choice Questions

Multiple Choice Questions B S. M. CHINCHOLE Multpl Co Qustons L. V. H. ARTS, SCIENCE AND COMMERCE COLLEGE, PANCHAVATI, NSAHIK - Pag B S. M. CHINCHOLE L. V. H. ARTS, SCIENCE AND COMMERCE COLLEGE, PANCHAVATI, NSAHIK - Pag B S. M.

More information

Heisenberg Model. Sayed Mohammad Mahdi Sadrnezhaad. Supervisor: Prof. Abdollah Langari

Heisenberg Model. Sayed Mohammad Mahdi Sadrnezhaad. Supervisor: Prof. Abdollah Langari snbrg Modl Sad Mohammad Mahd Sadrnhaad Survsor: Prof. bdollah Langar bstract: n ths rsarch w tr to calculat analtcall gnvalus and gnvctors of fnt chan wth ½-sn artcls snbrg modl. W drov gnfuctons for closd

More information

ENGR 323 BHW 15 Van Bonn 1/7

ENGR 323 BHW 15 Van Bonn 1/7 ENGR 33 BHW 5 Van Bonn /7 4.4 In Eriss and 3 as wll as man othr situations on has th PDF o X and wishs th PDF o Yh. Assum that h is an invrtibl untion so that h an b solvd or to ild. Thn it an b shown

More information

First derivative analysis

First derivative analysis Robrto s Nots on Dirntial Calculus Chaptr 8: Graphical analysis Sction First drivativ analysis What you nd to know alrady: How to us drivativs to idntiy th critical valus o a unction and its trm points

More information

Present state Next state Q + M N

Present state Next state Q + M N Qustion 1. An M-N lip-lop works s ollows: I MN=00, th nxt stt o th lip lop is 0. I MN=01, th nxt stt o th lip-lop is th sm s th prsnt stt I MN=10, th nxt stt o th lip-lop is th omplmnt o th prsnt stt I

More information

In which direction do compass needles always align? Why?

In which direction do compass needles always align? Why? AQA Trloy Unt 6.7 Mntsm n Eltromntsm - Hr 1 Complt t p ll: Mnt or s typ o or n t s stronst t t o t mnt. Tr r two typs o mnt pol: n. Wrt wt woul ppn twn t pols n o t mnt ntrtons low: Drw t mnt l lns on

More information

Southern Taiwan University

Southern Taiwan University Chaptr Ordinar Diffrntial Equations of th First Ordr and First Dgr Gnral form:., d +, d 0.a. f,.b I. Sparabl Diffrntial quations Form: d + d 0 C d d E 9 + 4 0 Solution: 9d + 4d 0 9 + 4 C E + d Solution:

More information

COHORT MBA. Exponential function. MATH review (part2) by Lucian Mitroiu. The LOG and EXP functions. Properties: e e. lim.

COHORT MBA. Exponential function. MATH review (part2) by Lucian Mitroiu. The LOG and EXP functions. Properties: e e. lim. MTH rviw part b Lucian Mitroiu Th LOG and EXP functions Th ponntial function p : R, dfind as Proprtis: lim > lim p Eponntial function Y 8 6 - -8-6 - - X Th natural logarithm function ln in US- log: function

More information

( ) Differential Equations. Unit-7. Exact Differential Equations: M d x + N d y = 0. Verify the condition

( ) Differential Equations. Unit-7. Exact Differential Equations: M d x + N d y = 0. Verify the condition Diffrntial Equations Unit-7 Eat Diffrntial Equations: M d N d 0 Vrif th ondition M N Thn intgrat M d with rspt to as if wr onstants, thn intgrat th trms in N d whih do not ontain trms in and quat sum of

More information

Grand Canonical Ensemble

Grand Canonical Ensemble Th nsmbl of systms mmrsd n a partcl-hat rsrvor at constant tmpratur T, prssur P, and chmcal potntal. Consdr an nsmbl of M dntcal systms (M =,, 3,...M).. Thy ar mutually sharng th total numbr of partcls

More information

Having a glimpse of some of the possibilities for solutions of linear systems, we move to methods of finding these solutions. The basic idea we shall

Having a glimpse of some of the possibilities for solutions of linear systems, we move to methods of finding these solutions. The basic idea we shall Hvn lps o so o t posslts or solutons o lnr systs, w ov to tos o nn ts solutons. T s w sll us s to try to sply t syst y lntn so o t vrls n so ts qutons. Tus, w rr to t to s lnton. T prry oprton nvolv s

More information

VTU NOTES QUESTION PAPERS NEWS RESULTS FORUMS

VTU NOTES QUESTION PAPERS NEWS RESULTS FORUMS Diffrntial Equations Unit-7 Eat Diffrntial Equations: M d N d 0 Vrif th ondition M N Thn intgrat M d with rspt to as if wr onstants, thn intgrat th trms in N d whih do not ontain trms in and quat sum of

More information

Introduction to logistic regression

Introduction to logistic regression Itroducto to logstc rgrsso Gv: datast D { 2 2... } whr s a k-dmsoal vctor of ral-valud faturs or attrbuts ad s a bar class labl or targt. hus w ca sa that R k ad {0 }. For ampl f k 4 a datast of 3 data

More information

CMPS 2200 Fall Graphs. Carola Wenk. Slides courtesy of Charles Leiserson with changes and additions by Carola Wenk

CMPS 2200 Fall Graphs. Carola Wenk. Slides courtesy of Charles Leiserson with changes and additions by Carola Wenk CMPS 2200 Fll 2017 Grps Crol Wnk Sls ourtsy o Crls Lsrson wt ns n tons y Crol Wnk 10/23/17 CMPS 2200 Intro. to Alortms 1 Grps Dnton. A rt rp (rp) G = (V, E) s n orr pr onsstn o st V o vrts (snulr: vrtx),

More information

Integration Continued. Integration by Parts Solving Definite Integrals: Area Under a Curve Improper Integrals

Integration Continued. Integration by Parts Solving Definite Integrals: Area Under a Curve Improper Integrals Intgrtion Continud Intgrtion y Prts Solving Dinit Intgrls: Ar Undr Curv Impropr Intgrls Intgrtion y Prts Prticulrly usul whn you r trying to tk th intgrl o som unction tht is th product o n lgric prssion

More information

A general N-dimensional vector consists of N values. They can be arranged as a column or a row and can be real or complex.

A general N-dimensional vector consists of N values. They can be arranged as a column or a row and can be real or complex. Lnr lgr Vctors gnrl -dmnsonl ctor conssts of lus h cn rrngd s column or row nd cn rl or compl Rcll -dmnsonl ctor cn rprsnt poston, loct, or cclrton Lt & k,, unt ctors long,, & rspctl nd lt k h th componnts

More information

Consider a system of 2 simultaneous first order linear equations

Consider a system of 2 simultaneous first order linear equations Soluon of sysms of frs ordr lnar quaons onsdr a sysm of smulanous frs ordr lnar quaons a b c d I has h alrna mar-vcor rprsnaon a b c d Or, n shorhand A, f A s alrady known from con W know ha h abov sysm

More information

Thomas Whitham Sixth Form

Thomas Whitham Sixth Form Thomas Whitham Sith Form Pur Mathmatics Cor rvision gui Pag Algbra Moulus functions graphs, quations an inqualitis Graph of f () Draw f () an rflct an part of th curv blow th ais in th ais. f () f () f

More information

The Matrix Exponential

The Matrix Exponential Th Matrix Exponntial (with xrciss) by Dan Klain Vrsion 28928 Corrctions and commnts ar wlcom Th Matrix Exponntial For ach n n complx matrix A, dfin th xponntial of A to b th matrix () A A k I + A + k!

More information

CHAPTER 7d. DIFFERENTIATION AND INTEGRATION

CHAPTER 7d. DIFFERENTIATION AND INTEGRATION CHAPTER 7d. DIFFERENTIATION AND INTEGRATION A. J. Clark School o Engnrng Dpartmnt o Cvl and Envronmntal Engnrng by Dr. Ibrahm A. Assakka Sprng ENCE - Computaton Mthods n Cvl Engnrng II Dpartmnt o Cvl and

More information

4.1 Interval Scheduling. Chapter 4. Greedy Algorithms. Interval Scheduling: Greedy Algorithms. Interval Scheduling. Interval scheduling.

4.1 Interval Scheduling. Chapter 4. Greedy Algorithms. Interval Scheduling: Greedy Algorithms. Interval Scheduling. Interval scheduling. Cptr 4 4 Intrvl Suln Gry Alortms Sls y Kvn Wyn Copyrt 005 Prson-Ason Wsly All rts rsrv Intrvl Suln Intrvl Suln: Gry Alortms Intrvl suln! Jo strts t s n nss t! Two os omptl ty on't ovrlp! Gol: n mxmum sust

More information

Additional Math (4047) Paper 2 (100 marks) y x. 2 d. d d

Additional Math (4047) Paper 2 (100 marks) y x. 2 d. d d Aitional Math (07) Prpar b Mr Ang, Nov 07 Fin th valu of th constant k for which is a solution of th quation k. [7] Givn that, Givn that k, Thrfor, k Topic : Papr (00 marks) Tim : hours 0 mins Nam : Aitional

More information

The Matrix Exponential

The Matrix Exponential Th Matrix Exponntial (with xrciss) by D. Klain Vrsion 207.0.05 Corrctions and commnts ar wlcom. Th Matrix Exponntial For ach n n complx matrix A, dfin th xponntial of A to b th matrix A A k I + A + k!

More information

Lucas Test is based on Euler s theorem which states that if n is any integer and a is coprime to n, then a φ(n) 1modn.

Lucas Test is based on Euler s theorem which states that if n is any integer and a is coprime to n, then a φ(n) 1modn. Modul 10 Addtonal Topcs 10.1 Lctur 1 Prambl: Dtrmnng whthr a gvn ntgr s prm or compost s known as prmalty tstng. Thr ar prmalty tsts whch mrly tll us whthr a gvn ntgr s prm or not, wthout gvng us th factors

More information

e a = 12.4 i a = 13.5i h a = xi + yj 3 a Let r a = 25cos(20) i + 25sin(20) j b = 15cos(55) i + 15sin(55) j

e a = 12.4 i a = 13.5i h a = xi + yj 3 a Let r a = 25cos(20) i + 25sin(20) j b = 15cos(55) i + 15sin(55) j Vetors MC Qld-3 49 Chapter 3 Vetors Exerse 3A Revew of vetors a d e f e a x + y omponent: x a os(θ 6 os(80 + 39 6 os(9.4 omponent: y a sn(θ 6 sn(9 0. a.4 0. f a x + y omponent: x a os(θ 5 os( 5 3.6 omponent:

More information

Lecture 20: Minimum Spanning Trees (CLRS 23)

Lecture 20: Minimum Spanning Trees (CLRS 23) Ltur 0: Mnmum Spnnn Trs (CLRS 3) Jun, 00 Grps Lst tm w n (wt) rps (unrt/rt) n ntrou s rp voulry (vrtx,, r, pt, onnt omponnts,... ) W lso suss jny lst n jny mtrx rprsntton W wll us jny lst rprsntton unlss

More information

Physics 2A Chapter 3 HW Solutions

Physics 2A Chapter 3 HW Solutions Phscs A Chapter 3 HW Solutons Chapter 3 Conceptual Queston: 4, 6, 8, Problems: 5,, 8, 7, 3, 44, 46, 69, 70, 73 Q3.4. Reason: (a) C = A+ B onl A and B are n the same drecton. Sze does not matter. (b) C

More information

Improving Union. Implementation. Union-by-size Code. Union-by-Size Find Analysis. Path Compression! Improving Find find(e)

Improving Union. Implementation. Union-by-size Code. Union-by-Size Find Analysis. Path Compression! Improving Find find(e) POW CSE 36: Dt Struturs Top #10 T Dynm (Equvln) Duo: Unon-y-Sz & Pt Comprsson Wk!! Luk MDowll Summr Qurtr 003 M! ZING Wt s Goo Mz? Mz Construton lortm Gvn: ollton o rooms V Conntons twn t rooms (ntlly

More information

Section 11.6: Directional Derivatives and the Gradient Vector

Section 11.6: Directional Derivatives and the Gradient Vector Sction.6: Dirctional Drivativs and th Gradint Vctor Practic HW rom Stwart Ttbook not to hand in p. 778 # -4 p. 799 # 4-5 7 9 9 35 37 odd Th Dirctional Drivativ Rcall that a b Slop o th tangnt lin to th

More information

Combinatorial Networks Week 1, March 11-12

Combinatorial Networks Week 1, March 11-12 1 Nots on March 11 Combinatorial Ntwors W 1, March 11-1 11 Th Pigonhol Principl Th Pigonhol Principl If n objcts ar placd in hols, whr n >, thr xists a box with mor than on objcts 11 Thorm Givn a simpl

More information

MAXIMA-MINIMA EXERCISE - 01 CHECK YOUR GRASP

MAXIMA-MINIMA EXERCISE - 01 CHECK YOUR GRASP EXERCISE - MAXIMA-MINIMA CHECK YOUR GRASP. f() 5 () 75 f'() 5. () 75 75.() 7. 5 + 5. () 7 {} 5 () 7 ( ) 5. f() 9a + a +, a > f'() 6 8a + a 6( a + a ) 6( a) ( a) p a, q a a a + + a a a (rjctd) or a a 6.

More information

A Note on Estimability in Linear Models

A Note on Estimability in Linear Models Intrnatonal Journal of Statstcs and Applcatons 2014, 4(4): 212-216 DOI: 10.5923/j.statstcs.20140404.06 A Not on Estmablty n Lnar Modls S. O. Adymo 1,*, F. N. Nwob 2 1 Dpartmnt of Mathmatcs and Statstcs,

More information

b.) v d =? Example 2 l = 50 m, D = 1.0 mm, E = 6 V, " = 1.72 #10 $8 % & m, and r = 0.5 % a.) R =? c.) V ab =? a.) R eq =?

b.) v d =? Example 2 l = 50 m, D = 1.0 mm, E = 6 V,  = 1.72 #10 $8 % & m, and r = 0.5 % a.) R =? c.) V ab =? a.) R eq =? xmpl : An 8-gug oppr wr hs nomnl mtr o. mm. Ths wr rrs onstnt urrnt o.67 A to W lmp. Th nsty o r ltrons s 8.5 x 8 ltrons pr u mtr. Fn th mgntu o. th urrnt nsty. th rt vloty xmpl D. mm,.67 A, n N 8.5" 8

More information

Linear Algebra. Definition The inverse of an n by n matrix A is an n by n matrix B where, Properties of Matrix Inverse. Minors and cofactors

Linear Algebra. Definition The inverse of an n by n matrix A is an n by n matrix B where, Properties of Matrix Inverse. Minors and cofactors Dfnton Th nvr of an n by n atrx A an n by n atrx B whr, Not: nar Algbra Matrx Invron atrc on t hav an nvr. If a atrx ha an nvr, thn t call. Proprt of Matrx Invr. If A an nvrtbl atrx thn t nvr unqu.. (A

More information

Math 656 March 10, 2011 Midterm Examination Solutions

Math 656 March 10, 2011 Midterm Examination Solutions Math 656 March 0, 0 Mdtrm Eamnaton Soltons (4pts Dr th prsson for snh (arcsnh sng th dfnton of snh w n trms of ponntals, and s t to fnd all als of snh (. Plot ths als as ponts n th compl plan. Mak sr or

More information

Priority Search Trees - Part I

Priority Search Trees - Part I .S. 252 Pro. Rorto Taassa oputatoal otry S., 1992 1993 Ltur 9 at: ar 8, 1993 Sr: a Q ol aro Prorty Sar Trs - Part 1 trouto t last ltur, w loo at trval trs. or trval pot losur prols, ty us lar spa a optal

More information

Shortest Paths in Graphs. Paths in graphs. Shortest paths CS 445. Alon Efrat Slides courtesy of Erik Demaine and Carola Wenk

Shortest Paths in Graphs. Paths in graphs. Shortest paths CS 445. Alon Efrat Slides courtesy of Erik Demaine and Carola Wenk S 445 Shortst Paths n Graphs lon frat Sls courtsy of rk man an arola Wnk Paths n raphs onsr a raph G = (V, ) wth -wht functon w : R. Th wht of path p = v v v k s fn to xampl: k = w ( p) = w( v, v + ).

More information

Theorem 1. An undirected graph is a tree if and only if there is a unique simple path between any two of its vertices.

Theorem 1. An undirected graph is a tree if and only if there is a unique simple path between any two of its vertices. Cptr 11: Trs 11.1 - Introuton to Trs Dnton 1 (Tr). A tr s onnt unrt rp wt no sp ruts. Tor 1. An unrt rp s tr n ony tr s unqu sp pt twn ny two o ts vrts. Dnton 2. A root tr s tr n w on vrtx s n snt s t

More information

Depth First Search. Yufei Tao. Department of Computer Science and Engineering Chinese University of Hong Kong

Depth First Search. Yufei Tao. Department of Computer Science and Engineering Chinese University of Hong Kong Dprtmnt o Computr Sn n Ennrn Cns Unvrsty o Hon Kon W v lry lrn rt rst sr (BFS). Toy, w wll suss ts sstr vrson : t pt rst sr (DFS) lortm. Our susson wll on n ous on rt rps, us t xtnson to unrt rps s strtorwr.

More information

Summary: Solving a Homogeneous System of Two Linear First Order Equations in Two Unknowns

Summary: Solving a Homogeneous System of Two Linear First Order Equations in Two Unknowns Summary: Solvng a Homognous Sysm of Two Lnar Frs Ordr Equaons n Two Unknowns Gvn: A Frs fnd h wo gnvalus, r, and hr rspcv corrspondng gnvcors, k, of h coffcn mar A Dpndng on h gnvalus and gnvcors, h gnral

More information

1973 AP Calculus AB: Section I

1973 AP Calculus AB: Section I 97 AP Calculus AB: Sction I 9 Minuts No Calculator Not: In this amination, ln dnots th natural logarithm of (that is, logarithm to th bas ).. ( ) d= + C 6 + C + C + C + C. If f ( ) = + + + and ( ), g=

More information

CS 491 G Combinatorial Optimization

CS 491 G Combinatorial Optimization CS 49 G Cobinatorial Optiization Lctur Nots Junhui Jia. Maiu Flow Probls Now lt us iscuss or tails on aiu low probls. Thor. A asibl low is aiu i an only i thr is no -augnting path. Proo: Lt P = A asibl

More information

Calculus II (MAC )

Calculus II (MAC ) Calculus II (MAC232-2) Tst 2 (25/6/25) Nam (PRINT): Plas show your work. An answr with no work rcivs no crdit. You may us th back of a pag if you nd mor spac for a problm. You may not us any calculators.

More information

Economics 600: August, 2007 Dynamic Part: Problem Set 5. Problems on Differential Equations and Continuous Time Optimization

Economics 600: August, 2007 Dynamic Part: Problem Set 5. Problems on Differential Equations and Continuous Time Optimization THE UNIVERSITY OF MARYLAND COLLEGE PARK, MARYLAND Economcs 600: August, 007 Dynamc Part: Problm St 5 Problms on Dffrntal Equatons and Contnuous Tm Optmzaton Quston Solv th followng two dffrntal quatons.

More information

Worksheet: Taylor Series, Lagrange Error Bound ilearnmath.net

Worksheet: Taylor Series, Lagrange Error Bound ilearnmath.net Taylor s Thorm & Lagrag Error Bouds Actual Error This is th ral amout o rror, ot th rror boud (worst cas scario). It is th dirc btw th actual () ad th polyomial. Stps:. Plug -valu ito () to gt a valu.

More information

1997 AP Calculus AB: Section I, Part A

1997 AP Calculus AB: Section I, Part A 997 AP Calculus AB: Sction I, Part A 50 Minuts No Calculator Not: Unlss othrwis spcifid, th domain of a function f is assumd to b th st of all ral numbrs for which f () is a ral numbr.. (4 6 ) d= 4 6 6

More information

Bifurcation Theory. , a stationary point, depends on the value of α. At certain values

Bifurcation Theory. , a stationary point, depends on the value of α. At certain values Dnamic Macroconomic Thor Prof. Thomas Lux Bifurcation Thor Bifurcation: qualitativ chang in th natur of th solution occurs if a paramtr passs through a critical point bifurcation or branch valu. Local

More information

Differentiation of Exponential Functions

Differentiation of Exponential Functions Calculus Modul C Diffrntiation of Eponntial Functions Copyright This publication Th Northrn Albrta Institut of Tchnology 007. All Rights Rsrvd. LAST REVISED March, 009 Introduction to Diffrntiation of

More information

Potential Games and the Inefficiency of Equilibrium

Potential Games and the Inefficiency of Equilibrium Optmzaton and Control o Ntork Potntal Gam and th Inny o Equlbrum Ljun Chn 3/8/216 Outln Potntal gam q Rv on tratg gam q Potntal gam atom and nonatom Inny o qulbrum q Th pr o anarhy and lh routng q Rour

More information

2008 AP Calculus BC Multiple Choice Exam

2008 AP Calculus BC Multiple Choice Exam 008 AP Multipl Choic Eam Nam 008 AP Calculus BC Multipl Choic Eam Sction No Calculator Activ AP Calculus 008 BC Multipl Choic. At tim t 0, a particl moving in th -plan is th acclration vctor of th particl

More information

COMPLEX NUMBERS AND ELEMENTARY FUNCTIONS OF COMPLEX VARIABLES

COMPLEX NUMBERS AND ELEMENTARY FUNCTIONS OF COMPLEX VARIABLES COMPLEX NUMBERS AND ELEMENTARY FUNCTIONS OF COMPLEX VARIABLES DEFINITION OF A COMPLEX NUMBER: A umbr of th form, whr = (, ad & ar ral umbrs s calld a compl umbr Th ral umbr, s calld ral part of whl s calld

More information

ECE COMBINATIONAL BUILDING BLOCKS - INVEST 13 DECODERS AND ENCODERS

ECE COMBINATIONAL BUILDING BLOCKS - INVEST 13 DECODERS AND ENCODERS C 24 - COMBINATIONAL BUILDING BLOCKS - INVST 3 DCODS AND NCODS FALL 23 AP FLZ To o "wll" on this invstition you must not only t th riht nswrs ut must lso o nt, omplt n onis writups tht mk ovious wht h

More information

07 - SEQUENCES AND SERIES Page 1 ( Answers at he end of all questions ) b, z = n

07 - SEQUENCES AND SERIES Page 1 ( Answers at he end of all questions ) b, z = n 07 - SEQUENCES AND SERIES Pag ( Aswrs at h d of all qustios ) ( ) If = a, y = b, z = c, whr a, b, c ar i A.P. ad = 0 = 0 = 0 l a l

More information

(HELD ON 21st MAY SUNDAY 2017) MATHEMATICS CODE - 1 [PAPER-1]

(HELD ON 21st MAY SUNDAY 2017) MATHEMATICS CODE - 1 [PAPER-1] QUESTION PAPER WITH SOLUTION OF JEE ADVANCED - 7 (HELD ON st MAY SUNDAY 7) FEEL THE POWER OF OUR KNOWLEDGE & EXPERIENCE Our Top class IITian facult tam promiss to giv ou an authntic answr k which will

More information

The Fourier Transform

The Fourier Transform /9/ Th ourr Transform Jan Baptst Josph ourr 768-83 Effcnt Data Rprsntaton Data can b rprsntd n many ways. Advantag usng an approprat rprsntaton. Eampls: osy ponts along a ln Color spac rd/grn/blu v.s.

More information

CHAPTER 33: PARTICLE PHYSICS

CHAPTER 33: PARTICLE PHYSICS Collg Physcs Studnt s Manual Chaptr 33 CHAPTER 33: PARTICLE PHYSICS 33. THE FOUR BASIC FORCES 4. (a) Fnd th rato of th strngths of th wak and lctromagntc forcs undr ordnary crcumstancs. (b) What dos that

More information

y = 2xe x + x 2 e x at (0, 3). solution: Since y is implicitly related to x we have to use implicit differentiation: 3 6y = 0 y = 1 2 x ln(b) ln(b)

y = 2xe x + x 2 e x at (0, 3). solution: Since y is implicitly related to x we have to use implicit differentiation: 3 6y = 0 y = 1 2 x ln(b) ln(b) 4. y = y = + 5. Find th quation of th tangnt lin for th function y = ( + ) 3 whn = 0. solution: First not that whn = 0, y = (1 + 1) 3 = 8, so th lin gos through (0, 8) and thrfor its y-intrcpt is 8. y

More information

From Structural Analysis to FEM. Dhiman Basu

From Structural Analysis to FEM. Dhiman Basu From Structural Analyss to FEM Dhman Basu Acknowldgmnt Followng txt books wr consultd whl prparng ths lctur nots: Znkwcz, OC O.C. andtaylor Taylor, R.L. (000). Th FntElmnt Mthod, Vol. : Th Bass, Ffth dton,

More information

ANALYSIS IN THE FREQUENCY DOMAIN

ANALYSIS IN THE FREQUENCY DOMAIN ANALYSIS IN THE FREQUENCY DOMAIN SPECTRAL DENSITY Dfinition Th spctral dnsit of a S.S.P. t also calld th spctrum of t is dfind as: + { γ }. jτ γ τ F τ τ In othr words, of th covarianc function. is dfind

More information

On the irreducibility of some polynomials in two variables

On the irreducibility of some polynomials in two variables ACTA ARITHMETICA LXXXII.3 (1997) On th irrducibility of som polynomials in two variabls by B. Brindza and Á. Pintér (Dbrcn) To th mmory of Paul Erdős Lt f(x) and g(y ) b polynomials with intgral cofficints

More information

EEO 401 Digital Signal Processing Prof. Mark Fowler

EEO 401 Digital Signal Processing Prof. Mark Fowler EEO 401 Digital Signal Procssing Prof. Mark Fowlr Dtails of th ot St #19 Rading Assignmnt: Sct. 7.1.2, 7.1.3, & 7.2 of Proakis & Manolakis Dfinition of th So Givn signal data points x[n] for n = 0,, -1

More information

MATHEMATICS (B) 2 log (D) ( 1) = where z =

MATHEMATICS (B) 2 log (D) ( 1) = where z = MATHEMATICS SECTION- I STRAIGHT OBJECTIVE TYPE This sction contains 9 multipl choic qustions numbrd to 9. Each qustion has choic (A), (B), (C) and (D), out of which ONLY-ONE is corrct. Lt I d + +, J +

More information

8-node quadrilateral element. Numerical integration

8-node quadrilateral element. Numerical integration Fnt Elmnt Mthod lctur nots _nod quadrlatral lmnt Pag of 0 -nod quadrlatral lmnt. Numrcal ntgraton h tchnqu usd for th formulaton of th lnar trangl can b formall tndd to construct quadrlatral lmnts as wll

More information

External Equivalent. EE 521 Analysis of Power Systems. Chen-Ching Liu, Boeing Distinguished Professor Washington State University

External Equivalent. EE 521 Analysis of Power Systems. Chen-Ching Liu, Boeing Distinguished Professor Washington State University xtrnal quvalnt 5 Analyss of Powr Systms Chn-Chng Lu, ong Dstngushd Profssor Washngton Stat Unvrsty XTRNAL UALNT ach powr systm (ara) s part of an ntrconnctd systm. Montorng dvcs ar nstalld and data ar

More information

(Minimum) Spanning Trees

(Minimum) Spanning Trees (Mnmum) Spnnn Trs Spnnn trs Kruskl's lortm Novmr 23, 2017 Cn Hrn / Gory Tn 1 Spnnn trs Gvn G = V, E, spnnn tr o G s onnt surp o G wt xtly V 1 s mnml sust o s tt onnts ll t vrts o G G = Spnnn trs Novmr

More information

GRAPHS IN SCIENCE. drawn correctly, the. other is not. Which. Best Fit Line # one is which?

GRAPHS IN SCIENCE. drawn correctly, the. other is not. Which. Best Fit Line # one is which? 5 9 Bt Ft L # 8 7 6 5 GRAPH IN CIENCE O of th thg ot oft a rto of a xrt a grah of o k. A grah a vual rrtato of ural ata ollt fro a xrt. o of th ty of grah you ll f ar bar a grah. Th o u ot oft a l grah,

More information

Graphs. Graphs. Graphs: Basic Terminology. Directed Graphs. Dr Papalaskari 1

Graphs. Graphs. Graphs: Basic Terminology. Directed Graphs. Dr Papalaskari 1 CSC 00 Disrt Struturs : Introuon to Grph Thory Grphs Grphs CSC 00 Disrt Struturs Villnov Univrsity Grphs r isrt struturs onsisng o vrs n gs tht onnt ths vrs. Grphs n us to mol: omputr systms/ntworks mthml

More information

AP Calculus BC AP Exam Problems Chapters 1 3

AP Calculus BC AP Exam Problems Chapters 1 3 AP Eam Problms Captrs Prcalculus Rviw. If f is a continuous function dfind for all ral numbrs and if t maimum valu of f() is 5 and t minimum valu of f() is 7, tn wic of t following must b tru? I. T maimum

More information

Exam 2 Solutions. Jonathan Turner 4/2/2012. CS 542 Advanced Data Structures and Algorithms

Exam 2 Solutions. Jonathan Turner 4/2/2012. CS 542 Advanced Data Structures and Algorithms CS 542 Avn Dt Stutu n Alotm Exm 2 Soluton Jontn Tun 4/2/202. (5 ont) Con n oton on t tton t tutu n w t n t 2 no. Wt t mllt num o no tt t tton t tutu oul ontn. Exln you nw. Sn n mut n you o u t n t, t n

More information

Chapter 1. Chapter 10. Chapter 2. Chapter 11. Chapter 3. Chapter 12. Chapter 4. Chapter 13. Chapter 5. Chapter 14. Chapter 6. Chapter 7.

Chapter 1. Chapter 10. Chapter 2. Chapter 11. Chapter 3. Chapter 12. Chapter 4. Chapter 13. Chapter 5. Chapter 14. Chapter 6. Chapter 7. Chaptr Binomial Epansion Chaptr 0 Furthr Probability Chaptr Limits and Drivativs Chaptr Discrt Random Variabls Chaptr Diffrntiation Chaptr Discrt Probability Distributions Chaptr Applications of Diffrntiation

More information

10. Limits involving infinity

10. Limits involving infinity . Limits involving infinity It is known from th it ruls for fundamntal arithmtic oprations (+,-,, ) that if two functions hav finit its at a (finit or infinit) point, that is, thy ar convrgnt, th it of

More information

Prelim Examination 2011 / 2012 (Assessing Units 1 & 2) MATHEMATICS. Advanced Higher Grade. Time allowed - 2 hours

Prelim Examination 2011 / 2012 (Assessing Units 1 & 2) MATHEMATICS. Advanced Higher Grade. Time allowed - 2 hours Prlim Eamination / (Assssing Units & ) MATHEMATICS Advancd Highr Grad Tim allowd - hours Rad Carfull. Calculators ma b usd in this papr.. Candidats should answr all qustions. Full crdit will onl b givn

More information

Steinberg s Conjecture is false

Steinberg s Conjecture is false Stinrg s Conjtur is als arxiv:1604.05108v2 [math.co] 19 Apr 2016 Vinnt Cohn-Aa Mihal Hig Danil Král Zhntao Li Estan Salgao Astrat Stinrg onjtur in 1976 that vry planar graph with no yls o lngth our or

More information

10. EXTENDING TRACTABILITY

10. EXTENDING TRACTABILITY Coping with NP-compltnss 0. EXTENDING TRACTABILITY ining small vrtx covrs solving NP-har problms on trs circular arc covrings vrtx covr in bipartit graphs Q. Suppos I n to solv an NP-complt problm. What

More information

u x v x dx u x v x v x u x dx d u x v x u x v x dx u x v x dx Integration by Parts Formula

u x v x dx u x v x v x u x dx d u x v x u x v x dx u x v x dx Integration by Parts Formula 7. Intgration by Parts Each drivativ formula givs ris to a corrsponding intgral formula, as w v sn many tims. Th drivativ product rul yilds a vry usful intgration tchniqu calld intgration by parts. Starting

More information

Bayesian Estimation of the Logormal Distrbution Mean Using Ranked SET Sampling

Bayesian Estimation of the Logormal Distrbution Mean Using Ranked SET Sampling Basrah ournal o Sn Vol.5-7 Basan Estaton o th ooral Dstrbuton Man Usn Ran SET Sapln R.. h bstrat Bas staton or onoral an usn Ran St Sapln s onsr n ths papr an opar to that usn Spl Rano Sapln. It as sho

More information

AP Calculus Multiple-Choice Question Collection

AP Calculus Multiple-Choice Question Collection AP Calculus Multipl-Coic Qustion Collction 985 998 . f is a continuous function dfind for all ral numbrs and if t maimum valu of f () is 5 and t minimum valu of f () is 7, tn wic of t following must b

More information