u r du = ur+1 r + 1 du = ln u + C u sin u du = cos u + C cos u du = sin u + C sec u tan u du = sec u + C e u du = e u + C

Size: px
Start display at page:

Download "u r du = ur+1 r + 1 du = ln u + C u sin u du = cos u + C cos u du = sin u + C sec u tan u du = sec u + C e u du = e u + C"

Transcription

1 Tchniqus of Intgration c Donald Kridr and Dwight Lahr In this sction w ar going to introduc th first approachs to valuating an indfinit intgral whos intgrand dos not hav an immdiat antidrivativ. W bgin with a list of intgrals w should rcogniz. u r du = ur+ + C, r r + du = ln u + C u sin u du = cos u + C cos u du = sin u + C sc u du = tan u + C sc u tan u du = sc u + C u du = u + C W can radily vrify an quation by diffrntiating th right hand sid and showing that w gt th intgrand on th lft hand sid. But what if an intgral is not quit in th act form that w rquir? For ampl, 5 d. What do w do thn? Is thr a systmatic mthod that can minimiz trial and rror? Th Mthod of Substitution W hav alrady usd diffrntials as an aid to intgration whn w discussd sparabl diffrntial quations. In th prsnt sction, w will s that diffrntials continu to b a vry usful tchniqu for solving intgrals. So, our first ampl will srv as a rmindr of how to calculat thm. Eampl : If y = 3, thn dy = 3 d. Or if y = sin 4, thn dy = 4 cos 4 d. Rvrsing th Chain Rul: If u = g() is a function of, and f is a function of u, thn th chain rul tlls us that (f(g())) = f (g())g () Thus, intgrating th right hand sid rvrss th chain rul and w gt f (g())g () d = f(g()) + C Now, w can rwrit th abov intgral by substituting into it u = g() and th diffrntial du = g ()d. Whn w mak ths two substitutions w gt f (u) du = f(u) + C This last formula, combind with th us of diffrntials, constituts th Mthod of Substitution. Eampl : To find 7 d by substitution, w look at th list of intgrals at th bginning of th sction and s that th targt that it appars w should aim for is u du. Thus, w lt u = 7. Thn w calculat du = 7d; thus, d = du 7. Substituting into th intgral, w gt th intgral w wr aiming for:

2 7 u d = 7 du = u 7 + C = C W hav alrady larnd to solv th abov intgral by inspction. Indd, w wr doing nothing mor than rvrsing th chain rul in an simpl cas. Th nt ampl is also on w hav larnd to do by inspction but which w can do formally by substitution. Eampl 3: sin d. Lt u = ; thn du = d. So, substitution yilds Eampl 4: sin u sin d = du = cos u + d. Lt u = + ; thn du = d. So + C = cos + C + d = u du = ln + + C Eampl 5: + d. B carful. This is not a substitution intgral. That is, it is not an intgral that rquirs substitution. W simplify th quotint to obtain two trms ach of which w can intgrat: + d = ( + ) d = + ln + C Eampl 6: d. This intgral will yild to substitution: lt u = Thn du = (3 + 3) d. Thus, w substitut to gt d = 3 u du = 3 ln u + C = 3 ln C Eampl 7: ln d. Lt u = ln ; thn du = d. Thus, ln d = u du = u + C = (ln ) Thus far, w hav not usd th Mthod of Substitution with a dfinit intgral. W will do so now. Eampl 7 (continud): + C ln This is our first ampl of a dfinit intgral rquiring substitution. Thr ar two basic ways to solv it: ithr w chang th variabl from to u and chang th limits of intgration as wll; or w lav th limits of intgration unchangd and switch back from u to. Mthod : chang th limits from to u. d u = ln

3 3 ln d = u du = u = = 3 Mthod : chang th variabl back to and rtain th original limits. Eampl 8: ln d = (ln ) = (ln ) (ln ) = = 3 π/4 tan d W rplac tan by tan = sin cos and thn us th substituiton u = cos, from which du = sin d. So, with a chang of th limits of intgration th intgral bcoms: u = cos π/4 / π/4 tan d = π/4 sin cos d = / Intgration by Parts u du = ln u / = ln W saw abov that rally th Mthod of Substitution consists of rvrsing th chain rul. Anothr tchniqu of intgration that is oftn usful involvs an undoing of th product rul. For, suppos that u and v ar functions of. Thn starting with th product rul w gt d dv (uv) = u d d + v du d u dv d = d du (uv) v d d u dv d = uv d Rwriting th last quation in trms of diffrntials yilds v du d d u dv = uv v du

4 4 This is th so-calld intgration by parts formula. In practic, w can oftn us it to transform an intgral that appars intractibl into on whos intgrand has an antidrivativ w rcogniz. Not that w first hav to choos u; thn dv is that part of th intgrand that rmains. In gnral, w must b abl to diffrntiat u and intgrat dv in ordr to us th rst of th parts formula. Also, w want an intgrand that is simplr than th on with which w startd. Ths simpl obsrvations should guid us in assigning u. Lt s considr som ampls. Eampl : Considr d. Substitution dos not appar to work. So, w try th only othr tchniqu w know, namly, parts. If w lt u =, thn dv = d. Nt, w find du and v, and us th parts formula. u = du = d d = dv = d v = d = + C Eampl : Givn ln d, w lt u = ln and thn dv = d. And w procd: u = ln du = d dv = d v = ln d = ln d = ln + C Eampl 3: To find ln d, w simply follow through in ach trm of th parts formula with th valuation at th ndpoints of th intrval. Rfrring to th prvious ampl, ln d = ln d = + = Eampl 4: Givn sin d, us parts ltting u = and dv = sin d. Thn u = du = d dv = sin d v = cos sin d = cos + cos d Now, w us parts again to valuat th nw intgral. u = du = d dv = cos d v = sin sin d = cos + ( sin + cos ) + C Eampl 5: W us parts to valuat sin d: u = du = d dv = sin d v = cos

5 5 sin d = cos + cos d Using parts again: u = du = d dv = cos d v = sin sin d = cos + sin sin d Now, w hav an quation that has th unknown intgral on both sids. Thus, w can solv for it to gt sin d = ( cos + sin ) + C Erciss: Problms Chck what you hav larnd! Vidos: Tutorial Solutions S problms workd out!

6.1 Integration by Parts and Present Value. Copyright Cengage Learning. All rights reserved.

6.1 Integration by Parts and Present Value. Copyright Cengage Learning. All rights reserved. 6.1 Intgration by Parts and Prsnt Valu Copyright Cngag Larning. All rights rsrvd. Warm-Up: Find f () 1. F() = ln(+1). F() = 3 3. F() =. F() = ln ( 1) 5. F() = 6. F() = - Objctivs, Day #1 Studnts will b

More information

u x v x dx u x v x v x u x dx d u x v x u x v x dx u x v x dx Integration by Parts Formula

u x v x dx u x v x v x u x dx d u x v x u x v x dx u x v x dx Integration by Parts Formula 7. Intgration by Parts Each drivativ formula givs ris to a corrsponding intgral formula, as w v sn many tims. Th drivativ product rul yilds a vry usful intgration tchniqu calld intgration by parts. Starting

More information

Calculus II (MAC )

Calculus II (MAC ) Calculus II (MAC232-2) Tst 2 (25/6/25) Nam (PRINT): Plas show your work. An answr with no work rcivs no crdit. You may us th back of a pag if you nd mor spac for a problm. You may not us any calculators.

More information

INTEGRATION BY PARTS

INTEGRATION BY PARTS Mathmatics Rvision Guids Intgration by Parts Pag of 7 MK HOME TUITION Mathmatics Rvision Guids Lvl: AS / A Lvl AQA : C Edcl: C OCR: C OCR MEI: C INTEGRATION BY PARTS Vrsion : Dat: --5 Eampls - 6 ar copyrightd

More information

Mor Tutorial at www.dumblittldoctor.com Work th problms without a calculator, but us a calculator to chck rsults. And try diffrntiating your answrs in part III as a usful chck. I. Applications of Intgration

More information

Integration by Parts

Integration by Parts Intgration by Parts Intgration by parts is a tchniqu primarily for valuating intgrals whos intgrand is th product of two functions whr substitution dosn t work. For ampl, sin d or d. Th rul is: u ( ) v'(

More information

Calculus concepts derivatives

Calculus concepts derivatives All rasonabl fforts hav bn mad to mak sur th nots ar accurat. Th author cannot b hld rsponsibl for any damags arising from th us of ths nots in any fashion. Calculus concpts drivativs Concpts involving

More information

SECTION where P (cos θ, sin θ) and Q(cos θ, sin θ) are polynomials in cos θ and sin θ, provided Q is never equal to zero.

SECTION where P (cos θ, sin θ) and Q(cos θ, sin θ) are polynomials in cos θ and sin θ, provided Q is never equal to zero. SETION 6. 57 6. Evaluation of Dfinit Intgrals Exampl 6.6 W hav usd dfinit intgrals to valuat contour intgrals. It may com as a surpris to larn that contour intgrals and rsidus can b usd to valuat crtain

More information

Fourier Transforms and the Wave Equation. Key Mathematics: More Fourier transform theory, especially as applied to solving the wave equation.

Fourier Transforms and the Wave Equation. Key Mathematics: More Fourier transform theory, especially as applied to solving the wave equation. Lur 7 Fourir Transforms and th Wav Euation Ovrviw and Motivation: W first discuss a fw faturs of th Fourir transform (FT), and thn w solv th initial-valu problm for th wav uation using th Fourir transform

More information

Differential Equations

Differential Equations UNIT I Diffrntial Equations.0 INTRODUCTION W li in a world of intrrlatd changing ntitis. Th locit of a falling bod changs with distanc, th position of th arth changs with tim, th ara of a circl changs

More information

Solution: APPM 1360 Final (150 pts) Spring (60 pts total) The following parts are not related, justify your answers:

Solution: APPM 1360 Final (150 pts) Spring (60 pts total) The following parts are not related, justify your answers: APPM 6 Final 5 pts) Spring 4. 6 pts total) Th following parts ar not rlatd, justify your answrs: a) Considr th curv rprsntd by th paramtric quations, t and y t + for t. i) 6 pts) Writ down th corrsponding

More information

Southern Taiwan University

Southern Taiwan University Chaptr Ordinar Diffrntial Equations of th First Ordr and First Dgr Gnral form:., d +, d 0.a. f,.b I. Sparabl Diffrntial quations Form: d + d 0 C d d E 9 + 4 0 Solution: 9d + 4d 0 9 + 4 C E + d Solution:

More information

First derivative analysis

First derivative analysis Robrto s Nots on Dirntial Calculus Chaptr 8: Graphical analysis Sction First drivativ analysis What you nd to know alrady: How to us drivativs to idntiy th critical valus o a unction and its trm points

More information

Higher order derivatives

Higher order derivatives Robrto s Nots on Diffrntial Calculus Chaptr 4: Basic diffrntiation ruls Sction 7 Highr ordr drivativs What you nd to know alrady: Basic diffrntiation ruls. What you can larn hr: How to rpat th procss of

More information

nd the particular orthogonal trajectory from the family of orthogonal trajectories passing through point (0; 1).

nd the particular orthogonal trajectory from the family of orthogonal trajectories passing through point (0; 1). Eamn EDO. Givn th family of curvs y + C nd th particular orthogonal trajctory from th family of orthogonal trajctoris passing through point (0; ). Solution: In th rst plac, lt us calculat th di rntial

More information

Differential Equations

Differential Equations Prfac Hr ar m onlin nots for m diffrntial quations cours that I tach hr at Lamar Univrsit. Dspit th fact that ths ar m class nots, th should b accssibl to anon wanting to larn how to solv diffrntial quations

More information

Note If the candidate believes that e x = 0 solves to x = 0 or gives an extra solution of x = 0, then withhold the final accuracy mark.

Note If the candidate believes that e x = 0 solves to x = 0 or gives an extra solution of x = 0, then withhold the final accuracy mark. . (a) Eithr y = or ( 0, ) (b) Whn =, y = ( 0 + ) = 0 = 0 ( + ) = 0 ( )( ) = 0 Eithr = (for possibly abov) or = A 3. Not If th candidat blivs that = 0 solvs to = 0 or givs an tra solution of = 0, thn withhold

More information

Differentiation of Exponential Functions

Differentiation of Exponential Functions Calculus Modul C Diffrntiation of Eponntial Functions Copyright This publication Th Northrn Albrta Institut of Tchnology 007. All Rights Rsrvd. LAST REVISED March, 009 Introduction to Diffrntiation of

More information

Engineering 323 Beautiful HW #13 Page 1 of 6 Brown Problem 5-12

Engineering 323 Beautiful HW #13 Page 1 of 6 Brown Problem 5-12 Enginring Bautiful HW #1 Pag 1 of 6 5.1 Two componnts of a minicomputr hav th following joint pdf for thir usful liftims X and Y: = x(1+ x and y othrwis a. What is th probability that th liftim X of th

More information

(1) Then we could wave our hands over this and it would become:

(1) Then we could wave our hands over this and it would become: MAT* K285 Spring 28 Anthony Bnoit 4/17/28 Wk 12: Laplac Tranform Rading: Kohlr & Johnon, Chaptr 5 to p. 35 HW: 5.1: 3, 7, 1*, 19 5.2: 1, 5*, 13*, 19, 45* 5.3: 1, 11*, 19 * Pla writ-up th problm natly and

More information

dx equation it is called a second order differential equation.

dx equation it is called a second order differential equation. TOPI Diffrntial quations Mthods of thir intgration oncption of diffrntial quations An quation which spcifis a rlationship btwn a function, its argumnt and its drivativs of th first, scond, tc ordr is calld

More information

Section 11.6: Directional Derivatives and the Gradient Vector

Section 11.6: Directional Derivatives and the Gradient Vector Sction.6: Dirctional Drivativs and th Gradint Vctor Practic HW rom Stwart Ttbook not to hand in p. 778 # -4 p. 799 # 4-5 7 9 9 35 37 odd Th Dirctional Drivativ Rcall that a b Slop o th tangnt lin to th

More information

Math 34A. Final Review

Math 34A. Final Review Math A Final Rviw 1) Us th graph of y10 to find approimat valus: a) 50 0. b) y (0.65) solution for part a) first writ an quation: 50 0. now tak th logarithm of both sids: log() log(50 0. ) pand th right

More information

Addition of angular momentum

Addition of angular momentum Addition of angular momntum April, 0 Oftn w nd to combin diffrnt sourcs of angular momntum to charactriz th total angular momntum of a systm, or to divid th total angular momntum into parts to valuat th

More information

Calculus Revision A2 Level

Calculus Revision A2 Level alculus Rvision A Lvl Tabl of drivativs a n sin cos tan d an sc n cos sin Fro AS * NB sc cos sc cos hain rul othrwis known as th function of a function or coposit rul. d d Eapl (i) (ii) Obtain th drivativ

More information

Function Spaces. a x 3. (Letting x = 1 =)) a(0) + b + c (1) = 0. Row reducing the matrix. b 1. e 4 3. e 9. >: (x = 1 =)) a(0) + b + c (1) = 0

Function Spaces. a x 3. (Letting x = 1 =)) a(0) + b + c (1) = 0. Row reducing the matrix. b 1. e 4 3. e 9. >: (x = 1 =)) a(0) + b + c (1) = 0 unction Spacs Prrquisit: Sction 4.7, Coordinatization n this sction, w apply th tchniqus of Chaptr 4 to vctor spacs whos lmnts ar functions. Th vctor spacs P n and P ar familiar xampls of such spacs. Othr

More information

NEW APPLICATIONS OF THE ABEL-LIOUVILLE FORMULA

NEW APPLICATIONS OF THE ABEL-LIOUVILLE FORMULA NE APPLICATIONS OF THE ABEL-LIOUVILLE FORMULA Mirca I CÎRNU Ph Dp o Mathmatics III Faculty o Applid Scincs Univrsity Polithnica o Bucharst Cirnumirca @yahoocom Abstract In a rcnt papr [] 5 th indinit intgrals

More information

Thomas Whitham Sixth Form

Thomas Whitham Sixth Form Thomas Whitham Sith Form Pur Mathmatics Unit C Algbra Trigonomtr Gomtr Calculus Vctor gomtr Pag Algbra Molus functions graphs, quations an inqualitis Graph of f () Draw f () an rflct an part of th curv

More information

Calculus II Solutions review final problems

Calculus II Solutions review final problems Calculus II Solutions rviw final problms MTH 5 Dcmbr 9, 007. B abl to utiliz all tchniqus of intgration to solv both dfinit and indfinit intgrals. Hr ar som intgrals for practic. Good luck stuing!!! (a)

More information

Chapter 10. The singular integral Introducing S(n) and J(n)

Chapter 10. The singular integral Introducing S(n) and J(n) Chaptr Th singular intgral Our aim in this chaptr is to rplac th functions S (n) and J (n) by mor convnint xprssions; ths will b calld th singular sris S(n) and th singular intgral J(n). This will b don

More information

y = 2xe x + x 2 e x at (0, 3). solution: Since y is implicitly related to x we have to use implicit differentiation: 3 6y = 0 y = 1 2 x ln(b) ln(b)

y = 2xe x + x 2 e x at (0, 3). solution: Since y is implicitly related to x we have to use implicit differentiation: 3 6y = 0 y = 1 2 x ln(b) ln(b) 4. y = y = + 5. Find th quation of th tangnt lin for th function y = ( + ) 3 whn = 0. solution: First not that whn = 0, y = (1 + 1) 3 = 8, so th lin gos through (0, 8) and thrfor its y-intrcpt is 8. y

More information

Thomas Whitham Sixth Form

Thomas Whitham Sixth Form Thomas Whitham Sith Form Pur Mathmatics Cor rvision gui Pag Algbra Moulus functions graphs, quations an inqualitis Graph of f () Draw f () an rflct an part of th curv blow th ais in th ais. f () f () f

More information

Partial Derivatives: Suppose that z = f(x, y) is a function of two variables.

Partial Derivatives: Suppose that z = f(x, y) is a function of two variables. Chaptr Functions o Two Variabls Applid Calculus 61 Sction : Calculus o Functions o Two Variabls Now that ou hav som amiliarit with unctions o two variabls it s tim to start appling calculus to hlp us solv

More information

MSLC Math 151 WI09 Exam 2 Review Solutions

MSLC Math 151 WI09 Exam 2 Review Solutions Eam Rviw Solutions. Comput th following rivativs using th iffrntiation ruls: a.) cot cot cot csc cot cos 5 cos 5 cos 5 cos 5 sin 5 5 b.) c.) sin( ) sin( ) y sin( ) ln( y) ln( ) ln( y) sin( ) ln( ) y y

More information

First order differential equation Linear equation; Method of integrating factors

First order differential equation Linear equation; Method of integrating factors First orr iffrntial quation Linar quation; Mtho of intgrating factors Exampl 1: Rwrit th lft han si as th rivativ of th prouct of y an som function by prouct rul irctly. Solving th first orr iffrntial

More information

( ) Differential Equations. Unit-7. Exact Differential Equations: M d x + N d y = 0. Verify the condition

( ) Differential Equations. Unit-7. Exact Differential Equations: M d x + N d y = 0. Verify the condition Diffrntial Equations Unit-7 Eat Diffrntial Equations: M d N d 0 Vrif th ondition M N Thn intgrat M d with rspt to as if wr onstants, thn intgrat th trms in N d whih do not ontain trms in and quat sum of

More information

VTU NOTES QUESTION PAPERS NEWS RESULTS FORUMS

VTU NOTES QUESTION PAPERS NEWS RESULTS FORUMS Diffrntial Equations Unit-7 Eat Diffrntial Equations: M d N d 0 Vrif th ondition M N Thn intgrat M d with rspt to as if wr onstants, thn intgrat th trms in N d whih do not ontain trms in and quat sum of

More information

That is, we start with a general matrix: And end with a simpler matrix:

That is, we start with a general matrix: And end with a simpler matrix: DIAGON ALIZATION OF THE STR ESS TEN SOR INTRO DUCTIO N By th us of Cauchy s thorm w ar abl to rduc th numbr of strss componnts in th strss tnsor to only nin valus. An additional simplification of th strss

More information

10. Limits involving infinity

10. Limits involving infinity . Limits involving infinity It is known from th it ruls for fundamntal arithmtic oprations (+,-,, ) that if two functions hav finit its at a (finit or infinit) point, that is, thy ar convrgnt, th it of

More information

4 x 4, and. where x is Town Square

4 x 4, and. where x is Town Square Accumulation and Population Dnsity E. A city locatd along a straight highway has a population whos dnsity can b approimatd by th function p 5 4 th distanc from th town squar, masurd in mils, whr 4 4, and

More information

DIFFERENTIAL EQUATION

DIFFERENTIAL EQUATION MD DIFFERENTIAL EQUATION Sllabus : Ordinar diffrntial quations, thir ordr and dgr. Formation of diffrntial quations. Solution of diffrntial quations b th mthod of sparation of variabls, solution of homognous

More information

The Matrix Exponential

The Matrix Exponential Th Matrix Exponntial (with xrciss) by Dan Klain Vrsion 28928 Corrctions and commnts ar wlcom Th Matrix Exponntial For ach n n complx matrix A, dfin th xponntial of A to b th matrix () A A k I + A + k!

More information

MATH 319, WEEK 15: The Fundamental Matrix, Non-Homogeneous Systems of Differential Equations

MATH 319, WEEK 15: The Fundamental Matrix, Non-Homogeneous Systems of Differential Equations MATH 39, WEEK 5: Th Fundamntal Matrix, Non-Homognous Systms of Diffrntial Equations Fundamntal Matrics Considr th problm of dtrmining th particular solution for an nsmbl of initial conditions For instanc,

More information

The Matrix Exponential

The Matrix Exponential Th Matrix Exponntial (with xrciss) by D. Klain Vrsion 207.0.05 Corrctions and commnts ar wlcom. Th Matrix Exponntial For ach n n complx matrix A, dfin th xponntial of A to b th matrix A A k I + A + k!

More information

Addition of angular momentum

Addition of angular momentum Addition of angular momntum April, 07 Oftn w nd to combin diffrnt sourcs of angular momntum to charactriz th total angular momntum of a systm, or to divid th total angular momntum into parts to valuat

More information

AP Calculus BC Problem Drill 16: Indeterminate Forms, L Hopital s Rule, & Improper Intergals

AP Calculus BC Problem Drill 16: Indeterminate Forms, L Hopital s Rule, & Improper Intergals AP Calulus BC Problm Drill 6: Indtrminat Forms, L Hopital s Rul, & Impropr Intrgals Qustion No. of Instrutions: () Rad th problm and answr hois arfully () Work th problms on papr as ndd () Pik th answr

More information

Integral Calculus What is integral calculus?

Integral Calculus What is integral calculus? Intgral Calulus What is intgral alulus? In diffrntial alulus w diffrntiat a funtion to obtain anothr funtion alld drivativ. Intgral alulus is onrnd with th opposit pross. Rvrsing th pross of diffrntiation

More information

u 3 = u 3 (x 1, x 2, x 3 )

u 3 = u 3 (x 1, x 2, x 3 ) Lctur 23: Curvilinar Coordinats (RHB 8.0 It is oftn convnint to work with variabls othr than th Cartsian coordinats x i ( = x, y, z. For xampl in Lctur 5 w mt sphrical polar and cylindrical polar coordinats.

More information

cycle that does not cross any edges (including its own), then it has at least

cycle that does not cross any edges (including its own), then it has at least W prov th following thorm: Thorm If a K n is drawn in th plan in such a way that it has a hamiltonian cycl that dos not cross any dgs (including its own, thn it has at last n ( 4 48 π + O(n crossings Th

More information

A. Limits and Horizontal Asymptotes ( ) f x f x. f x. x "±# ( ).

A. Limits and Horizontal Asymptotes ( ) f x f x. f x. x ±# ( ). A. Limits and Horizontal Asymptots What you ar finding: You can b askd to find lim x "a H.A.) problm is asking you find lim x "# and lim x "$#. or lim x "±#. Typically, a horizontal asymptot algbraically,

More information

SAFE HANDS & IIT-ian's PACE EDT-15 (JEE) SOLUTIONS

SAFE HANDS & IIT-ian's PACE EDT-15 (JEE) SOLUTIONS It is not possibl to find flu through biggr loop dirctly So w will find cofficint of mutual inductanc btwn two loops and thn find th flu through biggr loop Also rmmbr M = M ( ) ( ) EDT- (JEE) SOLUTIONS

More information

3 2x. 3x 2. Prepared by Vince Zaccone For Campus Learning Assistance Services at UCSB

3 2x. 3x 2.   Prepared by Vince Zaccone For Campus Learning Assistance Services at UCSB Math B Intgration Rviw (Solutions) Do ths intgrals. Solutions ar postd at th wbsit blow. If you hav troubl with thm, sk hlp immdiatly! () 8 d () 5 d () d () sin d (5) d (6) cos d (7) d www.clas.ucsb.du/staff/vinc

More information

Probability and Stochastic Processes: A Friendly Introduction for Electrical and Computer Engineers Roy D. Yates and David J.

Probability and Stochastic Processes: A Friendly Introduction for Electrical and Computer Engineers Roy D. Yates and David J. Probability and Stochastic Procsss: A Frindly Introduction for Elctrical and Computr Enginrs Roy D. Yats and David J. Goodman Problm Solutions : Yats and Goodman,4.3. 4.3.4 4.3. 4.4. 4.4.4 4.4.6 4.. 4..7

More information

Unit 6: Solving Exponential Equations and More

Unit 6: Solving Exponential Equations and More Habrman MTH 111 Sction II: Eonntial and Logarithmic Functions Unit 6: Solving Eonntial Equations and Mor EXAMPLE: Solv th quation 10 100 for. Obtain an act solution. This quation is so asy to solv that

More information

PROOF OF FIRST STANDARD FORM OF NONELEMENTARY FUNCTIONS

PROOF OF FIRST STANDARD FORM OF NONELEMENTARY FUNCTIONS Intrnational Journal Of Advanc Rsarch In Scinc And Enginring http://www.ijars.com IJARSE, Vol. No., Issu No., Fbruary, 013 ISSN-319-8354(E) PROOF OF FIRST STANDARD FORM OF NONELEMENTARY FUNCTIONS 1 Dharmndra

More information

COMPUTER GENERATED HOLOGRAMS Optical Sciences 627 W.J. Dallas (Monday, April 04, 2005, 8:35 AM) PART I: CHAPTER TWO COMB MATH.

COMPUTER GENERATED HOLOGRAMS Optical Sciences 627 W.J. Dallas (Monday, April 04, 2005, 8:35 AM) PART I: CHAPTER TWO COMB MATH. C:\Dallas\0_Courss\03A_OpSci_67\0 Cgh_Book\0_athmaticalPrliminaris\0_0 Combath.doc of 8 COPUTER GENERATED HOLOGRAS Optical Scincs 67 W.J. Dallas (onday, April 04, 005, 8:35 A) PART I: CHAPTER TWO COB ATH

More information

Trigonometric functions

Trigonometric functions Robrto s Nots on Diffrntial Calculus Captr 5: Drivativs of transcndntal functions Sction 5 Drivativs of Trigonomtric functions Wat you nd to know alrady: Basic trigonomtric limits, t dfinition of drivativ,

More information

COHORT MBA. Exponential function. MATH review (part2) by Lucian Mitroiu. The LOG and EXP functions. Properties: e e. lim.

COHORT MBA. Exponential function. MATH review (part2) by Lucian Mitroiu. The LOG and EXP functions. Properties: e e. lim. MTH rviw part b Lucian Mitroiu Th LOG and EXP functions Th ponntial function p : R, dfind as Proprtis: lim > lim p Eponntial function Y 8 6 - -8-6 - - X Th natural logarithm function ln in US- log: function

More information

Math 120 Answers for Homework 14

Math 120 Answers for Homework 14 Math 0 Answrs for Homwork. Substitutions u = du = d d = du a d = du = du = u du = u + C = u = arctany du = +y dy dy = + y du b arctany arctany dy = + y du = + y + y arctany du = u du = u + C = arctan y

More information

a 1and x is any real number.

a 1and x is any real number. Calcls Nots Eponnts an Logarithms Eponntial Fnction: Has th form y a, whr a 0, a an is any ral nmbr. Graph y, Graph y ln y y Th Natral Bas (Elr s nmbr): An irrational nmbr, symboliz by th lttr, appars

More information

1 General boundary conditions in diffusion

1 General boundary conditions in diffusion Gnral boundary conditions in diffusion Πρόβλημα 4.8 : Δίνεται μονοδιάτατη πλάκα πάχους, που το ένα άκρο της κρατιέται ε θερμοκραία T t και το άλλο ε θερμοκραία T 2 t. Αν η αρχική θερμοκραία της πλάκας

More information

The graph of y = x (or y = ) consists of two branches, As x 0, y + ; as x 0, y +. x = 0 is the

The graph of y = x (or y = ) consists of two branches, As x 0, y + ; as x 0, y +. x = 0 is the Copyright itutcom 005 Fr download & print from wwwitutcom Do not rproduc by othr mans Functions and graphs Powr functions Th graph of n y, for n Q (st of rational numbrs) y is a straight lin through th

More information

Derangements and Applications

Derangements and Applications 2 3 47 6 23 Journal of Intgr Squncs, Vol. 6 (2003), Articl 03..2 Drangmnts and Applications Mhdi Hassani Dpartmnt of Mathmatics Institut for Advancd Studis in Basic Scincs Zanjan, Iran mhassani@iasbs.ac.ir

More information

1973 AP Calculus AB: Section I

1973 AP Calculus AB: Section I 97 AP Calculus AB: Sction I 9 Minuts No Calculator Not: In this amination, ln dnots th natural logarithm of (that is, logarithm to th bas ).. ( ) d= + C 6 + C + C + C + C. If f ( ) = + + + and ( ), g=

More information

For more important questions visit :

For more important questions visit : For mor important qustions visit : www4onocom CHAPTER 5 CONTINUITY AND DIFFERENTIATION POINTS TO REMEMBER A function f() is said to b continuous at = c iff lim f f c c i, lim f lim f f c c c f() is continuous

More information

10. The Discrete-Time Fourier Transform (DTFT)

10. The Discrete-Time Fourier Transform (DTFT) Th Discrt-Tim Fourir Transform (DTFT Dfinition of th discrt-tim Fourir transform Th Fourir rprsntation of signals plays an important rol in both continuous and discrt signal procssing In this sction w

More information

UNTYPED LAMBDA CALCULUS (II)

UNTYPED LAMBDA CALCULUS (II) 1 UNTYPED LAMBDA CALCULUS (II) RECALL: CALL-BY-VALUE O.S. Basic rul Sarch ruls: (\x.) v [v/x] 1 1 1 1 v v CALL-BY-VALUE EVALUATION EXAMPLE (\x. x x) (\y. y) x x [\y. y / x] = (\y. y) (\y. y) y [\y. y /

More information

EXST Regression Techniques Page 1

EXST Regression Techniques Page 1 EXST704 - Rgrssion Tchniqus Pag 1 Masurmnt rrors in X W hav assumd that all variation is in Y. Masurmnt rror in this variabl will not ffct th rsults, as long as thy ar uncorrlatd and unbiasd, sinc thy

More information

Sec 2.3 Modeling with First Order Equations

Sec 2.3 Modeling with First Order Equations Sc.3 Modling with First Ordr Equations Mathmatical modls charactriz physical systms, oftn using diffrntial quations. Modl Construction: Translating physical situation into mathmatical trms. Clarly stat

More information

Indeterminate Forms and L Hôpital s Rule. Indeterminate Forms

Indeterminate Forms and L Hôpital s Rule. Indeterminate Forms SECTION 87 Intrminat Forms an L Hôpital s Rul 567 Sction 87 Intrminat Forms an L Hôpital s Rul Rcogniz its that prouc intrminat forms Apply L Hôpital s Rul to valuat a it Intrminat Forms Rcall from Chaptrs

More information

ELECTRON-MUON SCATTERING

ELECTRON-MUON SCATTERING ELECTRON-MUON SCATTERING ABSTRACT Th lctron charg is considrd to b distributd or xtndd in spac. Th diffrntial of th lctron charg is st qual to a function of lctron charg coordinats multiplid by a four-dimnsional

More information

Bifurcation Theory. , a stationary point, depends on the value of α. At certain values

Bifurcation Theory. , a stationary point, depends on the value of α. At certain values Dnamic Macroconomic Thor Prof. Thomas Lux Bifurcation Thor Bifurcation: qualitativ chang in th natur of th solution occurs if a paramtr passs through a critical point bifurcation or branch valu. Local

More information

Differential Equations: Homework 3

Differential Equations: Homework 3 Diffrntial Equations: Homwork 3 Alvin Lin January 08 - May 08 Sction.3 Ercis Dtrmin whthr th givn quation is sparabl, linar, nithr, or both. Not sparabl and linar. d + sin() y = 0 Ercis 3 Dtrmin whthr

More information

General Notes About 2007 AP Physics Scoring Guidelines

General Notes About 2007 AP Physics Scoring Guidelines AP PHYSICS C: ELECTRICITY AND MAGNETISM 2007 SCORING GUIDELINES Gnral Nots About 2007 AP Physics Scoring Guidlins 1. Th solutions contain th most common mthod of solving th fr-rspons qustions and th allocation

More information

Basic Polyhedral theory

Basic Polyhedral theory Basic Polyhdral thory Th st P = { A b} is calld a polyhdron. Lmma 1. Eithr th systm A = b, b 0, 0 has a solution or thr is a vctorπ such that π A 0, πb < 0 Thr cass, if solution in top row dos not ist

More information

Derivation of Electron-Electron Interaction Terms in the Multi-Electron Hamiltonian

Derivation of Electron-Electron Interaction Terms in the Multi-Electron Hamiltonian Drivation of Elctron-Elctron Intraction Trms in th Multi-Elctron Hamiltonian Erica Smith Octobr 1, 010 1 Introduction Th Hamiltonian for a multi-lctron atom with n lctrons is drivd by Itoh (1965) by accounting

More information

Systems of Equations

Systems of Equations CHAPTER 4 Sstms of Equations 4. Solving Sstms of Linar Equations in Two Variabls 4. Solving Sstms of Linar Equations in Thr Variabls 4. Sstms of Linar Equations and Problm Solving Intgratd Rviw Sstms of

More information

A Propagating Wave Packet Group Velocity Dispersion

A Propagating Wave Packet Group Velocity Dispersion Lctur 8 Phys 375 A Propagating Wav Packt Group Vlocity Disprsion Ovrviw and Motivation: In th last lctur w lookd at a localizd solution t) to th 1D fr-particl Schrödingr quation (SE) that corrsponds to

More information

Strongly Connected Components

Strongly Connected Components Strongly Connctd Componnts Lt G = (V, E) b a dirctd graph Writ if thr is a path from to in G Writ if and is an quivalnc rlation: implis and implis s quivalnc classs ar calld th strongly connctd componnts

More information

MA 262, Spring 2018, Final exam Version 01 (Green)

MA 262, Spring 2018, Final exam Version 01 (Green) MA 262, Spring 218, Final xam Vrsion 1 (Grn) INSTRUCTIONS 1. Switch off your phon upon ntring th xam room. 2. Do not opn th xam booklt until you ar instructd to do so. 3. Bfor you opn th booklt, fill in

More information

Elements of Statistical Thermodynamics

Elements of Statistical Thermodynamics 24 Elmnts of Statistical Thrmodynamics Statistical thrmodynamics is a branch of knowldg that has its own postulats and tchniqus. W do not attmpt to giv hr vn an introduction to th fild. In this chaptr,

More information

Mathematics 1110H Calculus I: Limits, derivatives, and Integrals Trent University, Summer 2018 Solutions to the Actual Final Examination

Mathematics 1110H Calculus I: Limits, derivatives, and Integrals Trent University, Summer 2018 Solutions to the Actual Final Examination Mathmatics H Calculus I: Limits, rivativs, an Intgrals Trnt Univrsity, Summr 8 Solutions to th Actual Final Eamination Tim-spac: 9:-: in FPHL 7. Brought to you by Stfan B lan k. Instructions: Do parts

More information

Brief Introduction to Statistical Mechanics

Brief Introduction to Statistical Mechanics Brif Introduction to Statistical Mchanics. Purpos: Ths nots ar intndd to provid a vry quick introduction to Statistical Mchanics. Th fild is of cours far mor vast than could b containd in ths fw pags.

More information

Einstein Equations for Tetrad Fields

Einstein Equations for Tetrad Fields Apiron, Vol 13, No, Octobr 006 6 Einstin Equations for Ttrad Filds Ali Rıza ŞAHİN, R T L Istanbul (Turky) Evry mtric tnsor can b xprssd by th innr product of ttrad filds W prov that Einstin quations for

More information

Where k is either given or determined from the data and c is an arbitrary constant.

Where k is either given or determined from the data and c is an arbitrary constant. Exponntial growth and dcay applications W wish to solv an quation that has a drivativ. dy ky k > dx This quation says that th rat of chang of th function is proportional to th function. Th solution is

More information

Mathematics. Complex Number rectangular form. Quadratic equation. Quadratic equation. Complex number Functions: sinusoids. Differentiation Integration

Mathematics. Complex Number rectangular form. Quadratic equation. Quadratic equation. Complex number Functions: sinusoids. Differentiation Integration Mathmatics Compl numbr Functions: sinusoids Sin function, cosin function Diffrntiation Intgration Quadratic quation Quadratic quations: a b c 0 Solution: b b 4ac a Eampl: 1 0 a= b=- c=1 4 1 1or 1 1 Quadratic

More information

Background: We have discussed the PIB, HO, and the energy of the RR model. In this chapter, the H-atom, and atomic orbitals.

Background: We have discussed the PIB, HO, and the energy of the RR model. In this chapter, the H-atom, and atomic orbitals. Chaptr 7 Th Hydrogn Atom Background: W hav discussd th PIB HO and th nrgy of th RR modl. In this chaptr th H-atom and atomic orbitals. * A singl particl moving undr a cntral forc adoptd from Scott Kirby

More information

As the matrix of operator B is Hermitian so its eigenvalues must be real. It only remains to diagonalize the minor M 11 of matrix B.

As the matrix of operator B is Hermitian so its eigenvalues must be real. It only remains to diagonalize the minor M 11 of matrix B. 7636S ADVANCED QUANTUM MECHANICS Solutions Spring. Considr a thr dimnsional kt spac. If a crtain st of orthonormal kts, say, and 3 ar usd as th bas kts, thn th oprators A and B ar rprsntd by a b A a and

More information

Data Assimilation 1. Alan O Neill National Centre for Earth Observation UK

Data Assimilation 1. Alan O Neill National Centre for Earth Observation UK Data Assimilation 1 Alan O Nill National Cntr for Earth Obsrvation UK Plan Motivation & basic idas Univariat (scalar) data assimilation Multivariat (vctor) data assimilation 3d-Variational Mthod (& optimal

More information

MATHEMATICS PAPER IIB COORDINATE GEOMETRY AND CALCULUS. Note: This question paper consists of three sections A, B and C.

MATHEMATICS PAPER IIB COORDINATE GEOMETRY AND CALCULUS. Note: This question paper consists of three sections A, B and C. MATHEMATICS PAPER IIB COORDINATE GEOMETRY AND CALCULUS. Tim: 3hrs Ma. Marks.75 Not: This qustion papr consists of thr sctions A, B and C. SECTION -A Vry Short Answr Typ Qustions. 0 X = 0. Find th condition

More information

Text: WMM, Chapter 5. Sections , ,

Text: WMM, Chapter 5. Sections , , Lcturs 6 - Continuous Probabilit Distributions Tt: WMM, Chaptr 5. Sctions 6.-6.4, 6.6-6.8, 7.-7. In th prvious sction, w introduc som of th common probabilit distribution functions (PDFs) for discrt sampl

More information

INTEGRALS. Chapter 7. d dx. 7.1 Overview Let d dx F (x) = f (x). Then, we write f ( x)

INTEGRALS. Chapter 7. d dx. 7.1 Overview Let d dx F (x) = f (x). Then, we write f ( x) Chptr 7 INTEGRALS 7. Ovrviw 7.. Lt d d F () f (). Thn, w writ f ( ) d F () + C. Ths intgrls r clld indfinit intgrls or gnrl intgrls, C is clld constnt of intgrtion. All ths intgrls diffr y constnt. 7..

More information

Chapter 6 Folding. Folding

Chapter 6 Folding. Folding Chaptr 6 Folding Wintr 1 Mokhtar Abolaz Folding Th folding transformation is usd to systmatically dtrmin th control circuits in DSP architctur whr multipl algorithm oprations ar tim-multiplxd to a singl

More information

Multiple Short Term Infusion Homework # 5 PHA 5127

Multiple Short Term Infusion Homework # 5 PHA 5127 Multipl Short rm Infusion Homwork # 5 PHA 527 A rug is aministr as a short trm infusion. h avrag pharmacokintic paramtrs for this rug ar: k 0.40 hr - V 28 L his rug follows a on-compartmnt boy mol. A 300

More information

PHYSICS 489/1489 LECTURE 7: QUANTUM ELECTRODYNAMICS

PHYSICS 489/1489 LECTURE 7: QUANTUM ELECTRODYNAMICS PHYSICS 489/489 LECTURE 7: QUANTUM ELECTRODYNAMICS REMINDER Problm st du today 700 in Box F TODAY: W invstigatd th Dirac quation it dscribs a rlativistic spin /2 particl implis th xistnc of antiparticl

More information

Homework #3. 1 x. dx. It therefore follows that a sum of the

Homework #3. 1 x. dx. It therefore follows that a sum of the Danil Cannon CS 62 / Luan March 5, 2009 Homwork # 1. Th natural logarithm is dfind by ln n = n 1 dx. It thrfor follows that a sum of th 1 x sam addnd ovr th sam intrval should b both asymptotically uppr-

More information

1997 AP Calculus AB: Section I, Part A

1997 AP Calculus AB: Section I, Part A 997 AP Calculus AB: Sction I, Part A 50 Minuts No Calculator Not: Unlss othrwis spcifid, th domain of a function f is assumd to b th st of all ral numbrs for which f () is a ral numbr.. (4 6 ) d= 4 6 6

More information

Section 6.1. Question: 2. Let H be a subgroup of a group G. Then H operates on G by left multiplication. Describe the orbits for this operation.

Section 6.1. Question: 2. Let H be a subgroup of a group G. Then H operates on G by left multiplication. Describe the orbits for this operation. MAT 444 H Barclo Spring 004 Homwork 6 Solutions Sction 6 Lt H b a subgroup of a group G Thn H oprats on G by lft multiplication Dscrib th orbits for this opration Th orbits of G ar th right costs of H

More information

Construction of asymmetric orthogonal arrays of strength three via a replacement method

Construction of asymmetric orthogonal arrays of strength three via a replacement method isid/ms/26/2 Fbruary, 26 http://www.isid.ac.in/ statmath/indx.php?modul=prprint Construction of asymmtric orthogonal arrays of strngth thr via a rplacmnt mthod Tian-fang Zhang, Qiaoling Dng and Alok Dy

More information