GRAVITATION. (d) If a spring balance having frequency f is taken on moon (having g = g / 6) it will have a frequency of (a) 6f (b) f / 6

Size: px
Start display at page:

Download "GRAVITATION. (d) If a spring balance having frequency f is taken on moon (having g = g / 6) it will have a frequency of (a) 6f (b) f / 6"

Transcription

1 GVITTION 1. Two satllits and o ound a plant P in cicula obits havin adii 4 and spctivly. If th spd of th satllit is V, th spd of th satllit will b 1 V 6 V 4V V. Th scap vlocity on th sufac of th ath is 11. km/s. What would b th scap vlocity on th sufac of anoth plant of th sam mass but 1/4 tims th adius of th ath? 44.8 km/s.4 km/s 5.6 km/s 11. km/s. If a body is to b pojctd vtically upwads fom ath s sufac to ach a hiht of 10 fom sufac of ath, (wh is th adius of ath), th vlocity quid to do so is If a spin balanc havin fquncy f is takn on moon (havin = / 6) it will hav a fquncy of 6f f / 6 6 f f 5. Two idntical sphs, ach with adius a placd so that thi cnts a at a distanc of 6. Th avitational foc of attaction btwn thm will b popotional to Th atio of potntial ny of an ath satllit to its total mchanical ny is 1 : : 1 4 : 1 1 : 1 6. Th foc of avitation is pulsiv consvativ ston non-consvativ Pa 1

2 8. If is th adius of ath, ω is its anula vlocity and p is th valu of acclation du to avity at th pols, thn ffctiv valu of acclation du to avity at th latitud λ = 60 0 will b qual to 1 ω 4 p ω 4 p p ω p 1 + ω 4 9. Th dpth d at which th valu of acclation du to avity bcoms n 1 tims th valu at th sufac, is ( = adius of th ath) n 1 n n n n n Two paticls of qual mass mov in a cicl of adius und th action of thi mutual avitational attaction. If th mass of ach paticl is M, th spd of ach paticl is 4 E 11. mass m is placd in th cavity insid a unifom hollow sph of mass M as shown in th fiu. What is th avitational foc on th mass m? m m ( ) m zo m 1. Two satllits and o aound a plant in cicula obits havin adii 4 and, spctivly. If th spd of satllit is v, thn spd of satllit is v 4v 6v 1 v Pa

3 1. plant is movin in an lliptical path aound th sun as shown in fiu. Spd of plant in positions P and Q a v 1 and v spctivly with SP = 1 and SQ = thn v 1 /v is qual to 1 1 P v 1 1 S v Q consonant Th hiht of th point vtically abov th ath s sufac at which th acclation du to avity bcoms 1% of its valu at th sufac is ( is th adius of th ath) Th distanc of th cnts of moon and ath is. Th mass of th ath is 81 tims th mass of th moon. t what distanc fom th cnt of th ath, th avitation foc will b zo? / / 4/ 9/ Th acclation du to avity on th sufac of th moon is 6 1 th of that on th sufac of ath and th diamt of th moon is on-fouth that of ath. Th atio of scap vlocitis on ath and moon will b Th valu of acclation du to avity at a hiht fom sufac of th ath is ( = adius of th ath and = acclation du to avity on ath sufac) zo Th piod of a satllit in a cicula obit aound a plant is indpndnt of th mass of th plant th adius of th obit th mass of th satllit all of th paamts ivn in options a, b and c Pa

4 19. Th tim piod of atificial satllit in a cicula obit of adius is T. Th adius of th obit in which tim piod is 8T is body is pojctd with scap vlocity 11. km/s fom ath s sufac. If th body is pojctd in a diction 0 0 anl to th vtical, its scap vlocity in this cas will b km/s 11. km/s 11. km/s non of ths 1. Th avitational foc of attaction btwn two sphical bodis, ach of mass 100 k, if th distanc btwn thi cnts is 100 m, is (G = Nm k ) N N 6.67 non of ths. Whn a satllit oin ound th ath in a cicula obit at a distanc fom a poton with kintic ny E. To scap to infinity, th ny which must b supplid to th lcton is E E 0.5 E E. plant volvs in lliptical obit aound th sun shown in th fiu. Th lina spd of th plant will b maximum at C S C 4. Th avitational foc btwn two point masss m 1 and m at spaation is ivn by m1m F = k. Th constant k 5. Th wiht of a body at th cnt of th ath will b zo M M infinity Pa 4

5 6. plant of mass M is volvin ound th sun in an lliptical obit. If its anula momntum is J thn th aa swpt p scond by th lin joinin plant to sun will b JM M J J M JM 7. Th avitational mass of a body on th ath is M. Th intial mass of th sam body on th moon will b zo 6 M M M/6 8. Two sphs of sam adius and sam matial a placd in contact with ach oth. Th avitational foc btwn thm is F 6 F 4 F F 1/ 9. n atificial satllit movin in a cicula obit aound th ath has a total ny E 0 (KE+PE). Its PE is E E 0 E 0 E 0 0. ostationay satllit obits aound th ath in a cicula obit of adius 6000 km. Thn piod of spy satllit obitin a fw hundd kilomts abov th ath s sufac ( ath =6400 km) will appoximatly b 1/ h h h 4 h 1. Two bodis of masss M 1 = m and M = 4m a placd at a distanc. Th avitational potntial at a point on th lin joinin thm wh th avitational fild is zo is zo 4Gm 6Gm 9Gm. Two sphs (idntical) of mass m and adius a spaatd by fom thi cnts. Th foc btwn thm is popotional to 4 4. Two sphs of masss m and M a situatd in ai and th avitational foc btwn thm is F. Th spac aound th masss is now filld with a liquid of spcific avity. Th avitational foc will now b F/9 F F F/ 4. t a hiht abov th sufac of th ath qual to th adius of th ath th acclation du to avity (acclation du to avity on th sufac of th ath = ) will b zo 4 Pa 5

6 5. Two idntical sphical masss a kpt at som distanc as shown. Potntial ny whn a mass m is takn fom sufac of on sph to th oth incass continuously m dcass continuously fist incass thn dcass fist dcass thn incass 6. body of mass m is doppd fom a hiht n abov th sufac of th ath (h is th adius of th ath). Th spd at which th body hits th sufac of th ath is ( n + 1) ( n 1) n ( n 1) n ( n + 1) 7. Two balls and a thown vtically upwads fom th sam location on th sufac of th ath with vlocitis and spctivly, wh is th adius of th ath and is th acclation du to avity on th sufac of th ath. Th atio of th maximum hiht attaind by to that attaind by is If th distanc btwn th ath and th sun w half its psnt valu, th numb of days in a ya would hav bn Two paticls of mass m and m a at th distanc apat. Und th mutual avitational foc thy stat movin towads ach oth. Th acclation of thi cnt of mass whn thy a at / is qual to Gm 4Gm 8Gm zo 40. Two paticl of masss 4 k and 8 k a spaatd by a distanc of 1 m. If thy a movin towads ach oth und th influnc of a mutual foc of attaction, thn th two paticls will mt ach oth at a distanc of 6 m fom 8 k mass m fom 8 k mass 4 m fom 8 k mass 8 m fom 8 k mass Pa 6

7 41. Two satllits and o aound th ath in cicula obits at hihts of and spctivly fom th sufac of th ath. ssumin ath to b a unifom sph of adius, th atio of th manituds of thi obital vlocitis is: satllit of mass m is obitin aound th ath at a hiht h abov th sufac of th ath. Mass of th ath is M and its adius is. Th anula momntum of th satllit is indpndnt of m M h non of ths 4. Two concntic shlls hav masss M and m and thi adii a and spctivly, wh >. What is th avitation potntial at thi common cnt? + + M m M m G G If a man at th quato would wiht (/5)th of his wiht, thn th anula spd of th ath would b satllit obitin aound ath of adius is shiftd to an obit of adius. How many tims th tim takn fo on volution incas? 8 tims tims.5 tims.8 tims 5 Pa 7

GRAVITATION 4) R. max. 2 ..(1) ...(2)

GRAVITATION 4) R. max. 2 ..(1) ...(2) GAVITATION PVIOUS AMCT QUSTIONS NGINING. A body is pojctd vtically upwads fom th sufac of th ath with a vlocity qual to half th scap vlocity. If is th adius of th ath, maximum hight attaind by th body

More information

8 - GRAVITATION Page 1

8 - GRAVITATION Page 1 8 GAVITATION Pag 1 Intoduction Ptolmy, in scond cntuy, gav gocntic thoy of plantay motion in which th Eath is considd stationay at th cnt of th univs and all th stas and th plants including th Sun volving

More information

Get Solution of These Packages & Learn by Video Tutorials on GRAVITATION

Get Solution of These Packages & Learn by Video Tutorials on  GRAVITATION FEE Download Study Packag fom wbsit: www.tkoclasss.com & www.mathsbysuhag.com Gt Solution of Ths Packags & an by Vido Tutoials on www.mathsbysuhag.com. INTODUCTION Th motion of clstial bodis such as th

More information

CHAPTER 5 CIRCULAR MOTION

CHAPTER 5 CIRCULAR MOTION CHAPTER 5 CIRCULAR MOTION and GRAVITATION 5.1 CENTRIPETAL FORCE It is known that if a paticl mos with constant spd in a cicula path of adius, it acquis a cntiptal acclation du to th chang in th diction

More information

NEWTON S THEORY OF GRAVITY

NEWTON S THEORY OF GRAVITY NEWTON S THEOY OF GAVITY 3 Concptual Qustions 3.. Nwton s thid law tlls us that th focs a qual. Thy a also claly qual whn Nwton s law of gavity is xamind: F / = Gm m has th sam valu whth m = Eath and m

More information

Physics 240: Worksheet 15 Name

Physics 240: Worksheet 15 Name Physics 40: Woksht 15 Nam Each of ths poblms inol physics in an acclatd fam of fnc Althouh you mind wants to ty to foc you to wok ths poblms insid th acclatd fnc fam (i.. th so-calld "won way" by som popl),

More information

5-9 THE FIELD CONCEPT. Answers to the Conceptual Questions. Chapter 5 Gravity 63

5-9 THE FIELD CONCEPT. Answers to the Conceptual Questions. Chapter 5 Gravity 63 Chapt 5 Gavity 5-9 THE FIELD CONCEPT Goals Intoduc th notion of a fild. (Pobl Solvin) Calculat th Sun's avitational fild at Eath's location. Contnt Th psnc of a ass odifis spac. A valu can b assind to

More information

Kinetics. Central Force Motion & Space Mechanics

Kinetics. Central Force Motion & Space Mechanics Kintics Cntal Foc Motion & Spac Mcanics Outlin Cntal Foc Motion Obital Mcanics Exampls Cntal-Foc Motion If a paticl tavls un t influnc of a foc tat as a lin of action ict towas a fix point, tn t motion

More information

ALLEN. è ø = MB = = (1) 3 J (2) 3 J (3) 2 3 J (4) 3J (1) (2) Ans. 4 (3) (4) W = MB(cosq 1 cos q 2 ) = MB (cos 0 cos 60 ) = MB.

ALLEN. è ø = MB = = (1) 3 J (2) 3 J (3) 2 3 J (4) 3J (1) (2) Ans. 4 (3) (4) W = MB(cosq 1 cos q 2 ) = MB (cos 0 cos 60 ) = MB. at to Succss LLEN EE INSTITUTE KT (JSTHN) HYSIS 6. magntic ndl suspndd paalll to a magntic fild quis J of wok to tun it toug 60. T toqu ndd to mata t ndl tis position will b : () J () J () J J q 0 M M

More information

5.61 Fall 2007 Lecture #2 page 1. The DEMISE of CLASSICAL PHYSICS

5.61 Fall 2007 Lecture #2 page 1. The DEMISE of CLASSICAL PHYSICS 5.61 Fall 2007 Lctu #2 pag 1 Th DEMISE of CLASSICAL PHYSICS (a) Discovy of th Elcton In 1897 J.J. Thomson discovs th lcton and masus ( m ) (and inadvtntly invnts th cathod ay (TV) tub) Faaday (1860 s 1870

More information

Physics 202, Lecture 5. Today s Topics. Announcements: Homework #3 on WebAssign by tonight Due (with Homework #2) on 9/24, 10 PM

Physics 202, Lecture 5. Today s Topics. Announcements: Homework #3 on WebAssign by tonight Due (with Homework #2) on 9/24, 10 PM Physics 0, Lctu 5 Today s Topics nnouncmnts: Homwok #3 on Wbssign by tonight Du (with Homwok #) on 9/4, 10 PM Rviw: (Ch. 5Pat I) Elctic Potntial Engy, Elctic Potntial Elctic Potntial (Ch. 5Pat II) Elctic

More information

Hydrogen atom. Energy levels and wave functions Orbital momentum, electron spin and nuclear spin Fine and hyperfine interaction Hydrogen orbitals

Hydrogen atom. Energy levels and wave functions Orbital momentum, electron spin and nuclear spin Fine and hyperfine interaction Hydrogen orbitals Hydogn atom Engy lvls and wav functions Obital momntum, lcton spin and nucla spin Fin and hypfin intaction Hydogn obitals Hydogn atom A finmnt of th Rydbg constant: R ~ 109 737.3156841 cm -1 A hydogn mas

More information

Aakash. For Class XII Studying / Passed Students. Physics, Chemistry & Mathematics

Aakash. For Class XII Studying / Passed Students. Physics, Chemistry & Mathematics Aakash A UNIQUE PPRTUNITY T HELP YU FULFIL YUR DREAMS Fo Class XII Studying / Passd Studnts Physics, Chmisty & Mathmatics Rgistd ffic: Aakash Tow, 8, Pusa Road, Nw Dlhi-0005. Ph.: (0) 4763456 Fax: (0)

More information

CHAPTER 5 CIRCULAR MOTION AND GRAVITATION

CHAPTER 5 CIRCULAR MOTION AND GRAVITATION 84 CHAPTER 5 CIRCULAR MOTION AND GRAVITATION CHAPTER 5 CIRCULAR MOTION AND GRAVITATION 85 In th pious chapt w discussd Nwton's laws of motion and its application in simpl dynamics poblms. In this chapt

More information

= v 2. a c. = G m m 1 2. F g G = Review 5: Gravitation and Two-Dimensional Motion

= v 2. a c. = G m m 1 2. F g G = Review 5: Gravitation and Two-Dimensional Motion Review 5: Gavitation and Two-Dimensional Motion Review 5 Gavitation and Two-Dimensional Motion 2 d = 1 2 at F = ma 1. A busy waitess slides a plate of apple pie alon a counte to a huny custome sittin nea

More information

GAUSS PLANETARY EQUATIONS IN A NON-SINGULAR GRAVITATIONAL POTENTIAL

GAUSS PLANETARY EQUATIONS IN A NON-SINGULAR GRAVITATIONAL POTENTIAL GAUSS PLANETARY EQUATIONS IN A NON-SINGULAR GRAVITATIONAL POTENTIAL Ioannis Iaklis Haanas * and Michal Hany# * Dpatmnt of Physics and Astonomy, Yok Univsity 34 A Pti Scinc Building Noth Yok, Ontaio, M3J-P3,

More information

STATISTICAL MECHANICS OF DIATOMIC GASES

STATISTICAL MECHANICS OF DIATOMIC GASES Pof. D. I. ass Phys54 7 -Ma-8 Diatomic_Gas (Ashly H. Cat chapt 5) SAISICAL MECHAICS OF DIAOMIC GASES - Fo monatomic gas whos molculs hav th dgs of fdom of tanslatoy motion th intnal u 3 ngy and th spcific

More information

Physics 111. Lecture 38 (Walker: ) Phase Change Latent Heat. May 6, The Three Basic Phases of Matter. Solid Liquid Gas

Physics 111. Lecture 38 (Walker: ) Phase Change Latent Heat. May 6, The Three Basic Phases of Matter. Solid Liquid Gas Physics 111 Lctu 38 (Walk: 17.4-5) Phas Chang May 6, 2009 Lctu 38 1/26 Th Th Basic Phass of Matt Solid Liquid Gas Squnc of incasing molcul motion (and ngy) Lctu 38 2/26 If a liquid is put into a sald contain

More information

Solid state physics. Lecture 3: chemical bonding. Prof. Dr. U. Pietsch

Solid state physics. Lecture 3: chemical bonding. Prof. Dr. U. Pietsch Solid stat physics Lctu 3: chmical bonding Pof. D. U. Pitsch Elcton chag dnsity distibution fom -ay diffaction data F kp ik dk h k l i Fi H p H; H hkl V a h k l Elctonic chag dnsity of silicon Valnc chag

More information

II.3. DETERMINATION OF THE ELECTRON SPECIFIC CHARGE BY MEANS OF THE MAGNETRON METHOD

II.3. DETERMINATION OF THE ELECTRON SPECIFIC CHARGE BY MEANS OF THE MAGNETRON METHOD II.3. DETEMINTION OF THE ELETON SPEIFI HGE Y MENS OF THE MGNETON METHOD. Wok pupos Th wok pupos is to dtin th atio btwn th absolut alu of th lcton chag and its ass, /, using a dic calld agnton. In this

More information

Between any two masses, there exists a mutual attractive force.

Between any two masses, there exists a mutual attractive force. YEAR 12 PHYSICS: GRAVITATION PAST EXAM QUESTIONS Name: QUESTION 1 (1995 EXAM) (a) State Newton s Univesal Law of Gavitation in wods Between any two masses, thee exists a mutual attactive foce. This foce

More information

Chapter 13: Gravitation

Chapter 13: Gravitation v m m F G Chapte 13: Gavitation The foce that makes an apple fall is the same foce that holds moon in obit. Newton s law of gavitation: Evey paticle attacts any othe paticle with a gavitation foce given

More information

Acoustics and electroacoustics

Acoustics and electroacoustics coustics and lctoacoustics Chapt : Sound soucs and adiation ELEN78 - Chapt - 3 Quantitis units and smbols: f Hz : fqunc of an acoustical wav pu ton T s : piod = /f m : wavlngth= c/f Sound pssu a : pzt

More information

ORBITAL TO GEOCENTRIC EQUATORIAL COORDINATE SYSTEM TRANSFORMATION. x y z. x y z GEOCENTRIC EQUTORIAL TO ROTATING COORDINATE SYSTEM TRANSFORMATION

ORBITAL TO GEOCENTRIC EQUATORIAL COORDINATE SYSTEM TRANSFORMATION. x y z. x y z GEOCENTRIC EQUTORIAL TO ROTATING COORDINATE SYSTEM TRANSFORMATION ORITL TO GEOCENTRIC EQUTORIL COORDINTE SYSTEM TRNSFORMTION z i i i = (coωcoω in Ωcoiinω) (in Ωcoω + coωcoiinω) iniinω ( coωinω in Ωcoi coω) ( in Ωinω + coωcoicoω) in icoω in Ωini coωini coi z o o o GEOCENTRIC

More information

m1 m2 M 2 = M -1 L 3 T -2

m1 m2 M 2 = M -1 L 3 T -2 GAVITATION Newton s Univesal law of gavitation. Evey paticle of matte in this univese attacts evey othe paticle with a foce which vaies diectly as the poduct of thei masses and invesely as the squae of

More information

Vaiatin f. A ydn balln lasd n t n ) Clibs u wit an acclatin f 6x.8s - ) Falls dwn wit an acclatin f.8x6s - ) Falls wit acclatin f.8 s - ) Falls wit an acclatin f.8 6 s-. T wit f an bjct in t cal in, sa

More information

Extra notes for circular motion: Circular motion : v keeps changing, maybe both speed and

Extra notes for circular motion: Circular motion : v keeps changing, maybe both speed and Exta notes fo cicula motion: Cicula motion : v keeps changing, maybe both speed and diection ae changing. At least v diection is changing. Hence a 0. Acceleation NEEDED to stay on cicula obit: a cp v /,

More information

A and B are two spherical isolated conductors placed at large distance having radius ratio r =

A and B are two spherical isolated conductors placed at large distance having radius ratio r = Excis * MARK IS MORE THAN ONE CORRECT QUESTIONS. SECTION A : DEFINITION OF CAPACITANCE A. A. Whn 0 C chag is givn to an isolatd nducto of capacitanc 5 F. Find out followi Potntial of th nducto Engy stod

More information

Free carriers in materials

Free carriers in materials Lctu / F cais in matials Mtals n ~ cm -3 Smiconductos n ~ 8... 9 cm -3 Insulatos n < 8 cm -3 φ isolatd atoms a >> a B a B.59-8 cm 3 ϕ ( Zq) q atom spacing a Lctu / "Two atoms two lvls" φ a T splitting

More information

PHYS 272H Spring 2011 FINAL FORM B. Duration: 2 hours

PHYS 272H Spring 2011 FINAL FORM B. Duration: 2 hours PHYS 7H Sing 11 FINAL Duation: hous All a multil-choic oblms with total oints. Each oblm has on and only on coct answ. All xam ags a doubl-sidd. Th Answ-sht is th last ag. Ta it off to tun in aft you finish.

More information

PHYS 272H Spring 2011 FINAL FORM A. Duration: 2 hours

PHYS 272H Spring 2011 FINAL FORM A. Duration: 2 hours PHYS 7H Sing 11 FINAL Duation: hous All a multil-choic oblms with total oints. Each oblm has on and only on coct answ. All xam ags a doubl-sidd. Th Answ-sht is th last ag. Ta it off to tun in aft you finish.

More information

Q Q N, V, e, Quantum Statistics for Ideal Gas and Black Body Radiation. The Canonical Ensemble

Q Q N, V, e, Quantum Statistics for Ideal Gas and Black Body Radiation. The Canonical Ensemble Quantum Statistics fo Idal Gas and Black Body Radiation Physics 436 Lctu #0 Th Canonical Ensmbl Ei Q Q N V p i 1 Q E i i Bos-Einstin Statistics Paticls with intg valu of spin... qi... q j...... q j...

More information

Radius of the Moon is 1700 km and the mass is 7.3x 10^22 kg Stone. Moon

Radius of the Moon is 1700 km and the mass is 7.3x 10^22 kg Stone. Moon xample: A 1-kg stone is thown vetically up fom the suface of the Moon by Supeman. The maximum height fom the suface eached by the stone is the same as the adius of the moon. Assuming no ai esistance and

More information

4.4 Linear Dielectrics F

4.4 Linear Dielectrics F 4.4 Lina Dilctics F stal F stal θ magntic dipol imag dipol supconducto 4.4.1 Suscptiility, mitivility, Dilctic Constant I is not too stong, th polaization is popotional to th ild. χ (sinc D, D is lctic

More information

Chap 5. Circular Motion: Gravitation

Chap 5. Circular Motion: Gravitation Chap 5. Cicula Motion: Gavitation Sec. 5.1 - Unifom Cicula Motion A body moves in unifom cicula motion, if the magnitude of the velocity vecto is constant and the diection changes at evey point and is

More information

Q Q N, V, e, Quantum Statistics for Ideal Gas. The Canonical Ensemble 10/12/2009. Physics 4362, Lecture #19. Dr. Peter Kroll

Q Q N, V, e, Quantum Statistics for Ideal Gas. The Canonical Ensemble 10/12/2009. Physics 4362, Lecture #19. Dr. Peter Kroll Quantum Statistics fo Idal Gas Physics 436 Lctu #9 D. Pt Koll Assistant Pofsso Dpatmnt of Chmisty & Biochmisty Univsity of Txas Alington Will psnt a lctu ntitld: Squzing Matt and Pdicting w Compounds:

More information

Recap. Centripetal acceleration: v r. a = m/s 2 (towards center of curvature)

Recap. Centripetal acceleration: v r. a = m/s 2 (towards center of curvature) a = c v 2 Recap Centipetal acceleation: m/s 2 (towads cente of cuvatue) A centipetal foce F c is equied to keep a body in cicula motion: This foce poduces centipetal acceleation that continuously changes

More information

Mon. Tues. Wed. Lab Fri Electric and Rest Energy

Mon. Tues. Wed. Lab Fri Electric and Rest Energy Mon. Tus. Wd. Lab Fi. 6.4-.7 lctic and Rst ngy 7.-.4 Macoscoic ngy Quiz 6 L6 Wok and ngy 7.5-.9 ngy Tansf R 6. P6, HW6: P s 58, 59, 9, 99(a-c), 05(a-c) R 7.a bing lato, sathon, ad, lato R 7.b v. i xal

More information

Frictional effects, vortex spin-down

Frictional effects, vortex spin-down Chapt 4 Fictional ffcts, votx spin-down To undstand spin-up of a topical cyclon it is instuctiv to consid fist th spin-down poblm, which quis a considation of fictional ffcts. W xamin fist th ssntial dynamics

More information

2013 Checkpoints Chapter 7 GRAVITY

2013 Checkpoints Chapter 7 GRAVITY 0 Checkpoints Chapte 7 GAVIY Question 64 o do this question you must et an equation that has both and, whee is the obital adius and is the peiod. You can use Keple s Law, which is; constant. his is a vey

More information

Derivation of Electron-Electron Interaction Terms in the Multi-Electron Hamiltonian

Derivation of Electron-Electron Interaction Terms in the Multi-Electron Hamiltonian Drivation of Elctron-Elctron Intraction Trms in th Multi-Elctron Hamiltonian Erica Smith Octobr 1, 010 1 Introduction Th Hamiltonian for a multi-lctron atom with n lctrons is drivd by Itoh (1965) by accounting

More information

Objects usually are charged up through the transfer of electrons from one object to the other.

Objects usually are charged up through the transfer of electrons from one object to the other. 1 Pat 1: Electic Foce 1.1: Review of Vectos Review you vectos! You should know how to convet fom pola fom to component fom and vice vesa add and subtact vectos multiply vectos by scalas Find the esultant

More information

Ch 13 Universal Gravitation

Ch 13 Universal Gravitation Ch 13 Univesal Gavitation Ch 13 Univesal Gavitation Why do celestial objects move the way they do? Keple (1561-1630) Tycho Bahe s assistant, analyzed celestial motion mathematically Galileo (1564-1642)

More information

Radiation Equilibrium, Inertia Moments, and the Nucleus Radius in the Electron-Proton Atom

Radiation Equilibrium, Inertia Moments, and the Nucleus Radius in the Electron-Proton Atom 14 AAPT SUER EETING innaolis N, July 3, 14 H. Vic Dannon Radiation Equilibiu, Intia onts, and th Nuclus Radius in th Elcton-Poton Ato H. Vic Dannon vic@gaug-institut.og Novb, 13 Rvisd July, 14 Abstact

More information

Fourier transforms (Chapter 15) Fourier integrals are generalizations of Fourier series. The series representation

Fourier transforms (Chapter 15) Fourier integrals are generalizations of Fourier series. The series representation Pof. D. I. Nass Phys57 (T-3) Sptmb 8, 03 Foui_Tansf_phys57_T3 Foui tansfoms (Chapt 5) Foui intgals a gnalizations of Foui sis. Th sis psntation a0 nπx nπx f ( x) = + [ an cos + bn sin ] n = of a function

More information

Uniform Circular Motion

Uniform Circular Motion Unifom Cicula Motion Intoduction Ealie we defined acceleation as being the change in velocity with time: a = v t Until now we have only talked about changes in the magnitude of the acceleation: the speeding

More information

06 - ROTATIONAL MOTION Page 1 ( Answers at the end of all questions )

06 - ROTATIONAL MOTION Page 1 ( Answers at the end of all questions ) 06 - ROTATIONAL MOTION Page ) A body A of mass M while falling vetically downwads unde gavity beaks into two pats, a body B of mass ( / ) M and a body C of mass ( / ) M. The cente of mass of bodies B and

More information

College Prep Physics I Multiple Choice Practice Final #2 Solutions Northville High School Mr. Palmer, Physics Teacher. Name: Hour: Score: /zero

College Prep Physics I Multiple Choice Practice Final #2 Solutions Northville High School Mr. Palmer, Physics Teacher. Name: Hour: Score: /zero Collg Pp Phsics Multipl Choic Pactic inal # Solutions Nothvill High School M. Palm, Phsics Tach Nam: Hou: Sco: /zo You inal Exam will hav 40 multipl choic qustions woth 5 points ach.. How is cunt actd

More information

Basic oces an Keple s Laws 1. Two ientical sphees of gol ae in contact with each othe. The gavitational foce of attaction between them is Diectly popotional to the squae of thei aius ) Diectly popotional

More information

Mon. Tues. 6.2 Field of a Magnetized Object 6.3, 6.4 Auxiliary Field & Linear Media HW9

Mon. Tues. 6.2 Field of a Magnetized Object 6.3, 6.4 Auxiliary Field & Linear Media HW9 Fi. on. Tus. 6. Fild of a agntid Ojct 6.3, 6.4 uxiliay Fild & Lina dia HW9 Dipol t fo a loop Osvation location x y agntic Dipol ont Ia... ) ( 4 o I I... ) ( 4 I o... sin 4 I o Sa diction as cunt B 3 3

More information

Chapter 5. Uniform Circular Motion. a c =v 2 /r

Chapter 5. Uniform Circular Motion. a c =v 2 /r Chapte 5 Unifom Cicula Motion a c =v 2 / Unifom cicula motion: Motion in a cicula path with constant speed s v 1) Speed and peiod Peiod, T: time fo one evolution Speed is elated to peiod: Path fo one evolution:

More information

F g. = G mm. m 1. = 7.0 kg m 2. = 5.5 kg r = 0.60 m G = N m 2 kg 2 = = N

F g. = G mm. m 1. = 7.0 kg m 2. = 5.5 kg r = 0.60 m G = N m 2 kg 2 = = N Chapte answes Heinemann Physics 4e Section. Woked example: Ty youself.. GRAVITATIONAL ATTRACTION BETWEEN SMALL OBJECTS Two bowling balls ae sitting next to each othe on a shelf so that the centes of the

More information

PHYSICS NOTES GRAVITATION

PHYSICS NOTES GRAVITATION GRAVITATION Newton s law of gavitation The law states that evey paticle of matte in the univese attacts evey othe paticle with a foce which is diectly popotional to the poduct of thei masses and invesely

More information

The angle between L and the z-axis is found from

The angle between L and the z-axis is found from Poblm 6 This is not a ifficult poblm but it is a al pain to tansf it fom pap into Mathca I won't giv it to you on th quiz, but know how to o it fo th xam Poblm 6 S Figu 6 Th magnitu of L is L an th z-componnt

More information

PH672 WINTER Problem Set #1. Hint: The tight-binding band function for an fcc crystal is [ ] (a) The tight-binding Hamiltonian (8.

PH672 WINTER Problem Set #1. Hint: The tight-binding band function for an fcc crystal is [ ] (a) The tight-binding Hamiltonian (8. PH67 WINTER 5 Poblm St # Mad, hapt, poblm # 6 Hint: Th tight-binding band function fo an fcc cstal is ( U t cos( a / cos( a / cos( a / cos( a / cos( a / cos( a / ε [ ] (a Th tight-binding Hamiltonian (85

More information

MODULE 5 ADVANCED MECHANICS GRAVITATIONAL FIELD: MOTION OF PLANETS AND SATELLITES VISUAL PHYSICS ONLINE

MODULE 5 ADVANCED MECHANICS GRAVITATIONAL FIELD: MOTION OF PLANETS AND SATELLITES VISUAL PHYSICS ONLINE VISUAL PHYSICS ONLIN MODUL 5 ADVANCD MCHANICS GRAVITATIONAL FILD: MOTION OF PLANTS AND SATLLITS SATLLITS: Obital motion of object of mass m about a massive object of mass M (m

More information

r cos, and y r sin with the origin of coordinate system located at

r cos, and y r sin with the origin of coordinate system located at Lectue 3-3 Kinematics of Rotation Duing ou peious lectues we hae consideed diffeent examples of motion in one and seeal dimensions. But in each case the moing object was consideed as a paticle-like object,

More information

Chapter 5: Uniform Circular Motion

Chapter 5: Uniform Circular Motion Chapte 5: Unifom Cicula Motion Motion at constant speed in a cicle Centipetal acceleation Banked cuves Obital motion Weightlessness, atificial gavity Vetical cicula motion Centipetal Foce Acceleation towad

More information

Chap13. Universal Gravitation

Chap13. Universal Gravitation Chap13. Uniesal Gaitation Leel : AP Physics Instucto : Kim 13.1 Newton s Law of Uniesal Gaitation - Fomula fo Newton s Law of Gaitation F g = G m 1m 2 2 F21 m1 F12 12 m2 - m 1, m 2 is the mass of the object,

More information

Chapter. s r. check whether your calculator is in all other parts of the body. When a rigid body rotates through a given angle, all

Chapter. s r. check whether your calculator is in all other parts of the body. When a rigid body rotates through a given angle, all conveted to adians. Also, be sue to vanced to a new position (Fig. 7.2b). In this inteval, the line OP has moved check whethe you calculato is in all othe pats of the body. When a igid body otates though

More information

1) Consider a particle moving with constant speed that experiences no net force. What path must this particle be taking?

1) Consider a particle moving with constant speed that experiences no net force. What path must this particle be taking? Chapte 5 Test Cicula Motion and Gavitation 1) Conside a paticle moving with constant speed that expeiences no net foce. What path must this paticle be taking? A) It is moving in a paabola. B) It is moving

More information

Chapter 13 Gravitation

Chapter 13 Gravitation Chapte 13 Gavitation In this chapte we will exploe the following topics: -Newton s law of gavitation, which descibes the attactive foce between two point masses and its application to extended objects

More information

F 12. = G m m 1 2 F 21 = F 12. = G m 1m 2. Review. Physics 201, Lecture 22. Newton s Law Of Universal Gravitation

F 12. = G m m 1 2 F 21 = F 12. = G m 1m 2. Review. Physics 201, Lecture 22. Newton s Law Of Universal Gravitation Physics 201, Lectue 22 Review Today s Topics n Univesal Gavitation (Chapte 13.1-13.3) n Newton s Law of Univesal Gavitation n Popeties of Gavitational Foce n Planet Obits; Keple s Laws by Newton s Law

More information

OSCILLATIONS AND GRAVITATION

OSCILLATIONS AND GRAVITATION 1. SIMPLE HARMONIC MOTION Simple hamonic motion is any motion that is equivalent to a single component of unifom cicula motion. In this situation the velocity is always geatest in the middle of the motion,

More information

Objective Notes Summary

Objective Notes Summary Objective Notes Summay An object moving in unifom cicula motion has constant speed but not constant velocity because the diection is changing. The velocity vecto in tangent to the cicle, the acceleation

More information

Kepler's 1 st Law by Newton

Kepler's 1 st Law by Newton Astonom 10 Section 1 MWF 1500-1550 134 Astonom Building This Class (Lectue 7): Gavitation Net Class: Theo of Planeta Motion HW # Due Fida! Missed nd planetaium date. (onl 5 left), including tonight Stadial

More information

DEVIL PHYSICS THE BADDEST CLASS ON CAMPUS IB PHYSICS

DEVIL PHYSICS THE BADDEST CLASS ON CAMPUS IB PHYSICS DEVIL PHYSICS THE BADDEST CLASS ON CAMPUS IB PHYSICS LSN 10-: MOTION IN A GRAVITATIONAL FIELD Questions Fom Reading Activity? Gavity Waves? Essential Idea: Simila appoaches can be taken in analyzing electical

More information

JURONG JUNIOR COLLEGE Physics Department Tutorial: Electric Fields (solutions)

JURONG JUNIOR COLLEGE Physics Department Tutorial: Electric Fields (solutions) JJ 5 H Physics (646) Electic Fields_tutsoln JURONG JUNIOR COLLEGE Physics Depatment Tutoial: Electic Fields (solutions) No Solution LO Electic field stength at a point in an electic field is defined as

More information

Introduction to the quantum theory of matter and Schrödinger s equation

Introduction to the quantum theory of matter and Schrödinger s equation Introduction to th quantum thory of mattr and Schrödingr s quation Th quantum thory of mattr assums that mattr has two naturs: a particl natur and a wa natur. Th particl natur is dscribd by classical physics

More information

( ) ( ) ( ) 2011 HSC Mathematics Solutions ( 6) ( ) ( ) ( ) π π. αβ = = 2. α β αβ. Question 1. (iii) 1 1 β + (a) (4 sig. fig.

( ) ( ) ( ) 2011 HSC Mathematics Solutions ( 6) ( ) ( ) ( ) π π. αβ = = 2. α β αβ. Question 1. (iii) 1 1 β + (a) (4 sig. fig. HS Mathmatics Solutios Qustio.778.78 ( sig. fig.) (b) (c) ( )( + ) + + + + d d (d) l ( ) () 8 6 (f) + + + + ( ) ( ) (iii) β + + α α β αβ 6 (b) si π si π π π +,π π π, (c) y + dy + d 8+ At : y + (,) dy 8(

More information

Lecture 22. PE = GMm r TE = GMm 2a. T 2 = 4π 2 GM. Main points of today s lecture: Gravitational potential energy: Total energy of orbit:

Lecture 22. PE = GMm r TE = GMm 2a. T 2 = 4π 2 GM. Main points of today s lecture: Gravitational potential energy: Total energy of orbit: Lectue Main points of today s lectue: Gavitational potential enegy: Total enegy of obit: PE = GMm TE = GMm a Keple s laws and the elation between the obital peiod and obital adius. T = 4π GM a3 Midtem

More information

Circular motion. Objectives. Physics terms. Assessment. Equations 5/22/14. Describe the accelerated motion of objects moving in circles.

Circular motion. Objectives. Physics terms. Assessment. Equations 5/22/14. Describe the accelerated motion of objects moving in circles. Cicula motion Objectives Descibe the acceleated motion of objects moving in cicles. Use equations to analyze the acceleated motion of objects moving in cicles.. Descibe in you own wods what this equation

More information

Physics 4A Chapter 8: Dynamics II Motion in a Plane

Physics 4A Chapter 8: Dynamics II Motion in a Plane Physics 4A Chapte 8: Dynamics II Motion in a Plane Conceptual Questions and Example Poblems fom Chapte 8 Conceptual Question 8.5 The figue below shows two balls of equal mass moving in vetical cicles.

More information

SPH4U Unit 6.3 Gravitational Potential Energy Page 1 of 9

SPH4U Unit 6.3 Gravitational Potential Energy Page 1 of 9 SPH4 nit 6.3 Gavitational Potential negy Page of Notes Physics ool box he gavitational potential enegy of a syste of two (spheical) asses is diectly popotional to the poduct of thei asses, and invesely

More information

Gravitation. AP/Honors Physics 1 Mr. Velazquez

Gravitation. AP/Honors Physics 1 Mr. Velazquez Gavitation AP/Honos Physics 1 M. Velazquez Newton s Law of Gavitation Newton was the fist to make the connection between objects falling on Eath and the motion of the planets To illustate this connection

More information

ESE (Prelims) - Offline Test Series ELECTRICAL ENGINEERING SUBJECT: Electrical Machines & Systems and Signal Processing SOLUTIONS

ESE (Prelims) - Offline Test Series ELECTRICAL ENGINEERING SUBJECT: Electrical Machines & Systems and Signal Processing SOLUTIONS TEST ID: 30 ESE- 09 (Plims) - Offlin Tst Sis ELECTRICAL ENGINEERING Tst-3 SUBJECT: Elctical Machins & Systms and Signal Pocssing SOLUTIONS 0. Ans: (c) Sol: With hot-olld stl laminations max [B m ] A. A

More information

Chapter Six Free Electron Fermi Gas

Chapter Six Free Electron Fermi Gas Chapt Six Elcton mi Gas What dtmins if th cystal will b a mtal, an insulato, o a smiconducto? E Band stuctus of solids mpty stats filld stats mpty stats filld stats E g mpty stats filld stats E g Conduction

More information

The theory of electromagnetic field motion. 6. Electron

The theory of electromagnetic field motion. 6. Electron Th thoy of lctomagntic fild motion. 6. Elcton L.N. Voytshovich Th aticl shows that in a otating fam of fnc th magntic dipol has an lctic chag with th valu dpnding on th dipol magntic momnt and otational

More information

Escape Velocity. GMm ] B

Escape Velocity. GMm ] B 1 PHY2048 Mach 31, 2006 Escape Velocity Newton s law of gavity: F G = Gm 1m 2 2, whee G = 667 10 11 N m 2 /kg 2 2 3 10 10 N m 2 /kg 2 is Newton s Gavitational Constant Useful facts: R E = 6 10 6 m M E

More information

Midterm Exam #2, Part A

Midterm Exam #2, Part A Physics 151 Mach 17, 2006 Midtem Exam #2, Pat A Roste No.: Scoe: Exam time limit: 50 minutes. You may use calculatos and both sides of ONE sheet of notes, handwitten only. Closed book; no collaboation.

More information

Unit 6 Practice Test. Which vector diagram correctly shows the change in velocity Δv of the mass during this time? (1) (1) A. Energy KE.

Unit 6 Practice Test. Which vector diagram correctly shows the change in velocity Δv of the mass during this time? (1) (1) A. Energy KE. Unit 6 actice Test 1. Which one of the following gaphs best epesents the aiation of the kinetic enegy, KE, and of the gaitational potential enegy, GE, of an obiting satellite with its distance fom the

More information

Lecture 1a: Satellite Orbits

Lecture 1a: Satellite Orbits Lectue 1a: Satellite Obits Outline 1. Newton s Laws of Motion 2. Newton s Law of Univesal Gavitation 3. Calculating satellite obital paametes (assuming cicula motion) Scala & Vectos Scala: a physical quantity

More information

Practice. Understanding Concepts. Answers J 2. (a) J (b) 2% m/s. Gravitation and Celestial Mechanics 287

Practice. Understanding Concepts. Answers J 2. (a) J (b) 2% m/s. Gravitation and Celestial Mechanics 287 Pactice Undestanding Concepts 1. Detemine the gavitational potential enegy of the Eath Moon system, given that the aveage distance between thei centes is 3.84 10 5 km, and the mass of the Moon is 0.0123

More information

MENSURATION-III

MENSURATION-III MENSURATION-III CIRCLE: A cicle is a geometical figue consisting of all those points in a plane which ae at a given distance fom a fixed point in the same plane. The fixed point is called the cente and

More information

A moving charged particle creates a magnetic field vector at every point in space except at its position.

A moving charged particle creates a magnetic field vector at every point in space except at its position. 1 Pat 3: Magnetic Foce 3.1: Magnetic Foce & Field A. Chaged Paticles A moving chaged paticle ceates a magnetic field vecto at evey point in space ecept at its position. Symbol fo Magnetic Field mks units

More information

Chapter 1 The Dawn of Quantum Theory

Chapter 1 The Dawn of Quantum Theory Chapt 1 Th Dawn of Quantum Thoy * By th Lat 18 s - Chmists had -- gnatd a mthod fo dtmining atomic masss -- gnatd th piodic tabl basd on mpiical obsvations -- solvd th stuctu of bnzn -- lucidatd th fundamntals

More information

10. Force is inversely proportional to distance between the centers squared. R 4 = F 16 E 11.

10. Force is inversely proportional to distance between the centers squared. R 4 = F 16 E 11. NSWRS - P Physics Multiple hoice Pactice Gavitation Solution nswe 1. m mv Obital speed is found fom setting which gives v whee M is the object being obited. Notice that satellite mass does not affect obital

More information

While flying from hot to cold, or high to low, watch out below!

While flying from hot to cold, or high to low, watch out below! STANDARD ATMOSHERE Wil flying fom ot to cold, o ig to low, watc out blow! indicatd altitud actual altitud STANDARD ATMOSHERE indicatd altitud actual altitud STANDARD ATMOSHERE Wil flying fom ot to cold,

More information

AP Physics 1 - Circular Motion and Gravitation Practice Test (Multiple Choice Section) Answer Section

AP Physics 1 - Circular Motion and Gravitation Practice Test (Multiple Choice Section) Answer Section AP Physics 1 - Cicula Motion and Gaitation Pactice est (Multiple Choice Section) Answe Section MULIPLE CHOICE 1. B he centipetal foce must be fiction since, lacking any fiction, the coin would slip off.

More information

Loss factor for a clamped edge circular plate subjected to an eccentric loading

Loss factor for a clamped edge circular plate subjected to an eccentric loading ndian ounal of Engining & Matials Scincs Vol., Apil 4, pp. 79-84 Loss facto fo a clapd dg cicula plat subjctd to an ccntic loading M K Gupta a & S P Niga b a Mchanical Engining Dpatnt, National nstitut

More information

Physics 201 Homework 4

Physics 201 Homework 4 Physics 201 Homewok 4 Jan 30, 2013 1. Thee is a cleve kitchen gadget fo dying lettuce leaves afte you wash them. 19 m/s 2 It consists of a cylindical containe mounted so that it can be otated about its

More information

DYNAMICS OF UNIFORM CIRCULAR MOTION

DYNAMICS OF UNIFORM CIRCULAR MOTION Chapte 5 Dynamics of Unifom Cicula Motion Chapte 5 DYNAMICS OF UNIFOM CICULA MOTION PEVIEW An object which is moing in a cicula path with a constant speed is said to be in unifom cicula motion. Fo an object

More information

Lecture 52. Dynamics - Variable Acceleration

Lecture 52. Dynamics - Variable Acceleration Dynamics - Vaiable Acceleation Lectue 5 Example. The acceleation due to avity at a point outside the eath is invesely popotional to the squae of the distance x fom the cente, i.e., ẍ = k x. Nelectin ai

More information

Elementary Mechanics of Fluids

Elementary Mechanics of Fluids CE 39 F an McKinny Elmntay Mcanics o Flui Flow in Pis Rynol Eximnt Rynol Num amina low: Fluid movs in smoot stamlins Tuulnt low: iolnt mixin, luid vlocity at a oint vais andomly wit tim Tansition to tuulnc

More information

Potential Energy and Conservation of Energy

Potential Energy and Conservation of Energy Potential Enegy and Consevation of Enegy Consevative Foces Definition: Consevative Foce If the wok done by a foce in moving an object fom an initial point to a final point is independent of the path (A

More information

ω = θ θ o = θ θ = s r v = rω

ω = θ θ o = θ θ = s r v = rω Unifom Cicula Motion Unifom cicula motion is the motion of an object taveling at a constant(unifom) speed in a cicula path. Fist we must define the angula displacement and angula velocity The angula displacement

More information

Chapter 4. Newton s Laws of Motion

Chapter 4. Newton s Laws of Motion Chapte 4 Newton s Laws of Motion 4.1 Foces and Inteactions A foce is a push o a pull. It is that which causes an object to acceleate. The unit of foce in the metic system is the Newton. Foce is a vecto

More information

Experiment 09: Angular momentum

Experiment 09: Angular momentum Expeiment 09: Angula momentum Goals Investigate consevation of angula momentum and kinetic enegy in otational collisions. Measue and calculate moments of inetia. Measue and calculate non-consevative wok

More information

DEVIL PHYSICS THE BADDEST CLASS ON CAMPUS IB PHYSICS

DEVIL PHYSICS THE BADDEST CLASS ON CAMPUS IB PHYSICS DEVIL PHYSICS THE BADDEST CLASS ON CAMPUS IB PHYSICS TSOKOS LESSON 6- THE LAW OF GRAVITATION Essential Idea: The Newtonian idea of gavitational foce acting between two spheical bodies and the laws of mechanics

More information

GMm. 10a-0. Satellite Motion. GMm U (r) - U (r ) how high does it go? Escape velocity. Kepler s 2nd Law ::= Areas Angular Mom. Conservation!!!!

GMm. 10a-0. Satellite Motion. GMm U (r) - U (r ) how high does it go? Escape velocity. Kepler s 2nd Law ::= Areas Angular Mom. Conservation!!!! F Satllt Moton 10a-0 U () - U ( ) 0 f ow g dos t go? scap locty Kpl s nd Law ::= Aas Angula Mo. Consaton!!!! Nwton s Unsal Law of Gaty 10a-1 M F F 1) F acts along t ln connctng t cnts of objcts Cntal Foc

More information