NEW ATTACKS ON TAKAGI CRYPTOSYSTEM

Size: px
Start display at page:

Download "NEW ATTACKS ON TAKAGI CRYPTOSYSTEM"

Transcription

1 Jounal of Algba umb Thoy: Advancs and Alcatons Volum 8 umb - 7 Pags 5-59 Avalabl at htt://scntfcadvancscon DOI: htt://dxdoog/86/antaa_785 EW ATTACKS O TAKAGI CRYPTOSYSTEM MUHAMMAD REAL KAMEL ARIFFI SADIQ SHEHU and M A ASBULLAH Al-Knd Cytogahy Rsach Laboatoy Insttut fo Mathmatcal Rsach Unvst Puta Malaysa (UPM) Slango Malaysa Datmnt of Mathmatcs Faculty of Scnc Unvst Puta Malaysa (UPM) Slango Malaysa -mal: zal@umdumy sadshhuzz@gmalcom ma_asyaf@umdumy Abstact Ths a ooss th nw attacks on RSA-Takag cytosystm Th fst attack s basd on th uaton X Y ( a b ) fo sutabl ostv Y ntgs a b W show that can b covd among th convgnts of th X contnud factons xanson of and lads to succssful factozaton of th Mathmatcs Subct Classfcaton: Y5 Kywods and hass: m ow modulo factozaton LLL algothm smultanous Dohantn aoxmatons contnud factons Rcvd Jun 7 7 Scntfc Advancs Publshs

2 6 MUHAMMAD REAL KAMEL ARIFFI t al m ow modulus n olynomal tm Th scond and thd attack woks uon ublc kys ( ) whn th xst latons of th sha x y ( a b ) z o of th sha x y ( a b ) z wh th aamts x x y y z a sutably small n tms of th m factos of th modul Alyng th LLL algothm w show that ou statgy nabl us to smultanously facto th ublc ky n olynomal tm Intoducton In cnt yas modulus of th fom hav found many alcatons n cytogahy In [] Bonh t al oosd an ffcnt algothm fo factong modulus of th fom and showd that th algothm uns n olynomal tm whn s lag ( log ) Hnc t s xctd that th factong of th modulus wll b ntactabl whn th bound fo s small Fuoka t al [5] usd th modulus fo n an lctonc cash schm Okamoto and Uchyama [5] usd ky systm wth n dsgnng an lgant ublc Th cytosystm dvlod by Takag ushd n sach n dtmnng th scuty of th modulus In [8] Takag oosd a cytosystm usng modulus basd on th RSA cytosystm H chooss an aoat modulus whch ssts two of th fastst factong algothms namly th numb fld sv and th lltc cuv mthod Alyng th fast dcyton algothm modulo h showd that th dcyton ocss of th oosd cytosystms s fast than th RSA cytosystm usng Chns mand thom known as th Qusuat-Couvu mthod

3 EW ATTACKS O TAKAGI CRYPTOSYSTEM 7 In [7] Saka ovd that usng th lattc ducton tchnus f 95 th dcyton xonnt d thn on can facto th m ow modulus n olynomal tm Asbullah and Affn [] ovd that by takng th tm ( ) as a good aoxmaton of φ ( ) satsfyng th RSA ky uaton d k φ( ) on can yld th factozaton of th m ow modulus (fo mo nfomaton s [] [6] [7]) n olynomal tm Ou fst oosd attack uss th Lgnd thom whch nabls us to fnd th convgnt of th contnud factons that lads to th factozaton of th modulus n olynomal tm Th scond and thd attacks uss lattc bass ducton W a ntstd n th so calld ducd bass of a lattc so as to yld factozaton of th modul K n olynomal tm Th mand of ths a s oganzd as follows In Scton w gv ntoducton to contnud factons lattc bass ducton wth som vous sults In Scton w snt th fst attack and stmaton of th sz of th class of th xonnts fo whch ou attack als In Sctons and 5 w gv th scond and thd attacks W also ovd numcal xaml fo all ou attacks W conclud ths a n Scton 6 Plmnas W stat wth dfntons and motant thoms concnng th contnud factons lattc bass ducton tchnus and som thom fom th vous attacks as wll as som usful lmmas

4 8 MUHAMMAD REAL KAMEL ARIFFI t al Contnud factons Dfnton (Contnud factons) A contnud facton s an xsson of th fom a a O a m O [ a a K a ] m K wh a s an ntg and a n a ostv ntgs fo n Th a n a calld th atal uotnts of th contnud facton [] Dfnton (Convgnts) Lt x R wth x [ a a K am ] Fo n m th n-th convgnt of th contnud facton xanson of x s [ a a K a ] n Thom (Lgnd) Lt x b a al ostv numb If X and Y a ostv ntgs such that gcd ( X Y ) and Y x X X thn X Y s a convgnt of th contnud facton xanson of x Dfnton (Lattc bass ductons) Lt ntgs and m n b two ostv n L b m R b n lnaly ndndnt vctos A lattc b L sannd by { b L b m } s th st of all ntg lna combnatons of b L b that s m L L( b L b m ) αb α m Th b a calld bass vctos of L and B b L bm s calld a lattc bass fo L Thus th lattc gnatd by a bass B s th st of all ntg lna combnatons of th bass vctos n B

5 EW ATTACKS O TAKAGI CRYPTOSYSTEM 9 Th dmnson (oank) of th a lattc dnotd dm( L ) s ual to th numb of vctos makng u th bass Th dmnson of a lattc s ual to th dmnson of th vcto subsac sannd by B A lattc s sad to b full dmnsonal (o full ank) whn dm( L ) n Thom Lt L b a lattc of dmnson ω wth a bass v K v Th LLL algothm oducs a ducd bass b K bω satsfyng ω b b K b ω( ω) ( ω ) dt Lω fo all ω As an alcaton of th LLL algothm s that t ovds a soluton to th smultanous Dohantn aoxmatons oblm whch s dfnd as follows Lt α K αn b n al numbs and ε b a al numb such that ε A classcal thom of Dchlt assts that th xst ntgs K n and a ostv ntg n ε such that α ε fo n A mthod to fnd smultanous Dohantn aoxmatons to atonal numbs was dscbd by [] In th wok thy consdd a lattc wth al nts Blow a smlasult fo a lattc wth ntg nts Thom (Smultanous Dohantn aoxmatons [8]) Th s a olynomal tm algothm fo gvn atonal numbs α K αn and ε to comut ntgs K n and a ostv ntg such that n( n) max α ε and Lmma Lt Thn b an RSA modulus m ow wth

6 MUHAMMAD REAL KAMEL ARIFFI t al Poof Suos thn multlyng by w gt whch mls that s Also snc thn whch n tun mls Hnc [] Lmma Lt b a m ow modulus wth and b a b sutably small ntgs such that ( ) gcd b a Also lt ( ) b a S wh b a thn S ab Poof St ( ) b a S Thn obsv that (( ) ) ( )( ) b a b a b a S b ab z b a a b ab a b ab ab ab a ab b ab a ab b ab a ab b ab a ( ) ab b a Hnc w obtan ( ) > b a ab S ()

7 EW ATTACKS O TAKAGI CRYPTOSYSTEM Thn w dvd () by w gt S S ab ab ( a b ) ( a b ) ( a b ) a b 6 6 mls that ab S Th Fst Attack on Pm Pow Modul In ths scton w snt a sult basd on contnud factons and show how to facto th m ow modulus f ( ) s a ublc ky satsfyng an uaton X Y ( a b ) wth small aamts X Y and wh a b b a sutably small ostv ntg

8 MUHAMMAD REAL KAMEL ARIFFI t al and Lmma Lt b a m ow modulus wth a b b ntgs such that gcd ( a b) Lt b a ublc ky satsfyng th uaton X Y ( a b ) wth gcd ( X Y ) f X ( a b ) thn Y s among th convgnts of th contnud X facton xanson of Poof Suos that satsfs th uaton X Y ( a b ) wth X ( a b ) and gcd ( X Y ) w gt Thn fom th uaton X Y ( a b ) whn dvdng by X Y X X Y X a b X Assum that f X ( a b ) thn a b X X hold that s X ( a b ) X X( a b ) X( a b ) whch mls X ( a b ) and by Thom w conclud that X Y contnud facton xanson of s among th convgnt of th

9 EW ATTACKS O TAKAGI CRYPTOSYSTEM Thom Lt b a m ow modulus wth Lt a b b ntgs such that gcd ( a b) and lt b a ublc ky satsfyng th uaton X Y ( a b ) wth gcd ( X Y ) f Y X and ( a b ) a b thn fo can b factod n olynomal tm Poof Suos that satsfs an uaton X Y ( a b ) wth gcd ( X Y ) lt X and satsfy th condton n Lmma thn Y s among th convgnt of th contnud facton xanson of X Hnc usng X and Y w dfn S X Y and Lmma shows S that ab It follows that gcd S Th followng algothm s dsgnd to cov th m factos fo m ow modulus n olynomal tm Algothm Inut: Th ublc ky a ( ) satsfyng and Thom Outut: Th two m factos and () Comut th contnud facton xanson of Y () Fo ach convgnt of X S () Comut () gcd S (5) If thn comut S X Y

10 MUHAMMAD REAL KAMEL ARIFFI t al Examl Th followng shows an llustaton of ou attack fo X 9 Y 8 a b gvn and as Suos that th ublc ky ( ) satsfy all th condton as statd n th Thom fom th abov algothm w fst comut th contnud facton xanson of Th lst of fst convgnts of th contnud facton xanson of a K Thfo omttng th fst and scond nty and stat wth th convgnt w obtan and S X Y S Hnc gcd S ( ) 7 S Also th convgnt gvs S and 9 wth gcd S

11 EW ATTACKS O TAKAGI CRYPTOSYSTEM 5 8 Thfo w nd to ty fo th nxt convgnt w obtan 9 S X Y and S W comut th gcd S ( ) 77 Fnally wth 77 w comut 8557 whch lads to th factozaton of Estmaton of th numb of s satsfyng X Y ( a b ) W gv an stmaton of th numb of th xonnts whch ou attacks can b ald Lt fo a b b ntgs such that α gcd ( a b) Lt ( a b ) wth α Lmma 5 Lt b a m ow modulus wth Lt a b b ntgs such that gcd ( a b) and suos that s a ublc xonnt satsfyng and two uaton X Y ( a b ) and X Y ( a b ) wth gcd ( X ) fo Y Y X thn X X Y Y ( a b )

12 6 MUHAMMAD REAL KAMEL ARIFFI t al Poof Assum that th xonnt satsfyng th two uaton Y ( a b ) and X Y ( a b ) wth X gcd ( X ) fo Y Y X Thfo ( a b ) uatng th tm ( a b ) w gt X Y X Y () mls X Y X Y ( X X ) ( Y ) Y ( X X ) ( Y Y ) Snc w assum and Y X thn ( X X ) X X thfo ( a b ) ( a b ) wth gcd( ) and X X w obtan X X Y Y Thom 5 Lt b a m ow modulus wth Lt a b b sutably small ntgs such that gcd ( a b) and α ( a b ) Th numb of th xonnts of th fom ( a b ) X ( mod ) wth g cd( X a b ) and X α s at last wh > s abtaly small fo sutably lag

13 EW ATTACKS O TAKAGI CRYPTOSYSTEM 7 Poof Lt a b b sutably small ntgs such that gcd ( a b) α and ( a b ) α and lt X Lt ξ dnot th numb of th xonnts satsfyng ( a b ) X (mod ) wth gcd ( X a b ) and X α ξ X X gcd( X a b ) () Usng th followng sult (s ta [5] Lmma ) wth and m X w gt n a b X ( ) φ a b ( ) ( ) ω a b φ a b ω( a b ξ > X ) a b a b () Thfo ω( a b ) s th numb of sua f dvsos of a b whch s u boundd by th total numb τ ( a b ) of dvsos of a b Hnc usng th dntty that τ ( n) satsfs τ ( n) O( log log n ) (s Hady and Wght [6] Thoms -) It follows that th domnant tm n () s n a b φ( a b ) a b X α and X gvs Substtutng ths wth ξ X ( ) α φ a b φ( ) a b a b α O α φ( a b )

14 8 MUHAMMAD REAL KAMEL ARIFFI t al Also on th oth hand fo n w hav th followng dntty (s Hady and Wght [6] Thom 8) cn φ ( n ) > log log n wh c s a ostv constant Takng n α a b mls that ξ α O α c α log log O ( ) wh α satsfs log log sutably lag and s abtaly small fo Rmak Fom th two dstnct n-bt m ( ) th sultant modulus s ( ) n-bt ntg Thn w can obsv that th numb of xonnts satsfyng ou attack s ( ) n( ) Ths ovs that th a xonntally many xonnts that satsfy ou condtons n th Thom 5 Th Scond Attack on Pm Pow Modul In ths scton fo modul wth th sam sz W suos n ths scnao that th m ow modul satsfyng th uatons x y ( a b ) z W ovd that t s ossbl to facto th modul sutably small f th unknown aamts x y and z a

15 EW ATTACKS O TAKAGI CRYPTOSYSTEM 9 Thom 6 Fo lt b modul Lt mn Lt K b ublc xonnts Dfn δ ( ) α( ) ( ) wh α Lt a b b sutably small α ntgs such that a b If th xst an ntg δ x and δ ntgs y and z such that ( x y a b ) z fo K thn on can facto th modul K n olynomal tm Poof Fo and lt b modul Lt mn and suos that y and a b thn th uaton x y ( a b ) z can b wttn as δ α ( a b ) z x y (5) δ Lt mn and suos that y z α a thn and b ( a b ) z ( a b ) z α α α

16 MUHAMMAD REAL KAMEL ARIFFI t al 5 Substtut n to (5) to gt α y x Hnc to shows th xstnc of th ntg x w lt α ε wth ( ) ( ) ( ) α δ thn w hav ε δα δ Thfo snc ( ) fo w gt ( ) ε δ It follows that f δ x thn ( ) x ε Summazng fo K w hav ( ) x y x ε ε Hnc t satsfy th condtons of Thom and w can obtan x and y fo K xt usng th uaton ( ) z b a y x Snc z Thn Lmma mls that S ab z wth y x S fo K w comut gcd S Whch lads to factozaton of modul K

17 EW ATTACKS O TAKAGI CRYPTOSYSTEM 5 Examl As an llustaton to ou attack on m ow modul w consd th followng th m ow and th ublc xonnts: Thn mn( ) Snc and a b wth α w gt δ ( ) α( ) ( ) 5 α and ε 5587 Usng Thom wth n w obtand C ( n )( n) n [ ε n ] Consd th lattc L sannd by th matx M [ C ] [ C ] [ C ] C C C Thfo alyng th LLL algothm to L w obtan th ducd bass wth followng matx:

18 5 MUHAMMAD REAL KAMEL ARIFFI t al K xt w comut K M Thn fom th fst ow w obtand x 7 y 67 y 558 y 7 Hnc usng x and y fo dfn S x y w gt S S S And Lmma mls that z ab S fo whch gvs S S S

19 EW ATTACKS O TAKAGI CRYPTOSYSTEM 5 Thfo fo w comut gcd S that s Fnally fo w fnd hnc whch lads to th factozaton of th modul and 5 Th Thd Attack on Pm Pow Modul W snt an attack on th m ow modul Fo and w consd th scnao whn th modul satsfy uatons of th fom x y ( a b ) z fo K wth sutably small unknown aamts x y and z Alyng th LLL algothm w show that ou aoach nabl us to facto th m ow modul n olynomal tm Thom 7 Fo and lt b modul wth th sam sz Lt K b ublc xonnts wth mn β Lt β δ ( β α ) ( β α ) ( ) wh α Lt a b b sutably ntgs such that a b α If th xst an ntg δ y and ntgs δ x such that x y ( a b ) z fo K thn on can facto th modul K n olynomal tm

20 5 MUHAMMAD REAL KAMEL ARIFFI t al Poof Fo and lt b modul Thn th uaton x y ( a b ) z can b wttn as ( a b ) z y x (6) Lt max and suos that and a b thn α y δ β z mn ( a b ) z ( a b ) z β β α α β α β Pluggng n to (6) to gt y x α β Hnc to shows th xstnc of th ntg y and ntgs x w lt β α ε wth δ ( β α ) ( β α ) w gt ( ) δ δ ε αβ

21 EW ATTACKS O TAKAGI CRYPTOSYSTEM 55 ( ) Thfo snc fo w gt It follows that f y thn K w hav δ ( ) y ε ( ) δ ε Summazng fo y x ( ) ε y ε Hnc t satsfy th condtons of Thom and w can obtan y and x fo K xt fom th uaton x y ( a b ) z Snc z S Thn Lmma mls that z ab wth S x y fo K w comut gcd S Whch lads to factozaton of modul K Examl As an llustaton to ou attack on m ow modul w consd th followng th m ow and th ublc xonnts:

22 56 MUHAMMAD REAL KAMEL ARIFFI t al Thn max( ) β Also mn ( ) wth β 98 Snc and a b wth α w gt ( β α ) ( β α ) δ 6 and ( ) αβ ε Usng Thom wth n w obtand C ( n ) ( n) n [ n ε ] 9559 Consd th lattc L sannd by th matx M [ C ] [ C ] [ C ] C C C Thfo alyng th LLL algothm to L w obtan th ducd bass wth followng matx: K xt w comut K M

23 EW ATTACKS O TAKAGI CRYPTOSYSTEM 57 Thn fom th fst ow w obtand y 75 x 9 x x Hnc usng x and y fo dfn S x y w gt S S S And Lmma mls that z ab S fo whch gvs S S S Thfo fo w comut gcd S that s Fnally fo w fnd hnc whch lads to th factozaton of th modul and

24 58 MUHAMMAD REAL KAMEL ARIFFI t al 6 Concluson W oosd th fst attack basd on th uaton X Y ( a b ) fo sutabl ostv ntgs a b Usng contnud facton w show that X Y can b covd among th convgnts of th contnud factons xanson of Futhmo w show that th st of such wak xonnts s latvly lag namly that th numb s at last ε wh ε s abtaly small fo sutably lag Hnc on can facto th m ow modulus n olynomal tm Fo w thn snt scond and thd attacks on th m ow modul fo K Th attacks wok whn ublc kys ( ) a such that th xst latons of th sha x y ( a b ) z o of th sha x y ( a b ) z wh th aamts x x y y z a sutably small n tms of th m factos of th modul Basd on LLL algothm w show that ou aoach nabl us to smultanously facto th m ow modul n olynomal tm Rfncs [] M R K Affn and S Shhu w attacks on m ow RSA modulus Asan Jounal of Mathmatcs and Comut Rsach (6) 77-9 [] M A Asbullah and M R K Affn w attacks on RSA wth modulus usng contnud factons Jounal of Physcs Confnc Ss Volum 6 o IOP Publshng 5 [] D Bonh G Duf and Howgav-Gaham Factong fo lag Advancs n Cytology CRYPTO 99 Lctu ots n Comut Scnc 59 (999) 6-7

25 EW ATTACKS O TAKAGI CRYPTOSYSTEM 59 [] J Blom and A May A gnalzd Wn attack on RSA In Publc Ky Cytogahy - PKC Lctu ots n Comut Scnc 97 () - [5] A Fuoka T Okamoto and S Myaguch ESIG: An ffcnt dgtal sgnatu mlmntaton fo smat cads Advancs n Cytology EURO-CRYPT 9 Sng-Vlag (99) 6-57 [6] G H Hady and E M Wght An Intoducton to th Thoy of umbs Oxfod Unvsty Pss London 975 [7] J Hnk On th Scuty of Som Vaants of RSA PhD Thss Watloo Ontao Canada 7 [8] Howgav-Gaham and J P Sft Extndng wns attack n th snc of many dcytng xonnts In Scu twokng-cqre (Scu) 99 7 (999) 5-66 [9] A K Lnsta H W Lnsta and L Lovasz Factong olynomals wth atonal coffcnts Mathmatsch Annaln 6 (98) 5-5 [] A May w RSA Vulnablts Usng Lattc Rducton Mthods PhD Thss Unvsty of Padbon [] A ta Dohantn and lattc cytanalyss of th RSA cytosystm Atfcal Intllgnc Evolutonay Comutng and Mtahustcs Sng Bln Hdlbg () 9-68 [] A ta Cytanalyss of RSA usng th ato of th ms Pogss n Cytology- AFRICACRYPT 9 Sng Bln Hdlbg (9) 98-5 [] A ta M R K Affn D I ass and H M Bahg w attacks on th RSA cytosystm Pogss n Cytology-AFRICACRYPT Sng Intnatonal Publshng () [] A ta A w Vulnabl Class of Exonnts n RSA [5] T Okamoto and S Uchyama A nw ublc-ky cytosystm as scu as factong Advancs n Cytology-EUROCRYPT 98 Sng-Vlag (998) 8-8 [6] R Rvst A Sham and L Adlman A mthod fo obtanng dgtal sgnatus and ublc-ky cytosystms Communcatons of th ACM () (978) -6 [7] S Saka Small sct xonnt attack on RSA vaant wth modulus dsgns Cods and Cytogahy 7() () 8-9 [8] T Takag Fast RSA-ty cytosystm modulo k Cyto 98 Sng (998) 8-6 In Advancs n Cytology- [9] M Wn Cytanalyss of shot RSA sct xonnts IEEE Tansactons on Infomaton Thoy 6 (99) g

New bounds on Poisson approximation to the distribution of a sum of negative binomial random variables

New bounds on Poisson approximation to the distribution of a sum of negative binomial random variables Sogklaaka J. Sc. Tchol. 4 () 4-48 Ma. -. 8 Ogal tcl Nw bouds o Posso aomato to th dstbuto of a sum of gatv bomal adom vaabls * Kat Taabola Datmt of Mathmatcs Faculty of Scc Buaha Uvsty Muag Chobu 3 Thalad

More information

Homework: Due

Homework: Due hw-.nb: //::9:5: omwok: Du -- Ths st (#7) s du on Wdnsday, //. Th soluton fom Poblm fom th xam s found n th mdtm solutons. ü Sakua Chap : 7,,,, 5. Mbach.. BJ 6. ü Mbach. Th bass stats of angula momntum

More information

CIVL 7/ D Boundary Value Problems - Axisymmetric Elements 1/8

CIVL 7/ D Boundary Value Problems - Axisymmetric Elements 1/8 CIVL 7/8 -D Bounday Valu Poblms - xsymmtc Elmnts /8 xsymmtc poblms a somtms fd to as adally symmtc poblms. hy a gomtcally th-dmnsonal but mathmatcally only two-dmnsonal n th physcs of th poblm. In oth

More information

5- Scattering Stationary States

5- Scattering Stationary States Lctu 19 Pyscs Dpatmnt Yamou Unvsty 1163 Ibd Jodan Pys. 441: Nucla Pyscs 1 Pobablty Cunts D. Ndal Esadat ttp://ctaps.yu.du.jo/pyscs/couss/pys641/lc5-3 5- Scattng Statonay Stats Rfnc: Paagaps B and C Quantum

More information

( V ) 0 in the above equation, but retained to keep the complete vector identity for V in equation.

( V ) 0 in the above equation, but retained to keep the complete vector identity for V in equation. Cuvlna Coodnats Outln:. Otogonal cuvlna coodnat systms. Dffntal opatos n otogonal cuvlna coodnat systms. Dvatvs of t unt vctos n otogonal cuvlna coodnat systms 4. Incompssbl N-S quatons n otogonal cuvlna

More information

Degenerate Clifford Algebras and Their Reperesentations

Degenerate Clifford Algebras and Their Reperesentations BAÜ Fn Bl. Enst. Dgs t 8-8 Dgnt ffod Algbs nd Th Rsnttons Şny BULUT * Andolu Unvsty Fculty of Scnc Dtmnt of Mthmtcs Yunum Cmus Eskşh. Abstct In ths study w gv n mbddng thom fo dgnt ffod lgb nto nondgnt

More information

ADDITIVE INTEGRAL FUNCTIONS IN VALUED FIELDS. Ghiocel Groza*, S. M. Ali Khan** 1. Introduction

ADDITIVE INTEGRAL FUNCTIONS IN VALUED FIELDS. Ghiocel Groza*, S. M. Ali Khan** 1. Introduction ADDITIVE INTEGRAL FUNCTIONS IN VALUED FIELDS Ghiocl Goza*, S. M. Ali Khan** Abstact Th additiv intgal functions with th cofficints in a comlt non-achimdan algbaically closd fild of chaactistic 0 a studid.

More information

A NEW GENERALISATION OF SAM-SOLAI S MULTIVARIATE ADDITIVE GAMMA DISTRIBUTION*

A NEW GENERALISATION OF SAM-SOLAI S MULTIVARIATE ADDITIVE GAMMA DISTRIBUTION* A NEW GENERALISATION OF SAM-SOLAI S MULTIVARIATE ADDITIVE GAMMA DISTRIBUTION* Dr. G.S. Davd Sam Jayakumar, Assstant Profssor, Jamal Insttut of Managmnt, Jamal Mohamd Collg, Truchraall 620 020, South Inda,

More information

Fitted Finite Difference Method for Singularly Perturbed Two-Point Boundary Value Problems using Polynomial Cubic Spline

Fitted Finite Difference Method for Singularly Perturbed Two-Point Boundary Value Problems using Polynomial Cubic Spline Intnatonal Jounal on Rcnt and Innovaton Tnds n Coutng and Councaton ISS: -9 Volu: Issu: ttd nt Dffnc Mtod fo Sngulal Ptubd Two-Pont Bounda Valu Pobls usng Polnoal Cubc Sln K. Pannda Dt. of Matatcs Unvst

More information

Load Equations. So let s look at a single machine connected to an infinite bus, as illustrated in Fig. 1 below.

Load Equations. So let s look at a single machine connected to an infinite bus, as illustrated in Fig. 1 below. oa Euatons Thoughout all of chapt 4, ou focus s on th machn tslf, thfo w wll only pfom a y smpl tatmnt of th ntwok n o to s a complt mol. W o that h, but alz that w wll tun to ths ssu n Chapt 9. So lt

More information

Multi-linear Systems and Invariant Theory. in the Context of Computer Vision and Graphics. Class 4: Mutli-View 3D-from-2D. CS329 Stanford University

Multi-linear Systems and Invariant Theory. in the Context of Computer Vision and Graphics. Class 4: Mutli-View 3D-from-2D. CS329 Stanford University Mult-lna Sytm and Invaant hoy n th Contxt of Comut Von and Gahc Cla 4: Mutl-Vw 3D-fom-D CS39 Stanfod Unvty Amnon Shahua Cla 4 Matal W Wll Cov oday Eola Gomty and Fundamntal Matx h lan+aallax modl and latv

More information

Analysis of a M/G/1/K Queue with Vacations Systems with Exhaustive Service, Multiple or Single Vacations

Analysis of a M/G/1/K Queue with Vacations Systems with Exhaustive Service, Multiple or Single Vacations Analyss of a M/G// uu wth aatons Systms wth Ehaustv Sv, Multpl o Sngl aatons W onsd h th fnt apaty M/G// uu wth th vaaton that th sv gos fo vaatons whn t s dl. Ths sv modl s fd to as on povdng haustv sv,

More information

A Note on Estimability in Linear Models

A Note on Estimability in Linear Models Intrnatonal Journal of Statstcs and Applcatons 2014, 4(4): 212-216 DOI: 10.5923/j.statstcs.20140404.06 A Not on Estmablty n Lnar Modls S. O. Adymo 1,*, F. N. Nwob 2 1 Dpartmnt of Mathmatcs and Statstcs,

More information

New Finding on Factoring Prime Power RSA Modulus N = p r q

New Finding on Factoring Prime Power RSA Modulus N = p r q Jounal of Mathematical Reseach with Applications Jul., 207, Vol. 37, o. 4, pp. 404 48 DOI:0.3770/j.issn:2095-265.207.04.003 Http://jme.dlut.edu.cn ew Finding on Factoing Pime Powe RSA Modulus = p q Sadiq

More information

Folding of Regular CW-Complexes

Folding of Regular CW-Complexes Ald Mathmatcal Scncs, Vol. 6,, no. 83, 437-446 Foldng of Rgular CW-Comlxs E. M. El-Kholy and S N. Daoud,3. Dartmnt of Mathmatcs, Faculty of Scnc Tanta Unvrsty,Tanta,Egyt. Dartmnt of Mathmatcs, Faculty

More information

Lucas Test is based on Euler s theorem which states that if n is any integer and a is coprime to n, then a φ(n) 1modn.

Lucas Test is based on Euler s theorem which states that if n is any integer and a is coprime to n, then a φ(n) 1modn. Modul 10 Addtonal Topcs 10.1 Lctur 1 Prambl: Dtrmnng whthr a gvn ntgr s prm or compost s known as prmalty tstng. Thr ar prmalty tsts whch mrly tll us whthr a gvn ntgr s prm or not, wthout gvng us th factors

More information

Group Codes Define Over Dihedral Groups of Small Order

Group Codes Define Over Dihedral Groups of Small Order Malaysan Journal of Mathmatcal Scncs 7(S): 0- (0) Spcal Issu: Th rd Intrnatonal Confrnc on Cryptology & Computr Scurty 0 (CRYPTOLOGY0) MALAYSIA JOURAL OF MATHEMATICAL SCIECES Journal hompag: http://nspm.upm.du.my/ournal

More information

Shor s Algorithm. Motivation. Why build a classical computer? Why build a quantum computer? Quantum Algorithms. Overview. Shor s factoring algorithm

Shor s Algorithm. Motivation. Why build a classical computer? Why build a quantum computer? Quantum Algorithms. Overview. Shor s factoring algorithm Motivation Sho s Algoith It appas that th univs in which w liv is govnd by quantu chanics Quantu infoation thoy givs us a nw avnu to study & tst quantu chanics Why do w want to build a quantu coput? Pt

More information

CERTAIN RESULTS ON TIGHTENED-NORMAL-TIGHTENED REPETITIVE DEFERRED SAMPLING SCHEME (TNTRDSS) INDEXED THROUGH BASIC QUALITY LEVELS

CERTAIN RESULTS ON TIGHTENED-NORMAL-TIGHTENED REPETITIVE DEFERRED SAMPLING SCHEME (TNTRDSS) INDEXED THROUGH BASIC QUALITY LEVELS Intnatonal Rsach Jounal of Engnng and Tchnology (IRJET) -ISSN: 2395-0056 Volum: 03 Issu: 02 Fb-2016 www.jt.nt p-issn: 2395-0072 CERTAIN RESULTS ON TIGHTENED-NORMAL-TIGHTENED REPETITIVE DEFERRED SAMPLING

More information

Lecture 3.2: Cosets. Matthew Macauley. Department of Mathematical Sciences Clemson University

Lecture 3.2: Cosets. Matthew Macauley. Department of Mathematical Sciences Clemson University Lctu 3.2: Costs Matthw Macauly Dpatmnt o Mathmatical Scincs Clmson Univsity http://www.math.clmson.du/~macaul/ Math 4120, Modn Algba M. Macauly (Clmson) Lctu 3.2: Costs Math 4120, Modn Algba 1 / 11 Ovviw

More information

Chapter 3 Binary Image Analysis. Comunicação Visual Interactiva

Chapter 3 Binary Image Analysis. Comunicação Visual Interactiva Chapt 3 Bnay Iag Analyss Counação Vsual Intatva Most oon nghbohoods Pxls and Nghbohoods Nghbohood Vznhança N 4 Nghbohood N 8 Us of ass Exapl: ogn nput output CVI - Bnay Iag Analyss Exapl 0 0 0 0 0 output

More information

On Jackson's Theorem

On Jackson's Theorem It. J. Cotm. Math. Scics, Vol. 7, 0, o. 4, 49 54 O Jackso's Thom Ema Sami Bhaya Datmt o Mathmatics, Collg o Educatio Babylo Uivsity, Babil, Iaq mabhaya@yahoo.com Abstact W ov that o a uctio W [, ], 0

More information

Distinct 8-QAM+ Perfect Arrays Fanxin Zeng 1, a, Zhenyu Zhang 2,1, b, Linjie Qian 1, c

Distinct 8-QAM+ Perfect Arrays Fanxin Zeng 1, a, Zhenyu Zhang 2,1, b, Linjie Qian 1, c nd Intenatonal Confeence on Electcal Compute Engneeng and Electoncs (ICECEE 15) Dstnct 8-QAM+ Pefect Aays Fanxn Zeng 1 a Zhenyu Zhang 1 b Lnje Qan 1 c 1 Chongqng Key Laboatoy of Emegency Communcaton Chongqng

More information

UNIT 8 TWO-WAY ANOVA WITH m OBSERVATIONS PER CELL

UNIT 8 TWO-WAY ANOVA WITH m OBSERVATIONS PER CELL UNIT 8 TWO-WAY ANOVA WITH OBSERVATIONS PER CELL Two-Way Anova wth Obsrvatons Pr Cll Structur 81 Introducton Obctvs 8 ANOVA Modl for Two-way Classfd Data wth Obsrvatons r Cll 83 Basc Assutons 84 Estaton

More information

Grand Canonical Ensemble

Grand Canonical Ensemble Th nsmbl of systms mmrsd n a partcl-hat rsrvor at constant tmpratur T, prssur P, and chmcal potntal. Consdr an nsmbl of M dntcal systms (M =,, 3,...M).. Thy ar mutually sharng th total numbr of partcls

More information

Chapter 10 DIELECTRICS. Dielectrics

Chapter 10 DIELECTRICS. Dielectrics 86 Dlctcs Chat DILCTRICS Dlctcs : Dlctcs a fct nsulatos. In dlctcs lctons a vy tghtly bound to th atoms so that at odnay tmatus thy do not conduct any lctc cunt. xamls: Solds: glass, ocln; gass: H, N ;

More information

EE 584 MACHINE VISION

EE 584 MACHINE VISION MTU 584 Lctu Not by A.AydnALATAN 584 MACHIN VISION Photomtc Sto Radomty BRDF Rflctanc Ma Rcovng Sufac Ontaton MTU 584 Lctu Not by A.AydnALATAN Photomtc Sto It obl to cov th ontaton of ufac atch fom a numb

More information

Review - Probabilistic Classification

Review - Probabilistic Classification Mmoral Unvrsty of wfoundland Pattrn Rcognton Lctur 8 May 5, 6 http://www.ngr.mun.ca/~charlsr Offc Hours: Tusdays Thursdays 8:3-9:3 PM E- (untl furthr notc) Gvn lablld sampls { ɛc,,,..., } {. Estmat Rvw

More information

Homework 1: Solutions

Homework 1: Solutions Howo : Solutos No-a Fals supposto tst but passs scal tst lthouh -f th ta as slowss [S /V] vs t th appaac of laty alty th path alo whch slowss s to b tat to obta tavl ts ps o th ol paat S o V as a cosquc

More information

(, ) which is a positively sloping curve showing (Y,r) for which the money market is in equilibrium. The P = (1.4)

(, ) which is a positively sloping curve showing (Y,r) for which the money market is in equilibrium. The P = (1.4) ots lctu Th IS/LM modl fo an opn conomy is basd on a fixd pic lvl (vy sticky pics) and consists of a goods makt and a mony makt. Th goods makt is Y C+ I + G+ X εq (.) E SEK wh ε = is th al xchang at, E

More information

On interval-valued optimization problems with generalized invex functions

On interval-valued optimization problems with generalized invex functions Ahmad t al. Jounal of Inqualitis and Alications 203, 203:33 htt://www.jounalofinqualitisandalications.com/contnt/203//33 R E S E A R C H On Accss On intval-valud otimization oblms with gnalizd inv functions

More information

ON THE COMPLEXITY OF K-STEP AND K-HOP DOMINATING SETS IN GRAPHS

ON THE COMPLEXITY OF K-STEP AND K-HOP DOMINATING SETS IN GRAPHS MATEMATICA MONTISNIRI Vol XL (2017) MATEMATICS ON TE COMPLEXITY OF K-STEP AN K-OP OMINATIN SETS IN RAPS M FARAI JALALVAN AN N JAFARI RA partmnt of Mathmatcs Shahrood Unrsty of Tchnology Shahrood Iran Emals:

More information

Generating Functions, Weighted and Non-Weighted Sums for Powers of Second-Order Recurrence Sequences

Generating Functions, Weighted and Non-Weighted Sums for Powers of Second-Order Recurrence Sequences Geneatng Functons, Weghted and Non-Weghted Sums fo Powes of Second-Ode Recuence Sequences Pantelmon Stăncă Aubun Unvesty Montgomey, Depatment of Mathematcs Montgomey, AL 3614-403, USA e-mal: stanca@studel.aum.edu

More information

SIMULTANEOUS METHODS FOR FINDING ALL ZEROS OF A POLYNOMIAL

SIMULTANEOUS METHODS FOR FINDING ALL ZEROS OF A POLYNOMIAL Joual of athmatcal Sccs: Advacs ad Applcatos Volum, 05, ags 5-8 SIULTANEUS ETHDS FR FINDING ALL ZERS F A LYNIAL JUN-SE SNG ollg of dc Yos Uvsty Soul Rpublc of Koa -mal: usopsog@yos.ac. Abstact Th pupos

More information

Mid Year Examination F.4 Mathematics Module 1 (Calculus & Statistics) Suggested Solutions

Mid Year Examination F.4 Mathematics Module 1 (Calculus & Statistics) Suggested Solutions Mid Ya Eamination 3 F. Matmatics Modul (Calculus & Statistics) Suggstd Solutions Ma pp-: 3 maks - Ma pp- fo ac qustion: mak. - Sam typ of pp- would not b countd twic fom wol pap. - In any cas, no pp maks

More information

Diffraction. Diffraction: general Fresnel vs. Fraunhofer diffraction Several coherent oscillators Single-slit diffraction. Phys 322 Lecture 28

Diffraction. Diffraction: general Fresnel vs. Fraunhofer diffraction Several coherent oscillators Single-slit diffraction. Phys 322 Lecture 28 Chapt 10 Phys 3 Lctu 8 Dffacton Dffacton: gnal Fsnl vs. Faunhof dffacton Sval cohnt oscllatos Sngl-slt dffacton Dffacton Gmald, 1600s: dffacto, dvaton of lght fom lna popagaton Dffacton s a consqunc of

More information

Energy in Closed Systems

Energy in Closed Systems Enegy n Closed Systems Anamta Palt palt.anamta@gmal.com Abstact The wtng ndcates a beakdown of the classcal laws. We consde consevaton of enegy wth a many body system n elaton to the nvese squae law and

More information

ON THE FRESNEL SINE INTEGRAL AND THE CONVOLUTION

ON THE FRESNEL SINE INTEGRAL AND THE CONVOLUTION IJMMS 3:37, 37 333 PII. S16117131151 http://jmms.hndaw.com Hndaw Publshng Cop. ON THE FRESNEL SINE INTEGRAL AND THE CONVOLUTION ADEM KILIÇMAN Receved 19 Novembe and n evsed fom 7 Mach 3 The Fesnel sne

More information

Structure and Features

Structure and Features Thust l Roll ans Thust Roll ans Stutu an atus Thust ans onsst of a psly ma a an olls. Thy hav hh ty an hh loa apats an an b us n small spas. Thust l Roll ans nopoat nl olls, whl Thust Roll ans nopoat ylnal

More information

Advanced Manufacture of Spiral Bevel and Hypoid Gears

Advanced Manufacture of Spiral Bevel and Hypoid Gears Advans n Thnology Innovaton, vol. no. 3, 217,. 61-67 Advand Manufatu of Sal Bvl and Hyod Gas Vlmos Smon Datmnt of Mahn and Podut Dsgn, Budast Unvsty of Thnology and Eonoms, Hungay. Rvd 2 Januay 216; vd

More information

The Hyperelastic material is examined in this section.

The Hyperelastic material is examined in this section. 4. Hyprlastcty h Hyprlastc matral s xad n ths scton. 4..1 Consttutv Equatons h rat of chang of ntrnal nrgy W pr unt rfrnc volum s gvn by th strss powr, whch can b xprssd n a numbr of dffrnt ways (s 3.7.6):

More information

Theoretical Electron Impact Ionization, Recombination, and Photon Emissivity Coefficient for Tungsten Ions

Theoretical Electron Impact Ionization, Recombination, and Photon Emissivity Coefficient for Tungsten Ions TM on Unctanty ssssmnt and Bnchmak Expmnts fo &M Data fo Fuson pplcatons Thotcal Elcton Impact Ionzaton, Rcombnaton, and Photon Emssvty Coffcnt fo Tungstn Ions D.-H. Kwon, Koa tomc Engy Rsach Insttut 2016.

More information

Diffraction. Diffraction: general Fresnel vs. Fraunhofer diffraction Several coherent oscillators Single-slit diffraction. Phys 322 Lecture 28

Diffraction. Diffraction: general Fresnel vs. Fraunhofer diffraction Several coherent oscillators Single-slit diffraction. Phys 322 Lecture 28 Chapt 10 Phys 3 Lctu 8 Dffacton Dffacton: gnal Fsnl vs. Faunhof dffacton Sval cohnt oscllatos Sngl-slt dffacton Dffacton Gmald, 1600s: dffacto, dvaton of lght fom lna popagaton Dffacton s a consqunc of

More information

Statics. Consider the free body diagram of link i, which is connected to link i-1 and link i+1 by joint i and joint i-1, respectively. = r r r.

Statics. Consider the free body diagram of link i, which is connected to link i-1 and link i+1 by joint i and joint i-1, respectively. = r r r. Statcs Th cotact btw a mapulato ad ts vomt sults tactv ocs ad momts at th mapulato/vomt tac. Statcs ams at aalyzg th latoshp btw th actuato dv tous ad th sultat oc ad momt appld at th mapulato dpot wh

More information

Overview. 1 Recall: continuous-time Markov chains. 2 Transient distribution. 3 Uniformization. 4 Strong and weak bisimulation

Overview. 1 Recall: continuous-time Markov chains. 2 Transient distribution. 3 Uniformization. 4 Strong and weak bisimulation Rcall: continuous-tim Makov chains Modling and Vification of Pobabilistic Systms Joost-Pit Katon Lhstuhl fü Infomatik 2 Softwa Modling and Vification Goup http://movs.wth-aachn.d/taching/ws-89/movp8/ Dcmb

More information

On Factoring Arbitrary Integers with Known Bits

On Factoring Arbitrary Integers with Known Bits On Factong Abtay Integes wth Known Bts Mathas Hemann, Alexande May Faculty of Compute Scence, TU Damstadt, 689 Damstadt, Gemany hemann@bg.nfomatk.tu-damstadt.de, may@nfomatk.tu-damstadt.de Abstact: We

More information

4D SIMPLICIAL QUANTUM GRAVITY

4D SIMPLICIAL QUANTUM GRAVITY T.YUKAWA and S.HORATA Soknda/KEK D SIMPLICIAL QUATUM GRAITY Plan of th talk Rvw of th D slcal quantu gravty Rvw of nurcal thods urcal rsult and dscusson Whr dos th slcal quantu gravty stand? In short dstanc

More information

Lesson 7. Chapter 8. Frequency estimation. Bengt Mandersson LTH. October Nonparametric methods: lesson 6. Parametric methods:

Lesson 7. Chapter 8. Frequency estimation. Bengt Mandersson LTH. October Nonparametric methods: lesson 6. Parametric methods: Otmal Sgnal Procssng Lsson 7 Otmal Sgnal Procssng Chatr 8, Sctrum stmaton onaramtrc mthods: lsson 6 Chatr 8. Frquncy stmaton Th rodogram Th modfd Prodogram (ndong Aragng rodogram Bartltt Wlch Th nmum aranc

More information

CHAPTER 33: PARTICLE PHYSICS

CHAPTER 33: PARTICLE PHYSICS Collg Physcs Studnt s Manual Chaptr 33 CHAPTER 33: PARTICLE PHYSICS 33. THE FOUR BASIC FORCES 4. (a) Fnd th rato of th strngths of th wak and lctromagntc forcs undr ordnary crcumstancs. (b) What dos that

More information

In the name of Allah Proton Electromagnetic Form Factors

In the name of Allah Proton Electromagnetic Form Factors I th a of Allah Poto Elctoagtc o actos By : Maj Hazav Pof A.A.Rajab Shahoo Uvsty of Tchology Atoc o acto: W cos th tactos of lcto bas wth atos assu to b th gou stats. Th ct lcto ay gt scatt lastcally wth

More information

Massachusetts Institute of Technology Introduction to Plasma Physics

Massachusetts Institute of Technology Introduction to Plasma Physics Massachustts Insttut of Tchnology Intoducton to Plasma Physcs NAME 6.65J,8.63J,.6J R. Pak Dcmb 5 Fnal Eam :3-4:3 PM NOTES: Th a 8 pags to th am, plus on fomula sht. Mak su that you copy s complt. Each

More information

Set of square-integrable function 2 L : function space F

Set of square-integrable function 2 L : function space F Set of squae-ntegable functon L : functon space F Motvaton: In ou pevous dscussons we have seen that fo fee patcles wave equatons (Helmholt o Schödnge) can be expessed n tems of egenvalue equatons. H E,

More information

School of Aerospace Engineering Origins of Quantum Theory. Measurements of emission of light (EM radiation) from (H) atoms found discrete lines

School of Aerospace Engineering Origins of Quantum Theory. Measurements of emission of light (EM radiation) from (H) atoms found discrete lines Ogs of Quatu Thoy Masuts of sso of lght (EM adato) fo (H) atos foud dsct ls 5 4 Abl to ft to followg ss psso ν R λ c λwavlgth, νfqucy, cspd lght RRydbg Costat (~09,7677.58c - ),,, +, +,..g.,,.6, 0.6, (Lya

More information

E F. and H v. or A r and F r are dual of each other.

E F. and H v. or A r and F r are dual of each other. A Duality Thom: Consid th following quations as an xampl = A = F μ ε H A E A = jωa j ωμε A + β A = μ J μ A x y, z = J, y, z 4π E F ( A = jω F j ( F j β H F ωμε F + β F = ε M jβ ε F x, y, z = M, y, z 4π

More information

Chapter-10. Ab initio methods I (Hartree-Fock Methods)

Chapter-10. Ab initio methods I (Hartree-Fock Methods) Chapt- Ab nto mthods I (Hat-Fock Mthods) Ky wods: Ab nto mthods, quantum chmsty, Schodng quaton, atomc obtals, wll bhavd functons, poduct wavfunctons, dtmnantal wavfunctons, Hat mthod, Hat Fock Mthod,

More information

}, the unrestricted process will see a transition to

}, the unrestricted process will see a transition to A u an Mod wt Rvs Inoaton Excang: ot Andx t : Dnng t Rstctd Pocss W gn wt ocusng on a stctd vson o t cot M dscd aov stctd vson osvs t ocss on ov stats o wc N W not tat wnv t stctd ocss s n stats { } t

More information

Ερωτήσεις και ασκησεις Κεφ. 10 (για μόρια) ΠΑΡΑΔΟΣΗ 29/11/2016. (d)

Ερωτήσεις και ασκησεις Κεφ. 10 (για μόρια) ΠΑΡΑΔΟΣΗ 29/11/2016. (d) Ερωτήσεις και ασκησεις Κεφ 0 (για μόρια ΠΑΡΑΔΟΣΗ 9//06 Th coffcnt A of th van r Waals ntracton s: (a A r r / ( r r ( (c a a a a A r r / ( r r ( a a a a A r r / ( r r a a a a A r r / ( r r 4 a a a a 0 Th

More information

Lecture 23 APPLICATIONS OF FINITE ELEMENT METHOD TO SCALAR TRANSPORT PROBLEMS

Lecture 23 APPLICATIONS OF FINITE ELEMENT METHOD TO SCALAR TRANSPORT PROBLEMS COMPUTTION FUID DYNMICS: FVM: pplcatons to Scalar Transport Prolms ctur 3 PPICTIONS OF FINITE EEMENT METHOD TO SCR TRNSPORT PROBEMS 3. PPICTION OF FEM TO -D DIFFUSION PROBEM Consdr th stady stat dffuson

More information

Optimal Ordering Policy in a Two-Level Supply Chain with Budget Constraint

Optimal Ordering Policy in a Two-Level Supply Chain with Budget Constraint Optmal Ordrng Polcy n a Two-Lvl Supply Chan wth Budgt Constrant Rasoul aj Alrza aj Babak aj ABSTRACT Ths papr consdrs a two- lvl supply chan whch consst of a vndor and svral rtalrs. Unsatsfd dmands n rtalrs

More information

Algorithms for factoring

Algorithms for factoring CSA E0 235: Crytograhy Arl 9,2015 Instructor: Arta Patra Algorthms for factorng Submtted by: Jay Oza, Nranjan Sngh Introducton Factorsaton of large ntegers has been a wdely studed toc manly because of

More information

External Equivalent. EE 521 Analysis of Power Systems. Chen-Ching Liu, Boeing Distinguished Professor Washington State University

External Equivalent. EE 521 Analysis of Power Systems. Chen-Ching Liu, Boeing Distinguished Professor Washington State University xtrnal quvalnt 5 Analyss of Powr Systms Chn-Chng Lu, ong Dstngushd Profssor Washngton Stat Unvrsty XTRNAL UALNT ach powr systm (ara) s part of an ntrconnctd systm. Montorng dvcs ar nstalld and data ar

More information

Hydrogen atom. Energy levels and wave functions Orbital momentum, electron spin and nuclear spin Fine and hyperfine interaction Hydrogen orbitals

Hydrogen atom. Energy levels and wave functions Orbital momentum, electron spin and nuclear spin Fine and hyperfine interaction Hydrogen orbitals Hydogn atom Engy lvls and wav functions Obital momntum, lcton spin and nucla spin Fin and hypfin intaction Hydogn obitals Hydogn atom A finmnt of th Rydbg constant: R ~ 109 737.3156841 cm -1 A hydogn mas

More information

Consider a system of 2 simultaneous first order linear equations

Consider a system of 2 simultaneous first order linear equations Soluon of sysms of frs ordr lnar quaons onsdr a sysm of smulanous frs ordr lnar quaons a b c d I has h alrna mar-vcor rprsnaon a b c d Or, n shorhand A, f A s alrady known from con W know ha h abov sysm

More information

Rectification and Depth Computation

Rectification and Depth Computation Dpatmnt of Comput Engnng Unvst of Cafona at Santa Cuz Rctfcaton an Dpth Computaton CMPE 64: mag Anass an Comput Vson Spng 0 Ha ao 4/6/0 mag cosponncs Dpatmnt of Comput Engnng Unvst of Cafona at Santa Cuz

More information

ON EISENSTEIN-DUMAS AND GENERALIZED SCHÖNEMANN POLYNOMIALS

ON EISENSTEIN-DUMAS AND GENERALIZED SCHÖNEMANN POLYNOMIALS ON EISENSTEIN-DUMAS AND GENERALIZED SCHÖNEMANN POLYNOMIALS Anuj Bshno and Sudsh K. Khanduja Dpartmnt of Mathmatcs, Panjab Unvrsty, Chandgarh-160014, Inda. E-mal: anuj.bshn@gmal.com, skhand@pu.ac.n ABSTRACT.

More information

Extinction Ratio and Power Penalty

Extinction Ratio and Power Penalty Application Not: HFAN-.. Rv.; 4/8 Extinction Ratio and ow nalty AVALABLE Backgound Extinction atio is an impotant paamt includd in th spcifications of most fib-optic tanscivs. h pupos of this application

More information

A Random Graph Model for Power Law Graphs

A Random Graph Model for Power Law Graphs A Random Gaph Modl fo Pow Law Gaphs Wllam Allo, Fan Chung, and Lnyuan Lu CONTNTS. Intoducton. A Random Gaph Modl 3. Th Connctd Componnts 4. Th Szs of Connctd Componnts n Ctan Rangs fo 5. On th Sz of th

More information

THE CHINESE REMAINDER THEOREM. We should thank the Chinese for their wonderful remainder theorem. Glenn Stevens

THE CHINESE REMAINDER THEOREM. We should thank the Chinese for their wonderful remainder theorem. Glenn Stevens THE CHINESE REMAINDER THEOREM KEITH CONRAD We should thank the Chnese for ther wonderful remander theorem. Glenn Stevens 1. Introducton The Chnese remander theorem says we can unquely solve any par of

More information

Edge Product Cordial Labeling of Some Cycle Related Graphs

Edge Product Cordial Labeling of Some Cycle Related Graphs Op Joua o Dsct Mathmatcs, 6, 6, 68-78 http://.scp.o/joua/ojdm ISSN O: 6-7643 ISSN Pt: 6-7635 Ed Poduct Coda Lab o Som Cyc Ratd Gaphs Udaya M. Pajapat, Ntta B. Pat St. Xav s Co, Ahmdabad, Ida Shaksh Vaha

More information

8-node quadrilateral element. Numerical integration

8-node quadrilateral element. Numerical integration Fnt Elmnt Mthod lctur nots _nod quadrlatral lmnt Pag of 0 -nod quadrlatral lmnt. Numrcal ntgraton h tchnqu usd for th formulaton of th lnar trangl can b formall tndd to construct quadrlatral lmnts as wll

More information

n α j x j = 0 j=1 has a nontrivial solution. Here A is the n k matrix whose jth column is the vector for all t j=0

n α j x j = 0 j=1 has a nontrivial solution. Here A is the n k matrix whose jth column is the vector for all t j=0 MODULE 2 Topcs: Lnear ndependence, bass and dmenson We have seen that f n a set of vectors one vector s a lnear combnaton of the remanng vectors n the set then the span of the set s unchanged f that vector

More information

A STUDY OF SOME METHODS FOR FINDING SMALL ZEROS OF POLYNOMIAL CONGRUENCES APPLIED TO RSA

A STUDY OF SOME METHODS FOR FINDING SMALL ZEROS OF POLYNOMIAL CONGRUENCES APPLIED TO RSA Jounal of Mathematcal Scences: Advances and Applcatons Volume 38, 06, Pages -48 Avalable at http://scentfcadvances.co.n DOI: http://dx.do.og/0.864/jmsaa_700630 A STUDY OF SOME METHODS FOR FINDING SMALL

More information

CBSE , ˆj. cos CBSE_2015_SET-1. SECTION A 1. Given that a 2iˆ ˆj. We need to find. 3. Consider the vector equation of the plane.

CBSE , ˆj. cos CBSE_2015_SET-1. SECTION A 1. Given that a 2iˆ ˆj. We need to find. 3. Consider the vector equation of the plane. CBSE CBSE SET- SECTION. Gv tht d W d to fd 7 7 Hc, 7 7 7. Lt,. W ow tht.. Thus,. Cosd th vcto quto of th pl.. z. - + z = - + z = Thus th Cts quto of th pl s - + z = Lt d th dstc tw th pot,, - to th pl.

More information

COMPLEX NUMBER PAIRWISE COMPARISON AND COMPLEX NUMBER AHP

COMPLEX NUMBER PAIRWISE COMPARISON AND COMPLEX NUMBER AHP ISAHP 00, Bal, Indonsa, August -9, 00 COMPLEX NUMBER PAIRWISE COMPARISON AND COMPLEX NUMBER AHP Chkako MIYAKE, Kkch OHSAWA, Masahro KITO, and Masaak SHINOHARA Dpartmnt of Mathmatcal Informaton Engnrng

More information

The Random Phase Approximation:

The Random Phase Approximation: Th Random Phas Appoxmaton: Elctolyts, Polym Solutons and Polylctolyts I. Why chagd systms a so mpotant: thy a wat solubl. A. bology B. nvonmntally-fndly polym pocssng II. Elctolyt solutons standad dvaton

More information

Keywords: Auxiliary variable, Bias, Exponential estimator, Mean Squared Error, Precision.

Keywords: Auxiliary variable, Bias, Exponential estimator, Mean Squared Error, Precision. IN: 39-5967 IO 9:8 Ctifid Intnational Jounal of Engining cinc and Innovativ Tchnolog (IJEIT) Volum 4, Issu 3, Ma 5 Imovd Exonntial Ratio Poduct T Estimato fo finit Poulation Man Ran Vija Kuma ingh and

More information

Concept of Game Equilibrium. Game theory. Normal- Form Representation. Game definition. Lecture Notes II-1 Static Games of Complete Information

Concept of Game Equilibrium. Game theory. Normal- Form Representation. Game definition. Lecture Notes II-1 Static Games of Complete Information Game theoy he study of multeson decsons Fou tyes of games Statc games of comlete nfomaton ynamc games of comlete nfomaton Statc games of ncomlete nfomaton ynamc games of ncomlete nfomaton Statc v. dynamc

More information

SMARANDACHE-GALOIS FIELDS

SMARANDACHE-GALOIS FIELDS SMARANDACHE-GALOIS FIELDS W. B. Vasantha Kandasamy Deartment of Mathematcs Indan Insttute of Technology, Madras Chenna - 600 036, Inda. E-mal: vasantak@md3.vsnl.net.n Abstract: In ths aer we study the

More information

Physics 111. Lecture 38 (Walker: ) Phase Change Latent Heat. May 6, The Three Basic Phases of Matter. Solid Liquid Gas

Physics 111. Lecture 38 (Walker: ) Phase Change Latent Heat. May 6, The Three Basic Phases of Matter. Solid Liquid Gas Physics 111 Lctu 38 (Walk: 17.4-5) Phas Chang May 6, 2009 Lctu 38 1/26 Th Th Basic Phass of Matt Solid Liquid Gas Squnc of incasing molcul motion (and ngy) Lctu 38 2/26 If a liquid is put into a sald contain

More information

Exam 2 Solutions. Jonathan Turner 4/2/2012. CS 542 Advanced Data Structures and Algorithms

Exam 2 Solutions. Jonathan Turner 4/2/2012. CS 542 Advanced Data Structures and Algorithms CS 542 Avn Dt Stutu n Alotm Exm 2 Soluton Jontn Tun 4/2/202. (5 ont) Con n oton on t tton t tutu n w t n t 2 no. Wt t mllt num o no tt t tton t tutu oul ontn. Exln you nw. Sn n mut n you o u t n t, t n

More information

Today s topics. How did we solve the H atom problem? CMF Office Hours

Today s topics. How did we solve the H atom problem? CMF Office Hours CMF Offc ous Wd. Nov. 4 oo-p Mo. Nov. 9 oo-p Mo. Nov. 6-3p Wd. Nov. 8 :30-3:30 p Wd. Dc. 5 oo-p F. Dc. 7 4:30-5:30 Mo. Dc. 0 oo-p Wd. Dc. 4:30-5:30 p ouly xa o Th. Dc. 3 Today s topcs Bf vw of slctd sults

More information

First day August 1, Problems and Solutions

First day August 1, Problems and Solutions FOURTH INTERNATIONAL COMPETITION FOR UNIVERSITY STUDENTS IN MATHEMATICS July 30 August 4, 997, Plovdv, BULGARIA Frst day August, 997 Problems and Solutons Problem. Let {ε n } n= be a sequence of postve

More information

Power-sum problem, Bernoulli Numbers and Bernoulli Polynomials.

Power-sum problem, Bernoulli Numbers and Bernoulli Polynomials. Power-sum roblem, Bernoull Numbers and Bernoull Polynomals. Arady M. Alt Defnton 1 Power um Problem Fnd the sum n : 1... n where, n N or, usng sum notaton, n n n closed form. Recurrence for n Exercse Usng

More information

PARTIAL QUOTIENTS AND DISTRIBUTION OF SEQUENCES. Department of Mathematics University of California Riverside, CA

PARTIAL QUOTIENTS AND DISTRIBUTION OF SEQUENCES. Department of Mathematics University of California Riverside, CA PARTIAL QUOTIETS AD DISTRIBUTIO OF SEQUECES 1 Me-Chu Chang Deartment of Mathematcs Unversty of Calforna Rversde, CA 92521 mcc@math.ucr.edu Abstract. In ths aer we establsh average bounds on the artal quotents

More information

NTRU Modulo p Flaw. Anas Ibrahim, Alexander Chefranov Computer Engineering Department Eastern Mediterranean University Famagusta, North Cyprus.

NTRU Modulo p Flaw. Anas Ibrahim, Alexander Chefranov Computer Engineering Department Eastern Mediterranean University Famagusta, North Cyprus. Internatonal Journal for Informaton Securty Research (IJISR), Volume 6, Issue 3, Setember 016 TRU Modulo Flaw Anas Ibrahm, Alexander Chefranov Comuter Engneerng Deartment Eastern Medterranean Unversty

More information

multipath channel Li Wei, Youyun Xu, Yueming Cai and Xin Xu

multipath channel Li Wei, Youyun Xu, Yueming Cai and Xin Xu Robust quncy ost stmato o OFDM ov ast vayng multpath channl L W, Youyun Xu, Yumng Ca and Xn Xu Ths pap psnts a obust ca quncy ost(cfo stmaton algothm sutabl o ast vayng multpath channls. Th poposd algothm

More information

On New Selection Procedures for Unequal Probability Sampling

On New Selection Procedures for Unequal Probability Sampling Int. J. Oen Problems Comt. Math., Vol. 4, o. 1, March 011 ISS 1998-66; Coyrght ICSRS Publcaton, 011 www.-csrs.org On ew Selecton Procedures for Unequal Probablty Samlng Muhammad Qaser Shahbaz, Saman Shahbaz

More information

The Matrix Exponential

The Matrix Exponential Th Matrix Exponntial (with xrciss) by Dan Klain Vrsion 28928 Corrctions and commnts ar wlcom Th Matrix Exponntial For ach n n complx matrix A, dfin th xponntial of A to b th matrix () A A k I + A + k!

More information

Electromagnetics: The Smith Chart (9-6)

Electromagnetics: The Smith Chart (9-6) Elctomagntcs: Th Smth Chat (9-6 Yoonchan Jong School of Elctcal Engnng, Soul Natonal Unvsty Tl: 8 (0 880 63, Fax: 8 (0 873 9953 Emal: yoonchan@snu.ac.k A Confomal Mappng ( Mappng btwn complx-valud vaabls:

More information

5 The Rational Canonical Form

5 The Rational Canonical Form 5 The Ratonal Canoncal Form Here p s a monc rreducble factor of the mnmum polynomal m T and s not necessarly of degree one Let F p denote the feld constructed earler n the course, consstng of all matrces

More information

Affine transformations and convexity

Affine transformations and convexity Affne transformatons and convexty The purpose of ths document s to prove some basc propertes of affne transformatons nvolvng convex sets. Here are a few onlne references for background nformaton: http://math.ucr.edu/

More information

4.8 Huffman Codes. Wordle. Encoding Text. Encoding Text. Prefix Codes. Encoding Text

4.8 Huffman Codes. Wordle. Encoding Text. Encoding Text. Prefix Codes. Encoding Text 2/26/2 Word A word a word coag. A word contrctd ot of on of th ntrctor ar: 4.8 Hffan Cod word contrctd ng th java at at word.nt word a randozd grdy agorth to ov th ackng rob Encodng Txt Q. Gvn a txt that

More information

School of Electrical Engineering. Lecture 2: Wire Antennas

School of Electrical Engineering. Lecture 2: Wire Antennas School of lctical ngining Lctu : Wi Antnnas Wi antnna It is an antnna which mak us of mtallic wis to poduc a adiation. KT School of lctical ngining www..kth.s Dipol λ/ Th most common adiato: λ Dipol 3λ/

More information

VISUALIZATION OF DIFFERENTIAL GEOMETRY UDC 514.7(045) : : Eberhard Malkowsky 1, Vesna Veličković 2

VISUALIZATION OF DIFFERENTIAL GEOMETRY UDC 514.7(045) : : Eberhard Malkowsky 1, Vesna Veličković 2 FACTA UNIVERSITATIS Srs: Mchancs, Automatc Control Robotcs Vol.3, N o, 00, pp. 7-33 VISUALIZATION OF DIFFERENTIAL GEOMETRY UDC 54.7(045)54.75.6:59.688:59.673 Ebrhard Malkowsky, Vsna Vlčkovć Dpartmnt of

More information

te Finance (4th Edition), July 2017.

te Finance (4th Edition), July 2017. Appndx Chaptr. Tchncal Background Gnral Mathmatcal and Statstcal Background Fndng a bas: 3 2 = 9 3 = 9 1 /2 x a = b x = b 1/a A powr of 1 / 2 s also quvalnt to th squar root opraton. Fndng an xponnt: 3

More information

8 Baire Category Theorem and Uniform Boundedness

8 Baire Category Theorem and Uniform Boundedness 8 Bae Categoy Theoem and Unfom Boundedness Pncple 8.1 Bae s Categoy Theoem Valdty of many esults n analyss depends on the completeness popety. Ths popety addesses the nadequacy of the system of atonal

More information

The Penalty Cost Functional for the Two-Dimensional Energized Wave Equation

The Penalty Cost Functional for the Two-Dimensional Energized Wave Equation Lonardo Jornal of Scncs ISSN 583-033 Iss 9, Jly-Dcmbr 006 p. 45-5 Th Pnalty Cost Fnctonal for th Two-Dmnsonal Enrgd Wav Eqaton Vctor Onoma WAZIRI, Snday Agsts REJU Mathmatcs/Comptr Scnc dpartmnt, Fdral

More information

and integrated over all, the result is f ( 0) ] //Fourier transform ] //inverse Fourier transform

and integrated over all, the result is f ( 0) ] //Fourier transform ] //inverse Fourier transform NANO 70-Nots Chapt -Diactd bams Dlta uctio W d som mathmatical tools to dvlop a physical thoy o lcto diactio. Idal cystals a iiit this, so th will b som iiitis lii about. Usually, th iiit quatity oly ists

More information

The Matrix Exponential

The Matrix Exponential Th Matrix Exponntial (with xrciss) by D. Klain Vrsion 207.0.05 Corrctions and commnts ar wlcom. Th Matrix Exponntial For ach n n complx matrix A, dfin th xponntial of A to b th matrix A A k I + A + k!

More information

IV. Transport Phenomena Lecture 35: Porous Electrodes (I. Supercapacitors)

IV. Transport Phenomena Lecture 35: Porous Electrodes (I. Supercapacitors) IV. Transort Phnomna Lctur 35: Porous Elctrods (I. Surcaactors) MIT Studnt (and MZB) 1. Effctv Equatons for Thn Doubl Layrs For surcaactor lctrods, convcton s usually nglgbl, and w dro out convcton trms

More information