8 Baire Category Theorem and Uniform Boundedness

Size: px
Start display at page:

Download "8 Baire Category Theorem and Uniform Boundedness"

Transcription

1 8 Bae Categoy Theoem and Unfom Boundedness Pncple 8.1 Bae s Categoy Theoem Valdty of many esults n analyss depends on the completeness popety. Ths popety addesses the nadequacy of the system of atonal numbes. The manne n whch completeness of a metc space X s typcally exploted s that the ntesecton of nested closed balls B(x 1, 1 ) B(x 2, 2 ) B(x n, n ) wth n 0 s non-tval. To see that ths s the case, we obseve that the sequence x n satsfes fo m n, d(x n, x m ) n. (1) Ths mples that ths sequence s Cauchy, and x n x fo some x X. It follows fom (1) that d(x n, x) n, so that the lmt x gves a pont n the ntesecton n 1 B(xn, n ). A vaaton of ths agument also gves: Theoem 8.1 (Bae s Categoy Theoem). Let X be a complete metc space and U n, n 1, a collecton of open dense subsets of X. Then the ntesecton n 1 U n s dense n X. Poof. It s suffcent to show that n 1 U n ntesects non-tvally any ball B(x 0, 0 ) wth adus 0 (0, 1). We constuct a sequence of nested open balls B(x n, n ) nductvely. Gven a ball B(x n 1, n 1 ), we obseve that U n B(x n 1, n 1 ) s non-empty and open. So that we can choose x n, n so that B(x n, n ) U n B(x n 1, n 1 ). We may also choose n s so that n 0. Then by ou pevous dscusson, thee exsts x n 1 B(xn, n ). We obtan that fo evey n, x B(x n, n ) U n B(x 0, 0 ), whch completes the poof. It s natual to thnk about open dense sets (and the countable ntesectons) as lage subsets of X, and the complements as small subsets of X. Ths motvates the followng defnton. Defnton 8.2. Let X be a metc space and M a subset of X. M s called ae (o nowhee dense) f ts closue M has no nteo ponts. M s called meage (o of fst categoy) n X f t s a countable unon of ae sets. Othewse M s called nonmeage (o of second categoy). 1

2 Example. Q s not ae n R because ts closue s all of R. But Q {0} s ae n R 2, ts closue beng R {0}, whch has no nteo ponts as a subset of R 2. Q n s meage n R n, beng a countable unon of ponts. The Bae Categoy Theoem can be also estated as follows: Theoem 8.3 (Bae s Categoy Theoem). A nonempty complete metc space X s nonmeage. Poof. Suppose that n contay X = n 1 M n (2) whee M k s ae closed sets wth empty nteo. Then the sets X\M n ae open and dense. Hence, by Theoem 8.1, U n. n 1 Ths mples that the complement X\ U n = M n X, n 1 n 1 whch gves a contadcton. Hence, X cannot be meage. 8.2 Applcaton: nowhee dffeentable functons The Bae Categoy Theoem s a vey useful tool fo showng exstence of objects wth pecula popetes. We demonstate how ths woks by showng that thee s contnuous functon whch s not dffeentable at even a sngle pont. Theoem 8.4. The subset D = {f C[a, b] : f s dffeentable at some x [a, b]} s a meage subset of C[a, b]. Snce the space C[a, b] s complete, t follows that D C[a, b], and thee exst functons whch ae nowhee dffeentable. In some sense, Theoem 8.4 tells us that most contnuous functons ae nowhee dffeentable. Poof. Fo n, m 1, consde the sets { } A n,m = f C[a, b] : x : f(t) f(x) t x n fo all 0 < x t < 1 m. 2

3 Recall that f s dffeentable at x f the lmt exsts. So that t s clea that f (x) = lm t x f(t) f(x) t x D n,m 1 A n,m. It emans to show that the sets A m,n ae ae. Fst we show that A n,m s closed. Suppose that f f n C[a, b] and all f D. Then thee exsts x [a, b] such that f (t) f (x ) t x n fo all 0 < x t < 1 m. Passng to a subsequence, we may assume that x x fo some x [a, b]. Then f 0 < x t < 1 m, then fo suffcently lage n, we also have 0 < x t < 1 m, and f(t) f(x) t x = lm f (t) f (x ) t x n. Ths poves that the sets A n,m ae closed. Now we show that the sets A n,m have empty nteos. Suppose that A m,n contans an open ball B(f, ɛ) fo some f C[a, b]. Usng unfom contnuty, one shows that the subspace of pecewse lnea contnuous functons s dense n C[a, b]. Hence, wthout loss of genealty we may assume that f s pecewse lnea. Fo pecewse lnea contnuous functons, the one-sded devatves f +(x) and f (x) always exst, and they ae unfomly bounded: fo some M > 0, f ±(x) M fo all x [a, b]. We obseve that evey functon g = f + ɛ 2 φ wth φ C[a, b] such that φ 1 belongs to B(f, ɛ) A n,m. In patcula, t follows that thee exsts x 0 [a, b] such that g ±(x 0 ) n. (3) Fo evey K > 0, one can constuct (execse) a pecewse lnea functon φ such that φ 1 and φ ±(x) > K. Then fo all x [a, b], g ±(x) ɛ 2 φ ±(x) f ±(x) ɛ 2 K M. Takng K = K(ɛ, M) suffcently lage, we obtan g ±(x) > n fo all x, but ths contadcts (3). Hence, the sets A n,m have empty nteos. 3

4 8.3 Unfom boundedness pncple The unfom boundedness pncple answes the queston of whethe a pontwse bounded sequence of bounded lnea opeatos must also be unfomly bounded. Theoem 8.5 (Unfom Boundedness Pncple; Banach Stenhaus). Let X be a Banach space and Y be a nomed space. Suppose that the sequence T n B(X, Y ) of bounded lnea opeatos has the popety that fo evey x X, the sequence T n (x) Y s bounded. Then the sequence of noms T n s bounded. Let us llustate the Unfom Boundedness Pncple by an example. Example 8.6. Let { } X = p(x) = α 0 + α 1 x + α 2 x α d x d α F, d N {0}, be the space of polynomals equpped wth the nom p = max α. We eadly see that ths tuns X nto a nomed space. We gve an example of a sequence of lnea maps T n : X F whch ae pontwse bounded but not unfomly bounded. Let We obseve that T n (p) = α α n 1. T n (p) = α 0 + α α n 1 α α n 1 n p, so that T n n. In fact, ths estmate can be mpoved fo polynomals p of degee d as follows: T n (p) = α 0 + α α n 1 α 0 + α α d α 0 + α α d d p, Ths shows that the sequence (T n (p)) n 1 s bounded fo evey p. Howeve, we clam that T n = n. Indeed, fo p n (x) = 1 + x + x x n 1, we have p n = 1, and T n (p n ) = n, whch mples the clam. In ths example, the sequence (T n (p)) n 1 s pontwse bounded, but not unfomly bounded, contay to the concluson of the Unfom Boundedness Pncple. The Unfom Boundedness Pncple fals hee because the space X s not complete. We gve a concete applcaton of the Unfom Boundedness Pncple. 4

5 Example 8.7. Suppose we have a sequence of complex numbes x = (x n ) n 1 wth the popety that wheneve y = (y n ) n 1 s a sequence satsfng y n 0, we have that the sum n=1 x ny n conveges. Show that n=1 x n conveges. The fst step s of couse to tanslate ths poblem nto a moe convenent functonal analytc settng. The condton that the sequence y conveges to 0 s smply the statement that y s a membe of the space c 0 = {y l : y n 0 as n }. One can show that c 0 s a Banach space when equpped wth the nom. We leave ths as an execse. We ae equed to show that x l 1. Snce we would lke to use the Unfom Boundedness Pncple n some way, let us stat by fndng a sequence T n B(c 0, Y ) whee Y s some nomed space. One natual choce s to let T n (y) = n x y whee y = (y 1, y 2,... ) c 0 be the tuncated sum whch we have assumed conveges. It s clea that T n B(c 0, C) = (c 0 ). Indeed, the calculaton ( n n n ) T n (y) = x y x y x y shows that T n s ae bounded opeatos wth T n n x. In fact, we can do bette: the assumpton that x y conveges fo any y c 0 mples that fo any y c 0, the sequence (T n (y)) n 1 s convegent, hence bounded. So (T n ) n 1 s a pontwse bounded sequence of opeatos. Theefoe, by the Unfom Boundedness Pncple, t s unfomly bounded, meanng that thee s some M > 0 such that T n M fo all n N. We clam that T n = n x. Wthout loss of genealty, we may assume that x 0. We consde y (n) = (y (n) ) 1 c 0 defned by Then y (n) = { x (n) / x (n) f n and x 0, 0 othewse. T n (y (n) ) = n x, and y (n) = 1 unless y (n) = 0. Ths mples that T n n x. The opposte nequalty has aleady been poven above. We conclude that n x M fo all n, and x conveges. 5

6 8.4 Poof of the Unfom Boundedness Pncple The poof of the Unfom Boundedness Pncple s an applcaton of Bae s Categoy Theoem. Let us defne the sets M k = {x X : T n (x) k fo all n}, k 1. Snce T n s ae contnuous, these sets ae closed. Snce fo evey x X, the sequence T n (x) s bounded, we have x M k fo suffcently lage k. Theefoe, X = k 1 M k. Bae s categoy theoem now guaantees that one of these closed sets contans an open ball, say B(x 0, ) M k0. We theefoe have that T n (x) k 0 fo any x B(x 0, ) and n 1. Now let x X, x 0. Then the vecto z = x x x belongs to B(x 0, ) and x = 2 x (z x 0 ). Usng ths, we calculate T n (x) = 2 x T n (z) T n (x 0 ) 2 x 4k 0 x. ( T n (z) + T n (x 0 ) ) Hence, T n 4k 0 bounded. fo all n N, povng that the sequence s unfomly 6

Set of square-integrable function 2 L : function space F

Set of square-integrable function 2 L : function space F Set of squae-ntegable functon L : functon space F Motvaton: In ou pevous dscussons we have seen that fo fee patcles wave equatons (Helmholt o Schödnge) can be expessed n tems of egenvalue equatons. H E,

More information

Brief summary of functional analysis APPM 5440 Fall 2014 Applied Analysis

Brief summary of functional analysis APPM 5440 Fall 2014 Applied Analysis Bief summay of functional analysis APPM 5440 Fall 014 Applied Analysis Stephen Becke, stephen.becke@coloado.edu Standad theoems. When necessay, I used Royden s and Keyzsig s books as a efeence. Vesion

More information

If there are k binding constraints at x then re-label these constraints so that they are the first k constraints.

If there are k binding constraints at x then re-label these constraints so that they are the first k constraints. Mathematcal Foundatons -1- Constaned Optmzaton Constaned Optmzaton Ma{ f ( ) X} whee X {, h ( ), 1,, m} Necessay condtons fo to be a soluton to ths mamzaton poblem Mathematcally, f ag Ma{ f ( ) X}, then

More information

APPLICATIONS OF SEMIGENERALIZED -CLOSED SETS

APPLICATIONS OF SEMIGENERALIZED -CLOSED SETS Intenatonal Jounal of Mathematcal Engneeng Scence ISSN : 22776982 Volume Issue 4 (Apl 202) http://www.mes.com/ https://stes.google.com/ste/mesounal/ APPLICATIONS OF SEMIGENERALIZED CLOSED SETS G.SHANMUGAM,

More information

APPENDIX A Some Linear Algebra

APPENDIX A Some Linear Algebra APPENDIX A Some Lnear Algebra The collecton of m, n matrces A.1 Matrces a 1,1,..., a 1,n A = a m,1,..., a m,n wth real elements a,j s denoted by R m,n. If n = 1 then A s called a column vector. Smlarly,

More information

Generating Functions, Weighted and Non-Weighted Sums for Powers of Second-Order Recurrence Sequences

Generating Functions, Weighted and Non-Weighted Sums for Powers of Second-Order Recurrence Sequences Geneatng Functons, Weghted and Non-Weghted Sums fo Powes of Second-Ode Recuence Sequences Pantelmon Stăncă Aubun Unvesty Montgomey, Depatment of Mathematcs Montgomey, AL 3614-403, USA e-mal: stanca@studel.aum.edu

More information

Chapter Fifiteen. Surfaces Revisited

Chapter Fifiteen. Surfaces Revisited Chapte Ffteen ufaces Revsted 15.1 Vecto Descpton of ufaces We look now at the vey specal case of functons : D R 3, whee D R s a nce subset of the plane. We suppose s a nce functon. As the pont ( s, t)

More information

Physics 11b Lecture #2. Electric Field Electric Flux Gauss s Law

Physics 11b Lecture #2. Electric Field Electric Flux Gauss s Law Physcs 11b Lectue # Electc Feld Electc Flux Gauss s Law What We Dd Last Tme Electc chage = How object esponds to electc foce Comes n postve and negatve flavos Conseved Electc foce Coulomb s Law F Same

More information

STEINHAUS PROPERTY IN BANACH LATTICES

STEINHAUS PROPERTY IN BANACH LATTICES DEPARTMENT OF MATHEMATICS TECHNICAL REPORT STEINHAUS PROPERTY IN BANACH LATTICES DAMIAN KUBIAK AND DAVID TIDWELL SPRING 2015 No. 2015-1 TENNESSEE TECHNOLOGICAL UNIVERSITY Cookevlle, TN 38505 STEINHAUS

More information

REAL ANALYSIS I HOMEWORK 1

REAL ANALYSIS I HOMEWORK 1 REAL ANALYSIS I HOMEWORK CİHAN BAHRAN The questons are from Tao s text. Exercse 0.0.. If (x α ) α A s a collecton of numbers x α [0, + ] such that x α

More information

Math 702 Midterm Exam Solutions

Math 702 Midterm Exam Solutions Math 702 Mdterm xam Solutons The terms measurable, measure, ntegrable, and almost everywhere (a.e.) n a ucldean space always refer to Lebesgue measure m. Problem. [6 pts] In each case, prove the statement

More information

Links in edge-colored graphs

Links in edge-colored graphs Lnks n edge-coloed gaphs J.M. Becu, M. Dah, Y. Manoussaks, G. Mendy LRI, Bât. 490, Unvesté Pas-Sud 11, 91405 Osay Cedex, Fance Astact A gaph s k-lnked (k-edge-lnked), k 1, f fo each k pas of vetces x 1,

More information

Appendix B. Criterion of Riemann-Stieltjes Integrability

Appendix B. Criterion of Riemann-Stieltjes Integrability Appendx B. Crteron of Remann-Steltes Integrablty Ths note s complementary to [R, Ch. 6] and [T, Sec. 3.5]. The man result of ths note s Theorem B.3, whch provdes the necessary and suffcent condtons for

More information

PHYS 705: Classical Mechanics. Derivation of Lagrange Equations from D Alembert s Principle

PHYS 705: Classical Mechanics. Derivation of Lagrange Equations from D Alembert s Principle 1 PHYS 705: Classcal Mechancs Devaton of Lagange Equatons fom D Alembet s Pncple 2 D Alembet s Pncple Followng a smla agument fo the vtual dsplacement to be consstent wth constants,.e, (no vtual wok fo

More information

Integral Vector Operations and Related Theorems Applications in Mechanics and E&M

Integral Vector Operations and Related Theorems Applications in Mechanics and E&M Dola Bagayoko (0) Integal Vecto Opeatons and elated Theoems Applcatons n Mechancs and E&M Ι Basc Defnton Please efe to you calculus evewed below. Ι, ΙΙ, andιιι notes and textbooks fo detals on the concepts

More information

Solution to HW 3, Ma 1a Fall 2016

Solution to HW 3, Ma 1a Fall 2016 Solution to HW 3, Ma a Fall 206 Section 2. Execise 2: Let C be a subset of the eal numbes consisting of those eal numbes x having the popety that evey digit in the decimal expansion of x is, 3, 5, o 7.

More information

A. Proofs for learning guarantees

A. Proofs for learning guarantees Leanng Theoy and Algoths fo Revenue Optzaton n Second-Pce Auctons wth Reseve A. Poofs fo leanng guaantees A.. Revenue foula The sple expesson of the expected evenue (2) can be obtaned as follows: E b Revenue(,

More information

Energy in Closed Systems

Energy in Closed Systems Enegy n Closed Systems Anamta Palt palt.anamta@gmal.com Abstact The wtng ndcates a beakdown of the classcal laws. We consde consevaton of enegy wth a many body system n elaton to the nvese squae law and

More information

4 SingularValue Decomposition (SVD)

4 SingularValue Decomposition (SVD) /6/00 Z:\ jeh\self\boo Kannan\Jan-5-00\4 SVD 4 SngulaValue Decomposton (SVD) Chapte 4 Pat SVD he sngula value decomposton of a matx s the factozaton of nto the poduct of thee matces = UDV whee the columns

More information

Chapter 23: Electric Potential

Chapter 23: Electric Potential Chapte 23: Electc Potental Electc Potental Enegy It tuns out (won t show ths) that the tostatc foce, qq 1 2 F ˆ = k, s consevatve. 2 Recall, fo any consevatve foce, t s always possble to wte the wok done

More information

INTRODUCTION. consider the statements : I there exists x X. f x, such that. II there exists y Y. such that g y

INTRODUCTION. consider the statements : I there exists x X. f x, such that. II there exists y Y. such that g y INRODUCION hs dssetaton s the eadng of efeences [1], [] and [3]. Faas lemma s one of the theoems of the altenatve. hese theoems chaacteze the optmalt condtons of seveal mnmzaton poblems. It s nown that

More information

Linear, affine, and convex sets and hulls In the sequel, unless otherwise specified, X will denote a real vector space.

Linear, affine, and convex sets and hulls In the sequel, unless otherwise specified, X will denote a real vector space. Lnear, affne, and convex sets and hulls In the sequel, unless otherwse specfed, X wll denote a real vector space. Lnes and segments. Gven two ponts x, y X, we defne xy = {x + t(y x) : t R} = {(1 t)x +

More information

Groupoid and Topological Quotient Group

Groupoid and Topological Quotient Group lobal Jounal of Pue and Appled Mathematcs SSN 0973-768 Volume 3 Numbe 7 07 pp 373-39 Reseach nda Publcatons http://wwwpublcatoncom oupod and Topolocal Quotent oup Mohammad Qasm Manna Depatment of Mathematcs

More information

More metrics on cartesian products

More metrics on cartesian products More metrcs on cartesan products If (X, d ) are metrc spaces for 1 n, then n Secton II4 of the lecture notes we defned three metrcs on X whose underlyng topologes are the product topology The purpose of

More information

Exercise Solutions to Real Analysis

Exercise Solutions to Real Analysis xercse Solutons to Real Analyss Note: References refer to H. L. Royden, Real Analyss xersze 1. Gven any set A any ɛ > 0, there s an open set O such that A O m O m A + ɛ. Soluton 1. If m A =, then there

More information

Lectures - Week 4 Matrix norms, Conditioning, Vector Spaces, Linear Independence, Spanning sets and Basis, Null space and Range of a Matrix

Lectures - Week 4 Matrix norms, Conditioning, Vector Spaces, Linear Independence, Spanning sets and Basis, Null space and Range of a Matrix Lectures - Week 4 Matrx norms, Condtonng, Vector Spaces, Lnear Independence, Spannng sets and Bass, Null space and Range of a Matrx Matrx Norms Now we turn to assocatng a number to each matrx. We could

More information

Khintchine-Type Inequalities and Their Applications in Optimization

Khintchine-Type Inequalities and Their Applications in Optimization Khntchne-Type Inequaltes and The Applcatons n Optmzaton Anthony Man-Cho So Depatment of Systems Engneeng & Engneeng Management The Chnese Unvesty of Hong Kong ISDS-Kolloquum Unvestaet Wen 29 June 2009

More information

MAT 578 Functional Analysis

MAT 578 Functional Analysis MAT 578 Functonal Analyss John Qugg Fall 2008 Locally convex spaces revsed September 6, 2008 Ths secton establshes the fundamental propertes of locally convex spaces. Acknowledgment: although I wrote these

More information

THE CONE THEOREM JOEL A. TROPP. Abstract. We prove a fixed point theorem for functions which are positive with respect to a cone in a Banach space.

THE CONE THEOREM JOEL A. TROPP. Abstract. We prove a fixed point theorem for functions which are positive with respect to a cone in a Banach space. THE ONE THEOEM JOEL A. TOPP Abstact. We pove a fixed point theoem fo functions which ae positive with espect to a cone in a Banach space. 1. Definitions Definition 1. Let X be a eal Banach space. A subset

More information

THE CHINESE REMAINDER THEOREM. We should thank the Chinese for their wonderful remainder theorem. Glenn Stevens

THE CHINESE REMAINDER THEOREM. We should thank the Chinese for their wonderful remainder theorem. Glenn Stevens THE CHINESE REMAINDER THEOREM KEITH CONRAD We should thank the Chnese for ther wonderful remander theorem. Glenn Stevens 1. Introducton The Chnese remander theorem says we can unquely solve any par of

More information

3. A Review of Some Existing AW (BT, CT) Algorithms

3. A Review of Some Existing AW (BT, CT) Algorithms 3. A Revew of Some Exstng AW (BT, CT) Algothms In ths secton, some typcal ant-wndp algothms wll be descbed. As the soltons fo bmpless and condtoned tansfe ae smla to those fo ant-wndp, the pesented algothms

More information

Lecture 3. Ax x i a i. i i

Lecture 3. Ax x i a i. i i 18.409 The Behavor of Algorthms n Practce 2/14/2 Lecturer: Dan Spelman Lecture 3 Scrbe: Arvnd Sankar 1 Largest sngular value In order to bound the condton number, we need an upper bound on the largest

More information

Math 301: The Erdős-Stone-Simonovitz Theorem and Extremal Numbers for Bipartite Graphs

Math 301: The Erdős-Stone-Simonovitz Theorem and Extremal Numbers for Bipartite Graphs Math 30: The Edős-Stone-Simonovitz Theoem and Extemal Numbes fo Bipatite Gaphs May Radcliffe The Edős-Stone-Simonovitz Theoem Recall, in class we poved Tuán s Gaph Theoem, namely Theoem Tuán s Theoem Let

More information

Part V: Velocity and Acceleration Analysis of Mechanisms

Part V: Velocity and Acceleration Analysis of Mechanisms Pat V: Velocty an Acceleaton Analyss of Mechansms Ths secton wll evew the most common an cuently pactce methos fo completng the knematcs analyss of mechansms; escbng moton though velocty an acceleaton.

More information

= y and Normed Linear Spaces

= y and Normed Linear Spaces 304-50 LINER SYSTEMS Lectue 8: Solutos to = ad Nomed Lea Spaces 73 Fdg N To fd N, we eed to chaacteze all solutos to = 0 Recall that ow opeatos peseve N, so that = 0 = 0 We ca solve = 0 ecusvel backwads

More information

Math 205A Homework #2 Edward Burkard. Assume each composition with a projection is continuous. Let U Y Y be an open set.

Math 205A Homework #2 Edward Burkard. Assume each composition with a projection is continuous. Let U Y Y be an open set. Math 205A Homework #2 Edward Burkard Problem - Determne whether the topology T = fx;?; fcg ; fa; bg ; fa; b; cg ; fa; b; c; dgg s Hausdor. Choose the two ponts a; b 2 X. Snce there s no two dsjont open

More information

UNIT10 PLANE OF REGRESSION

UNIT10 PLANE OF REGRESSION UIT0 PLAE OF REGRESSIO Plane of Regesson Stuctue 0. Intoducton Ojectves 0. Yule s otaton 0. Plane of Regesson fo thee Vaales 0.4 Popetes of Resduals 0.5 Vaance of the Resduals 0.6 Summay 0.7 Solutons /

More information

ON INDEPENDENT SETS IN PURELY ATOMIC PROBABILITY SPACES WITH GEOMETRIC DISTRIBUTION. 1. Introduction. 1 r r. r k for every set E A, E \ {0},

ON INDEPENDENT SETS IN PURELY ATOMIC PROBABILITY SPACES WITH GEOMETRIC DISTRIBUTION. 1. Introduction. 1 r r. r k for every set E A, E \ {0}, ON INDEPENDENT SETS IN PURELY ATOMIC PROBABILITY SPACES WITH GEOMETRIC DISTRIBUTION E. J. IONASCU and A. A. STANCU Abstact. We ae inteested in constucting concete independent events in puely atomic pobability

More information

SOME SOLVABILITY THEOREMS FOR NONLINEAR EQUATIONS

SOME SOLVABILITY THEOREMS FOR NONLINEAR EQUATIONS Fixed Point Theoy, Volume 5, No. 1, 2004, 71-80 http://www.math.ubbcluj.o/ nodeacj/sfptcj.htm SOME SOLVABILITY THEOREMS FOR NONLINEAR EQUATIONS G. ISAC 1 AND C. AVRAMESCU 2 1 Depatment of Mathematics Royal

More information

20. Mon, Oct. 13 What we have done so far corresponds roughly to Chapters 2 & 3 of Lee. Now we turn to Chapter 4. The first idea is connectedness.

20. Mon, Oct. 13 What we have done so far corresponds roughly to Chapters 2 & 3 of Lee. Now we turn to Chapter 4. The first idea is connectedness. 20. Mon, Oct. 13 What we have done so far corresponds roughly to Chapters 2 & 3 of Lee. Now we turn to Chapter 4. The frst dea s connectedness. Essentally, we want to say that a space cannot be decomposed

More information

Week 2. This week, we covered operations on sets and cardinality.

Week 2. This week, we covered operations on sets and cardinality. Week 2 Ths week, we covered operatons on sets and cardnalty. Defnton 0.1 (Correspondence). A correspondence between two sets A and B s a set S contaned n A B = {(a, b) a A, b B}. A correspondence from

More information

K-QUASICONVEXITY REDUCES TO QUASICONVEXITY

K-QUASICONVEXITY REDUCES TO QUASICONVEXITY K-UASICONVEXITY REDUCES TO UASICONVEXITY F. CAGNETTI Abstact. The elaton between quasconvexty and -quasconvexty,, s nvestgated. It s shown that evey smooth stctly -quasconvex ntegand wth p-gowth at nfnty,

More information

24-2: Electric Potential Energy. 24-1: What is physics

24-2: Electric Potential Energy. 24-1: What is physics D. Iyad SAADEDDIN Chapte 4: Electc Potental Electc potental Enegy and Electc potental Calculatng the E-potental fom E-feld fo dffeent chage dstbutons Calculatng the E-feld fom E-potental Potental of a

More information

Ranks of quotients, remainders and p-adic digits of matrices

Ranks of quotients, remainders and p-adic digits of matrices axv:1401.6667v2 [math.nt] 31 Jan 2014 Ranks of quotents, emandes and p-adc dgts of matces Mustafa Elshekh Andy Novocn Mak Gesbecht Abstact Fo a pme p and a matx A Z n n, wte A as A = p(a quo p)+ (A em

More information

Professor Wei Zhu. 1. Sampling from the Normal Population

Professor Wei Zhu. 1. Sampling from the Normal Population AMS570 Pofesso We Zhu. Samplg fom the Nomal Populato *Example: We wsh to estmate the dstbuto of heghts of adult US male. It s beleved that the heght of adult US male follows a omal dstbuto N(, ) Def. Smple

More information

Spectral Graph Theory and its Applications September 16, Lecture 5

Spectral Graph Theory and its Applications September 16, Lecture 5 Spectral Graph Theory and ts Applcatons September 16, 2004 Lecturer: Danel A. Spelman Lecture 5 5.1 Introducton In ths lecture, we wll prove the followng theorem: Theorem 5.1.1. Let G be a planar graph

More information

CSJM University Class: B.Sc.-II Sub:Physics Paper-II Title: Electromagnetics Unit-1: Electrostatics Lecture: 1 to 4

CSJM University Class: B.Sc.-II Sub:Physics Paper-II Title: Electromagnetics Unit-1: Electrostatics Lecture: 1 to 4 CSJM Unvesty Class: B.Sc.-II Sub:Physcs Pape-II Ttle: Electomagnetcs Unt-: Electostatcs Lectue: to 4 Electostatcs: It deals the study of behavo of statc o statonay Chages. Electc Chage: It s popety by

More information

k. s k=1 Part of the significance of the Riemann zeta-function stems from Theorem 9.2. If s > 1 then 1 p s

k. s k=1 Part of the significance of the Riemann zeta-function stems from Theorem 9.2. If s > 1 then 1 p s 9 Pimes in aithmetic ogession Definition 9 The Riemann zeta-function ζs) is the function which assigns to a eal numbe s > the convegent seies k s k Pat of the significance of the Riemann zeta-function

More information

Hamiltonian multivector fields and Poisson forms in multisymplectic field theory

Hamiltonian multivector fields and Poisson forms in multisymplectic field theory JOURNAL OF MATHEMATICAL PHYSICS 46, 12005 Hamltonan multvecto felds and Posson foms n multsymplectc feld theoy Mchael Foge a Depatamento de Matemátca Aplcada, Insttuto de Matemátca e Estatístca, Unvesdade

More information

GENERALIZATION OF AN IDENTITY INVOLVING THE GENERALIZED FIBONACCI NUMBERS AND ITS APPLICATIONS

GENERALIZATION OF AN IDENTITY INVOLVING THE GENERALIZED FIBONACCI NUMBERS AND ITS APPLICATIONS #A39 INTEGERS 9 (009), 497-513 GENERALIZATION OF AN IDENTITY INVOLVING THE GENERALIZED FIBONACCI NUMBERS AND ITS APPLICATIONS Mohaad Faokh D. G. Depatent of Matheatcs, Fedows Unvesty of Mashhad, Mashhad,

More information

Machine Learning 4771

Machine Learning 4771 Machne Leanng 4771 Instucto: Tony Jebaa Topc 6 Revew: Suppot Vecto Machnes Pmal & Dual Soluton Non-sepaable SVMs Kenels SVM Demo Revew: SVM Suppot vecto machnes ae (n the smplest case) lnea classfes that

More information

Density Functional Theory I

Density Functional Theory I Densty Functonal Theoy I cholas M. Hason Depatment of Chemsty Impeal College Lonon & Computatonal Mateals Scence Daesbuy Laboatoy ncholas.hason@c.ac.uk Densty Functonal Theoy I The Many Electon Schönge

More information

Stanford University CS359G: Graph Partitioning and Expanders Handout 4 Luca Trevisan January 13, 2011

Stanford University CS359G: Graph Partitioning and Expanders Handout 4 Luca Trevisan January 13, 2011 Stanford Unversty CS359G: Graph Parttonng and Expanders Handout 4 Luca Trevsan January 3, 0 Lecture 4 In whch we prove the dffcult drecton of Cheeger s nequalty. As n the past lectures, consder an undrected

More information

Finding Dense Subgraphs in G(n, 1/2)

Finding Dense Subgraphs in G(n, 1/2) Fndng Dense Subgraphs n Gn, 1/ Atsh Das Sarma 1, Amt Deshpande, and Rav Kannan 1 Georga Insttute of Technology,atsh@cc.gatech.edu Mcrosoft Research-Bangalore,amtdesh,annan@mcrosoft.com Abstract. Fndng

More information

We call V a Banach space if it is complete, that is to say every Cauchy sequences in V converges to an element of V. (a (k) a (l) n ) (a (l)

We call V a Banach space if it is complete, that is to say every Cauchy sequences in V converges to an element of V. (a (k) a (l) n ) (a (l) Queston 1 Part () Suppose (a n ) =. Then sup{ a N} =. But a for all, so t follows that a = for all, that s to say (a n ) =. Let (a n ) c and α C. Then αa = α α for each, so α(a n ) = (αa n ) = sup{ α a

More information

RADIAL POSITIVE SOLUTIONS FOR A NONPOSITONE PROBLEM IN AN ANNULUS

RADIAL POSITIVE SOLUTIONS FOR A NONPOSITONE PROBLEM IN AN ANNULUS Electonic Jounal of Diffeential Equations, Vol. 04 (04), o. 9, pp. 0. ISS: 07-669. UL: http://ejde.math.txstate.edu o http://ejde.math.unt.edu ftp ejde.math.txstate.edu ADIAL POSITIVE SOLUTIOS FO A OPOSITOE

More information

P 365. r r r )...(1 365

P 365. r r r )...(1 365 SCIENCE WORLD JOURNAL VOL (NO4) 008 www.scecncewoldounal.og ISSN 597-64 SHORT COMMUNICATION ANALYSING THE APPROXIMATION MODEL TO BIRTHDAY PROBLEM *CHOJI, D.N. & DEME, A.C. Depatment of Mathematcs Unvesty

More information

Review of metric spaces. 1. Metric spaces, continuous maps, completeness

Review of metric spaces. 1. Metric spaces, continuous maps, completeness (March 14, 2014) Revew of metrc spaces Paul Garrett garrett@math.umn.edu http://www.math.umn.edu/ garrett/ [Ths document s http://www.math.umn.edu/ garrett/m/mfms/notes 2013-14/12a metrc spaces.pdf] We

More information

A STABILITY RESULT FOR p-harmonic SYSTEMS WITH DISCONTINUOUS COEFFICIENTS. Bianca Stroffolini. 0. Introduction

A STABILITY RESULT FOR p-harmonic SYSTEMS WITH DISCONTINUOUS COEFFICIENTS. Bianca Stroffolini. 0. Introduction Electonic Jounal of Diffeential Equations, Vol. 2001(2001), No. 02, pp. 1 7. ISSN: 1072-6691. URL: http://ejde.math.swt.edu o http://ejde.math.unt.edu ftp ejde.math.swt.edu (login: ftp) A STABILITY RESULT

More information

1. Summation. Let X be a set Finite summation. Suppose Y is a set and + : Y Y Y. is such that

1. Summation. Let X be a set Finite summation. Suppose Y is a set and + : Y Y Y. is such that 1. Summation. Let X be a set. 1.1. Finite summation. Suppose Y is a set and is such that + : Y Y Y (i) x + (y + z) (x + y) + z wheneve x, y, z Y ; (ii) x + y y + x wheneve x, y Y ; (iii) thee is 0 Y such

More information

Dirichlet s Theorem In Arithmetic Progressions

Dirichlet s Theorem In Arithmetic Progressions Drchlet s Theorem In Arthmetc Progressons Parsa Kavkan Hang Wang The Unversty of Adelade February 26, 205 Abstract The am of ths paper s to ntroduce and prove Drchlet s theorem n arthmetc progressons,

More information

Math1110 (Spring 2009) Prelim 3 - Solutions

Math1110 (Spring 2009) Prelim 3 - Solutions Math 1110 (Sprng 2009) Solutons to Prelm 3 (04/21/2009) 1 Queston 1. (16 ponts) Short answer. Math1110 (Sprng 2009) Prelm 3 - Solutons x a 1 (a) (4 ponts) Please evaluate lm, where a and b are postve numbers.

More information

Physics 207 Lecture 16

Physics 207 Lecture 16 Physcs 07 Lectue 6 Goals: Lectue 6 Chapte Extend the patcle odel to gd-bodes Undestand the equlbu of an extended object. Analyze ollng oton Undestand otaton about a fxed axs. Eploy consevaton of angula

More information

Engineering Mechanics. Force resultants, Torques, Scalar Products, Equivalent Force systems

Engineering Mechanics. Force resultants, Torques, Scalar Products, Equivalent Force systems Engneeng echancs oce esultants, Toques, Scala oducts, Equvalent oce sstems Tata cgaw-hll Companes, 008 Resultant of Two oces foce: acton of one bod on anothe; chaacteed b ts pont of applcaton, magntude,

More information

ON THE FRESNEL SINE INTEGRAL AND THE CONVOLUTION

ON THE FRESNEL SINE INTEGRAL AND THE CONVOLUTION IJMMS 3:37, 37 333 PII. S16117131151 http://jmms.hndaw.com Hndaw Publshng Cop. ON THE FRESNEL SINE INTEGRAL AND THE CONVOLUTION ADEM KILIÇMAN Receved 19 Novembe and n evsed fom 7 Mach 3 The Fesnel sne

More information

Assortment Optimization under MNL

Assortment Optimization under MNL Assortment Optmzaton under MNL Haotan Song Aprl 30, 2017 1 Introducton The assortment optmzaton problem ams to fnd the revenue-maxmzng assortment of products to offer when the prces of products are fxed.

More information

Temporal-Difference Learning

Temporal-Difference Learning .997 Decision-Making in Lage-Scale Systems Mach 17 MIT, Sping 004 Handout #17 Lectue Note 13 1 Tempoal-Diffeence Leaning We now conside the poblem of computing an appopiate paamete, so that, given an appoximation

More information

arxiv: v1 [math.nt] 12 May 2017

arxiv: v1 [math.nt] 12 May 2017 SEQUENCES OF CONSECUTIVE HAPPY NUMBERS IN NEGATIVE BASES HELEN G. GRUNDMAN AND PAMELA E. HARRIS axiv:1705.04648v1 [math.nt] 12 May 2017 ABSTRACT. Fo b 2 and e 2, let S e,b : Z Z 0 be the function taking

More information

Problem Set #10 Math 471 Real Analysis Assignment: Chapter 8 #2, 3, 6, 8

Problem Set #10 Math 471 Real Analysis Assignment: Chapter 8 #2, 3, 6, 8 Poblem Set #0 Math 47 Real Analysis Assignment: Chate 8 #2, 3, 6, 8 Clayton J. Lungstum Decembe, 202 xecise 8.2 Pove the convese of Hölde s inequality fo = and =. Show also that fo eal-valued f / L ),

More information

Method for Approximating Irrational Numbers

Method for Approximating Irrational Numbers Method fo Appoximating Iational Numbes Eic Reichwein Depatment of Physics Univesity of Califonia, Santa Cuz June 6, 0 Abstact I will put foth an algoithm fo poducing inceasingly accuate ational appoximations

More information

Rigid Bodies: Equivalent Systems of Forces

Rigid Bodies: Equivalent Systems of Forces Engneeng Statcs, ENGR 2301 Chapte 3 Rgd Bodes: Equvalent Sstems of oces Intoducton Teatment of a bod as a sngle patcle s not alwas possble. In geneal, the se of the bod and the specfc ponts of applcaton

More information

Genericity of Critical Types

Genericity of Critical Types Genercty of Crtcal Types Y-Chun Chen Alfredo D Tllo Eduardo Fangold Syang Xong September 2008 Abstract Ely and Pesk 2008 offers an nsghtful characterzaton of crtcal types: a type s crtcal f and only f

More information

Randomness and Computation

Randomness and Computation Randomness and Computaton or, Randomzed Algorthms Mary Cryan School of Informatcs Unversty of Ednburgh RC 208/9) Lecture 0 slde Balls n Bns m balls, n bns, and balls thrown unformly at random nto bns usually

More information

Online Appendix to Position Auctions with Budget-Constraints: Implications for Advertisers and Publishers

Online Appendix to Position Auctions with Budget-Constraints: Implications for Advertisers and Publishers Onlne Appendx to Poston Auctons wth Budget-Constants: Implcatons fo Advetses and Publshes Lst of Contents A. Poofs of Lemmas and Popostons B. Suppotng Poofs n the Equlbum Devaton B.1. Equlbum wth Low Resevaton

More information

Optimization Methods: Linear Programming- Revised Simplex Method. Module 3 Lecture Notes 5. Revised Simplex Method, Duality and Sensitivity analysis

Optimization Methods: Linear Programming- Revised Simplex Method. Module 3 Lecture Notes 5. Revised Simplex Method, Duality and Sensitivity analysis Optmzaton Meods: Lnea Pogammng- Revsed Smple Meod Module Lectue Notes Revsed Smple Meod, Dualty and Senstvty analyss Intoducton In e pevous class, e smple meod was dscussed whee e smple tableau at each

More information

Dirichlet Mixture Priors: Inference and Adjustment

Dirichlet Mixture Priors: Inference and Adjustment Dchlet Mxtue Pos: Infeence and Adustment Xugang Ye (Wokng wth Stephen Altschul and Y Kuo Yu) Natonal Cante fo Botechnology Infomaton Motvaton Real-wold obects Independent obsevatons Categocal data () (2)

More information

On the ratio of maximum and minimum degree in maximal intersecting families

On the ratio of maximum and minimum degree in maximal intersecting families On the atio of maximum and minimum degee in maximal intesecting families Zoltán Lóánt Nagy Lale Özkahya Balázs Patkós Máté Vize Septembe 5, 011 Abstact To study how balanced o unbalanced a maximal intesecting

More information

SELECTED SOLUTIONS, SECTION (Weak duality) Prove that the primal and dual values p and d defined by equations (4.3.2) and (4.3.3) satisfy p d.

SELECTED SOLUTIONS, SECTION (Weak duality) Prove that the primal and dual values p and d defined by equations (4.3.2) and (4.3.3) satisfy p d. SELECTED SOLUTIONS, SECTION 4.3 1. Weak dualty Prove that the prmal and dual values p and d defned by equatons 4.3. and 4.3.3 satsfy p d. We consder an optmzaton problem of the form The Lagrangan for ths

More information

First day August 1, Problems and Solutions

First day August 1, Problems and Solutions FOURTH INTERNATIONAL COMPETITION FOR UNIVERSITY STUDENTS IN MATHEMATICS July 30 August 4, 997, Plovdv, BULGARIA Frst day August, 997 Problems and Solutons Problem. Let {ε n } n= be a sequence of postve

More information

SOME NEW SELF-DUAL [96, 48, 16] CODES WITH AN AUTOMORPHISM OF ORDER 15. KEYWORDS: automorphisms, construction, self-dual codes

SOME NEW SELF-DUAL [96, 48, 16] CODES WITH AN AUTOMORPHISM OF ORDER 15. KEYWORDS: automorphisms, construction, self-dual codes Факултет по математика и информатика, том ХVІ С, 014 SOME NEW SELF-DUAL [96, 48, 16] CODES WITH AN AUTOMORPHISM OF ORDER 15 NIKOLAY I. YANKOV ABSTRACT: A new method fo constuctng bnay self-dual codes wth

More information

Dilations and Commutant Lifting for Jointly Isometric OperatorsA Geometric Approach

Dilations and Commutant Lifting for Jointly Isometric OperatorsA Geometric Approach jounal of functonal analyss 140, 300311 (1996) atcle no. 0109 Dlatons and Commutant Lftng fo Jontly Isometc OpeatosA Geometc Appoach K. R. M. Attele and A. R. Lubn Depatment of Mathematcs, Illnos Insttute

More information

A BANDWIDTH THEOREM FOR APPROXIMATE DECOMPOSITIONS

A BANDWIDTH THEOREM FOR APPROXIMATE DECOMPOSITIONS A BANDWIDTH THEOREM FOR APPROXIMATE DECOMPOSITIONS PADRAIG CONDON, JAEHOON KIM, DANIELA KÜHN AND DERYK OSTHUS Abstact. We povde a degee condton on a egula n-vetex gaph G whch ensues the exstence of a nea

More information

A THREE CRITICAL POINTS THEOREM AND ITS APPLICATIONS TO THE ORDINARY DIRICHLET PROBLEM

A THREE CRITICAL POINTS THEOREM AND ITS APPLICATIONS TO THE ORDINARY DIRICHLET PROBLEM A THREE CRITICAL POINTS THEOREM AND ITS APPLICATIONS TO THE ORDINARY DIRICHLET PROBLEM DIEGO AVERNA AND GABRIELE BONANNO Abstact. The aim of this pape is twofold. On one hand we establish a thee citical

More information

Modelli Clamfim Equazioni differenziali 7 ottobre 2013

Modelli Clamfim Equazioni differenziali 7 ottobre 2013 CLAMFIM Bologna Modell 1 @ Clamfm Equazon dfferenzal 7 ottobre 2013 professor Danele Rtell danele.rtell@unbo.t 1/18? Ordnary Dfferental Equatons A dfferental equaton s an equaton that defnes a relatonshp

More information

BOUNDEDNESS OF THE RIESZ TRANSFORM WITH MATRIX A 2 WEIGHTS

BOUNDEDNESS OF THE RIESZ TRANSFORM WITH MATRIX A 2 WEIGHTS BOUNDEDNESS OF THE IESZ TANSFOM WITH MATIX A WEIGHTS Introducton Let L = L ( n, be the functon space wth norm (ˆ f L = f(x C dx d < For a d d matrx valued functon W : wth W (x postve sem-defnte for all

More information

CHARACTERIZATION OF GRADIENT YOUNG MEASURES GENERATED BY HOMEOMORPHISMS IN THE PLANE

CHARACTERIZATION OF GRADIENT YOUNG MEASURES GENERATED BY HOMEOMORPHISMS IN THE PLANE ESAIM: COCV 22 (206) 267 288 DOI: 0.05/cocv/205003 ESAIM: Contol, Optmsaton and Calculus of Vaatons www.esam-cocv.og CHARACTERIZATION OF GRADIENT YOUNG MEASURES GENERATED BY HOMEOMORPHISMS IN THE PLANE

More information

Divisibility. c = bf = (ae)f = a(ef) EXAMPLE: Since 7 56 and , the Theorem above tells us that

Divisibility. c = bf = (ae)f = a(ef) EXAMPLE: Since 7 56 and , the Theorem above tells us that Divisibility DEFINITION: If a and b ae integes with a 0, we say that a divides b if thee is an intege c such that b = ac. If a divides b, we also say that a is a diviso o facto of b. NOTATION: d n means

More information

Stellar Astrophysics. dt dr. GM r. The current model for treating convection in stellar interiors is called mixing length theory:

Stellar Astrophysics. dt dr. GM r. The current model for treating convection in stellar interiors is called mixing length theory: Stella Astophyscs Ovevew of last lectue: We connected the mean molecula weght to the mass factons X, Y and Z: 1 1 1 = X + Y + μ 1 4 n 1 (1 + 1) = X μ 1 1 A n Z (1 + ) + Y + 4 1+ z A Z We ntoduced the pessue

More information

10-801: Advanced Optimization and Randomized Methods Lecture 2: Convex functions (Jan 15, 2014)

10-801: Advanced Optimization and Randomized Methods Lecture 2: Convex functions (Jan 15, 2014) 0-80: Advanced Optmzaton and Randomzed Methods Lecture : Convex functons (Jan 5, 04) Lecturer: Suvrt Sra Addr: Carnege Mellon Unversty, Sprng 04 Scrbes: Avnava Dubey, Ahmed Hefny Dsclamer: These notes

More information

Thermodynamics of solids 4. Statistical thermodynamics and the 3 rd law. Kwangheon Park Kyung Hee University Department of Nuclear Engineering

Thermodynamics of solids 4. Statistical thermodynamics and the 3 rd law. Kwangheon Park Kyung Hee University Department of Nuclear Engineering Themodynamcs of solds 4. Statstcal themodynamcs and the 3 d law Kwangheon Pak Kyung Hee Unvesty Depatment of Nuclea Engneeng 4.1. Intoducton to statstcal themodynamcs Classcal themodynamcs Statstcal themodynamcs

More information

Using T.O.M to Estimate Parameter of distributions that have not Single Exponential Family

Using T.O.M to Estimate Parameter of distributions that have not Single Exponential Family IOSR Journal of Mathematcs IOSR-JM) ISSN: 2278-5728. Volume 3, Issue 3 Sep-Oct. 202), PP 44-48 www.osrjournals.org Usng T.O.M to Estmate Parameter of dstrbutons that have not Sngle Exponental Famly Jubran

More information

( ) [ ( k) ( k) ( x) ( ) ( ) ( ) [ ] ξ [ ] [ ] [ ] ( )( ) i ( ) ( )( ) 2! ( ) = ( ) 3 Interpolation. Polynomial Approximation.

( ) [ ( k) ( k) ( x) ( ) ( ) ( ) [ ] ξ [ ] [ ] [ ] ( )( ) i ( ) ( )( ) 2! ( ) = ( ) 3 Interpolation. Polynomial Approximation. 3 Interpolaton {( y } Gven:,,,,,, [ ] Fnd: y for some Mn, Ma Polynomal Appromaton Theorem (Weerstrass Appromaton Theorem --- estence ε [ ab] f( P( , then there ests a polynomal

More information

U.C. Berkeley CS294: Beyond Worst-Case Analysis Luca Trevisan September 5, 2017

U.C. Berkeley CS294: Beyond Worst-Case Analysis Luca Trevisan September 5, 2017 U.C. Berkeley CS94: Beyond Worst-Case Analyss Handout 4s Luca Trevsan September 5, 07 Summary of Lecture 4 In whch we ntroduce semdefnte programmng and apply t to Max Cut. Semdefnte Programmng Recall that

More information

A proof of the binomial theorem

A proof of the binomial theorem A poof of the binomial theoem If n is a natual numbe, let n! denote the poduct of the numbes,2,3,,n. So! =, 2! = 2 = 2, 3! = 2 3 = 6, 4! = 2 3 4 = 24 and so on. We also let 0! =. If n is a non-negative

More information

Math 124B February 02, 2012

Math 124B February 02, 2012 Math 24B Febuay 02, 202 Vikto Gigoyan 8 Laplace s equation: popeties We have aleady encounteed Laplace s equation in the context of stationay heat conduction and wave phenomena. Recall that in two spatial

More information

Machine Learning. Spectral Clustering. Lecture 23, April 14, Reading: Eric Xing 1

Machine Learning. Spectral Clustering. Lecture 23, April 14, Reading: Eric Xing 1 Machne Leanng -7/5 7/5-78, 78, Spng 8 Spectal Clusteng Ec Xng Lectue 3, pl 4, 8 Readng: Ec Xng Data Clusteng wo dffeent ctea Compactness, e.g., k-means, mxtue models Connectvty, e.g., spectal clusteng

More information

Physica A 392 (2013) Contents lists available at SciVerse ScienceDirect. Physica A. journal homepage:

Physica A 392 (2013) Contents lists available at SciVerse ScienceDirect. Physica A. journal homepage: Physca A 392 (2013) 1318 1335 Contents lsts avalable at ScVese ScenceDect Physca A jounal homepage: www.elseve.com/locate/physa Themodynamcs n the lmt of evesble eactons A.N. Goban a,, E.M. Mkes b, G.S.

More information

ON A DETERMINATION OF THE INITIAL FUNCTIONS FROM THE OBSERVED VALUES OF THE BOUNDARY FUNCTIONS FOR THE SECOND-ORDER HYPERBOLIC EQUATION

ON A DETERMINATION OF THE INITIAL FUNCTIONS FROM THE OBSERVED VALUES OF THE BOUNDARY FUNCTIONS FOR THE SECOND-ORDER HYPERBOLIC EQUATION Advanced Mathematcal Models & Applcatons Vol.3, No.3, 2018, pp.215-222 ON A DETERMINATION OF THE INITIAL FUNCTIONS FROM THE OBSERVED VALUES OF THE BOUNDARY FUNCTIONS FOR THE SECOND-ORDER HYPERBOLIC EUATION

More information

Polynomial Regression Models

Polynomial Regression Models LINEAR REGRESSION ANALYSIS MODULE XII Lecture - 6 Polynomal Regresson Models Dr. Shalabh Department of Mathematcs and Statstcs Indan Insttute of Technology Kanpur Test of sgnfcance To test the sgnfcance

More information

EM Boundary Value Problems

EM Boundary Value Problems EM Bounday Value Poblems 10/ 9 11/ By Ilekta chistidi & Lee, Seung-Hyun A. Geneal Desciption : Maxwell Equations & Loentz Foce We want to find the equations of motion of chaged paticles. The way to do

More information