A Random Graph Model for Power Law Graphs

Size: px
Start display at page:

Download "A Random Graph Model for Power Law Graphs"

Transcription

1 A Random Gaph Modl fo Pow Law Gaphs Wllam Allo, Fan Chung, and Lnyuan Lu CONTNTS. Intoducton. A Random Gaph Modl 3. Th Connctd Componnts 4. Th Szs of Connctd Componnts n Ctan Rangs fo 5. On th Sz of th Scond Lagst Componnt 6. Compasons wth Ralstc Massv Gaphs 7. Opn Qustons Acnowldgmnts Rfncs W popos a andom gaph modl whch s a spcal cas of spas andom gaphs wth gvn dg squncs whch satsfy a pow law. Ths modl nvolvs only a small numb of paamts, calld logsz and log-log gowth at. Ths paamts captu som unvsal chaactstcs of massv gaphs. Fom ths paamts, vaous popts of th gaph can b dvd. Fo ampl, fo ctan angs of th paamts, w wll comput th pctd dstbuton of th szs of th connctd componnts whch almost suly occu wth hgh pobablty. W llustat th consstncy of ou modl wth th bhavo of som massv gaphs dvd fom data n tlcommuncatons. W also dscuss th thshold functon, th gant componnt, and th voluton of andom gaphs n ths modl. Rsach suppotd n pat by NSF Gant No. DMS INTRODUCTION Is th Wold Wd Wb compltly connctd? If not, how bg s th lagst componnt, th scond lagst componnt, tc.? Anyon who has sufd th Wb fo any lngth of tm wll undoubtdly com away flng that f th a dsconnctd componnts at all, thy must b small and fw n numb. Is th Wb too lag, dynamc and stuctulss to answ ths qustons? Pobably ys, f th szs of th lagst componnts a qud to b act. Rcntly, howv, som of th stuctu of th Wb has com to lght whch may nabl us to dscb gaph popts of th Wb qualtatvly. Kuma t al. [999a; 999b] and Klnbg t al. [999] hav masud th dg squncs of th Wb and shown that t s wll appomatd by a pow law dstbuton. That s, th numb of nods, y, of a gvn dg s popotonal to fo som constant >. Ths was potd ndpndntly by Albt, Baabas and Jong [Albt t al. 999; Baabas and Albt 999; Baabas t al. ]. Th pow law dstbuton of th dg squnc appas to b a vy obust popty of th Wb dspt ts dynamc natu. In c A K Pts, Ltd / $.5 p pag pmntal Mathmatcs, pag 53

2 54 pmntal Mathmatcs, Vol. (), No. fact, th pow law dstbuton of th dg squnc may b a ubqutous chaactstc, applyng to many massv al wold gaphs. Indd, Abllo t al. [998] hav shown that th dg squnc of call gaphs s ncly appomatd by a pow law dstbuton. Call gaphs a gaphs of calls handld by som subst of tlphony cas fo a spcc tm pod. Faloutsos t al. [999] hav shown that th dg squnc of th Intnt out gaph also follows a pow law. Just as many oth al wold pocsss hav bn ctvly modld by appopat andom modls, n ths pap w popos a pasmonous andom gaph modl fo gaphs wth a pow law dg squnc. W thn dv connctvty sults that hold wth hgh pobablty n vaous gms of ou paamts. Fnally, w compa th sults fom th modl wth th act connctvty stuctu fo som call gaphs computd by Abllo t al. [998]. An tndd abstact of ths pap has appad n th Pocdngs of th Thtyscond Annual ACM Symposum on Thoy of Computng [Allo t al. ]. In ths pap, w hav ncludd th complt poofs fo th man thoms and addtonal thoms focusd on th scond lagst componnts of pow gaphs n vaous angs. In addton, w gv som cnt fncs; s also [Hays ]. Pow Law Random Gaphs Th study of andom gaphs dats bac to th smnal paps of d}os and Rny [96; 96], whch lad th foundaton fo th thoy. Th a th standad modls fo what w wll call n ths pap unfom andom gaphs [Alon and Spnc 99]. ach has two paamts, on contollng th numb of nods n th gaph and th oth th dnsty o numb of dgs. Fo ampl, th andom gaph modl G(n; ) assgns unfom pobablty to all gaphs wth n nods and dgs, whl n th andom gaph modl G(n; p) ach dg s chosn wth pobablty p. Ou pow law andom gaph modl P (; ) also has two paamts. Thy only oughly dlnat th sz and dnsty, but thy a natual and convnnt fo dscbng a pow law dg squnc. Th modl s dscbd as follows. Lt y b th numb of nods wth dg. P (; ) assgns unfom pobablty to all gaphs wth y (wh slf loops a allowd). Not that s th ntcpt and s th (ngatv) slop whn th dg squnc s plottd on a log-log scal. Th s also an altnatv pow law andom gaph modl analogous to th unfom gaph modl G(n; p). Instad of havng a d dg squnc, th andom gaph has an pctd dg squnc dstbuton. Th two modls a bascally asymptotcally quvalnt, subjct to a boundng of o stmats fo th vaancs; ths wll b futh dscussd n [Allo t al. ]. Ou Rsults Just as fo th unfom andom gaph modl wh gaph popts a studd fo ctan gms of th dnsty paamt and shown to hold wth hgh pobablty asymptotcally n th sz paamt, n ths pap w study th connctvty popts of P (; ) as a functon of th pow whch hold almost suly fo sucntly lag gaphs. By, w show that whn <, th gaph s almost suly connctd. Fo < < th s a gant componnt, that s, a componnt of sz (n). Moov, all small componnts a of sz O(). Fo < < th s a gant componnt and all small componnts a of sz O(log n). Fo th small componnts a of sz O(log nlog log n). Fo > th gaph almost suly has no gant componnt. In addton w dv sval sults on th szs of th scond lagst componnt. Fo ampl, w show that fo > 4 th numb of componnts of gvn szs can b appomatd by a pow law as wll. Pvous Wo Stctly spang ou modl s a spcal cas of andom gaphs wth a gvn dg squnc, fo whch th s a lag ltatu. Fo ampl, Womald [98] studd th connctvty of gaphs whos dgs a n an ntval [; R], wh 3. Lucza [99] consdd th asymptotc bhavo of th lagst componnt of a andom gaph wth gvn dg squnc as a functon of th numb of vtcs of dg. Hs sult was futh mpovd by Molloy and Rd [995; 998], who consdd a andom gaph on n vtcs wth th followng dg dstbuton. Th numb of vtcs of dg ; ; ;

3 Allo, Chung, and Lu A Random Gaph Modl fo Pow Law Gaphs 55 a about n, n,..., spctvly, wh th 's sum to. In [Molloy and Rd 995] t s shown that f Q P ( ) > and th mamum dg s not too lag, thn such andom gaphs hav a gant componnt wth pobablty tndng to as n gos to nnty, whl f Q < thn all componnts a small wth pobablty tndng to as n!. Th pap also amns th thshold bhavo of such gaphs. In ths pap, w wll apply ths tchnqus to dal wth th spcal cas that concns ou modl. Sval oth paps hav tan an appoach to modlng pow law gaphs dnt fom th on tan h [Allo t al. ; Baabas and Albt 999; Baabas t al. ; Klnbg t al. 999; Kuma t al. 999b]. Th ssntal da of ths paps s to dn a andom pocss fo gowng a gaph by addng nods and dgs. Th ntnt s to show that th dnd pocsss asymptotcally yld gaphs wth a pow law dg squnc wth vy hgh pobablty. Whl ntstng and mpotant, ths appoach has sval dcults. Fst, th modls a dcult to analyz goously, snc th tanston pobablts a thmslvs dpndnt on th th cunt stat. Fo ampl, [Baabas and Albt 999; Baabas t al. ] mplctly assum that th pobablty that a nod has a gvn dg s a contnuous functon. Kuma t al. [] o a patal analyss of th stuaton. Scond, whl th modls may gnat gaphs wth pow law dg squncs, t mans to b sn f thy gnat gaphs that duplcat oth stuctual popts of th Wb, th Intnt, and call gaphs. Fo ampl, th modl n [Baabas and Albt 999; Baabas t al. ] cannot gnat gaphs wth a pow law oth than c 3. Moov, all th gaphs can b dcomposd nto m dsjont ts, wh m s a paamt of th modl. Th (; ) modl n [Kuma t al. 999b] s abl to gnat gaphs fo whch th pow law fo th ndg s dnt than th pow law fo th outdg as s th cas fo th Wb. Howv, to do so, th modl qus that th b nods that hav only ndg and no outdg and vc vsa. Whl ths may b appopat fo call gaphs (.g., custom svc numbs) t may not b ght fo modlng th Wb. Thus, whl th andom gaph gnaton appoach holds th poms of accuatly pdctng a wd vaty of stuctual popts of many al wold massv gaphs, much wo mans to b don. In ths pap w ta a dnt appoach. W do not attmpt to answ how a gaph coms to hav a pow law dg squnc. Rath, w ta that as a gvn. In ou modl, all gaphs wth a gvn pow law dg squnc a qupobabl. Th goal s to dv stuctual popts that hold wth pobablty asymptotcally appoachng. Such an appoach, whl potntally lss accuat than th dtald modlng appoach abov, has th advantag of bng obust th stuctual popts dvd n ths modl wll b tu fo th vast majoty of gaphs wth th gvn dg squnc. Thus, w blv that ths modl wll b an mpotant complmnt to andom gaph gnaton modls. Th pow law andom gaph modl wll b dscbd n dtal n th nt scton. In Sctons 3 and 4, ou sults on connctvty wll b dvd. Scton 5 dscusss th szs of th scond lagst componnts. Scton 6 compas th sults of ou modl to act connctvty data fo call gaphs. A shot lst of opn qustons concluds th atcl. A subsqunt pap [Allo t al. ] amns futh sval aspcts of pow law gaphs, ncludng th voluton, th \scal nvaanc", and th asymmty of n-dgs and out-dgs.. A RANDOM GRAPH MODL W consd a andom gaph wth th followng dg dstbuton dpndng on two gvn valus and. Th a y vtcs of dg, wh and y satsfy log y log In oth wods, fv dg v g y Bascally, s th logathm of th sz of th gaph and s th log-log gowth at of th gaph. Th numb of dgs should b an ntg. To b pcs, th psson abov fo y should b oundd down to b c. If w us al numbs nstad of oundng down to ntgs, ths may caus som o tms n futh computaton, but w wll s that th o tms can b asly boundd. Fo smplcty and convnnc, w wll us al numbs

4 56 pmntal Mathmatcs, Vol. (), No. wth th undstandng that th actual numbs a th ntg pats. Anoth constant s that th sum of th dgs should b vn. Ths can b assud by addng a vt of dg f th sum s odd. Futhmo, fo smplcty, w assum h that th a no solatd vtcs. W can dduc th followng facts fo ou gaph () Th mamum dg of th gaph s. Not that log y log. () Th numb n of vtcs can b computd as follows By summng y() fo fom to, w hav n 8 >< > () f >, f, ( ) f < <, P wh (t) n n t s th Rmann zta functon. (3) Th numb of dgs s gvn by 8 >< > ( ) f >, 4 f, ( ) f < <. Th css of th al numbs n (){(3) ov th ntg pats can b stmatd as follows Fo th numb n of vtcs, th o tm s at most. Fo, t s o(n), whch s a low od tm. Fo < <, th o tm fo n s latvly lag. In ths cas, w hav n Thfo, n has sam magntud as ( ). Th numb of dgs can b tatd smlaly. Fo, th o tm of s o(), a low od tm. Fo < <, has th sam magntud as n th fomula of tm (3). In ths pap w dal manly wth th cas >. Th cas < < s consdd only n th nt scton, wh w f to as a constant. By usng al numbs nstad of oundng down to th ntg pats, w smplfy th agumnts wthout actng th conclusons. To study th andom gaph modl, w must consd lag n. W say a popty holds almost suly (a. s.) f th pobablty that t holds tnds to as th numb n of th vtcs gos to nnty. Thus w consd to b lag but s d. W us th followng andom gaph modl fo a gvn dg squnc Th modl. Fom a st L contanng dg v dstnct cops of ach vt v.. Choos a andom matchng of th lmnts of L. 3. Fo two vtcs u and v, th numb of dgs jonng u and v s qual to th numb of dgs n th matchng of L jonng cops of u to cops of v. W ma that th gaphs that w a consdng a n fact mult-gaphs, possbly wth loops. Ths modl s a natual tnson of th modl fo -gula gaphs, fomd by combnng andom matchngs. Fo fncs and undnd tmnology, s [Alon and Spnc 99; Womald 999]. Ths andom gaph modl s slghtly dnt fom th unfom slcton modl P (; ) dscbd n Scton.. Howv, by usng th tchnqus of [Molloy and Rd 998, Lmma ], t can b shown that f a andom gaph wth a gvn dg squnc a. s. has popty P und on of ths two modls, thn t a. s. has popty P und th oth modl, povdd som gnal condtons a satsd. 3. TH CONNCTD COMPONNTS Molloy and Rd [995] showd that fo a andom gaph wth ( + o())n vtcs of dg, wh th a nonngatv valus that sum to, th gant componnt mgs whn Q X ( ) > ; so long as th mamum dg s lss than n 4 ". Thy also show that almost suly th s no gant componnt whn Q < and th mamum dg s lss than n 8 ". H w comput Q fo ou (; )-gaphs j X Q ( ) ( ) ( ) f > 3 W a thus ld to consd th valu , whch s a soluton to ( ) ( )

5 Allo, Chung, and Lu A Random Gaph Modl fo Pow Law Gaphs 57 If >, w hav j ( ) < W summaz ou sults h. Whn > , th andom gaph almost suly has no gant componnt. Whn < , th s almost suly a unqu gant componnt.. Whn < < , almost suly th scond lagst componnts hav sz (log n). Fo any < (log n), th s almost suly a componnt of sz. 3. Whn, almost suly th scond lagst componnts a of sz (log nlog log n). Fo any < (log nlog log n), th s almost suly a componnt of sz. 4. Whn < <, th scond lagst componnts a almost suly of sz (). Th gaph s almost suly not connctd. 5. Whn < <, th gaph s almost suly connctd. 6. Fo , th cas s complcatd. It cosponds to th doubl jump of a andom gaph G(n; p) wth p n. 7. Fo, th s a nontval pobablty fo th cas that th gaph s connctd o dsconnctd. W ma that fo > 8, Molloy and Rd's sult mmdatly mpls that almost suly th s no gant componnt. Whn 8, addtonal analyss s ndd to dal wth th dg constants. W wll pov n Thom 4. that almost suly th s no gant componnt whn >. In Scton 5, w wll dal wth th ang <. W wll show n Thom 5. that almost suly th s a unqu gant componnt whn <. Futhmo, w wll dtmn th sz of th scond lagst componnt wthn a constant facto. 4. TH SIZS OF CONNCTD COMPONNTS IN CRTAIN RANGS FOR Fo > , almost suly th s no gant componnt. Ths ang s of spcal ntst snc t s qut usful lat fo dscbng th dstbuton of small componnts. Thom 4.. Fo (; )-gaphs wth > 4, th dstbuton of th numb of connctd componnts s as follows. Fo ach vt v of dg d (), lt b th sz of th connctd componnt contanng v. Thn wh P d c > c dc c ; c ( ) ( ) and c ( 3) ( ) ( ) ( ) a constants and wh d " wth " an abtay small postv numb and d a (slowly) ncasng functon of n. In oth wods, th vt v almost suly blongs to a connctd componnt of sz d c + O(d +" ). Th numb of connctd componnts of sz s almost suly at last and at most wh ( + o()) c c 3 log n + ; c 3 4+ c ( )c + s a constant dpndng only on. 3. A connctd componnt of th (; )-gaph almost suly has sz at most (+) (n (+) log n) In ou poof of ths sult w us th scond momnt, whos convgnc dpnds on > 4. In fact fo 4 th scond momnt dvgs as th sz of th gaph gos to nnty, so ou mthod no long appls. Thom 4. stngthns th followng sult whch can b dvd fom [Molloy and Rd 995, Lmma 3] fo th ang of > 4. Thom 4.. Fo > , a connctd componnt of th (; )-gaph almost suly has sz at most C (n log n), wh C 6c s a constant dpndng only on.

6 58 pmntal Mathmatcs, Vol. (), No. Th poof of Thom 4., whch w by dscb h bcaus t s ndd n povng Thom 4., uss th banchng pocss mthod. Pc any vt v n th gaph, pos ts nghbos, thn th nghbos of ts nghbos, patng untl th nt componnt s posd. W pos only on vt at ach stag. At stag, lt L th st of vtcs posd and X b th andom vaabl that counts th numb of vtcs n L. W ma all vtcs n L as th lv o dad. A vt n L whos nghbos hav not all bn posd yt s mad lv. On whos nghbos hav all bn posd s mad dad. Lt O b th st of lv vtcs and Y th andom vaabl that s th numb of vtcs n O. At ach stp w ma act on dad vt, so th total numb of dad vtcs at th -th stp s. W hav X Y +. Intally w assgn L O fvg. Thn at stag, w do th followng. If Y, stop and output X.. Othws, andomly choos a lv vt u fom O and pos ts nghbos n N u. Thn ma u dad and ma ach vt lv f t s n N u but not n L. W hav L L [ N u ; O (O n fug) [ (N u n L ) Suppos that v has dg d. Thn X d +, and Y d. vntually Y wll ht f s lag nough. Lt dnot th stoppng tm of Y, namly, Y. Thn X Y + masus th sz of th connctd componnt. W st comput th pctd valu of Y and thn us Azuma's Inqualty [Molloy and Rd 995] to pov Thom 4.. Suppos that vt u s posd at stag. Thn N u \ L contans at last on vt v, whch was posd to ach u. Howv, N u \L may contan mo than on vt. W call an dg fom u to a vt n L oth than v a bacdg. Bacdgs caus th ploaton to stop soon, spcally whn th componnt s lag. Howv n ou cas > , th contbuton of bacdgs s qut small. W st Z #fn u g and W #fn u \ L g, so Z masus th dg of th vt posd at stag, whl W masus th numb of bacdgs. By dnton, Y Y Z W W hav (Z ) ( ) ( ) + O(n3 ) ( ) + O(n ) ( ) ( ) + O(n3 ) Now w bound W. Suppos th a m dgs posd at stag. Thn th pobablty that a nw nghbo s n L s at most m. W hav (W ) X m + O m m m ( m) ; (4 ) povdd that m o(). Whn C, m s at most C 3. Hnc, m O(n3 log n) o() W hav (Y ) Y + d + X j X (Y j Y j ) (Z j W j ) j ( ) d + ( ) ( ) O(n 3 log n) d c ( ) + o() Poof of Thom 4.. Snc jy j Y j j, by Azuma's matngal nqualty, w hav P jy (Y )j > t t ( ) ; wh (6c ) log n and t c. Snc w hav (Y ) + t d c ( ) + o() + c c + d + c + o() < ; P > (6c ) log n P > P(Y ) P Y > (Y ) + t p t n

7 Allo, Chung, and Lu A Random Gaph Modl fo Pow Law Gaphs 59 Hnc, th pobablty that th sts a vt v such that v ls n a componnt of sz gat than s at most 6 log n c n n n o() Th poof of Thom 4. uss th mthodology abov as a statng pont whl ntoducng th calculaton of th vaanc of th abov andom vaabls. Poof of Thom 4.. W follow th notaton and pvous sults of Scton 4. Und th assumpton > 4, w consd Va(Z ) ( ) (Z ) 3 (Z ) ( 3) + O(n4 ) ( ) + O(n ) ( ) ( ) + O(n 3 ) ( 3) ( ) ( ) + O(n 4 ) ( ) c + o(); snc > 4. W nd to comput th covaanc. Th a modls fo andom gaphs n whch th dgs a n dpndntly chosn. Thn, Z and Z j a ndpndnt. Howv, n th modl basd on andom matchngs, th s a small colaton. Fo ampl, Z slghtly cts th pobablty of Z j y. Namly, Z j has slghtly lss chanc, whl Z j y 6 has slghtly mo chanc. Both dncs can b boundd by Hnc Cova(Z ; Z j ) (Z ) ( ) O n f 6 j Now w wll bound W. Suppos that th a m dgs posd at stag. Thn th pobablty that a nw nghbo s n L s at most m. W hav Va(W ) Cova(W ; W j ) Cova(Z ; W j ) X m 3 (W ) m(m + ) O m ( m) 3 ; m m + O q Va(W ) Va(W j ) m + O m ; q Va(Z ) Va(W j ) O m Whn O( ), m O( ), w hav ( ) (Y ) d + ( ) ( ) + O(n 3 ) + m and d ( )c + O(n 4 ) d ( )c + o() Va(Y ) Va Va X j d + X j (Z j W j ) (Y j Y j ) X Va(Zj ) + Va(W j ) j X + Cova(Zj ; Z ) Cova(Z j ; W ) j6 + Cova(W j ; W ) c + o() + O(n) + O( p ( ) ) + O( ( ) ) c + o() + O( ( ) ) + O( (3 ) ) c + o() Chbyshv's nqualty gvs P jy (Y )j > < ; wh s th standad dvaton of Y, and p c + o( p ). St d dc ; c c c d + dc c c c

8 6 pmntal Mathmatcs, Vol. (), No. Thn (Y ) d ( )c +o() p c +o( p ) dc d c o( p d) c c Hnc, dc c o( p d) > P( < ) P(Y ) Smlaly, P Y < (Y ) (Y )+ d ( )c +o()+ p c +o( p ) dc d + c +o( p d) c c Hnc, dc c +o( p d) < P( > ) P(Y > ) Thfo P P Y > (Y ) + d dc > c c c Fo a d v and a functon slowly ncasng to nnty, th pcdng nqualty mpls that almost suly w hav dc + O( p d). Almost all componnts gnatd by vtcs of dg hav sz about dc. On such componnt can hav at most about c vtcs of dg d. Hnc, th numb of componnts of sz dc s at last c d. Lt d c. Thn th numb of componnts of sz s at last c + o() Th agumnt abov actually gvs th followng sult. Th sz of vy componnt whos vtcs hav dg at most d s almost suly Cd log n, wh C 6c s th sam constant as n Thom 4.. St Cd log n and consd th numb of componnts of sz. A componnt of sz almost suly contans at last on vt of dg gat than d. Fo ach vt v wth dg d d, by pat n th statmnt of Thom 4., w hav d P d dc > c c c d Lttng w hav d c Cd log n c 4 c d ; P( Cd log n) P > d + d dc c d C 3 d 4 log n ; wh C 3 3c (c 3 C ) c c 8 s a constant dpndng only on. Snc th a only d vtcs of dg d, th numb of componnts of sz at last s at most wh dd d C d 3 d 4 log n C 3 d 4 log n c c X dd d C 3 d 4 log n C 3 ( )d + log n c 3 log n + ; c 3 C 3 ( ) C + 4+ c ( )c + d Fo (+), th pcdng nqualty mpls that th numb of componnts of sz at last s at most o(). In oth wods, almost suly no componnt has sz gat than (+) Ths complts th poof of Thom ON TH SIZ OF TH SCOND LARGST COMPONNT Fo < , w consd th gant componnt as wll as th sz of th scond lagst componnt. Thom 5.. Consd an (; )-gaph wth < Th s a unqu gant componnt of sz (n).

9 Allo, Chung, and Lu A Random Gaph Modl fo Pow Law Gaphs 6. Whn < <, almost suly th sz of th scond lagst componnt s (log n). 3. Whn, almost suly th sz of th scond lagst componnt s (log nlog log n). 4. Whn <, almost suly th sz of th scond lagst componnt s (). 5. Whn < <, almost suly th gaph s connctd. Poof. Whn <, th banchng pocss mthod s no long fasbl whn vtcs of lag dgs a nvolvd. Thus, w cannot apply Azuma's matngal nqualty fo boundng Y as w dd n al poofs. W wll modfy th banchng pocss mthod as follows. (a) Choos a numb (to b spcd lat dpndng on ). (b) Stat wth Y lv vtcs and Y C log n. All oth vtcs a unmad. (c) At th -th stp, choos on lv vt u and posd ts nghbos. If th dg of u s lss than o qual to, pocd as n Scton 4, by mang u dad and all vtcs v N u lv (povdd v s not mad bfo). If th dg of u s gat than, ma actly on vt v N u lv and oths dad, povdd v s unmad. In both cass u s mad dad. Th man da s to show that Y, a tuncatd vson of Y, s wll-concntatd aound (Y ). Although t s dcult to dctly dv such a sult fo Y bcaus of vtcs of lag dgs, w wll b abl to bound th dstbuton Y. Indd, w wll show that th st of mad vtcs (lv o dad) gows to a gant componnt f Y cds a ctan bound. W consd th angs fo. Cas < <. W consd th postv constant Q j ( ) Th s a constant ntg satsfyng X j ( ) > Q W choos satsfyng ( ) Q 4 If th componnt has mo than dgs, t must hav (n) vtcs snc >. So t s a gant componnt and w a don. W may assum that th componnt has no mo than dgs. W now choos and apply th modd banchng pocss. Thn, Y satss Y dc log n, wh C 3 Q s a constant dpndng only on. Y Y. Lt W b th numb of bacdgs as dnd n Scton 4. By nqualty (4{) and th assumpton that th numb of dgs m n th componnt s at most n, w hav Hnc, (Y (W ) Y ) ( ) Q 4 X Q Q 4 Q 4 By Azuma's matngal nqualty, P Y Q 8 P Y j ( ) (W ) (Y ) Q 8 < p (Q8) o(n ) povdd that > C log n. Th pcdng nqualty mpls that wth pobablty at last o(n ), w hav Y > Q8 > whn > dc log n. Snc Y dcass by at most at ach stp, Y cannot b zo f dc log n. So Y > fo all. In oth wods, a. s. th banchng pocss wll not stop. Howv, t s mpossbl to hav Yn > a contadcton. Thus w conclud that th componnt must hav at last n dgs. So t s a gant componnt. W not that f a componnt has mo than dc log n dgs posd, thn almost suly t s a gant componnt. In patcula, any vt wth dg mo than dc log n s almost suly n th gant componnt. Hnc, th scond componnts hav sz of at most (log n). Nt w show that th scond lagst has sz at last (log n). W consd th vtcs v of dg c, wh c s som constant. Th s a postv pobablty that all nghbong vtcs of v hav dg. In ths cas, w gt a connctd componnt

10 6 pmntal Mathmatcs, Vol. (), No. of sz + (log n). Th pobablty of ths s about c ( ) Th a (c) vtcs of dg. Thus th pobablty that non of thm has th pcdng popty s about (c) p ( ) c ( ) c (c) wh c 8 < p o(); f 3, log( ) ( ) c (c) f 3 > >. In oth wods, a. s. th s a componnt of sz c + (log n). Thfo, th scond lagst componnt has sz (log n). Moov, th agumnt stll holds f w plac c by any small numb. Hnc, small componnts hbt a contnuous bhavo. Cas. W choos. W not that a componnt wth mo than 3 dgs must b unqu. W wll pov that almost suly th unqu componnt contans all vtcs wth dg gat than. So t contans ( o()) dgs and t s th gant componnt. W futh modfy th banchng pocss by statng fom Y d vtcs. If th componnt has mo than dgs, w a don. Othws, 3 th pctd numb of bacgs s small. (W ) 3 ( 3) 6 fom nqualty (4{). Hnc, Y (Y Y d ; Y Y ; Y ) X satss j ( ) (W ) > 6 By Azuma's matngal nqualty, P(Y ) P(Y (Y ) < p o(n ) () povdd that. Ths nqualty mpls that wth poablty at last o(n ), w hav Y > whn > d. Snc Y dcass at most by at ach stp, Y cannot b zo f d. So Y > fo all. In oth wods, a. s. th banchng pocss wll not stop. Howv, t s mpossbl to hav Yn > a contadcton. Thus w conclud that th componnt must hav at last dgs. W 3 not that a. s. all vtcs wth dg mo than d a n th unqu componnt wth at last dgs, hnc th gant componnt. 3 Th pobablty that a andom vt s n th gant componnt s at most X log Th pobablty that th a log vtcs not n th gant componnt s at most log log (+o()) o(n ) Snc th s at most n connctd componnts, w conclud that a. s. a connctd componnt of sz gat that log n log log log n must b th gant componnt. Now w nd a vt v of dg wth 9log. Th pobablty that all ts nghbos a of dg s (). Th pobablty that no such vt sts s at most p p o() Hnc, almost suly th s a vt of dg 9log that, whch foms a connctd componnt of sz +. Ths povs that a. s. th scond lagst componnt has sz (log nlog log n).

11 Allo, Chung, and Lu A Random Gaph Modl fo Pow Law Gaphs 63 Cas 3 < <. W us th modd banchng pocss by choosng p (5 ) (6 ) If a componnt has mo than 3 dgs, t s th unqu gant componnt and w a don. Othws, 3 (W ) ( 3) 6 Hnc, Y (Y satss Y 5 ( ) p C (3 ) ; Y Y ) Y p (5 ) (6 ) ; p (5 ) (6 ) X C () j ( ) (W ) H C s a constant dpndng only on. By Azuma's matngal nqualty, P Y C() < P Y (Y povdd that ) C() < p ( C() ) p (5 ) (6 ) o(n ) 5 ( ) p C (3 )! Ths nqualty shows that wth pobablty at last o(n ), w hav Y > C() > povdd that > 5 ( ) p C (3 ) Snc Y dcass at most by at ach stp, Y cannot b zo f 5 ( ) p C (3 ) So Y > fo all. In oth wods, a. s. th banchng pocssng wll not stop. Howv, t s mpossbl to hav Yn > a contadcton. So, a. s. all vtcs wth dg mo than 5 ( ) p C (3 ) a n th gant componnt. Th pobablty that a andom vt s n th gant componnt s at most 5 ( ) p C X (3 ) Th pobablty that all j 3 + p ( ) (3 ) vtcs a not n th gant vt s at most p ( ) 3 + o(n ) (3 ) Snc th a at most n connctd componnts, w conclud that a. s. a connctd componnt of sz gat that j 3 () must b th gant componnt. Fo < <, w a vt v of dg. Th pobablty that th oth vt that conncts to v s also of dg s Thfo th pobablty that no componnt has sz of s at most ( ) o() In oth wods, th gaph a. s. has at last on componnt of sz. Fo < <, w want to show that th andom gaph s a. s. connctd. Snc th sz of th possbl scond lagst componnt s boundd by a constant M, all vtcs of dg M a almost suly n th gant componnt. W only nd to show th pobablty that th s an dg connctng two small dg vtcs s small. Th a only MX j C vtcs wth dg lss than M. Fo any andom pa of vtcs (u; v), th pobablty that th s an dgs connctng thm s about ( )

12 64 pmntal Mathmatcs, Vol. (), No. Hnc th pobablty that th s dg connctng two small dg vtcs s at most X u;v (C ) ( ) o() Thus vy vt s a. s. connctd to a vt wth dg M, whch a. s. blongs to th gant ponnt. Hnc, th andom gaph s a. s. connctd. 6. COMPARISONS WITH RALISTIC MASSIV GRAPHS Ou (; )-andom gaph modl was ognally dvd fom massv gaphs gnatd by long dstanc tlphon calls. Ths so-calld call gaphs a tan ov dnt tm ntvals. Fo th sa of smplcty, w consd all th calls mad n on day. vy compltd phon call s an dg n th gaph. vy phon numb that th ognats o cvs a call s a nod n th gaph. Whn a nod ognats a call, th dg s dctd out of th nod and contbuts to that nod's outdg. Lws, whn a nod cvs a call, th dg s dctd nto th nod and contbuts to that nod's ndg. y() 7 Th patcula call gaph w usd fo th statstcs n ths scton cospond to th dat August, 998, a typcal day. Th data w compld by J. Abllo and A. Buchsbaum of AT&T Labs fom aw phon call cods usng, n pat, th tnal mmoy algothm of [Abllo t al. 998] fo computng connctd componnts of massv gaphs. In Fgu, w plot th numb of vtcs vsus th ndg and th outdg fo th call gaph. Lt y() b th numb of vtcs wth ndg. Fo ach such that y() >, a dot on th lft plot s placd at ; y(). Th plot on th ght s bult n th sam way. Plots of th numb of vtcs vsus th ndg o outdg fo th call gaphs of oth days a vy smla. Fgu plots fo th sam call gaph th numb of connctd componnts fo ach possbl sz. Th dg squnc of th call gaph dos not oby pfctly th (; )-gaph modl. Th numb of vtcs of a gvn dg dos not vn dcas monotoncally wth ncasng dg. Moov, th call gaph s dctd fo ach dg th s a nod that ognats th call and a nod that cvs th call. Th ndg and outdg of a nod nd not b th sam. Claly th (; )-andom y(o) FIGUR. Lft numb of vtcs y() vsus ndg, plottd on a log-log scal, fo a psntatv al-lf gaph. Rght numb of vtcs vsus outdg o fo th sam gaph. o

13 y(s) Allo, Chung, and Lu A Random Gaph Modl fo Pow Law Gaphs 65 lna. Ths suggsts that aft movng th gant componnt, on s lft appomatly wth an (; )-gaph wth > 4. (Thom 4. ylds a loglog lna laton btwn numb of componnts and componnt sz fo > 4.) Ths sms ntutvly asonabl, snc th gat th dg, th fw nods of that dg w pct to man aft dltng th gant componnt. Ths wll ncas th valu of fo th sultng gaph FIGUR. Lft numb of connctd componnts fo ach possbl componnt sz s fo ou ampl gaph. Not th gant componnt on th low ght. gaph modl dos not captu all of th andom bhavo of th al wold call gaph. Nonthlss, ou modl dos captu som of th bhavo of th call gaph. To s ths w st stmat and n Fgu. Rcall that fo an (; )- gaph, th numb of vtcs as a functon of dg s gvn by log y log. By appomatng Fgu by a staght ln, can b stmatd usng th slop of th ln to b appomatly. Th valu of fo Fgu s appomatly 3 6. Th total numb of nods n th call gaph can b stmatd by () Fo btwn and, th (; )-gaph wll hav a gant componnt of sz (n). In addton, a. s. all oth componnts a of sz O(log n). Moov, fo any O(log n), a componnt of sz sts. Ths s qualtatvly tu of th dstbuton of componnt szs of th call gaph n Fgu. Th on gant componnt contans naly all of th nods. Th mamum sz of th nt lagst componnt s ndd ponntally small than th sz of th gant componnt. Also, a componnt of naly vy sz blow ths mamum sts. Intstngly, th dstbuton of th numb of componnts of sz small than th gant componnt s naly log-log s 7. OPN QUSTIONS Numous qustons man to b studd. Fo ampl, what s th ct of tm scalng? How dos t cospond wth th voluton of? What a th stuctual bhavos of th call gaphs? What a th colatons btwn th dctd and undctd gaphs? It s of ntst to undstand th phas tanston of th gant componnt n th alstc gaph. In th oth dcton, th numb of tny componnts of sz s ladng to many ntstng qustons as wll. Claly, th s much wo to b don n ou undstandng of massv gaphs. ACKNOWLDGMNTS W a gatful to J. Fgnbaum, J. Abllo, A. Buchsbaum, J. Rds, and J. Wstboo fo th assstanc n ppang th gus and fo many ntstng dscussons on call gaphs. W a vy thanful to th anonymous f fo nvaluabl commnts. RFRNCS [Abllo t al. 998] J. Abllo, A. L. Buchsbaum, and J. R. Wstboo, \A functonal appoach to tnal gaph algothms", pp. 33{343 n Algothms SA '98 (Vnc, 998), dtd by G. Blad t al., Lctu Nots n Comp. Sc. 46, Spng, Bln, 998. [Allo t al. ] W. Allo, F. Chung, and L. Lu, \A andom gaph modl fo massv gaphs", pp. 7{8 n Pocdngs of th 3nd Annual ACM Symposum on Thoy of Computng (Potland, OR, ), ACM Pss, Nw Yo,. [Allo t al. ] W. Allo, F. Chung, and L. Lu, \Random voluton of pow law gaphs", n Handboo of massv data sts, vol., dtd by J. Abllo t al. To appa.

14 66 pmntal Mathmatcs, Vol. (), No. [Albt t al. 999] R. Albt, H. Jong, and A. Baabas, \Damt of th Wold Wd Wb", Natu 4 (Sptmb 9, 999). [Alon and Spnc 99] N. Alon and J. H. Spnc, Th pobablstc mthod, Wly, Nw Yo, 99. [Baabas and Albt 999] A. Baabas and R. Albt, \mgnc of scalng n andom ntwos", Scnc 86 (Octob 5, 999). [Baabas t al. ] A.-L. Baabas, R. Albt, and H. Jong, \Scal-f chaactstcs of andom ntwos Th topology of th Wold Wd Wb", Physca A 8 (). S http// ~ hjong/./pap.html. [d}os and Rny 96] P. d}os and A. Rny, \On th voluton of andom gaphs", Magya Tud. Aad. Mat. Kutato Int. Kozl. 5 (96), 7{6. [d}os and Rny 96] P. d}os and A. Rny, \On th stngth of connctdnss of a andom gaph", Acta Math. Acad. Sc. Hunga. (96), 6{67. [Faloutsos t al. 999] M. Faloutsos, P. Faloutsos, and C. Faloutsos, \On pow-law latonshps of th ntnt topology", pp. 5{6 n ACM SIGCOMM '99 Confnc applcatons, tchnologs, achtctus, and potocols fo comput communcatons (Cambdg, MA, 999), ACM Pss, Nw Yo, 999. [Hays ] B. Hays, \Gaph thoy n pactc, II", Amcan Scntst 88 (Mach{Apl ), 4{9. [Klnbg t al. 999] J. M. Klnbg, R. Kuma, P. Raghavan, S. Rajagopalan, and A. S. Tomns, \Th wb as a gaph masumnts, modls, and mthods", pp. {7 n Computng and combnatocs (Toyo, 999), dtd by T. Asano t al., Lctu Nots n Comp. Sc. 67, Spng, Bln, 999. [Kuma t al. 999a] S. R. Kuma, P. Raghavan, S. Rajagopalan, and A. Tomns, \Tawlng th wb fo mgng cyb communts", n Pocdngs of th 8th Wold Wd Wb Confnc (Toonto, 999), lsv, Amstdam, 999. [Kuma t al. 999b] S. R. Kuma, P. Raghavan, S. Rajagopalan, and A. Tomns, \tactng lagscal nowldg bass fom th wb", pp. 639{65 n VLDB'99, Pocdngs of 5th Intnatonal Confnc on Vy Lag Data Bass (dnbugh, 999), dtd by M. P. Atnson t al., Mogan Kaufmann, San Fancsco, 999. S http// ~ ly/db/conf/vldb/vldb99.html. [Kuma t al. ] S. R. Kuma, P. Raghavan, S. Rajagopalan, D. Svauma, A. Tomns, and. Upfal, \Stochastc modls fo th Wb gaph", n Pocdngs of th 4st Annual Symposum on Foundatons of Comput Scnc (Rdondo Bach, CA, ), I, Los Alamtos, CA,. [ Lucza 99] T. Lucza, \Spas andom gaphs wth a gvn dg squnc", pp. 65{8 n Random gaphs (Poznan, 989), vol., dtd by A. Fz and T. Lucza, Wly, Nw Yo, 99. [Molloy and Rd 995] M. Molloy and B. Rd, \A ctcal pont fo andom gaphs wth a gvn dg squnc", Random Stuctus and Algothms 6-3 (995), 6{79. [Molloy and Rd 998] M. Molloy and B. Rd, \Th sz of th gant componnt of a andom gaph wth a gvn dg squnc", Combn. Pobab. Comput. 73 (998), 95{35. [Womald 98] N. C. Womald, \Th asymptotc connctvty of lablld gula gaphs", J. Combn. Thoy S. B 3 (98), 56{67. [Womald 999] N. C. Womald, \Modls of andom gula gaphs", pp. 39{98 n Suvys n combnatocs (Cantbuy, 999), dtd by J. D. Lamb and D. A. Pc, London Math. Soc. Lctu Not Ss 67, Cambdg Unv. Pss, Cambdg, 999. Wllam Allo, AT&T Labs, 8 Pa Avnu, Floham Pa, NJ 793, Untd Stats (allo@sach.att.com) Fan Chung, Dpatmnt of Mathmatcs, Unvsty of Calfona, San Dgo, 95 Glman Dv, La Jolla, CA 993-, Untd Stats (fan@ucsd.du) Lnyuan Lu, Dpatmnt of Mathmatcs, Unvsty of Calfona, San Dgo, 95 Glman Dv, La Jolla, CA 993-, Untd Stats (llu@ucld.ucsd.du) Rcvd Novmb 8, 999; accptd n vsd fom May,

5- Scattering Stationary States

5- Scattering Stationary States Lctu 19 Pyscs Dpatmnt Yamou Unvsty 1163 Ibd Jodan Pys. 441: Nucla Pyscs 1 Pobablty Cunts D. Ndal Esadat ttp://ctaps.yu.du.jo/pyscs/couss/pys641/lc5-3 5- Scattng Statonay Stats Rfnc: Paagaps B and C Quantum

More information

Homework: Due

Homework: Due hw-.nb: //::9:5: omwok: Du -- Ths st (#7) s du on Wdnsday, //. Th soluton fom Poblm fom th xam s found n th mdtm solutons. ü Sakua Chap : 7,,,, 5. Mbach.. BJ 6. ü Mbach. Th bass stats of angula momntum

More information

Analysis of a M/G/1/K Queue with Vacations Systems with Exhaustive Service, Multiple or Single Vacations

Analysis of a M/G/1/K Queue with Vacations Systems with Exhaustive Service, Multiple or Single Vacations Analyss of a M/G// uu wth aatons Systms wth Ehaustv Sv, Multpl o Sngl aatons W onsd h th fnt apaty M/G// uu wth th vaaton that th sv gos fo vaatons whn t s dl. Ths sv modl s fd to as on povdng haustv sv,

More information

Diffraction. Diffraction: general Fresnel vs. Fraunhofer diffraction Several coherent oscillators Single-slit diffraction. Phys 322 Lecture 28

Diffraction. Diffraction: general Fresnel vs. Fraunhofer diffraction Several coherent oscillators Single-slit diffraction. Phys 322 Lecture 28 Chapt 10 Phys 3 Lctu 8 Dffacton Dffacton: gnal Fsnl vs. Faunhof dffacton Sval cohnt oscllatos Sngl-slt dffacton Dffacton Gmald, 1600s: dffacto, dvaton of lght fom lna popagaton Dffacton s a consqunc of

More information

The Random Phase Approximation:

The Random Phase Approximation: Th Random Phas Appoxmaton: Elctolyts, Polym Solutons and Polylctolyts I. Why chagd systms a so mpotant: thy a wat solubl. A. bology B. nvonmntally-fndly polym pocssng II. Elctolyt solutons standad dvaton

More information

Diffraction. Diffraction: general Fresnel vs. Fraunhofer diffraction Several coherent oscillators Single-slit diffraction. Phys 322 Lecture 28

Diffraction. Diffraction: general Fresnel vs. Fraunhofer diffraction Several coherent oscillators Single-slit diffraction. Phys 322 Lecture 28 Chapt 10 Phys 3 Lctu 8 Dffacton Dffacton: gnal Fsnl vs. Faunhof dffacton Sval cohnt oscllatos Sngl-slt dffacton Dffacton Gmald, 1600s: dffacto, dvaton of lght fom lna popagaton Dffacton s a consqunc of

More information

Period vs. Length of a Pendulum

Period vs. Length of a Pendulum Gaphcal Mtho n Phc Gaph Intptaton an Lnazaton Pat 1: Gaphng Tchnqu In Phc w u a vat of tool nclung wo, quaton, an gaph to mak mol of th moton of objct an th ntacton btwn objct n a tm. Gaph a on of th bt

More information

CIVL 7/ D Boundary Value Problems - Axisymmetric Elements 1/8

CIVL 7/ D Boundary Value Problems - Axisymmetric Elements 1/8 CIVL 7/8 -D Bounday Valu Poblms - xsymmtc Elmnts /8 xsymmtc poblms a somtms fd to as adally symmtc poblms. hy a gomtcally th-dmnsonal but mathmatcally only two-dmnsonal n th physcs of th poblm. In oth

More information

( V ) 0 in the above equation, but retained to keep the complete vector identity for V in equation.

( V ) 0 in the above equation, but retained to keep the complete vector identity for V in equation. Cuvlna Coodnats Outln:. Otogonal cuvlna coodnat systms. Dffntal opatos n otogonal cuvlna coodnat systms. Dvatvs of t unt vctos n otogonal cuvlna coodnat systms 4. Incompssbl N-S quatons n otogonal cuvlna

More information

multipath channel Li Wei, Youyun Xu, Yueming Cai and Xin Xu

multipath channel Li Wei, Youyun Xu, Yueming Cai and Xin Xu Robust quncy ost stmato o OFDM ov ast vayng multpath channl L W, Youyun Xu, Yumng Ca and Xn Xu Ths pap psnts a obust ca quncy ost(cfo stmaton algothm sutabl o ast vayng multpath channls. Th poposd algothm

More information

Load Equations. So let s look at a single machine connected to an infinite bus, as illustrated in Fig. 1 below.

Load Equations. So let s look at a single machine connected to an infinite bus, as illustrated in Fig. 1 below. oa Euatons Thoughout all of chapt 4, ou focus s on th machn tslf, thfo w wll only pfom a y smpl tatmnt of th ntwok n o to s a complt mol. W o that h, but alz that w wll tun to ths ssu n Chapt 9. So lt

More information

Lecture 3.2: Cosets. Matthew Macauley. Department of Mathematical Sciences Clemson University

Lecture 3.2: Cosets. Matthew Macauley. Department of Mathematical Sciences Clemson University Lctu 3.2: Costs Matthw Macauly Dpatmnt o Mathmatical Scincs Clmson Univsity http://www.math.clmson.du/~macaul/ Math 4120, Modn Algba M. Macauly (Clmson) Lctu 3.2: Costs Math 4120, Modn Algba 1 / 11 Ovviw

More information

Massachusetts Institute of Technology Introduction to Plasma Physics

Massachusetts Institute of Technology Introduction to Plasma Physics Massachustts Insttut of Tchnology Intoducton to Plasma Physcs NAME 6.65J,8.63J,.6J R. Pak Dcmb 5 Fnal Eam :3-4:3 PM NOTES: Th a 8 pags to th am, plus on fomula sht. Mak su that you copy s complt. Each

More information

( ) + is the distance from the point of interest to the location of the charge q i

( ) + is the distance from the point of interest to the location of the charge q i Elctcal Engy and apactanc 57. Bcaus lctc ocs a consvatv, th kntc ngy gand s qual to th dcas n lctcal potntal ngy, o + + 4 4 KE PE q( ).. so th coct choc s (a).. Fom consvaton o ngy, KE + PE KE + PE, o

More information

Rectification and Depth Computation

Rectification and Depth Computation Dpatmnt of Comput Engnng Unvst of Cafona at Santa Cuz Rctfcaton an Dpth Computaton CMPE 64: mag Anass an Comput Vson Spng 0 Ha ao 4/6/0 mag cosponncs Dpatmnt of Comput Engnng Unvst of Cafona at Santa Cuz

More information

Lucas Test is based on Euler s theorem which states that if n is any integer and a is coprime to n, then a φ(n) 1modn.

Lucas Test is based on Euler s theorem which states that if n is any integer and a is coprime to n, then a φ(n) 1modn. Modul 10 Addtonal Topcs 10.1 Lctur 1 Prambl: Dtrmnng whthr a gvn ntgr s prm or compost s known as prmalty tstng. Thr ar prmalty tsts whch mrly tll us whthr a gvn ntgr s prm or not, wthout gvng us th factors

More information

CERTAIN RESULTS ON TIGHTENED-NORMAL-TIGHTENED REPETITIVE DEFERRED SAMPLING SCHEME (TNTRDSS) INDEXED THROUGH BASIC QUALITY LEVELS

CERTAIN RESULTS ON TIGHTENED-NORMAL-TIGHTENED REPETITIVE DEFERRED SAMPLING SCHEME (TNTRDSS) INDEXED THROUGH BASIC QUALITY LEVELS Intnatonal Rsach Jounal of Engnng and Tchnology (IRJET) -ISSN: 2395-0056 Volum: 03 Issu: 02 Fb-2016 www.jt.nt p-issn: 2395-0072 CERTAIN RESULTS ON TIGHTENED-NORMAL-TIGHTENED REPETITIVE DEFERRED SAMPLING

More information

E F. and H v. or A r and F r are dual of each other.

E F. and H v. or A r and F r are dual of each other. A Duality Thom: Consid th following quations as an xampl = A = F μ ε H A E A = jωa j ωμε A + β A = μ J μ A x y, z = J, y, z 4π E F ( A = jω F j ( F j β H F ωμε F + β F = ε M jβ ε F x, y, z = M, y, z 4π

More information

The angle between L and the z-axis is found from

The angle between L and the z-axis is found from Poblm 6 This is not a ifficult poblm but it is a al pain to tansf it fom pap into Mathca I won't giv it to you on th quiz, but know how to o it fo th xam Poblm 6 S Figu 6 Th magnitu of L is L an th z-componnt

More information

Folding of Regular CW-Complexes

Folding of Regular CW-Complexes Ald Mathmatcal Scncs, Vol. 6,, no. 83, 437-446 Foldng of Rgular CW-Comlxs E. M. El-Kholy and S N. Daoud,3. Dartmnt of Mathmatcs, Faculty of Scnc Tanta Unvrsty,Tanta,Egyt. Dartmnt of Mathmatcs, Faculty

More information

Shor s Algorithm. Motivation. Why build a classical computer? Why build a quantum computer? Quantum Algorithms. Overview. Shor s factoring algorithm

Shor s Algorithm. Motivation. Why build a classical computer? Why build a quantum computer? Quantum Algorithms. Overview. Shor s factoring algorithm Motivation Sho s Algoith It appas that th univs in which w liv is govnd by quantu chanics Quantu infoation thoy givs us a nw avnu to study & tst quantu chanics Why do w want to build a quantu coput? Pt

More information

A Note on Estimability in Linear Models

A Note on Estimability in Linear Models Intrnatonal Journal of Statstcs and Applcatons 2014, 4(4): 212-216 DOI: 10.5923/j.statstcs.20140404.06 A Not on Estmablty n Lnar Modls S. O. Adymo 1,*, F. N. Nwob 2 1 Dpartmnt of Mathmatcs and Statstcs,

More information

Network Connectivity Probability of Linear Vehicular Ad-Hoc Networks on Two-Way Street

Network Connectivity Probability of Linear Vehicular Ad-Hoc Networks on Two-Way Street Communcatons and Ntwok,, 4, 33-34 http://dx.do.og/.436/cn..4438 ublshd Onln Novmb (http://www.scr.og/jounal/cn) Ntwok Connctvty obablty of Lna Vhcula Ad-Hoc Ntwoks on Two-Way Stt. C. Nlakantan, A. V. Babu

More information

Grand Canonical Ensemble

Grand Canonical Ensemble Th nsmbl of systms mmrsd n a partcl-hat rsrvor at constant tmpratur T, prssur P, and chmcal potntal. Consdr an nsmbl of M dntcal systms (M =,, 3,...M).. Thy ar mutually sharng th total numbr of partcls

More information

Ερωτήσεις και ασκησεις Κεφ. 10 (για μόρια) ΠΑΡΑΔΟΣΗ 29/11/2016. (d)

Ερωτήσεις και ασκησεις Κεφ. 10 (για μόρια) ΠΑΡΑΔΟΣΗ 29/11/2016. (d) Ερωτήσεις και ασκησεις Κεφ 0 (για μόρια ΠΑΡΑΔΟΣΗ 9//06 Th coffcnt A of th van r Waals ntracton s: (a A r r / ( r r ( (c a a a a A r r / ( r r ( a a a a A r r / ( r r a a a a A r r / ( r r 4 a a a a 0 Th

More information

Multi-linear Systems and Invariant Theory. in the Context of Computer Vision and Graphics. Class 4: Mutli-View 3D-from-2D. CS329 Stanford University

Multi-linear Systems and Invariant Theory. in the Context of Computer Vision and Graphics. Class 4: Mutli-View 3D-from-2D. CS329 Stanford University Mult-lna Sytm and Invaant hoy n th Contxt of Comut Von and Gahc Cla 4: Mutl-Vw 3D-fom-D CS39 Stanfod Unvty Amnon Shahua Cla 4 Matal W Wll Cov oday Eola Gomty and Fundamntal Matx h lan+aallax modl and latv

More information

10/7/14. Mixture Models. Comp 135 Introduction to Machine Learning and Data Mining. Maximum likelihood estimation. Mixture of Normals in 1D

10/7/14. Mixture Models. Comp 135 Introduction to Machine Learning and Data Mining. Maximum likelihood estimation. Mixture of Normals in 1D Comp 35 Introducton to Machn Larnng and Data Mnng Fall 204 rofssor: Ron Khardon Mxtur Modls Motvatd by soft k-mans w dvlopd a gnratv modl for clustrng. Assum thr ar k clustrs Clustrs ar not rqurd to hav

More information

8-node quadrilateral element. Numerical integration

8-node quadrilateral element. Numerical integration Fnt Elmnt Mthod lctur nots _nod quadrlatral lmnt Pag of 0 -nod quadrlatral lmnt. Numrcal ntgraton h tchnqu usd for th formulaton of th lnar trangl can b formall tndd to construct quadrlatral lmnts as wll

More information

Physics 111. Lecture 38 (Walker: ) Phase Change Latent Heat. May 6, The Three Basic Phases of Matter. Solid Liquid Gas

Physics 111. Lecture 38 (Walker: ) Phase Change Latent Heat. May 6, The Three Basic Phases of Matter. Solid Liquid Gas Physics 111 Lctu 38 (Walk: 17.4-5) Phas Chang May 6, 2009 Lctu 38 1/26 Th Th Basic Phass of Matt Solid Liquid Gas Squnc of incasing molcul motion (and ngy) Lctu 38 2/26 If a liquid is put into a sald contain

More information

Chapter 3 Binary Image Analysis. Comunicação Visual Interactiva

Chapter 3 Binary Image Analysis. Comunicação Visual Interactiva Chapt 3 Bnay Iag Analyss Counação Vsual Intatva Most oon nghbohoods Pxls and Nghbohoods Nghbohood Vznhança N 4 Nghbohood N 8 Us of ass Exapl: ogn nput output CVI - Bnay Iag Analyss Exapl 0 0 0 0 0 output

More information

ON THE COMPLEXITY OF K-STEP AND K-HOP DOMINATING SETS IN GRAPHS

ON THE COMPLEXITY OF K-STEP AND K-HOP DOMINATING SETS IN GRAPHS MATEMATICA MONTISNIRI Vol XL (2017) MATEMATICS ON TE COMPLEXITY OF K-STEP AN K-OP OMINATIN SETS IN RAPS M FARAI JALALVAN AN N JAFARI RA partmnt of Mathmatcs Shahrood Unrsty of Tchnology Shahrood Iran Emals:

More information

External Equivalent. EE 521 Analysis of Power Systems. Chen-Ching Liu, Boeing Distinguished Professor Washington State University

External Equivalent. EE 521 Analysis of Power Systems. Chen-Ching Liu, Boeing Distinguished Professor Washington State University xtrnal quvalnt 5 Analyss of Powr Systms Chn-Chng Lu, ong Dstngushd Profssor Washngton Stat Unvrsty XTRNAL UALNT ach powr systm (ara) s part of an ntrconnctd systm. Montorng dvcs ar nstalld and data ar

More information

Extinction Ratio and Power Penalty

Extinction Ratio and Power Penalty Application Not: HFAN-.. Rv.; 4/8 Extinction Ratio and ow nalty AVALABLE Backgound Extinction atio is an impotant paamt includd in th spcifications of most fib-optic tanscivs. h pupos of this application

More information

Minimum Spanning Trees

Minimum Spanning Trees Mnmum Spnnng Trs Spnnng Tr A tr (.., connctd, cyclc grph) whch contns ll th vrtcs of th grph Mnmum Spnnng Tr Spnnng tr wth th mnmum sum of wghts 1 1 Spnnng forst If grph s not connctd, thn thr s spnnng

More information

Section 6.1. Question: 2. Let H be a subgroup of a group G. Then H operates on G by left multiplication. Describe the orbits for this operation.

Section 6.1. Question: 2. Let H be a subgroup of a group G. Then H operates on G by left multiplication. Describe the orbits for this operation. MAT 444 H Barclo Spring 004 Homwork 6 Solutions Sction 6 Lt H b a subgroup of a group G Thn H oprats on G by lft multiplication Dscrib th orbits for this opration Th orbits of G ar th right costs of H

More information

Algorithmic Superactivation of Asymptotic Quantum Capacity of Zero-Capacity Quantum Channels

Algorithmic Superactivation of Asymptotic Quantum Capacity of Zero-Capacity Quantum Channels Algothmc Supactvaton of Asymptotc Quantum Capacty of Zo-Capacty Quantum Channls Laszlo Gyongyos, Sando Im Dpatmnt of Tlcommuncatons Budapst Unvsty of Tchnology and Economcs - Budapst, Magya tudoso t, ungay

More information

Review - Probabilistic Classification

Review - Probabilistic Classification Mmoral Unvrsty of wfoundland Pattrn Rcognton Lctur 8 May 5, 6 http://www.ngr.mun.ca/~charlsr Offc Hours: Tusdays Thursdays 8:3-9:3 PM E- (untl furthr notc) Gvn lablld sampls { ɛc,,,..., } {. Estmat Rvw

More information

NEW ATTACKS ON TAKAGI CRYPTOSYSTEM

NEW ATTACKS ON TAKAGI CRYPTOSYSTEM Jounal of Algba umb Thoy: Advancs and Alcatons Volum 8 umb - 7 Pags 5-59 Avalabl at htt://scntfcadvancscon DOI: htt://dxdoog/86/antaa_785 EW ATTACKS O TAKAGI CRYPTOSYSTEM MUHAMMAD REAL KAMEL ARIFFI SADIQ

More information

Outlier-tolerant parameter estimation

Outlier-tolerant parameter estimation Outlr-tolrant paramtr stmaton Baysan thods n physcs statstcs machn larnng and sgnal procssng (SS 003 Frdrch Fraundorfr fraunfr@cg.tu-graz.ac.at Computr Graphcs and Vson Graz Unvrsty of Tchnology Outln

More information

Soft k-means Clustering. Comp 135 Machine Learning Computer Science Tufts University. Mixture Models. Mixture of Normals in 1D

Soft k-means Clustering. Comp 135 Machine Learning Computer Science Tufts University. Mixture Models. Mixture of Normals in 1D Comp 35 Machn Larnng Computr Scnc Tufts Unvrsty Fall 207 Ron Khardon Th EM Algorthm Mxtur Modls Sm-Suprvsd Larnng Soft k-mans Clustrng ck k clustr cntrs : Assocat xampls wth cntrs p,j ~~ smlarty b/w cntr

More information

The Hyperelastic material is examined in this section.

The Hyperelastic material is examined in this section. 4. Hyprlastcty h Hyprlastc matral s xad n ths scton. 4..1 Consttutv Equatons h rat of chang of ntrnal nrgy W pr unt rfrnc volum s gvn by th strss powr, whch can b xprssd n a numbr of dffrnt ways (s 3.7.6):

More information

Jones vector & matrices

Jones vector & matrices Jons vctor & matrcs PY3 Colást na hollscol Corcagh, Ér Unvrst Collg Cork, Irland Dpartmnt of Phscs Matr tratmnt of polarzaton Consdr a lght ra wth an nstantanous -vctor as shown k, t ˆ k, t ˆ k t, o o

More information

Mid Year Examination F.4 Mathematics Module 1 (Calculus & Statistics) Suggested Solutions

Mid Year Examination F.4 Mathematics Module 1 (Calculus & Statistics) Suggested Solutions Mid Ya Eamination 3 F. Matmatics Modul (Calculus & Statistics) Suggstd Solutions Ma pp-: 3 maks - Ma pp- fo ac qustion: mak. - Sam typ of pp- would not b countd twic fom wol pap. - In any cas, no pp maks

More information

Key words: Qubits, Geometric algebra, Clifford translation, Geometric phase, Topological quantum computing

Key words: Qubits, Geometric algebra, Clifford translation, Geometric phase, Topological quantum computing omtc phas n th + quantum stat voluton Alxand OUNE OUNE upcomputng Al Vjo A 9656 UA Emal addss alx@gun.com Ky wods Qubts omtc algba lffod tanslaton omtc phas opologcal quantum computng Abstact Whn quantum

More information

COHORT MBA. Exponential function. MATH review (part2) by Lucian Mitroiu. The LOG and EXP functions. Properties: e e. lim.

COHORT MBA. Exponential function. MATH review (part2) by Lucian Mitroiu. The LOG and EXP functions. Properties: e e. lim. MTH rviw part b Lucian Mitroiu Th LOG and EXP functions Th ponntial function p : R, dfind as Proprtis: lim > lim p Eponntial function Y 8 6 - -8-6 - - X Th natural logarithm function ln in US- log: function

More information

GMm. 10a-0. Satellite Motion. GMm U (r) - U (r ) how high does it go? Escape velocity. Kepler s 2nd Law ::= Areas Angular Mom. Conservation!!!!

GMm. 10a-0. Satellite Motion. GMm U (r) - U (r ) how high does it go? Escape velocity. Kepler s 2nd Law ::= Areas Angular Mom. Conservation!!!! F Satllt Moton 10a-0 U () - U ( ) 0 f ow g dos t go? scap locty Kpl s nd Law ::= Aas Angula Mo. Consaton!!!! Nwton s Unsal Law of Gaty 10a-1 M F F 1) F acts along t ln connctng t cnts of objcts Cntal Foc

More information

CBSE , ˆj. cos CBSE_2015_SET-1. SECTION A 1. Given that a 2iˆ ˆj. We need to find. 3. Consider the vector equation of the plane.

CBSE , ˆj. cos CBSE_2015_SET-1. SECTION A 1. Given that a 2iˆ ˆj. We need to find. 3. Consider the vector equation of the plane. CBSE CBSE SET- SECTION. Gv tht d W d to fd 7 7 Hc, 7 7 7. Lt,. W ow tht.. Thus,. Cosd th vcto quto of th pl.. z. - + z = - + z = Thus th Cts quto of th pl s - + z = Lt d th dstc tw th pot,, - to th pl.

More information

Chapter 3 Basic Crystallography and Electron Diffraction from Crystals. Lecture 11. CHEM 793, 2008 Fall

Chapter 3 Basic Crystallography and Electron Diffraction from Crystals. Lecture 11. CHEM 793, 2008 Fall Chapt 3 Basc Cystalloaphy and Elcton Dacton om Cystals Lctu CHEM 793 8 all Top o thn ol Cystal plan (hl) Bottom o thn ol Ba Law d snθ nλ hl CHEM 793 8 all Equons connctn th Cystal Paamts (h l) and d-spacn

More information

Study on the Classification and Stability of Industry-University- Research Symbiosis Phenomenon: Based on the Logistic Model

Study on the Classification and Stability of Industry-University- Research Symbiosis Phenomenon: Based on the Logistic Model Jounal of Emging Tnds in Economics and Managmnt Scincs (JETEMS 3 (1: 116-1 Scholalink sach Institut Jounals, 1 (ISS: 141-74 Jounal jtms.scholalinksach.og of Emging Tnds Economics and Managmnt Scincs (JETEMS

More information

CDS 101/110: Lecture 7.1 Loop Analysis of Feedback Systems

CDS 101/110: Lecture 7.1 Loop Analysis of Feedback Systems CDS 11/11: Lctu 7.1 Loop Analysis of Fdback Systms Novmb 7 216 Goals: Intoduc concpt of loop analysis Show how to comput closd loop stability fom opn loop poptis Dscib th Nyquist stability cition fo stability

More information

New bounds on Poisson approximation to the distribution of a sum of negative binomial random variables

New bounds on Poisson approximation to the distribution of a sum of negative binomial random variables Sogklaaka J. Sc. Tchol. 4 () 4-48 Ma. -. 8 Ogal tcl Nw bouds o Posso aomato to th dstbuto of a sum of gatv bomal adom vaabls * Kat Taabola Datmt of Mathmatcs Faculty of Scc Buaha Uvsty Muag Chobu 3 Thalad

More information

Week 3: Connected Subgraphs

Week 3: Connected Subgraphs Wk 3: Connctd Subgraphs Sptmbr 19, 2016 1 Connctd Graphs Path, Distanc: A path from a vrtx x to a vrtx y in a graph G is rfrrd to an xy-path. Lt X, Y V (G). An (X, Y )-path is an xy-path with x X and y

More information

The Odd Generalized Exponential Modified. Weibull Distribution

The Odd Generalized Exponential Modified. Weibull Distribution Itatoal Mathmatcal oum Vol. 6 o. 9 943-959 HIKARI td www.m-ha.com http://d.do.og/.988/m.6.6793 Th Odd Galzd Epotal Modd Wbull Dstbuto Yassm Y. Abdlall Dpatmt o Mathmatcal Statstcs Isttut o Statstcal Studs

More information

cycle that does not cross any edges (including its own), then it has at least

cycle that does not cross any edges (including its own), then it has at least W prov th following thorm: Thorm If a K n is drawn in th plan in such a way that it has a hamiltonian cycl that dos not cross any dgs (including its own, thn it has at last n ( 4 48 π + O(n crossings Th

More information

Search sequence databases 3 10/25/2016

Search sequence databases 3 10/25/2016 Sarch squnc databass 3 10/25/2016 Etrm valu distribution Ø Suppos X is a random variabl with probability dnsity function p(, w sampl a larg numbr S of indpndnt valus of X from this distribution for an

More information

Hydrogen atom. Energy levels and wave functions Orbital momentum, electron spin and nuclear spin Fine and hyperfine interaction Hydrogen orbitals

Hydrogen atom. Energy levels and wave functions Orbital momentum, electron spin and nuclear spin Fine and hyperfine interaction Hydrogen orbitals Hydogn atom Engy lvls and wav functions Obital momntum, lcton spin and nucla spin Fin and hypfin intaction Hydogn obitals Hydogn atom A finmnt of th Rydbg constant: R ~ 109 737.3156841 cm -1 A hydogn mas

More information

UNIT10 PLANE OF REGRESSION

UNIT10 PLANE OF REGRESSION UIT0 PLAE OF REGRESSIO Plane of Regesson Stuctue 0. Intoducton Ojectves 0. Yule s otaton 0. Plane of Regesson fo thee Vaales 0.4 Popetes of Resduals 0.5 Vaance of the Resduals 0.6 Summay 0.7 Solutons /

More information

Bethe-Salpeter Equation Green s Function and the Bethe-Salpeter Equation for Effective Interaction in the Ladder Approximation

Bethe-Salpeter Equation Green s Function and the Bethe-Salpeter Equation for Effective Interaction in the Ladder Approximation Bh-Salp Equaon n s Funcon and h Bh-Salp Equaon fo Effcv Inacon n h Ladd Appoxmaon Csa A. Z. Vasconcllos Insuo d Físca-UFRS - upo: Físca d Hadons Sngl-Pacl Popagao. Dagam xpanson of popagao. W consd as

More information

Lecture 14. Relic neutrinos Temperature at neutrino decoupling and today Effective degeneracy factor Neutrino mass limits Saha equation

Lecture 14. Relic neutrinos Temperature at neutrino decoupling and today Effective degeneracy factor Neutrino mass limits Saha equation Lctur Rlc nutrnos mpratur at nutrno dcoupln and today Effctv dnracy factor Nutrno mass lmts Saha quaton Physcal Cosmoloy Lnt 005 Rlc Nutrnos Nutrnos ar wakly ntractn partcls (lptons),,,,,,, typcal ractons

More information

ST 524 NCSU - Fall 2008 One way Analysis of variance Variances not homogeneous

ST 524 NCSU - Fall 2008 One way Analysis of variance Variances not homogeneous ST 54 NCSU - Fall 008 On way Analyss of varanc Varancs not homognous On way Analyss of varanc Exampl (Yandll, 997) A plant scntst masurd th concntraton of a partcular vrus n plant sap usng ELISA (nzym-lnkd

More information

International Journal of Advanced Scientific Research and Management, Volume 3 Issue 11, Nov

International Journal of Advanced Scientific Research and Management, Volume 3 Issue 11, Nov 199 Algothm ad Matlab Pogam fo Softwa Rlablty Gowth Modl Basd o Wbull Od Statstcs Dstbuto Akladswa Svasa Vswaatha 1 ad Saavth Rama 2 1 Mathmatcs, Saaatha Collg of Egg, Tchy, Taml Nadu, Ida Abstact I ths

More information

Outline. Motivation. Motivation. Theoretical method. Main results. Summary. Motivation. Theoretical method. Main results. Summary.

Outline. Motivation. Motivation. Theoretical method. Main results. Summary. Motivation. Theoretical method. Main results. Summary. Outln Thotcal Study on Elcton Impact Exctaton and Dlctonc Rcombnaton of Hghly Chagd Tungstn Ions Thotcal mthod, Zhongwn Wu, and Chnzhong Dong Ky Lab of Atomc and Molcula Physcs & Functonal Matals of Gansu,

More information

School of Electrical Engineering. Lecture 2: Wire Antennas

School of Electrical Engineering. Lecture 2: Wire Antennas School of lctical ngining Lctu : Wi Antnnas Wi antnna It is an antnna which mak us of mtallic wis to poduc a adiation. KT School of lctical ngining www..kth.s Dipol λ/ Th most common adiato: λ Dipol 3λ/

More information

A. Thicknesses and Densities

A. Thicknesses and Densities 10 Lab0 The Eath s Shells A. Thcknesses and Denstes Any theoy of the nteo of the Eath must be consstent wth the fact that ts aggegate densty s 5.5 g/cm (ecall we calculated ths densty last tme). In othe

More information

Overview. 1 Recall: continuous-time Markov chains. 2 Transient distribution. 3 Uniformization. 4 Strong and weak bisimulation

Overview. 1 Recall: continuous-time Markov chains. 2 Transient distribution. 3 Uniformization. 4 Strong and weak bisimulation Rcall: continuous-tim Makov chains Modling and Vification of Pobabilistic Systms Joost-Pit Katon Lhstuhl fü Infomatik 2 Softwa Modling and Vification Goup http://movs.wth-aachn.d/taching/ws-89/movp8/ Dcmb

More information

Physics 11b Lecture #2. Electric Field Electric Flux Gauss s Law

Physics 11b Lecture #2. Electric Field Electric Flux Gauss s Law Physcs 11b Lectue # Electc Feld Electc Flux Gauss s Law What We Dd Last Tme Electc chage = How object esponds to electc foce Comes n postve and negatve flavos Conseved Electc foce Coulomb s Law F Same

More information

An Overview of Markov Random Field and Application to Texture Segmentation

An Overview of Markov Random Field and Application to Texture Segmentation An Ovrvw o Markov Random Fld and Applcaton to Txtur Sgmntaton Song-Wook Joo Octobr 003. What s MRF? MRF s an xtnson o Markov Procss MP (D squnc o r.v. s unlatral (causal: p(x t x,

More information

STATISTICAL MECHANICS OF DIATOMIC GASES

STATISTICAL MECHANICS OF DIATOMIC GASES Pof. D. I. ass Phys54 7 -Ma-8 Diatomic_Gas (Ashly H. Cat chapt 5) SAISICAL MECHAICS OF DIAOMIC GASES - Fo monatomic gas whos molculs hav th dgs of fdom of tanslatoy motion th intnal u 3 ngy and th spcific

More information

Aakash. For Class XII Studying / Passed Students. Physics, Chemistry & Mathematics

Aakash. For Class XII Studying / Passed Students. Physics, Chemistry & Mathematics Aakash A UNIQUE PPRTUNITY T HELP YU FULFIL YUR DREAMS Fo Class XII Studying / Passd Studnts Physics, Chmisty & Mathmatics Rgistd ffic: Aakash Tow, 8, Pusa Road, Nw Dlhi-0005. Ph.: (0) 4763456 Fax: (0)

More information

Lecture 7 Diffusion. Our fluid equations that we developed before are: v t v mn t

Lecture 7 Diffusion. Our fluid equations that we developed before are: v t v mn t Cla ot fo EE6318/Phy 6383 Spg 001 Th doumt fo tutoal u oly ad may ot b opd o dtbutd outd of EE6318/Phy 6383 tu 7 Dffuo Ou flud quato that w dvlopd bfo a: f ( )+ v v m + v v M m v f P+ q E+ v B 13 1 4 34

More information

ON THE FRESNEL SINE INTEGRAL AND THE CONVOLUTION

ON THE FRESNEL SINE INTEGRAL AND THE CONVOLUTION IJMMS 3:37, 37 333 PII. S16117131151 http://jmms.hndaw.com Hndaw Publshng Cop. ON THE FRESNEL SINE INTEGRAL AND THE CONVOLUTION ADEM KILIÇMAN Receved 19 Novembe and n evsed fom 7 Mach 3 The Fesnel sne

More information

Estimation of a Random Variable

Estimation of a Random Variable Estimation of a andom Vaiabl Obsv and stimat. ˆ is an stimat of. ζ : outcom Estimation ul ˆ Sampl Spac Eampl: : Pson s Hight, : Wight. : Ailin Company s Stock Pic, : Cud Oil Pic. Cost of Estimation Eo

More information

Chapter 2 Reciprocal Lattice. An important concept for analyzing periodic structures

Chapter 2 Reciprocal Lattice. An important concept for analyzing periodic structures Chpt Rcpocl Lttc A mpott cocpt o lyzg podc stuctus Rsos o toducg cpocl lttc Thoy o cystl dcto o x-ys, utos, d lctos. Wh th dcto mxmum? Wht s th tsty? Abstct study o uctos wth th podcty o Bvs lttc Fou tsomto.

More information

If there are k binding constraints at x then re-label these constraints so that they are the first k constraints.

If there are k binding constraints at x then re-label these constraints so that they are the first k constraints. Mathematcal Foundatons -1- Constaned Optmzaton Constaned Optmzaton Ma{ f ( ) X} whee X {, h ( ), 1,, m} Necessay condtons fo to be a soluton to ths mamzaton poblem Mathematcally, f ag Ma{ f ( ) X}, then

More information

Chapter 4: Algebra and group presentations

Chapter 4: Algebra and group presentations Chapt 4: Algba and goup psntations Matthw Macauly Dpatmnt of Mathmatical Scincs Clmson Univsity http://www.math.clmson.du/~macaul/ Math 4120, Sping 2014 M. Macauly (Clmson) Chapt 4: Algba and goup psntations

More information

Journal of Theoretical and Applied Information Technology 10 th January Vol. 47 No JATIT & LLS. All rights reserved.

Journal of Theoretical and Applied Information Technology 10 th January Vol. 47 No JATIT & LLS. All rights reserved. Journal o Thortcal and Appld Inormaton Tchnology th January 3. Vol. 47 No. 5-3 JATIT & LLS. All rghts rsrvd. ISSN: 99-8645 www.att.org E-ISSN: 87-395 RESEARCH ON PROPERTIES OF E-PARTIAL DERIVATIVE OF LOGIC

More information

Homework 1: Solutions

Homework 1: Solutions Howo : Solutos No-a Fals supposto tst but passs scal tst lthouh -f th ta as slowss [S /V] vs t th appaac of laty alty th path alo whch slowss s to b tat to obta tavl ts ps o th ol paat S o V as a cosquc

More information

Theoretical Electron Impact Ionization, Recombination, and Photon Emissivity Coefficient for Tungsten Ions

Theoretical Electron Impact Ionization, Recombination, and Photon Emissivity Coefficient for Tungsten Ions TM on Unctanty ssssmnt and Bnchmak Expmnts fo &M Data fo Fuson pplcatons Thotcal Elcton Impact Ionzaton, Rcombnaton, and Photon Emssvty Coffcnt fo Tungstn Ions D.-H. Kwon, Koa tomc Engy Rsach Insttut 2016.

More information

Analyzing Frequencies

Analyzing Frequencies Frquncy (# ndvduals) Frquncy (# ndvduals) /3/16 H o : No dffrnc n obsrvd sz frquncs and that prdctd by growth modl How would you analyz ths data? 15 Obsrvd Numbr 15 Expctd Numbr from growth modl 1 1 5

More information

CBSE SAMPLE PAPER SOLUTIONS CLASS-XII MATHS SET-2 CBSE , ˆj. cos. SECTION A 1. Given that a 2iˆ ˆj. We need to find

CBSE SAMPLE PAPER SOLUTIONS CLASS-XII MATHS SET-2 CBSE , ˆj. cos. SECTION A 1. Given that a 2iˆ ˆj. We need to find BSE SMLE ER SOLUTONS LSS-X MTHS SET- BSE SETON Gv tht d W d to fd 7 7 Hc, 7 7 7 Lt, W ow tht Thus, osd th vcto quto of th pl z - + z = - + z = Thus th ts quto of th pl s - + z = Lt d th dstc tw th pot,,

More information

Chapter-10. Ab initio methods I (Hartree-Fock Methods)

Chapter-10. Ab initio methods I (Hartree-Fock Methods) Chapt- Ab nto mthods I (Hat-Fock Mthods) Ky wods: Ab nto mthods, quantum chmsty, Schodng quaton, atomc obtals, wll bhavd functons, poduct wavfunctons, dtmnantal wavfunctons, Hat mthod, Hat Fock Mthod,

More information

Multistage Median Ranked Set Sampling for Estimating the Population Median

Multistage Median Ranked Set Sampling for Estimating the Population Median Jounal of Mathematcs and Statstcs 3 (: 58-64 007 ISSN 549-3644 007 Scence Publcatons Multstage Medan Ranked Set Samplng fo Estmatng the Populaton Medan Abdul Azz Jeman Ame Al-Oma and Kamaulzaman Ibahm

More information

Combinatorial Networks Week 1, March 11-12

Combinatorial Networks Week 1, March 11-12 1 Nots on March 11 Combinatorial Ntwors W 1, March 11-1 11 Th Pigonhol Principl Th Pigonhol Principl If n objcts ar placd in hols, whr n >, thr xists a box with mor than on objcts 11 Thorm Givn a simpl

More information

A New Bargaining Game Model for Measuring Performance of Two-Stage Network Structures

A New Bargaining Game Model for Measuring Performance of Two-Stage Network Structures Int. J. Rsach n Inustal Engnng, pp. 7-39 Volu, Nub, 0 Intnatonal Jounal of Rsach n Inustal Engnng ounal hopag: www.nvlscnc.co/nx.php/ A Nw Baganng Ga Mol fo Masung Pfoanc of Two-tag Ntwok tuctus F. Hossnzah

More information

Electromagnetics: The Smith Chart (9-6)

Electromagnetics: The Smith Chart (9-6) Elctomagntcs: Th Smth Chat (9-6 Yoonchan Jong School of Elctcal Engnng, Soul Natonal Unvsty Tl: 8 (0 880 63, Fax: 8 (0 873 9953 Emal: yoonchan@snu.ac.k A Confomal Mappng ( Mappng btwn complx-valud vaabls:

More information

8 Baire Category Theorem and Uniform Boundedness

8 Baire Category Theorem and Uniform Boundedness 8 Bae Categoy Theoem and Unfom Boundedness Pncple 8.1 Bae s Categoy Theoem Valdty of many esults n analyss depends on the completeness popety. Ths popety addesses the nadequacy of the system of atonal

More information

GAUSS PLANETARY EQUATIONS IN A NON-SINGULAR GRAVITATIONAL POTENTIAL

GAUSS PLANETARY EQUATIONS IN A NON-SINGULAR GRAVITATIONAL POTENTIAL GAUSS PLANETARY EQUATIONS IN A NON-SINGULAR GRAVITATIONAL POTENTIAL Ioannis Iaklis Haanas * and Michal Hany# * Dpatmnt of Physics and Astonomy, Yok Univsity 34 A Pti Scinc Building Noth Yok, Ontaio, M3J-P3,

More information

Tian Zheng Department of Statistics Columbia University

Tian Zheng Department of Statistics Columbia University Haplotype Tansmsson Assocaton (HTA) An "Impotance" Measue fo Selectng Genetc Makes Tan Zheng Depatment of Statstcs Columba Unvesty Ths s a jont wok wth Pofesso Shaw-Hwa Lo n the Depatment of Statstcs at

More information

Relate p and T at equilibrium between two phases. An open system where a new phase may form or a new component can be added

Relate p and T at equilibrium between two phases. An open system where a new phase may form or a new component can be added 4.3, 4.4 Phas Equlbrum Dtrmn th slops of th f lns Rlat p and at qulbrum btwn two phass ts consdr th Gbbs functon dg η + V Appls to a homognous systm An opn systm whr a nw phas may form or a nw componnt

More information

Homework #3. 1 x. dx. It therefore follows that a sum of the

Homework #3. 1 x. dx. It therefore follows that a sum of the Danil Cannon CS 62 / Luan March 5, 2009 Homwork # 1. Th natural logarithm is dfind by ln n = n 1 dx. It thrfor follows that a sum of th 1 x sam addnd ovr th sam intrval should b both asymptotically uppr-

More information

(, ) which is a positively sloping curve showing (Y,r) for which the money market is in equilibrium. The P = (1.4)

(, ) which is a positively sloping curve showing (Y,r) for which the money market is in equilibrium. The P = (1.4) ots lctu Th IS/LM modl fo an opn conomy is basd on a fixd pic lvl (vy sticky pics) and consists of a goods makt and a mony makt. Th goods makt is Y C+ I + G+ X εq (.) E SEK wh ε = is th al xchang at, E

More information

Grid Transformations for CFD Calculations

Grid Transformations for CFD Calculations Coll of Ennn an Comput Scnc Mchancal Ennn Dpatmnt ME 69 Computatonal lu Dnamcs Spn Tct: 5754 Instuct: La Catto Intoucton G Tansfmatons f CD Calculatons W want to ca out ou CD analss n altnatv conat sstms.

More information

From Structural Analysis to FEM. Dhiman Basu

From Structural Analysis to FEM. Dhiman Basu From Structural Analyss to FEM Dhman Basu Acknowldgmnt Followng txt books wr consultd whl prparng ths lctur nots: Znkwcz, OC O.C. andtaylor Taylor, R.L. (000). Th FntElmnt Mthod, Vol. : Th Bass, Ffth dton,

More information

Rigid Bodies: Equivalent Systems of Forces

Rigid Bodies: Equivalent Systems of Forces Engneeng Statcs, ENGR 2301 Chapte 3 Rgd Bodes: Equvalent Sstems of oces Intoducton Teatment of a bod as a sngle patcle s not alwas possble. In geneal, the se of the bod and the specfc ponts of applcaton

More information

ADDITIVE INTEGRAL FUNCTIONS IN VALUED FIELDS. Ghiocel Groza*, S. M. Ali Khan** 1. Introduction

ADDITIVE INTEGRAL FUNCTIONS IN VALUED FIELDS. Ghiocel Groza*, S. M. Ali Khan** 1. Introduction ADDITIVE INTEGRAL FUNCTIONS IN VALUED FIELDS Ghiocl Goza*, S. M. Ali Khan** Abstact Th additiv intgal functions with th cofficints in a comlt non-achimdan algbaically closd fild of chaactistic 0 a studid.

More information

CHARACTERISTICS OF MAGNETICALLY ENHANCED CAPACITIVELY COUPLED DISCHARGES*

CHARACTERISTICS OF MAGNETICALLY ENHANCED CAPACITIVELY COUPLED DISCHARGES* CHARACTERISTICS OF MAGNETICALLY ENHANCED CAPACITIVELY COUPLED DISCHARGES* Alx V. Vasnkov and Mak J. Kushn Unvsty of Illnos 1406 W. Gn St. Ubana, IL 61801 vasnkov@uuc.du k@uuc.du http://uglz.c.uuc.du Octob

More information

Lecture 3: Phasor notation, Transfer Functions. Context

Lecture 3: Phasor notation, Transfer Functions. Context EECS 5 Fall 4, ctur 3 ctur 3: Phasor notaton, Transfr Functons EECS 5 Fall 3, ctur 3 Contxt In th last lctur, w dscussd: how to convrt a lnar crcut nto a st of dffrntal quatons, How to convrt th st of

More information

and integrated over all, the result is f ( 0) ] //Fourier transform ] //inverse Fourier transform

and integrated over all, the result is f ( 0) ] //Fourier transform ] //inverse Fourier transform NANO 70-Nots Chapt -Diactd bams Dlta uctio W d som mathmatical tools to dvlop a physical thoy o lcto diactio. Idal cystals a iiit this, so th will b som iiitis lii about. Usually, th iiit quatity oly ists

More information

Electrochemical Equilibrium Electromotive Force. Relation between chemical and electric driving forces

Electrochemical Equilibrium Electromotive Force. Relation between chemical and electric driving forces C465/865, 26-3, Lctur 7, 2 th Sp., 26 lctrochmcal qulbrum lctromotv Forc Rlaton btwn chmcal and lctrc drvng forcs lctrochmcal systm at constant T and p: consdr G Consdr lctrochmcal racton (nvolvng transfr

More information

A Velocity Extraction Method in Molecular Dynamic Simulation of Low Speed Nanoscale Flows

A Velocity Extraction Method in Molecular Dynamic Simulation of Low Speed Nanoscale Flows Int. J. Mol. Sc. 006, 7, 405-416 Intnatonal Jounal of Molcula Scncs ISSN 14-0067 006 by MDPI www.mdp.og/ms/ A Vlocty Extacton Mthod n Molcula Dynamc Smulaton of Low Spd Nanoscal Flows Wnf Zhang School

More information