Parametric Curves. (Com S 477/577 Notes) Yan-Bin Jia. Oct 3, 2017

Size: px
Start display at page:

Download "Parametric Curves. (Com S 477/577 Notes) Yan-Bin Jia. Oct 3, 2017"

Transcription

1 Parametric Curves (Com S 477/577 Notes) Yan-Bin Jia Oct 3, Introduction A curve in R 2 (or R 3 ) is a differentiable function α : [a,b] R 2 (or R 3 ). The initial point is α[a] and the final point is α[b]. The domain of the curve is the interval [a,b]. A portion of α defined on an interval [c,d] [a,b] is called a curve segment. Example 1. Straight Line The line is the simplest curve in the plane as its coordinate functions are linear. Explicitly, the curve α(t) = p+tv = (x 0 +tv x,y 0 +tv y ), where v 0, (1) is a straight line through the reference point p = α(0) = (x 0,y 0 ) in the direction v = (v x,v y ). Here, t is the signed distance from a point α(t) on the line to p as scaled by v. As shown on the left, the vector from p to a point (x,y) on the line must be either in the direction of (x, y) (v x,v y ) or in its opposite direction. Hence, the cross (x 0, y 0 ) product of the two vectors must be zero, that is, (v x, v y ) (x x 0,y y 0 ) (v x,v y ) = 0. Expansion of the above cross product yields an implicit equation of the line that relates the x and y coordinates of every incident point: v y x v x y v y x 0 +v x y 0 = 0. (2) Example 2. Helix 1 The curve t (acost,asint,0) travels around a circle of radius a > 0 in the x-y plane. If we allow this curve to rise (or fall) at a constant rate, we obtain a helix α = (acost,asint,bt), where a > 0 and b 0. Example 3. The curve α : R R 3 such that 1 The figure is from [1, p. 16]. α(t) = (e t,e t, 2t) 1

2 shares with the helix in Example 2 the property of rising constantly. However, it lies over the hyperbola xy = 1 in the x-y plane instead of a circle. A curve α(t) = (x(t),y(t)) is said to be smooth at t = t 0 if its kth derivative ( ) α (k) (t) = x (k) (t),y (k) (t) exists for any integer k > 0. A piecewise smooth curve α has a domain which is the union of a finite number of subintervals over each of which α is smooth. Example 4. A line α(t) = p+tq is a smooth curve. Here α (t) = q and α (k) = 0 for k > 1. A polygon, on the other hand, is a piecewise smooth curve, where each edge determines a subdomain. y Example 5. Cuspidal cubic The curve α(t) = (t 2,t 3 ) is smooth. We have x α (t) = (2t,3t 2 ), α (t) = (2,6t), α (t) = (0,6), α (k) (t) = 0, k 4. Consider a plane curve α : [a,b] R 2. It is called a closed parametric curve if α(a) = α(b). A point of self-crossing is a point α(t 1 ) for which there exist finitely many distinct values t 1,...,t n [a,b], n 2, which satisfy α(t 1 ) = α(t 2 ) = = α(t n ), and in the case n = 2, [t 1,t 2 ] [a,b]. Example 6. A circle is closed. The other three curves all have self-crossings. 2

3 2 Velocity, Speed, and Arc Length Let α(t) be a curve. The velocity vector of α at t is α (t). The speed at t is the length α (t). The meaning is clear if we see α(t) as the location of a moving point at time t. The parametrization α(t) is unit-speed if α (t) = 1 for all values of t. A point where α (t) = 0 is called a cusp on the curve. Example 7. The origin on the cuspidal cubic in Example 5 is a cusp. The curve α(t) is regular if all velocity vectors are different from zero, that is, α (t) 0 for all t. Intuitively, a point moving on the curve with velocity α (t) will never come to a stop or reverse its direction. Example 8. Consider the curve α(θ) = (aθcosθ,aθsinθ). It has velocity α (θ) = a(cosθ θsinθ,sinθ +θcosθ), and speed α (θ) = a (cosθ θsinθ) 2 +(sinθ +θcosθ) 2 = a 1+θ 2 0. Therefore the parametrization is regular. The velocity and speed depend on its parametrization. Non-regularity at a point may be just a property of the parametrization, and need not correspond to any special feature of the curve geometry. For a different parametrization the curve may have a non-zero velocity at the same point. To formulate the length of α, we note that the portion over [t,t+δt] is nearly a straight line when δt is very small. So the length over [t,t+δt] can be approximated by α(t) α(t+δt) α(t), which again is approximated by α (t) δt. α(t + δt) We divide α up into segments, each of which corresponds to a small increment δt. As δt tends to zero, we will obtain the exact length. The arc length of α from t = a to t = b is thus defined as b a α (t) dt. Example 9. Logarithmic spiral The curve α(t) = (e t cost,e t sint), has a spiral motion. We obtain that α (t) = ( e t (cost sint),e t (sint+cost) ), α (t) = 2e t. 3

4 y x Figure 1: Logarithmic spiral (e t/20 cost,e t/20 sint) over [0,50]. Hence the arc length of α starting at α(0) = (1,0), for instance, is s = t 0 2e u du = 2(e t 1). 3 Reparametrization Let I and J be intervals. Let α : I R 3 be a curve and h a differentiable function. Then the composite function β = α h is a curve called the reparametrization of α by h. β h α β(s) = α(h(s)) J s t I Example 10. Suppose α(t) = ( t,t t,1 t) on (0,4). If h(s) = s 2 on (0,2), then β(s) = α(h(s)) = α(s 2 ) = (s,s 3,1 s 2 ). The curve α has been reparametrized by h to yield the curve β. At each time s in the interval J, the curve β is at the point β(s) = α(h(s)) reached by the curve α at time h(s) in the interval. Thus β does follow the route of α, but it reaches a given point on the route at a different time than α does. Sometimes one is interested only in the route followed by a curve and not in the particular speed at which it traverses its route. One way to ignore the speed of a curve α is to reparametrize to a curve α which has unit speed α = 1. 4

5 Theorem 1 If α is a regular curve, then there exists a reparametrization α that has unit speed. Proof Consider the arc length function s(t) = t c α (u) du, where c is a number in the domain of α. It then follows that s (t) = α (t) ; namely, the derivative of s is the speed function α (t). Since α is regular, α 0 everywhere; hence ds dt > 0 always holds. By a standard theorem of calculus, the function s has an inverse function t(s), and dt ds = 1 1 = ds α (t). dt Now we let α(s) = α(t(s)) be the reparametrization of α. Then Hence, the speed of α is α (s) = α (t(s)) dt ds. α (s) = α 1 (t(s)) α (t(s)) = 1. The unit-speed curve α is said to have arc-length parameterization, since the arc length of α from s = a to s = b, a < b, is just b a. Example 11. Let us consider the helix α = (acost,asint,bt) in Example 2 again. It has velocity Hence Thus α has constant speed: The arc length from t = 0 is then α (t) = ( asint,acost,b). α (t) 2 = α (t) α (t) = a 2 sin 2 t+a 2 cos 2 t+b 2 = a 2 +b 2. c = α = a 2 +b 2. s(t) = t 0 cdu = ct. Hence, t(s) = s c. Substituting this into the formula for α, we get the unit-speed reparametrization ( ( s α(s) = α = acos c) s c,asin s c, bs ). c Although every regular curve has a unit-speed reparametrization, this may be very complicated, or even impossible to write down explicitly, as the following examples show. 5

6 Example 12. The logarithmic spiral α(t) = (e t cost,e t sint), has speed 2e t > 0. So it is regular. The arc length starting at (1,0) was found in Example 9 to be s = 2(e t 1). Hence, t = ln( s 2 +1), so a unit-speed reparametrization of α is given by the rather unwieldy formula α(s) = (( ) ( ( )) ( ) ( ( ))) s s s s 2 +1 cos ln 2 +1, 2 +1 sin ln Example 13. Twisted cubic 2 This is the space curve given by α(t) = (t,t 2,t 3 ), < t <. We have α (t) = (1,2t,3t 2 ), α (t) = 1+4t 2 +9t 4. Since the speed α (t) is not zero everywhere, α is regular. And the arc-length starting at α(0) = 0 is t s = 1+4u2 +9u 4 du. The above integral has a horrendous closed form not in terms of familiar functions. 0 4 Tangent and Normal The standard method of studying the geometry normal line of a curve at a point is to attach orthonormal tangent line vectors tothepointandseehowthedirections of t increasing these vectors change as the point moves on the α curve for an infinitesimal distance. We choose (x (t), y (t)) tangent and normal vectors at a regular point. ( y (t), x (t)) Let α(t) = (x(t),y(t)) be a curve. At a regular point α(t) there exists a (non-zero) tangent vector α (t) = (x (t),y (t)). It represents the velocity of the curve at the point. The normal vector ( y (t),x (t)) at α(t) is given by rotating the tangent vector counterclockwise through an angle π 2. Note that (x (t),y (t)) ( y (t),x (t)) = (x (t)) 2 +(y (t)) 2 > 0. Ifα(t)isaunit-speedcurve, thenboththetangentvector andthenormalvectorareunitvectors. By convention they are denoted as T and N, respectively, with the cross product T N = 1. 2 The figure originally appears in [3, p. 14]. 6

7 For a parametric curve we have a tangent line and a normal line at each regular point α(t). The tangent line to the curve at α(t) passes through α(t) and is parallel to α (t) 0. So it has the parametric equation ( ) x(s),y(s) = α(t)+sα (t), s (, ), or equivalently, the algebraic equation ( ) ( ) (x,y) α(t) y (t),x (t) = 0. The normal line at α(t) passes through the point and is parallel to ( y (t),x (t)). So its equations are of the form ( ) ( ) x(s),y(s) = α(t)+s y (t),x (t), s (, ), or equivalently, ( ( ) ) x(s),y(s) α(t) α (t) = 0. Example 14. Crunodal cubic is described as α(t) = ( ) t 2 1,t(t 2 1). Find its tangent and normal lines of the curve at the points t = ±1,0. We obtain α (t) = (2t,3t 2 1), α (1) = (2,2), α ( 1) = ( 2,2), α (0) = (0, 1), α(±1) = (0, 0). Here α = (0,0) is referred to as a double point since it is attained at both t = 1 and t = 1. The tangent lines at this double point are respectively and (x,y) = s(1,1), or equivalently, y = x, The normal lines at the double point are respectively and (x,y) = s( 1,1), or equivalently, y = x. (x,y) = s( 1,1), or equivalently, y = x, (x,y) = s( 1, 1), or equivalently, y = x. At t = 0, we have α (0) = (0, 1), and the tangent line at α(0) is The normal line at α(0) is (x,y) = ( 1,0)+s(0, 1), or equivalently, x = 1. (x,y) = ( 1,0)+s(1,0), or equivalently, y = 0. y x 7

8 References [1] B. O Neill. Elementary Differential Geometry. Academic Press, Inc., [2] J. W. Rutter. Geometry of Curves. Chapman & Hall/CRC, [3] A. Pressley. Elementary Differential Geometry. Springer-Verlag London,

Arbitrary-Speed Curves

Arbitrary-Speed Curves Arbitrary-Speed Curves (Com S 477/577 Notes) Yan-Bin Jia Oct 12, 2017 The Frenet formulas are valid only for unit-speed curves; they tell the rate of change of the orthonormal vectors T, N, B with respect

More information

Arc Length. Philippe B. Laval. Today KSU. Philippe B. Laval (KSU) Arc Length Today 1 / 12

Arc Length. Philippe B. Laval. Today KSU. Philippe B. Laval (KSU) Arc Length Today 1 / 12 Philippe B. Laval KSU Today Philippe B. Laval (KSU) Arc Length Today 1 / 12 Introduction In this section, we discuss the notion of curve in greater detail and introduce the very important notion of arc

More information

Algebraic Curves. (Com S 477/577 Notes) Yan-Bin Jia. Oct 17, 2017

Algebraic Curves. (Com S 477/577 Notes) Yan-Bin Jia. Oct 17, 2017 Algebraic Curves (Com S 477/577 Notes) Yan-Bin Jia Oct 17, 2017 An algebraic curve is a curve which is described by a polynomial equation: f(x,y) = a ij x i y j = 0 in x and y. The degree of the curve

More information

13.3 Arc Length and Curvature

13.3 Arc Length and Curvature 13 Vector Functions 13.3 Copyright Cengage Learning. All rights reserved. Copyright Cengage Learning. All rights reserved. We have defined the length of a plane curve with parametric equations x = f(t),

More information

Section Arclength and Curvature. (1) Arclength, (2) Parameterizing Curves by Arclength, (3) Curvature, (4) Osculating and Normal Planes.

Section Arclength and Curvature. (1) Arclength, (2) Parameterizing Curves by Arclength, (3) Curvature, (4) Osculating and Normal Planes. Section 10.3 Arclength and Curvature (1) Arclength, (2) Parameterizing Curves by Arclength, (3) Curvature, (4) Osculating and Normal Planes. MATH 127 (Section 10.3) Arclength and Curvature The University

More information

Unit Speed Curves. Recall that a curve Α is said to be a unit speed curve if

Unit Speed Curves. Recall that a curve Α is said to be a unit speed curve if Unit Speed Curves Recall that a curve Α is said to be a unit speed curve if The reason that we like unit speed curves that the parameter t is equal to arc length; i.e. the value of t tells us how far along

More information

Geodesics. (Com S 477/577 Notes) Yan-Bin Jia. Nov 2, 2017

Geodesics. (Com S 477/577 Notes) Yan-Bin Jia. Nov 2, 2017 Geodesics (om S 477/577 Notes Yan-Bin Jia Nov 2, 2017 Geodesics are the curves in a surface that make turns just to stay on the surface and never move sideways. A bug living in the surface and following

More information

Math 32A Discussion Session Week 5 Notes November 7 and 9, 2017

Math 32A Discussion Session Week 5 Notes November 7 and 9, 2017 Math 32A Discussion Session Week 5 Notes November 7 and 9, 2017 This week we want to talk about curvature and osculating circles. You might notice that these notes contain a lot of the same theory or proofs

More information

Motion in Space Parametric Equations of a Curve

Motion in Space Parametric Equations of a Curve Motion in Space Parametric Equations of a Curve A curve, C, inr 3 can be described by parametric equations of the form x x t y y t z z t. Any curve can be parameterized in many different ways. For example,

More information

Gaussian and Mean Curvatures

Gaussian and Mean Curvatures Gaussian and Mean Curvatures (Com S 477/577 Notes) Yan-Bin Jia Oct 31, 2017 We have learned that the two principal curvatures (and vectors) determine the local shape of a point on a surface. One characterizes

More information

HOMEWORK 2 SOLUTIONS

HOMEWORK 2 SOLUTIONS HOMEWORK SOLUTIONS MA11: ADVANCED CALCULUS, HILARY 17 (1) Find parametric equations for the tangent line of the graph of r(t) = (t, t + 1, /t) when t = 1. Solution: A point on this line is r(1) = (1,,

More information

Lecture 13: Vector Calculus III

Lecture 13: Vector Calculus III Lecture 13: Vector Calculus III 1 Key points Line integrals (curvilinear integrals) of scalar fields Line integrals (curvilinear integrals) of vector fields Surface integrals Maple int PathInt LineInt

More information

MA 351 Fall 2007 Exam #1 Review Solutions 1

MA 351 Fall 2007 Exam #1 Review Solutions 1 MA 35 Fall 27 Exam # Review Solutions THERE MAY BE TYPOS in these solutions. Please let me know if you find any.. Consider the two surfaces ρ 3 csc θ in spherical coordinates and r 3 in cylindrical coordinates.

More information

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 3 2, 5 2 C) - 5 2

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 3 2, 5 2 C) - 5 2 Test Review (chap 0) Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Solve the problem. ) Find the point on the curve x = sin t, y = cos t, -

More information

Lecture 6, September 1, 2017

Lecture 6, September 1, 2017 Engineering Mathematics Fall 07 Lecture 6, September, 07 Escape Velocity Suppose we have a planet (or any large near to spherical heavenly body) of radius R and acceleration of gravity at the surface of

More information

Exercises for Multivariable Differential Calculus XM521

Exercises for Multivariable Differential Calculus XM521 This document lists all the exercises for XM521. The Type I (True/False) exercises will be given, and should be answered, online immediately following each lecture. The Type III exercises are to be done

More information

Math 265H: Calculus III Practice Midterm II: Fall 2014

Math 265H: Calculus III Practice Midterm II: Fall 2014 Name: Section #: Math 65H: alculus III Practice Midterm II: Fall 14 Instructions: This exam has 7 problems. The number of points awarded for each question is indicated in the problem. Answer each question

More information

Vector Functions & Space Curves MATH 2110Q

Vector Functions & Space Curves MATH 2110Q Vector Functions & Space Curves Vector Functions & Space Curves Vector Functions Definition A vector function or vector-valued function is a function that takes real numbers as inputs and gives vectors

More information

Math 323 Exam 1 Practice Problem Solutions

Math 323 Exam 1 Practice Problem Solutions Math Exam Practice Problem Solutions. For each of the following curves, first find an equation in x and y whose graph contains the points on the curve. Then sketch the graph of C, indicating its orientation.

More information

ENGI Parametric Vector Functions Page 5-01

ENGI Parametric Vector Functions Page 5-01 ENGI 3425 5. Parametric Vector Functions Page 5-01 5. Parametric Vector Functions Contents: 5.1 Arc Length (Cartesian parametric and plane polar) 5.2 Surfaces of Revolution 5.3 Area under a Parametric

More information

10.1 Curves Defined by Parametric Equation

10.1 Curves Defined by Parametric Equation 10.1 Curves Defined by Parametric Equation 1. Imagine that a particle moves along the curve C shown below. It is impossible to describe C by an equation of the form y = f (x) because C fails the Vertical

More information

Introduction to Vector Functions

Introduction to Vector Functions Introduction to Vector Functions Limits and Continuity Philippe B. Laval KSU Today Philippe B. Laval (KSU) Vector Functions Today 1 / 14 Introduction Until now, the functions we studied took a real number

More information

Introduction to Algebraic and Geometric Topology Week 14

Introduction to Algebraic and Geometric Topology Week 14 Introduction to Algebraic and Geometric Topology Week 14 Domingo Toledo University of Utah Fall 2016 Computations in coordinates I Recall smooth surface S = {f (x, y, z) =0} R 3, I rf 6= 0 on S, I Chart

More information

Section 8.4 Plane Curves and Parametric Equations

Section 8.4 Plane Curves and Parametric Equations Section 8.4 Plane Curves and Parametric Equations Suppose that x and y are both given as functions of a third variable t (called a parameter) by the equations x = f(t), y = g(t) (called parametric equations).

More information

REVIEW 2, MATH 3020 AND MATH 3030

REVIEW 2, MATH 3020 AND MATH 3030 REVIEW, MATH 300 AND MATH 3030 1. Let P = (0, 1, ), Q = (1,1,0), R(0,1, 1), S = (1,, 4). (a) Find u = PQ and v = PR. (b) Find the angle between u and v. (c) Find a symmetric equation of the plane σ that

More information

Parametric Curves. Calculus 2 Lia Vas

Parametric Curves. Calculus 2 Lia Vas Calculus Lia Vas Parametric Curves In the past, we mostly worked with curves in the form y = f(x). However, this format does not encompass all the curves one encounters in applications. For example, consider

More information

An Investigation of the Four Vertex Theorem and its Converse

An Investigation of the Four Vertex Theorem and its Converse Union College Union Digital Works Honors Theses Student Work 6-2017 An Investigation of the Four Vertex Theorem and its Converse Rebeka Kelmar Union College - Schenectady, NY Follow this and additional

More information

MA3D9. Geometry of curves and surfaces. T (s) = κ(s)n(s),

MA3D9. Geometry of curves and surfaces. T (s) = κ(s)n(s), MA3D9. Geometry of 2. Planar curves. Let : I R 2 be a curve parameterised by arc-length. Given s I, let T(s) = (s) be the unit tangent. Let N(s) be the unit normal obtained by rotating T(s) through π/2

More information

MATH 1080 Test 2 -Version A-SOLUTIONS Fall a. (8 pts) Find the exact length of the curve on the given interval.

MATH 1080 Test 2 -Version A-SOLUTIONS Fall a. (8 pts) Find the exact length of the curve on the given interval. MATH 8 Test -Version A-SOLUTIONS Fall 4. Consider the curve defined by y = ln( sec x), x. a. (8 pts) Find the exact length of the curve on the given interval. sec x tan x = = tan x sec x L = + tan x =

More information

CHAPTER 4 DIFFERENTIAL VECTOR CALCULUS

CHAPTER 4 DIFFERENTIAL VECTOR CALCULUS CHAPTER 4 DIFFERENTIAL VECTOR CALCULUS 4.1 Vector Functions 4.2 Calculus of Vector Functions 4.3 Tangents REVIEW: Vectors Scalar a quantity only with its magnitude Example: temperature, speed, mass, volume

More information

CHAPTER TWO: THE GEOMETRY OF CURVES

CHAPTER TWO: THE GEOMETRY OF CURVES CHAPTER TWO: THE GEOMETRY OF CURVES Thi material i for June 7, 8 (Tueday to Wed.) 2.1 Parametrized Curve Definition. A parametrized curve i a map α : I R n (n = 2 or 3), where I i an interval in R. We

More information

Solutions to old Exam 3 problems

Solutions to old Exam 3 problems Solutions to old Exam 3 problems Hi students! I am putting this version of my review for the Final exam review here on the web site, place and time to be announced. Enjoy!! Best, Bill Meeks PS. There are

More information

A continuous map γ from an interval I, open or closed, to R n is called a parametric curve. By a continuous map we mean each component of the map

A continuous map γ from an interval I, open or closed, to R n is called a parametric curve. By a continuous map we mean each component of the map Chapter 3 Parametric Curves This chapter is concerned with the parametric approach to curves. The definition of a parametric curve is defined in Section 1 where several examples explaining how it differs

More information

PARAMETRIC EQUATIONS AND POLAR COORDINATES

PARAMETRIC EQUATIONS AND POLAR COORDINATES 10 PARAMETRIC EQUATIONS AND POLAR COORDINATES PARAMETRIC EQUATIONS & POLAR COORDINATES We have seen how to represent curves by parametric equations. Now, we apply the methods of calculus to these parametric

More information

Homwework JWR. Jan Problem numbers refer to the do Carmo text.

Homwework JWR. Jan Problem numbers refer to the do Carmo text. Homwework JWR Jan 30 014 Problem numbers refer to the do Carmo text. 1. 1.-1 The curve αs) cos s), sin s)) coss), sins)) parameterizes the circle x +y 1 in the clockwise orientation.. 1.-Thedistanceformthepointαt)

More information

Figure 10: Tangent vectors approximating a path.

Figure 10: Tangent vectors approximating a path. 3 Curvature 3.1 Curvature Now that we re parametrizing curves, it makes sense to wonder how we might measure the extent to which a curve actually curves. That is, how much does our path deviate from being

More information

Practice problems from old exams for math 132 William H. Meeks III

Practice problems from old exams for math 132 William H. Meeks III Practice problems from old exams for math 32 William H. Meeks III Disclaimer: Your instructor covers far more materials that we can possibly fit into a four/five questions exams. These practice tests are

More information

Math 5378, Differential Geometry Solutions to practice questions for Test 2

Math 5378, Differential Geometry Solutions to practice questions for Test 2 Math 5378, Differential Geometry Solutions to practice questions for Test 2. Find all possible trajectories of the vector field w(x, y) = ( y, x) on 2. Solution: A trajectory would be a curve (x(t), y(t))

More information

IYGB Mathematical Methods 1

IYGB Mathematical Methods 1 IYGB Mathematical Methods Practice Paper B Time: 3 hours Candidates may use any non programmable, non graphical calculator which does not have the capability of storing data or manipulating algebraic expressions

More information

Calculus III. George Voutsadakis 1. LSSU Math 251. Lake Superior State University. 1 Mathematics and Computer Science

Calculus III. George Voutsadakis 1. LSSU Math 251. Lake Superior State University. 1 Mathematics and Computer Science Calculus III George Voutsadakis 1 1 Mathematics and Computer Science Lake Superior State University LSSU Math 251 George Voutsadakis (LSSU) Calculus III January 2016 1 / 76 Outline 1 Parametric Equations,

More information

Examiner: D. Burbulla. Aids permitted: Formula Sheet, and Casio FX-991 or Sharp EL-520 calculator.

Examiner: D. Burbulla. Aids permitted: Formula Sheet, and Casio FX-991 or Sharp EL-520 calculator. University of Toronto Faculty of Applied Science and Engineering Solutions to Final Examination, June 216 Duration: 2 and 1/2 hrs First Year - CHE, CIV, CPE, ELE, ENG, IND, LME, MEC, MMS MAT187H1F - Calculus

More information

Contents. MATH 32B-2 (18W) (L) G. Liu / (TA) A. Zhou Calculus of Several Variables. 1 Multiple Integrals 3. 2 Vector Fields 9

Contents. MATH 32B-2 (18W) (L) G. Liu / (TA) A. Zhou Calculus of Several Variables. 1 Multiple Integrals 3. 2 Vector Fields 9 MATH 32B-2 (8W) (L) G. Liu / (TA) A. Zhou Calculus of Several Variables Contents Multiple Integrals 3 2 Vector Fields 9 3 Line and Surface Integrals 5 4 The Classical Integral Theorems 9 MATH 32B-2 (8W)

More information

Math Review for Exam 3

Math Review for Exam 3 1. ompute oln: (8x + 36xy)ds = Math 235 - Review for Exam 3 (8x + 36xy)ds, where c(t) = (t, t 2, t 3 ) on the interval t 1. 1 (8t + 36t 3 ) 1 + 4t 2 + 9t 4 dt = 2 3 (1 + 4t2 + 9t 4 ) 3 2 1 = 2 3 ((14)

More information

BC Exam 1 - Part I 28 questions No Calculator Allowed - Solutions C = 2. Which of the following must be true?

BC Exam 1 - Part I 28 questions No Calculator Allowed - Solutions C = 2. Which of the following must be true? BC Exam 1 - Part I 8 questions No Calculator Allowed - Solutions 6x 5 8x 3 1. Find lim x 0 9x 3 6x 5 A. 3 B. 8 9 C. 4 3 D. 8 3 E. nonexistent ( ) f ( 4) f x. Let f be a function such that lim x 4 x 4 I.

More information

UNIVERSITY OF HOUSTON HIGH SCHOOL MATHEMATICS CONTEST Spring 2018 Calculus Test

UNIVERSITY OF HOUSTON HIGH SCHOOL MATHEMATICS CONTEST Spring 2018 Calculus Test UNIVERSITY OF HOUSTON HIGH SCHOOL MATHEMATICS CONTEST Spring 2018 Calculus Test NAME: SCHOOL: 1. Let f be some function for which you know only that if 0 < x < 1, then f(x) 5 < 0.1. Which of the following

More information

YET ANOTHER ELEMENTARY SOLUTION OF THE BRACHISTOCHRONE PROBLEM

YET ANOTHER ELEMENTARY SOLUTION OF THE BRACHISTOCHRONE PROBLEM YET ANOTHER ELEMENTARY SOLUTION OF THE BRACHISTOCHRONE PROBLEM GARY BROOKFIELD In 1696 Johann Bernoulli issued a famous challenge to his fellow mathematicians: Given two points A and B in a vertical plane,

More information

Created by T. Madas LINE INTEGRALS. Created by T. Madas

Created by T. Madas LINE INTEGRALS. Created by T. Madas LINE INTEGRALS LINE INTEGRALS IN 2 DIMENSIONAL CARTESIAN COORDINATES Question 1 Evaluate the integral ( x + 2y) dx, C where C is the path along the curve with equation y 2 = x + 1, from ( ) 0,1 to ( )

More information

Chapter 9 Overview: Parametric and Polar Coordinates

Chapter 9 Overview: Parametric and Polar Coordinates Chapter 9 Overview: Parametric and Polar Coordinates As we saw briefly last year, there are axis systems other than the Cartesian System for graphing (vector coordinates, polar coordinates, rectangular

More information

Calculus Vector Principia Mathematica. Lynne Ryan Associate Professor Mathematics Blue Ridge Community College

Calculus Vector Principia Mathematica. Lynne Ryan Associate Professor Mathematics Blue Ridge Community College Calculus Vector Principia Mathematica Lynne Ryan Associate Professor Mathematics Blue Ridge Community College Defining a vector Vectors in the plane A scalar is a quantity that can be represented by a

More information

18.1. Math 1920 November 29, ) Solution: In this function P = x 2 y and Q = 0, therefore Q. Converting to polar coordinates, this gives I =

18.1. Math 1920 November 29, ) Solution: In this function P = x 2 y and Q = 0, therefore Q. Converting to polar coordinates, this gives I = Homework 1 elected olutions Math 19 November 9, 18 18.1 5) olution: In this function P = x y and Q =, therefore Q x P = x. We obtain the following integral: ( Q I = x ydx = x P ) da = x da. onverting to

More information

1.1 Single Variable Calculus versus Multivariable Calculus Rectangular Coordinate Systems... 4

1.1 Single Variable Calculus versus Multivariable Calculus Rectangular Coordinate Systems... 4 MATH2202 Notebook 1 Fall 2015/2016 prepared by Professor Jenny Baglivo Contents 1 MATH2202 Notebook 1 3 1.1 Single Variable Calculus versus Multivariable Calculus................... 3 1.2 Rectangular Coordinate

More information

AP Calculus (BC) Chapter 10 Test No Calculator Section. Name: Date: Period:

AP Calculus (BC) Chapter 10 Test No Calculator Section. Name: Date: Period: AP Calculus (BC) Chapter 10 Test No Calculator Section Name: Date: Period: Part I. Multiple-Choice Questions (5 points each; please circle the correct answer.) 1. The graph in the xy-plane represented

More information

Chapter 14: Vector Calculus

Chapter 14: Vector Calculus Chapter 14: Vector Calculus Introduction to Vector Functions Section 14.1 Limits, Continuity, Vector Derivatives a. Limit of a Vector Function b. Limit Rules c. Component By Component Limits d. Continuity

More information

ENGI 4430 Line Integrals; Green s Theorem Page 8.01

ENGI 4430 Line Integrals; Green s Theorem Page 8.01 ENGI 4430 Line Integrals; Green s Theorem Page 8.01 8. Line Integrals Two applications of line integrals are treated here: the evaluation of work done on a particle as it travels along a curve in the presence

More information

Spring 2015 Sample Final Exam

Spring 2015 Sample Final Exam Math 1151 Spring 2015 Sample Final Exam Final Exam on 4/30/14 Name (Print): Time Limit on Final: 105 Minutes Go on carmen.osu.edu to see where your final exam will be. NOTE: This exam is much longer than

More information

Candidates are expected to have available a calculator. Only division by (x + a) or (x a) will be required.

Candidates are expected to have available a calculator. Only division by (x + a) or (x a) will be required. Revision Checklist Unit C2: Core Mathematics 2 Unit description Algebra and functions; coordinate geometry in the (x, y) plane; sequences and series; trigonometry; exponentials and logarithms; differentiation;

More information

MATH 118, LECTURES 13 & 14: POLAR EQUATIONS

MATH 118, LECTURES 13 & 14: POLAR EQUATIONS MATH 118, LECTURES 13 & 1: POLAR EQUATIONS 1 Polar Equations We now know how to equate Cartesian coordinates with polar coordinates, so that we can represents points in either form and understand what

More information

MATH 332: Vector Analysis Summer 2005 Homework

MATH 332: Vector Analysis Summer 2005 Homework MATH 332, (Vector Analysis), Summer 2005: Homework 1 Instructor: Ivan Avramidi MATH 332: Vector Analysis Summer 2005 Homework Set 1. (Scalar Product, Equation of a Plane, Vector Product) Sections: 1.9,

More information

Mathematics Engineering Calculus III Fall 13 Test #1

Mathematics Engineering Calculus III Fall 13 Test #1 Mathematics 2153-02 Engineering Calculus III Fall 13 Test #1 Instructor: Dr. Alexandra Shlapentokh (1) Which of the following statements is always true? (a) If x = f(t), y = g(t) and f (1) = 0, then dy/dx(1)

More information

Vector-Valued Functions

Vector-Valued Functions Vector-Valued Functions 1 Parametric curves 8 ' 1 6 1 4 8 1 6 4 1 ' 4 6 8 Figure 1: Which curve is a graph of a function? 1 4 6 8 1 8 1 6 4 1 ' 4 6 8 Figure : A graph of a function: = f() 8 ' 1 6 4 1 1

More information

Lecture 4: Partial and Directional derivatives, Differentiability

Lecture 4: Partial and Directional derivatives, Differentiability Lecture 4: Partial and Directional derivatives, Differentiability Rafikul Alam Department of Mathematics IIT Guwahati Differential Calculus Task: Extend differential calculus to the functions: Case I:

More information

II. Unit Speed Curves

II. Unit Speed Curves The Geometry of Curves, Part I Rob Donnelly From Murray State University s Calculus III, Fall 2001 note: This material supplements Sections 13.3 and 13.4 of the text Calculus with Early Transcendentals,

More information

Chapter 1. Geometry of Plane Curves

Chapter 1. Geometry of Plane Curves Chapter 1 Geometry of Plane Curves Definition 1 A (parametrized) curve in R n is a piece-wise differentiable function α :(a, b) R n. If I is any other subset of R, α : I R n is a curve provided that α

More information

Vector Calculus, Maths II

Vector Calculus, Maths II Section A Vector Calculus, Maths II REVISION (VECTORS) 1. Position vector of a point P(x, y, z) is given as + y and its magnitude by 2. The scalar components of a vector are its direction ratios, and represent

More information

20D - Homework Assignment 4

20D - Homework Assignment 4 Brian Bowers (TA for Hui Sun) MATH 0D Homework Assignment November, 03 0D - Homework Assignment First, I will give a brief overview of how to use variation of parameters. () Ensure that the differential

More information

18.02 Multivariable Calculus Fall 2007

18.02 Multivariable Calculus Fall 2007 MIT OpenourseWare http://ocw.mit.edu 8.02 Multivariable alculus Fall 2007 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. 8.02 Lecture 8. hange of variables.

More information

Things to Know and Be Able to Do Understand the meaning of equations given in parametric and polar forms, and develop a sketch of the appropriate

Things to Know and Be Able to Do Understand the meaning of equations given in parametric and polar forms, and develop a sketch of the appropriate AP Calculus BC Review Chapter (Parametric Equations and Polar Coordinates) Things to Know and Be Able to Do Understand the meaning of equations given in parametric and polar forms, and develop a sketch

More information

THE FUNDAMENTAL THEOREM OF SPACE CURVES

THE FUNDAMENTAL THEOREM OF SPACE CURVES THE FUNDAMENTAL THEOREM OF SPACE CURVES JOSHUA CRUZ Abstract. In this paper, we show that curves in R 3 can be uniquely generated by their curvature and torsion. By finding conditions that guarantee the

More information

Vector Fields and Line Integrals The Fundamental Theorem for Line Integrals

Vector Fields and Line Integrals The Fundamental Theorem for Line Integrals Math 280 Calculus III Chapter 16 Sections: 16.1, 16.2 16.3 16.4 16.5 Topics: Vector Fields and Line Integrals The Fundamental Theorem for Line Integrals Green s Theorem Curl and Divergence Section 16.1

More information

= cos(cos(tan t)) ( sin(tan t)) d (tan t) = cos(cos(tan t)) ( sin(tan t)) sec 2 t., we get. 4x 3/4 f (t) 4 [ ln(f (t)) ] 3/4 f (t)

= cos(cos(tan t)) ( sin(tan t)) d (tan t) = cos(cos(tan t)) ( sin(tan t)) sec 2 t., we get. 4x 3/4 f (t) 4 [ ln(f (t)) ] 3/4 f (t) Tuesday, January 2 Solutions A review of some important calculus topics 1. Chain Rule: (a) Let h(t) = sin ( cos(tan t) ). Find the derivative with respect to t. Solution. d (h(t)) = d (sin(cos(tan t)))

More information

APPM 1360 Final Exam Spring 2016

APPM 1360 Final Exam Spring 2016 APPM 36 Final Eam Spring 6. 8 points) State whether each of the following quantities converge or diverge. Eplain your reasoning. a) The sequence a, a, a 3,... where a n ln8n) lnn + ) n!) b) ln d c) arctan

More information

Section 17.4 Green s Theorem

Section 17.4 Green s Theorem Section 17.4 Green s Theorem alculating Line Integrals using ouble Integrals In the previous section, we saw an easy way to determine line integrals in the special case when a vector field F is conservative.

More information

MAT 211 Final Exam. Spring Jennings. Show your work!

MAT 211 Final Exam. Spring Jennings. Show your work! MAT 211 Final Exam. pring 215. Jennings. how your work! Hessian D = f xx f yy (f xy ) 2 (for optimization). Polar coordinates x = r cos(θ), y = r sin(θ), da = r dr dθ. ylindrical coordinates x = r cos(θ),

More information

Green s Theorem in the Plane

Green s Theorem in the Plane hapter 6 Green s Theorem in the Plane Recall the following special case of a general fact proved in the previous chapter. Let be a piecewise 1 plane curve, i.e., a curve in R defined by a piecewise 1 -function

More information

HW - Chapter 10 - Parametric Equations and Polar Coordinates

HW - Chapter 10 - Parametric Equations and Polar Coordinates Berkeley City College Due: HW - Chapter 0 - Parametric Equations and Polar Coordinates Name Parametric equations and a parameter interval for the motion of a particle in the xy-plane are given. Identify

More information

Math 2300 Calculus II University of Colorado Final exam review problems

Math 2300 Calculus II University of Colorado Final exam review problems Math 300 Calculus II University of Colorado Final exam review problems. A slope field for the differential equation y = y e x is shown. Sketch the graphs of the solutions that satisfy the given initial

More information

Parametric Equations and Polar Coordinates

Parametric Equations and Polar Coordinates Parametric Equations and Polar Coordinates Parametrizations of Plane Curves In previous chapters, we have studied curves as the graphs of functions or equations involving the two variables x and y. Another

More information

Book 4. June 2013 June 2014 June Name :

Book 4. June 2013 June 2014 June Name : Book 4 June 2013 June 2014 June 2015 Name : June 2013 1. Given that 4 3 2 2 ax bx c 2 2 3x 2x 5x 4 dxe x 4 x 4, x 2 find the values of the constants a, b, c, d and e. 2. Given that f(x) = ln x, x > 0 sketch

More information

f : R 2 R (x, y) x 2 + y 2

f : R 2 R (x, y) x 2 + y 2 Chapter 2 Vector Functions 2.1 Vector-Valued Functions 2.1.1 Definitions Until now, the functions we studied took a real number as input and gave another real number as output. Hence, when defining a function,

More information

Physics 2135 Exam 3 April 18, 2017

Physics 2135 Exam 3 April 18, 2017 Physics 2135 Exam 3 April 18, 2017 Exam Total / 200 Printed Name: Rec. Sec. Letter: Solutions for problems 6 to 10 must start from official starting equations. Show your work to receive credit for your

More information

Math 317 M1A, October 8th, 2010 page 1 of 7 Name:

Math 317 M1A, October 8th, 2010 page 1 of 7 Name: Math 317 M1A, October 8th, 2010 page 1 of 7 Name: Problem 1 (5 parts, 30 points): Consider the curve r(t) = 3 sin(t 2 ), 4t 2 + 7, 3 cos(t 2 ), 0 t < a) (5 points) Find the arclength function s(t) giving

More information

3.4 Conic sections. Such type of curves are called conics, because they arise from different slices through a cone

3.4 Conic sections. Such type of curves are called conics, because they arise from different slices through a cone 3.4 Conic sections Next we consider the objects resulting from ax 2 + bxy + cy 2 + + ey + f = 0. Such type of curves are called conics, because they arise from different slices through a cone Circles belong

More information

Higher Mathematics Course Notes

Higher Mathematics Course Notes Higher Mathematics Course Notes Equation of a Line (i) Collinearity: (ii) Gradient: If points are collinear then they lie on the same straight line. i.e. to show that A, B and C are collinear, show that

More information

SOLUTIONS TO THE FINAL EXAM. December 14, 2010, 9:00am-12:00 (3 hours)

SOLUTIONS TO THE FINAL EXAM. December 14, 2010, 9:00am-12:00 (3 hours) SOLUTIONS TO THE 18.02 FINAL EXAM BJORN POONEN December 14, 2010, 9:00am-12:00 (3 hours) 1) For each of (a)-(e) below: If the statement is true, write TRUE. If the statement is false, write FALSE. (Please

More information

You can learn more about the services offered by the teaching center by visiting

You can learn more about the services offered by the teaching center by visiting MAC 232 Exam 3 Review Spring 209 This review, produced by the Broward Teaching Center, contains a collection of questions which are representative of the type you may encounter on the exam. Other resources

More information

Green s Theorem in the Plane

Green s Theorem in the Plane hapter 6 Green s Theorem in the Plane Introduction Recall the following special case of a general fact proved in the previous chapter. Let be a piecewise 1 plane curve, i.e., a curve in R defined by a

More information

( ) as a fraction. If both numerator and denominator are

( ) as a fraction. If both numerator and denominator are A. Limits and Horizontal Asymptotes What you are finding: You can be asked to find lim f x x a (H.A.) problem is asking you find lim f x x ( ) and lim f x x ( ). ( ) or lim f x x ± ( ). Typically, a horizontal

More information

Calculus: Several Variables Lecture 27

Calculus: Several Variables Lecture 27 alculus: Several Variables Lecture 27 Instructor: Maksim Maydanskiy Lecture 27 Plan 1. Work integrals over a curve continued. (15.4) Work integral and circulation. Example by inspection. omputation via

More information

Tangent and Normal Vector - (11.5)

Tangent and Normal Vector - (11.5) Tangent and Normal Vector - (.5). Principal Unit Normal Vector Let C be the curve traced out by the vector-valued function rt vector T t r r t t is the unit tangent vector to the curve C. Now define N

More information

x 1. x n i + x 2 j (x 1, x 2, x 3 ) = x 1 j + x 3

x 1. x n i + x 2 j (x 1, x 2, x 3 ) = x 1 j + x 3 Version: 4/1/06. Note: These notes are mostly from my 5B course, with the addition of the part on components and projections. Look them over to make sure that we are on the same page as regards inner-products,

More information

ACCESS TO SCIENCE, ENGINEERING AND AGRICULTURE: MATHEMATICS 1 MATH00030 SEMESTER / Functions

ACCESS TO SCIENCE, ENGINEERING AND AGRICULTURE: MATHEMATICS 1 MATH00030 SEMESTER / Functions ACCESS TO SCIENCE, ENGINEERING AND AGRICULTURE: MATHEMATICS 1 MATH00030 SEMESTER 1 2017/2018 DR. ANTHONY BROWN 4. Functions 4.1. What is a Function: Domain, Codomain and Rule. In the course so far, we

More information

ENGI 4430 Parametric Vector Functions Page dt dt dt

ENGI 4430 Parametric Vector Functions Page dt dt dt ENGI 4430 Parametric Vector Functions Page 2-01 2. Parametric Vector Functions (continued) Any non-zero vector r can be decomposed into its magnitude r and its direction: r rrˆ, where r r 0 Tangent Vector:

More information

Ruled Surfaces. Chapter 14

Ruled Surfaces. Chapter 14 Chapter 14 Ruled Surfaces We describe in this chapter the important class of surfaces, consistng of those which contain infinitely many straight lines. The most obvious examples of ruled surfaces are cones

More information

Vector Functions. EXAMPLE Describethecurves cost,sint,0, cost,sint,t,and cost,sint,2t.

Vector Functions. EXAMPLE Describethecurves cost,sint,0, cost,sint,t,and cost,sint,2t. 13 Vector Functions ½ º½ ËÔ ÙÖÚ We have already seen that a convenient way to describe a line in three dimensions is to provide a vector that points to every point on the line as a parameter t varies,

More information

Integrals along a curve in space. (Sect. 16.1)

Integrals along a curve in space. (Sect. 16.1) Integrals along a curve in space. (Sect. 6.) Line integrals in space. The addition of line integrals. ass and center of mass of wires. Line integrals in space Definition The line integral of a function

More information

Geometry of Cylindrical Curves over Plane Curves

Geometry of Cylindrical Curves over Plane Curves Applied Mathematical Sciences, Vol 9, 015, no 113, 5637-5649 HIKARI Ltd, wwwm-hikaricom http://dxdoiorg/101988/ams01556456 Geometry of Cylindrical Curves over Plane Curves Georgi Hristov Georgiev, Radostina

More information

Arc Length and Surface Area in Parametric Equations

Arc Length and Surface Area in Parametric Equations Arc Length and Surface Area in Parametric Equations MATH 211, Calculus II J. Robert Buchanan Department of Mathematics Spring 2011 Background We have developed definite integral formulas for arc length

More information

Appendix E : Note on regular curves in Euclidean spaces

Appendix E : Note on regular curves in Euclidean spaces Appendix E : Note on regular curves in Euclidean spaces In Section III.5 of the course notes we posed the following question: Suppose that U is a connected open subset of R n and x, y U. Is there a continuous

More information

Power Series. x n. Using the ratio test. n n + 1. x n+1 n 3. = lim x. lim n + 1. = 1 < x < 1. Then r = 1 and I = ( 1, 1) ( 1) n 1 x n.

Power Series. x n. Using the ratio test. n n + 1. x n+1 n 3. = lim x. lim n + 1. = 1 < x < 1. Then r = 1 and I = ( 1, 1) ( 1) n 1 x n. .8 Power Series. n x n x n n Using the ratio test. lim x n+ n n + lim x n n + so r and I (, ). By the ratio test. n Then r and I (, ). n x < ( ) n x n < x < n lim x n+ n (n + ) x n lim xn n (n + ) x

More information

MATH 162. FINAL EXAM ANSWERS December 17, 2006

MATH 162. FINAL EXAM ANSWERS December 17, 2006 MATH 6 FINAL EXAM ANSWERS December 7, 6 Part A. ( points) Find the volume of the solid obtained by rotating about the y-axis the region under the curve y x, for / x. Using the shell method, the radius

More information