Section 8.4 Plane Curves and Parametric Equations

Size: px
Start display at page:

Download "Section 8.4 Plane Curves and Parametric Equations"

Transcription

1 Section 8.4 Plane Curves and Parametric Equations Suppose that x and y are both given as functions of a third variable t (called a parameter) by the equations x = f(t), y = g(t) (called parametric equations). Each value of t determines a point (x,y), which we can plot in a coordinate plane. As t varies, the point (x,y) = (f(t),g(t)) varies and traces out a curve C, which we call a parametric curve. EXAMPLE: Sketch and identify the curve defined by the parametric equations x = cost, y = sint 0 t π Solution: If we plot points, it appears that the curve is a circle (see the figure below and page 6). We can confirm this impression by eliminating t. If fact, we have x +y = cos t+sin t = Thus the point (x,y) moves on a unit circle x +y =. EXAMPLE: Sketch and identify the curve defined by the parametric equations x = sint, y = cost 0 t π

2 EXAMPLE: Sketch and identify the curve defined by the parametric equations x = sint, y = cost 0 t π Solution: If we plot points, it appears that the curve is a circle (see the Figure below). We can confirm this impression by eliminating t. If fact, we have x +y = sin t+cos t = Thus the point (x,y) moves on a unit circle x +y =. EXAMPLE: Sketch and identify the curve defined by the parametric equations x = cost, y = sint 0 t π Solution: If we plot points, it appears that the curve is an ellipse (see page 8). We can confirm this impression by eliminating t. If fact, we have x ( + y x ( y ) 4 ) = + = cos t+sin t = Thus the point (x,y) moves on an ellipse x + y 4 =. x cos t, y sin t, 0 t Pi 6 4 EXAMPLE: Sketch and identify the curve defined by the parametric equations x = tcost, y = tsint t > 0

3 EXAMPLE: Sketch and identify the curve defined by the parametric equations x = tcost, y = tsint t > 0 Solution: Ifweplotpoints, itappearsthatthecurveisaspiral(seepage9). Wecanconfirmthisimpression by the following algebraic manipulations: x +y = (tcost) +(tsint) = t sin t+t cos t = t (sin t+cos t) = t = x +y = t To eliminate t completely, we observe that y x = tsint tcost = sint ( y ) cost = tant = t = arctan x ( y ) Substituting this into x +y = t, we get x +y = arctan. x x t cos t, y t sin t, 0 t Pi EXAMPLE: Sketch and identify the curve defined by the parametric equations x = t +t, y = t

4 EXAMPLE: Sketch and identify the curve defined by the parametric equations x = t +t, y = t Solution: If we plot points, it appears that the curve is a parabola (see page 0). We can confirm this impression by eliminating t. If fact, we have y = t = t = y + ( ) y + = x = t +t = + y + = 4 y +y + 4 Thus the point (x,y) moves on a parabola x = 4 y +y + 4. x t^ t, y t, t EXAMPLE: Sketch and identify the curve defined by the parametric equations x = sin t, y = cost Solution: If we plot points, it appears that the curve is a restricted parabola (see page ). We can confirm this impression by eliminating t. If fact, we have y = cost = y = 4cos t = 4x+y = 4sin t+4cos t = 4 = x = y 4 We also note that 0 x and y. Thus the point (x,y) moves on the restricted parabola x = y 4. x sin^ t, y cos t, 0 t Pi

5 The Cycloid EXAMPLE: The curve traced out by a point P on the circumference of a circle as the circle rolls along a straight line is called a cycloid (see the Figure below). If the circle has radius r and rolls along the x-axis and if one position of P is the origin, find parametric equations for the cycloid. Solution: We choose as parameter the angle of rotation θ of the circle (θ = 0 when P is at the origin). Suppose the circle has rotated through θ radians. Because the circle has been in contact with the line, we see from the Figure below that the distance it has rolled from the origin is OT = arc PT = rθ Therefore, the center of the circle is C(rθ,r). Let the coordinates of P be (x,y). Then from the Figure above we see that x = OT PQ = rθ rsinθ = r(θ sinθ) Therefore, parametric equations of the cycloid are y = TC QC = r rcosθ = r( cosθ) x = r(θ sinθ), y = r( cosθ) θ R () One arch of the cycloid comes from one rotation of the circle and so is described by 0 θ π. Although Equations were derived from the Figure above, which illustrates the case where 0 < θ < π/, it can be seen that these equations are still valid for other values of θ. Although it is possible to eliminate the parameter θ from Equations, the resulting Cartesian equation in x and y is very complicated and not as convenient to work with as the parametric equations: x r +π x πr ( = y ) cos y ( y ) r r r

6 Unit Circle where t = kπ/6, k = 0,...,. x = cost, y = sint x cos t, y sin t, 0 t Pi 6.0 x cos t, y sin t, 0 t Pi 6.0 x cos t, y sin t, 0 tpi x cos t, y sin t, 0 tpi 6.0 x cos t, y sin t, 0 tpi 6.0 x cos t, y sin t, 0 t 6Pi x cos t, y sin t, 0 t 7Pi 6.0 x cos t, y sin t, 0 t 8Pi 6.0 x cos t, y sin t, 0 t 9Pi x cos t, y sin t, 0 t 0Pi 6.0 x cos t, y sin t, 0 t Pi 6.0 x cos t, y sin t, 0 t Pi

7 Unit Circle where t = kπ/6, k = 0,...,. x sin t, y cos t, 0 t Pi 6.0 x = sint, y = cost x sin t, y cos t, 0 t Pi 6.0 x sin t, y cos t, 0 tpi x sin t, y cos t, 0 tpi 6.0 x sin t, y cos t, 0 tpi 6.0 x sin t, y cos t, 0 t 6Pi x sin t, y cos t, 0 t 7Pi 6.0 x sin t, y cos t, 0 t 8Pi 6.0 x sin t, y cos t, 0 t 9Pi x sin t, y cos t, 0 t 0Pi 6.0 x sin t, y cos t, 0 t Pi 6.0 x sin t, y cos t, 0 t Pi

8 Ellipse where t = kπ/6, k = 0,...,. x = cost, y = sint x cos t, y sin t, 0 t Pi 6 x cos t, y sin t, 0 t Pi 6 x cos t, y sin t, 0 tpi x cos t, y sin t, 0 tpi 6 x cos t, y sin t, 0 tpi 6 x cos t, y sin t, 0 t 6Pi x cos t, y sin t, 0 t 7Pi 6 x cos t, y sin t, 0 t 8Pi 6 x cos t, y sin t, 0 t 9Pi x cos t, y sin t, 0 t 0Pi 6 x cos t, y sin t, 0 t Pi 6 x cos t, y sin t, 0 t Pi

9 Spiral where t = kπ/4, k = 0,...,. x t cos t, y t sin t, 0 t Pi..0 x = tcost, y = tsint x t cos t, y t sin t, 0 t Pi x t cos t, y t sin t, 0 tpi x t cos t, y t sin t, 0 tpi 4 x t cos t, y t sin t, 0 tpi 4 x t cos t, y t sin t, 0 t 6Pi x t cos t, y t sin t, 0 t 7Pi 6 4 x t cos t, y t sin t, 0 t 8Pi x t cos t, y t sin t, 0 t 9Pi x t cos t, y t sin t, 0 t 0Pi 0 x t cos t, y t sin t, 0 t Pi 0 x t cos t, y t sin t, 0 t Pi

10 Parabola where t = +k/4, k = 0,...,. x t^ t, y t, t x = t +t, y = t x t^ t, y t, t x t^ t, y t, t x t^ t, y t, t x t^ t, y t, t x t^ t, y t, t x t^ t, y t, t 7 x t^ t, y t, t 8 x t^ t, y t, t x t^ t, y t, t 0 x t^ t, y t, t x t^ t, y t, t

11 Restricted Parabola where t = kπ/6, k = 0,...,. x = sin t, y = cost x sin^ t, y cos t, 0 t Pi 6 x sin^ t, y cos t, 0 t Pi 6 x sin^ t, y cos t, 0 tpi x sin^ t, y cos t, 0 tpi 6 x sin^ t, y cos t, 0 tpi 6 x sin^ t, y cos t, 0 t 6Pi x sin^ t, y cos t, 0 t 7Pi 6 x sin^ t, y cos t, 0 t 8Pi 6 x sin^ t, y cos t, 0 t 9Pi x sin^ t, y cos t, 0 t 0Pi 6 x sin^ t, y cos t, 0 t Pi 6 x sin^ t, y cos t, 0 t Pi

12 Butterfly Curve [ ( )] [ ( )] t t x = sint e cost cos(4t)+sin, y = cost e cost cos(4t)+sin where t = kπ/6, k = 0,...,.

13 Butterfly Curve [ ( )] [ ( )] t t x = sint e cost cos(4t)+sin, y = cost e cost cos(4t)+sin where t = kπ/, k = 0,...,.

14 Parametric Curve x = t+sint, y = t+cost where t = π +kπ/, k = 0,...,. x t sin t,y t cost, Pi t Pi Pi x t sin t,y t cost, Pi t Pi Pi x t sin t,y t cost, Pi t PiPi x t sin t,y t cost, Pi t PiPi x t sin t,y t cost, Pi t PiPi x t sin t,y t cost, Pi t Pi 6Pi x t sin t,y t cost, Pi t Pi 7Pi x t sin t,y t cost, Pi t Pi 8Pi x t sin t,y t cost, Pi t Pi 9Pi x t sin t,y t cost, Pi t Pi 0Pi x t sin t,y t cost, Pi t Pi Pi x t sin t,y t cost, Pi t Pi Pi

15 Parametric Curves where k =,...,0. x =.cost coskt, y =.sint sinkt x.cos t cos t, y.sin t sin t x.cos t cos t, y.sin t sin t x.cos t cost, y.sin t sint x.cos t cost, y.sin t sint x.cos t cost, y.sin t sint x.cos t cos 6t, y.sin t sin 6t x.cos t cos 7t, y.sin t sin 7t x.cos t cos 8t, y.sin t sin 8t x.cos t cos 9t, y.sin t sin 9t x.cos t cos 0t, y.sin t sin 0t x.cos t cos t, y.sin t sin t x.cos t cos t, y.sin t sin t x.cos t cost, y.sin t sint x.cos t cost, y.sin t sint x.cos t cost, y.sin t sint x.cos t cos 6t, y.sin t sin 6t x.cos t cos 7t, y.sin t sin 7t x.cos t cos 8t, y.sin t sin 8t x.cos t cos 9t, y.sin t sin 9t x.cos t cos 0t, y.sin t sin 0t

16 Parametric Curves where k =,...,0. x =.cost cost, y =.sint sinkt x.cos t cost, y.sin t sin t x.cos t cost, y.sin t sin t x.cos t cost, y.sin t sint x.cos t cost, y.sin t sint x.cos t cost, y.sin t sint x.cos t cost, y.sin t sin 6t x.cos t cost, y.sin t sin 7t x.cos t cost, y.sin t sin 8t x.cos t cost, y.sin t sin 9t x.cos t cost, y.sin t sin 0t x.cos t cost, y.sin t sin t x.cos t cost, y.sin t sin t x.cos t cost, y.sin t sint x.cos t cost, y.sin t sint x.cos t cost, y.sin t sint x.cos t cost, y.sin t sin 6t x.cos t cost, y.sin t sin 7t x.cos t cost, y.sin t sin 8t x.cos t cost, y.sin t sin 9t x.cos t cost, y.sin t sin 0t 6

10.1 Curves Defined by Parametric Equation

10.1 Curves Defined by Parametric Equation 10.1 Curves Defined by Parametric Equation 1. Imagine that a particle moves along the curve C shown below. It is impossible to describe C by an equation of the form y = f (x) because C fails the Vertical

More information

There are four basic types of graphs in three dimensions. These are:

There are four basic types of graphs in three dimensions. These are: There are four basic types of graphs in three dimensions. These are: Vector valued functions A vector valued function is a function with one input variable (called a parameter) where the output is a vector.

More information

A different parametric curve ( t, t 2 ) traces the same curve, but this time the par-

A different parametric curve ( t, t 2 ) traces the same curve, but this time the par- Parametric Curves: Suppose a particle is moving around in a circle or any curve that fails the vertical line test, then we cannot describe the path of this particle using an equation of the form y fx)

More information

Calculus III. George Voutsadakis 1. LSSU Math 251. Lake Superior State University. 1 Mathematics and Computer Science

Calculus III. George Voutsadakis 1. LSSU Math 251. Lake Superior State University. 1 Mathematics and Computer Science Calculus III George Voutsadakis 1 1 Mathematics and Computer Science Lake Superior State University LSSU Math 251 George Voutsadakis (LSSU) Calculus III January 2016 1 / 76 Outline 1 Parametric Equations,

More information

Parametric Curves You Should Know

Parametric Curves You Should Know Parametric Curves You Should Know Straight Lines Let a and c be constants which are not both zero. Then the parametric equations determining the straight line passing through (b d) with slope c/a (i.e.

More information

Created by T. Madas LINE INTEGRALS. Created by T. Madas

Created by T. Madas LINE INTEGRALS. Created by T. Madas LINE INTEGRALS LINE INTEGRALS IN 2 DIMENSIONAL CARTESIAN COORDINATES Question 1 Evaluate the integral ( x + 2y) dx, C where C is the path along the curve with equation y 2 = x + 1, from ( ) 0,1 to ( )

More information

10.1 Review of Parametric Equations

10.1 Review of Parametric Equations 10.1 Review of Parametric Equations Recall that often, instead of representing a curve using just x and y (called a Cartesian equation), it is more convenient to define x and y using parametric equations

More information

Parametric Equations and Polar Coordinates

Parametric Equations and Polar Coordinates Parametric Equations and Polar Coordinates Parametrizations of Plane Curves In previous chapters, we have studied curves as the graphs of functions or equations involving the two variables x and y. Another

More information

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 3 2, 5 2 C) - 5 2

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 3 2, 5 2 C) - 5 2 Test Review (chap 0) Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Solve the problem. ) Find the point on the curve x = sin t, y = cos t, -

More information

The choice of origin, axes, and length is completely arbitrary.

The choice of origin, axes, and length is completely arbitrary. Polar Coordinates There are many ways to mark points in the plane or in 3-dim space for purposes of navigation. In the familiar rectangular coordinate system, a point is chosen as the origin and a perpendicular

More information

PARAMETRIC EQUATIONS AND POLAR COORDINATES

PARAMETRIC EQUATIONS AND POLAR COORDINATES 10 PARAMETRIC EQUATIONS AND POLAR COORDINATES PARAMETRIC EQUATIONS & POLAR COORDINATES We have seen how to represent curves by parametric equations. Now, we apply the methods of calculus to these parametric

More information

Figure: Aparametriccurveanditsorientation

Figure: Aparametriccurveanditsorientation Parametric Equations Not all curves are functions. To deal with curves that are not of the form y = f (x) orx = g(y), we use parametric equations. Define both x and y in terms of a parameter t: x = x(t)

More information

A. Correct! These are the corresponding rectangular coordinates.

A. Correct! These are the corresponding rectangular coordinates. Precalculus - Problem Drill 20: Polar Coordinates No. 1 of 10 1. Find the rectangular coordinates given the point (0, π) in polar (A) (0, 0) (B) (2, 0) (C) (0, 2) (D) (2, 2) (E) (0, -2) A. Correct! These

More information

Chapter 9 Overview: Parametric and Polar Coordinates

Chapter 9 Overview: Parametric and Polar Coordinates Chapter 9 Overview: Parametric and Polar Coordinates As we saw briefly last year, there are axis systems other than the Cartesian System for graphing (vector coordinates, polar coordinates, rectangular

More information

0 (10/20)xdx = 1 2 (x2 /2) 20

0 (10/20)xdx = 1 2 (x2 /2) 20 Work eample: Leak bucket Suppose ou lift a bucket of water straight up using a rope attached to a pulle. But as ou lift the bucket, it leaks water at a constant rate.the bucket weights 2lbs, the rope is

More information

9.1 (10.1) Parametric Curves ( 參數曲線 )

9.1 (10.1) Parametric Curves ( 參數曲線 ) 9.1 (10.1) Parametric Curves ( 參數曲線 ) [Ex]Sketch and identify the curve defined by parametric equations x= 6 t, y = t, t 4 (a) Sketch the curve by using the parametric equations to plot points: (b) Eliminate

More information

Coordinate goemetry in the (x, y) plane

Coordinate goemetry in the (x, y) plane Coordinate goemetr in the (x, ) plane In this chapter ou will learn how to solve problems involving parametric equations.. You can define the coordinates of a point on a curve using parametric equations.

More information

AP Calculus (BC) Chapter 10 Test No Calculator Section. Name: Date: Period:

AP Calculus (BC) Chapter 10 Test No Calculator Section. Name: Date: Period: AP Calculus (BC) Chapter 10 Test No Calculator Section Name: Date: Period: Part I. Multiple-Choice Questions (5 points each; please circle the correct answer.) 1. The graph in the xy-plane represented

More information

Exam 1 Review SOLUTIONS

Exam 1 Review SOLUTIONS 1. True or False (and give a short reason): Exam 1 Review SOLUTIONS (a) If the parametric curve x = f(t), y = g(t) satisfies g (1) = 0, then it has a horizontal tangent line when t = 1. FALSE: To make

More information

Practice Problems: Exam 2 MATH 230, Spring 2011 Instructor: Dr. Zachary Kilpatrick Show all your work. Simplify as much as possible.

Practice Problems: Exam 2 MATH 230, Spring 2011 Instructor: Dr. Zachary Kilpatrick Show all your work. Simplify as much as possible. Practice Problems: Exam MATH, Spring Instructor: Dr. Zachary Kilpatrick Show all your work. Simplify as much as possible.. Write down a table of x and y values associated with a few t values. Then, graph

More information

Vector Functions & Space Curves MATH 2110Q

Vector Functions & Space Curves MATH 2110Q Vector Functions & Space Curves Vector Functions & Space Curves Vector Functions Definition A vector function or vector-valued function is a function that takes real numbers as inputs and gives vectors

More information

Power Series. x n. Using the ratio test. n n + 1. x n+1 n 3. = lim x. lim n + 1. = 1 < x < 1. Then r = 1 and I = ( 1, 1) ( 1) n 1 x n.

Power Series. x n. Using the ratio test. n n + 1. x n+1 n 3. = lim x. lim n + 1. = 1 < x < 1. Then r = 1 and I = ( 1, 1) ( 1) n 1 x n. .8 Power Series. n x n x n n Using the ratio test. lim x n+ n n + lim x n n + so r and I (, ). By the ratio test. n Then r and I (, ). n x < ( ) n x n < x < n lim x n+ n (n + ) x n lim xn n (n + ) x

More information

Math 323 Exam 1 Practice Problem Solutions

Math 323 Exam 1 Practice Problem Solutions Math Exam Practice Problem Solutions. For each of the following curves, first find an equation in x and y whose graph contains the points on the curve. Then sketch the graph of C, indicating its orientation.

More information

MATH 151 Engineering Mathematics I

MATH 151 Engineering Mathematics I MATH 151 Engineering Mathematics I Spring 2018, WEEK 1 JoungDong Kim Week 1 Vectors, The Dot Product, Vector Functions and Parametric Curves. Section 1.1 Vectors Definition. A Vector is a quantity that

More information

Chapter 5 Trigonometric Functions of Angles

Chapter 5 Trigonometric Functions of Angles Chapter 5 Trigonometric Functions of Angles Section 3 Points on Circles Using Sine and Cosine Signs Signs I Signs (+, +) I Signs II (+, +) I Signs II (, +) (+, +) I Signs II (, +) (+, +) I III Signs II

More information

Parametric Equations

Parametric Equations Parametric Equations By: OpenStaxCollege Consider the path a moon follows as it orbits a planet, which simultaneously rotates around the sun, as seen in [link]. At any moment, the moon is located at a

More information

for 2 1/3 < t 3 1/3 parametrizes

for 2 1/3 < t 3 1/3 parametrizes Solution to Set 4, due Friday April 1) Section 5.1, Problem ) Explain why the path parametrized by ft) = t, t 1 ) is not smooth. Note this is true more specifically if the interval of t contains t = 1

More information

APPM 1360 Final Exam Spring 2016

APPM 1360 Final Exam Spring 2016 APPM 36 Final Eam Spring 6. 8 points) State whether each of the following quantities converge or diverge. Eplain your reasoning. a) The sequence a, a, a 3,... where a n ln8n) lnn + ) n!) b) ln d c) arctan

More information

Time: 1 hour 30 minutes

Time: 1 hour 30 minutes Paper Reference(s) 6666/0 Edexcel GCE Core Mathematics C4 Silver Level S5 Time: hour 0 minutes Materials required for examination papers Mathematical Formulae (Green) Items included with question Nil Candidates

More information

CURVATURE AND RADIUS OF CURVATURE

CURVATURE AND RADIUS OF CURVATURE CHAPTER 5 CURVATURE AND RADIUS OF CURVATURE 5.1 Introduction: Curvature is a numerical measure of bending of the curve. At a particular point on the curve, a tangent can be drawn. Let this line makes an

More information

Volumes of Solids of Revolution Lecture #6 a

Volumes of Solids of Revolution Lecture #6 a Volumes of Solids of Revolution Lecture #6 a Sphereoid Parabaloid Hyperboloid Whateveroid Volumes Calculating 3-D Space an Object Occupies Take a cross-sectional slice. Compute the area of the slice. Multiply

More information

MATH 127 SAMPLE FINAL EXAM I II III TOTAL

MATH 127 SAMPLE FINAL EXAM I II III TOTAL MATH 17 SAMPLE FINAL EXAM Name: Section: Do not write on this page below this line Part I II III TOTAL Score Part I. Multiple choice answer exercises with exactly one correct answer. Each correct answer

More information

Edexcel past paper questions. Core Mathematics 4. Parametric Equations

Edexcel past paper questions. Core Mathematics 4. Parametric Equations Edexcel past paper questions Core Mathematics 4 Parametric Equations Edited by: K V Kumaran Email: kvkumaran@gmail.com C4 Maths Parametric equations Page 1 Co-ordinate Geometry A parametric equation of

More information

MTHE 227 Problem Set 2 Solutions

MTHE 227 Problem Set 2 Solutions MTHE 7 Problem Set Solutions 1 (Great Circles). The intersection of a sphere with a plane passing through its center is called a great circle. Let Γ be the great circle that is the intersection of the

More information

SOLUTIONS TO HOMEWORK ASSIGNMENT #2, Math 253

SOLUTIONS TO HOMEWORK ASSIGNMENT #2, Math 253 SOLUTIONS TO HOMEWORK ASSIGNMENT #, Math 5. Find the equation of a sphere if one of its diameters has end points (, 0, 5) and (5, 4, 7). The length of the diameter is (5 ) + ( 4 0) + (7 5) = =, so the

More information

11.6. Parametric Differentiation. Introduction. Prerequisites. Learning Outcomes

11.6. Parametric Differentiation. Introduction. Prerequisites. Learning Outcomes Parametric Differentiation 11.6 Introduction Often, the equation of a curve may not be given in Cartesian form y f(x) but in parametric form: x h(t), y g(t). In this section we see how to calculate the

More information

Exercise. Exercise 1.1. MA112 Section : Prepared by Dr.Archara Pacheenburawana 1

Exercise. Exercise 1.1. MA112 Section : Prepared by Dr.Archara Pacheenburawana 1 MA112 Section 750001: Prepared by Dr.Archara Pacheenburawana 1 Exercise Exercise 1.1 1 8 Find the vertex, focus, and directrix of the parabola and sketch its graph. 1. x = 2y 2 2. 4y +x 2 = 0 3. 4x 2 =

More information

Radian measure and trigonometric functions on the reals

Radian measure and trigonometric functions on the reals Trigonometry Radian measure and trigonometric functions on the reals The units for measuring angles tend to change depending on the context - in a geometry course, you re more likely to be measuring your

More information

MATH 162. Midterm 2 ANSWERS November 18, 2005

MATH 162. Midterm 2 ANSWERS November 18, 2005 MATH 62 Midterm 2 ANSWERS November 8, 2005. (0 points) Does the following integral converge or diverge? To get full credit, you must justify your answer. 3x 2 x 3 + 4x 2 + 2x + 4 dx You may not be able

More information

9.4 CALCULUS AND PARAMETRIC EQUATIONS

9.4 CALCULUS AND PARAMETRIC EQUATIONS 9.4 Calculus with Parametric Equations Contemporary Calculus 1 9.4 CALCULUS AND PARAMETRIC EQUATIONS The previous section discussed parametric equations, their graphs, and some of their uses for visualizing

More information

Core A-level mathematics reproduced from the QCA s Subject criteria for Mathematics document

Core A-level mathematics reproduced from the QCA s Subject criteria for Mathematics document Core A-level mathematics reproduced from the QCA s Subject criteria for Mathematics document Background knowledge: (a) The arithmetic of integers (including HCFs and LCMs), of fractions, and of real numbers.

More information

Fundamentals of Mathematics (MATH 1510)

Fundamentals of Mathematics (MATH 1510) Fundamentals of Mathematics () Instructor: Email: shenlili@yorku.ca Department of Mathematics and Statistics York University March 14-18, 2016 Outline 1 2 s An angle AOB consists of two rays R 1 and R

More information

9.1. Click here for answers. Click here for solutions. PARAMETRIC CURVES

9.1. Click here for answers. Click here for solutions. PARAMETRIC CURVES SECTION 9. PARAMETRIC CURVES 9. PARAMETRIC CURVES A Click here for answers. S Click here for solutions. 5 (a) Sketch the curve b using the parametric equations to plot points. Indicate with an arrow the

More information

( )( ) Algebra 136 Semester 2 Review. ( ) 6. g( h( x) ( ) Name. In 1-6, use the functions below to find the solutions.

( )( ) Algebra 136 Semester 2 Review. ( ) 6. g( h( x) ( ) Name. In 1-6, use the functions below to find the solutions. Algebra 136 Semester Review In 1-6, use the functions below to find the solutions. Name f ( x) = 3x x + g( x) = x 3 h( x) = x + 3 1. ( f + h) ( x). ( h g) ( x) 3. h x g ( ) 4. ( gh) ( x). f g( x) ( ) 6.

More information

Calculus III. Exam 2

Calculus III. Exam 2 Calculus III Math 143 Spring 011 Professor Ben Richert Exam Solutions Problem 1. (0pts) Computational mishmash. For this problem (and only this problem), you are not required to supply any English explanation.

More information

Name: SOLUTIONS Date: 09/07/2017. M20550 Calculus III Tutorial Worksheet 2

Name: SOLUTIONS Date: 09/07/2017. M20550 Calculus III Tutorial Worksheet 2 M20550 Calculus III Tutorial Worksheet 2 1. Find an equation of the plane passes through the point (1, 1, 7) and perpendicular to the line x = 1 + 4t, y = 1 t, z = 3. Solution: To write an equation of

More information

= 3, the vertical velocty is. (x(t), y(t)) = (1 + 3t, 2 + 4t) for t [0, 1],

= 3, the vertical velocty is. (x(t), y(t)) = (1 + 3t, 2 + 4t) for t [0, 1], Math 133 Parametric Curves Stewart 10.1 Back to pictures! We have emphasized four conceptual levels, or points of view on mathematics: physical, geometric, numerical, algebraic. The physical viewpoint

More information

MATH 1080 Test 2 -Version A-SOLUTIONS Fall a. (8 pts) Find the exact length of the curve on the given interval.

MATH 1080 Test 2 -Version A-SOLUTIONS Fall a. (8 pts) Find the exact length of the curve on the given interval. MATH 8 Test -Version A-SOLUTIONS Fall 4. Consider the curve defined by y = ln( sec x), x. a. (8 pts) Find the exact length of the curve on the given interval. sec x tan x = = tan x sec x L = + tan x =

More information

HW - Chapter 10 - Parametric Equations and Polar Coordinates

HW - Chapter 10 - Parametric Equations and Polar Coordinates Berkeley City College Due: HW - Chapter 0 - Parametric Equations and Polar Coordinates Name Parametric equations and a parameter interval for the motion of a particle in the xy-plane are given. Identify

More information

MA 351 Fall 2007 Exam #1 Review Solutions 1

MA 351 Fall 2007 Exam #1 Review Solutions 1 MA 35 Fall 27 Exam # Review Solutions THERE MAY BE TYPOS in these solutions. Please let me know if you find any.. Consider the two surfaces ρ 3 csc θ in spherical coordinates and r 3 in cylindrical coordinates.

More information

REVIEW 2, MATH 3020 AND MATH 3030

REVIEW 2, MATH 3020 AND MATH 3030 REVIEW, MATH 300 AND MATH 3030 1. Let P = (0, 1, ), Q = (1,1,0), R(0,1, 1), S = (1,, 4). (a) Find u = PQ and v = PR. (b) Find the angle between u and v. (c) Find a symmetric equation of the plane σ that

More information

Mathematics Engineering Calculus III Fall 13 Test #1

Mathematics Engineering Calculus III Fall 13 Test #1 Mathematics 2153-02 Engineering Calculus III Fall 13 Test #1 Instructor: Dr. Alexandra Shlapentokh (1) Which of the following statements is always true? (a) If x = f(t), y = g(t) and f (1) = 0, then dy/dx(1)

More information

MATH 100 REVIEW PACKAGE

MATH 100 REVIEW PACKAGE SCHOOL OF UNIVERSITY ARTS AND SCIENCES MATH 00 REVIEW PACKAGE Gearing up for calculus and preparing for the Assessment Test that everybody writes on at. You are strongly encouraged not to use a calculator

More information

1 Area calculations. 1.1 Area of an ellipse or a part of it Without using parametric equations

1 Area calculations. 1.1 Area of an ellipse or a part of it Without using parametric equations Area calculations. Area of an ellipse or a part of it.. Without using parametric equations We calculate the area in the first quadrant. We start from the standard equation of the ellipse and we put that

More information

Edexcel Core Mathematics 4 Parametric equations.

Edexcel Core Mathematics 4 Parametric equations. Edexcel Core Mathematics 4 Parametric equations. Edited by: K V Kumaran kumarmaths.weebly.com 1 Co-ordinate Geometry A parametric equation of a curve is one which does not give the relationship between

More information

Math 323 Exam 2 - Practice Problem Solutions. 2. Given the vectors a = 1,2,0, b = 1,0,2, and c = 0,1,1, compute the following:

Math 323 Exam 2 - Practice Problem Solutions. 2. Given the vectors a = 1,2,0, b = 1,0,2, and c = 0,1,1, compute the following: Math 323 Eam 2 - Practice Problem Solutions 1. Given the vectors a = 2,, 1, b = 3, 2,4, and c = 1, 4,, compute the following: (a) A unit vector in the direction of c. u = c c = 1, 4, 1 4 =,, 1+16+ 17 17

More information

Study Guide for Final Exam

Study Guide for Final Exam Study Guide for Final Exam. You are supposed to be able to calculate the cross product a b of two vectors a and b in R 3, and understand its geometric meaning. As an application, you should be able to

More information

Math 210, Exam 1, Practice Fall 2009 Problem 1 Solution

Math 210, Exam 1, Practice Fall 2009 Problem 1 Solution Math 20, Exam, Practice Fall 2009 Problem Solution. Let A = (,,2), B = (0,,), C = (2,,). (a) Find the vector equation of the plane through A, B, C. (b) Find the area of the triangle with these three vertices.

More information

ALGEBRAIC LONG DIVISION

ALGEBRAIC LONG DIVISION QUESTIONS: 2014; 2c 2013; 1c ALGEBRAIC LONG DIVISION x + n ax 3 + bx 2 + cx +d Used to find factors and remainders of functions for instance 2x 3 + 9x 2 + 8x + p This process is useful for finding factors

More information

+ 4 Ex: y = v = (1, 4) x = 1 Focus: (h, k + ) = (1, 6) L.R. = 8 units We can have parabolas that open sideways too (inverses) x = a (y k) 2 + h

+ 4 Ex: y = v = (1, 4) x = 1 Focus: (h, k + ) = (1, 6) L.R. = 8 units We can have parabolas that open sideways too (inverses) x = a (y k) 2 + h Unit 7 Notes Parabolas: E: reflectors, microphones, (football game), (Davinci) satellites. Light placed where ras will reflect parallel. This point is the focus. Parabola set of all points in a plane that

More information

MAT1035 Analytic Geometry

MAT1035 Analytic Geometry MAT1035 Analytic Geometry Lecture Notes R.A. Sabri Kaan Gürbüzer Dokuz Eylül University 2016 2 Contents 1 Review of Trigonometry 5 2 Polar Coordinates 7 3 Vectors in R n 9 3.1 Located Vectors..............................................

More information

Worksheet 1.7: Introduction to Vector Functions - Position

Worksheet 1.7: Introduction to Vector Functions - Position Boise State Math 275 (Ultman) Worksheet 1.7: Introduction to Vector Functions - Position From the Toolbox (what you need from previous classes): Cartesian Coordinates: Coordinates of points in general,

More information

3 Inequalities Absolute Values Inequalities and Intervals... 5

3 Inequalities Absolute Values Inequalities and Intervals... 5 Contents 1 Real Numbers, Exponents, and Radicals 3 1.1 Rationalizing the Denominator................................... 3 1.2 Factoring Polynomials........................................ 3 1.3 Algebraic

More information

Math 3435 Homework Set 11 Solutions 10 Points. x= 1,, is in the disk of radius 1 centered at origin

Math 3435 Homework Set 11 Solutions 10 Points. x= 1,, is in the disk of radius 1 centered at origin Math 45 Homework et olutions Points. ( pts) The integral is, x + z y d = x + + z da 8 6 6 where is = x + z 8 x + z = 4 o, is the disk of radius centered on the origin. onverting to polar coordinates then

More information

Math 116 Practice for Exam 2

Math 116 Practice for Exam 2 Math 116 Practice for Exam 2 Generated October 12, 215 Name: SOLUTIONS Instructor: Section Number: 1. This exam has 8 questions. Note that the problems are not of equal difficulty, so you may want to skip

More information

Chapter 10. Additional Topics in Trigonometry

Chapter 10. Additional Topics in Trigonometry Chapter 10 Additional Topics in Trigonometry 1 Right Triangle applications Law of Sines and Cosines Parametric equations Polar coordinates Curves in polar coordinates Summary 2 Chapter 10.1 Right Triangle

More information

Complex Numbers Class Work. Complex Numbers Homework. Pre-Calc Polar & Complex #s ~1~ NJCTL.org. Simplify using i b 4 3.

Complex Numbers Class Work. Complex Numbers Homework. Pre-Calc Polar & Complex #s ~1~ NJCTL.org. Simplify using i b 4 3. Complex Numbers Class Work Simplify using i. 1. 16 2. 36b 4 3. 8a 2 4. 32x 6 y 7 5. 16 25 6. 8 10 7. 3i 4i 5i 8. 2i 4i 6i 8i 9. i 9 10. i 22 11. i 75 Complex Numbers Homework Simplify using i. 12. 81 13.

More information

Things to Know and Be Able to Do Understand the meaning of equations given in parametric and polar forms, and develop a sketch of the appropriate

Things to Know and Be Able to Do Understand the meaning of equations given in parametric and polar forms, and develop a sketch of the appropriate AP Calculus BC Review Chapter (Parametric Equations and Polar Coordinates) Things to Know and Be Able to Do Understand the meaning of equations given in parametric and polar forms, and develop a sketch

More information

Chapter 1 Analytic geometry in the plane

Chapter 1 Analytic geometry in the plane 3110 General Mathematics 1 31 10 General Mathematics For the students from Pharmaceutical Faculty 1/004 Instructor: Dr Wattana Toutip (ดร.ว ฒนา เถาว ท พย ) Chapter 1 Analytic geometry in the plane Overview:

More information

Things You Should Know Coming Into Calc I

Things You Should Know Coming Into Calc I Things You Should Know Coming Into Calc I Algebraic Rules, Properties, Formulas, Ideas and Processes: 1) Rules and Properties of Exponents. Let x and y be positive real numbers, let a and b represent real

More information

Section 14.1 Vector Functions and Space Curves

Section 14.1 Vector Functions and Space Curves Section 14.1 Vector Functions and Space Curves Functions whose range does not consists of numbers A bulk of elementary mathematics involves the study of functions - rules that assign to a given input a

More information

Math 212-Lecture 20. P dx + Qdy = (Q x P y )da. C

Math 212-Lecture 20. P dx + Qdy = (Q x P y )da. C 15. Green s theorem Math 212-Lecture 2 A simple closed curve in plane is one curve, r(t) : t [a, b] such that r(a) = r(b), and there are no other intersections. The positive orientation is counterclockwise.

More information

Open the TI-Nspire file: Astroid. Navigate to page 1.2 of the file. Drag point A on the rim of the bicycle wheel and observe point P on the rim.

Open the TI-Nspire file: Astroid. Navigate to page 1.2 of the file. Drag point A on the rim of the bicycle wheel and observe point P on the rim. Astroid Student Activity 7 9 TI-Nspire Investigation Student min Introduction How is the motion of a ladder sliding down a wall related to the motion of the valve on a bicycle wheel or to a popular amusement

More information

PhysicsAndMathsTutor.com

PhysicsAndMathsTutor.com . A curve C has parametric equations x sin t, y tan t, 0 t < (a) Find in terms of t. (4) The tangent to C at the point where t cuts the x-axis at the point P. (b) Find the x-coordinate of P. () (Total

More information

Time : 3 hours 02 - Mathematics - July 2006 Marks : 100 Pg - 1 Instructions : S E CT I O N - A

Time : 3 hours 02 - Mathematics - July 2006 Marks : 100 Pg - 1 Instructions : S E CT I O N - A Time : 3 hours 0 Mathematics July 006 Marks : 00 Pg Instructions :. Answer all questions.. Write your answers according to the instructions given below with the questions. 3. Begin each section on a new

More information

Later in this chapter, we are going to use vector functions to describe the motion of planets and other objects through space.

Later in this chapter, we are going to use vector functions to describe the motion of planets and other objects through space. 10 VECTOR FUNCTIONS VECTOR FUNCTIONS Later in this chapter, we are going to use vector functions to describe the motion of planets and other objects through space. Here, we prepare the way by developing

More information

The branch of mechanics which deals with the motion of object is called dynamics. It is divided into two branches:

The branch of mechanics which deals with the motion of object is called dynamics. It is divided into two branches: M th KINEMATICS 4 CHAPTER INTRODUCTION The branch of mechanics which deals with the motion of object is called dynamics. It is divided into two branches: Kinematics: (i) Kinematics (ii) Kinetics The branch

More information

Chapter 11 Parametric Equations, Polar Curves, and Conic Sections

Chapter 11 Parametric Equations, Polar Curves, and Conic Sections Chapter 11 Parametric Equations, Polar Curves, and Conic Sections ü 11.1 Parametric Equations Students should read Sections 11.1-11. of Rogawski's Calculus [1] for a detailed discussion of the material

More information

Unit #17: Spring Trig Unit. A. First Quadrant Notice how the x-values decrease by while the y-values increase by that same amount.

Unit #17: Spring Trig Unit. A. First Quadrant Notice how the x-values decrease by while the y-values increase by that same amount. Name Unit #17: Spring Trig Unit Notes #1: Basic Trig Review I. Unit Circle A circle with center point and radius. A. First Quadrant Notice how the x-values decrease by while the y-values increase by that

More information

MA 110 Algebra and Trigonometry for Calculus Fall 2016 Exam 4 12 December Multiple Choice Answers EXAMPLE A B C D E.

MA 110 Algebra and Trigonometry for Calculus Fall 2016 Exam 4 12 December Multiple Choice Answers EXAMPLE A B C D E. MA 110 Algebra and Trigonometry for Calculus Fall 2016 Exam 4 12 December 2016 Multiple Choice Answers EXAMPLE A B C D E Question Name: Section: Last 4 digits of student ID #: This exam has twelve multiple

More information

Plane Curves and Parametric Equations

Plane Curves and Parametric Equations Plane Curves and Parametric Equations MATH 211, Calculus II J. Robert Buchanan Department of Mathematics Spring 2018 Introduction We typically think of a graph as a curve in the xy-plane generated by the

More information

AH Complex Numbers.notebook October 12, 2016

AH Complex Numbers.notebook October 12, 2016 Complex Numbers Complex Numbers Complex Numbers were first introduced in the 16th century by an Italian mathematician called Cardano. He referred to them as ficticious numbers. Given an equation that does

More information

11.6. Parametric Differentiation. Introduction. Prerequisites. Learning Outcomes

11.6. Parametric Differentiation. Introduction. Prerequisites. Learning Outcomes Parametric Differentiation 11.6 Introduction Sometimes the equation of a curve is not be given in Cartesian form y f(x) but in parametric form: x h(t), y g(t). In this Section we see how to calculate the

More information

17.3. Parametric Curves. Introduction. Prerequisites. Learning Outcomes

17.3. Parametric Curves. Introduction. Prerequisites. Learning Outcomes Parametric Curves 7.3 Introduction In this Section we eamine et another wa of defining curves - the parametric description. We shall see that this is, in some was, far more useful than either the Cartesian

More information

worked out from first principles by parameterizing the path, etc. If however C is a A path C is a simple closed path if and only if the starting point

worked out from first principles by parameterizing the path, etc. If however C is a A path C is a simple closed path if and only if the starting point III.c Green s Theorem As mentioned repeatedly, if F is not a gradient field then F dr must be worked out from first principles by parameterizing the path, etc. If however is a simple closed path in the

More information

2 Trigonometric functions

2 Trigonometric functions Theodore Voronov. Mathematics 1G1. Autumn 014 Trigonometric functions Trigonometry provides methods to relate angles and lengths but the functions we define have many other applications in mathematics..1

More information

CBE 6333, R. Levicky 1. Orthogonal Curvilinear Coordinates

CBE 6333, R. Levicky 1. Orthogonal Curvilinear Coordinates CBE 6333, R. Levicky 1 Orthogonal Curvilinear Coordinates Introduction. Rectangular Cartesian coordinates are convenient when solving problems in which the geometry of a problem is well described by the

More information

Introduction to Vector Functions

Introduction to Vector Functions Introduction to Vector Functions Limits and Continuity Philippe B. Laval KSU Today Philippe B. Laval (KSU) Vector Functions Today 1 / 14 Introduction Until now, the functions we studied took a real number

More information

MATH 135: COMPLEX NUMBERS

MATH 135: COMPLEX NUMBERS MATH 135: COMPLEX NUMBERS (WINTER, 010) The complex numbers C are important in just about every branch of mathematics. These notes 1 present some basic facts about them. 1. The Complex Plane A complex

More information

MATH Final Review

MATH Final Review MATH 1592 - Final Review 1 Chapter 7 1.1 Main Topics 1. Integration techniques: Fitting integrands to basic rules on page 485. Integration by parts, Theorem 7.1 on page 488. Guidelines for trigonometric

More information

MATH 32 FALL 2012 FINAL EXAM - PRACTICE EXAM SOLUTIONS

MATH 32 FALL 2012 FINAL EXAM - PRACTICE EXAM SOLUTIONS MATH 3 FALL 0 FINAL EXAM - PRACTICE EXAM SOLUTIONS () You cut a slice from a circular pizza (centered at the origin) with radius 6 along radii at angles 4 and 3 with the positive horizontal axis. (a) (3

More information

Chapter 10: Conic Sections; Polar Coordinates; Parametric Equations

Chapter 10: Conic Sections; Polar Coordinates; Parametric Equations Chapter 10: Conic Sections; Polar Coordinates; Parametric Equations Section 10.1 Geometry of Parabola, Ellipse, Hyperbola a. Geometric Definition b. Parabola c. Ellipse d. Hyperbola e. Translations f.

More information

Practice problems for Exam 1. a b = (2) 2 + (4) 2 + ( 3) 2 = 29

Practice problems for Exam 1. a b = (2) 2 + (4) 2 + ( 3) 2 = 29 Practice problems for Exam.. Given a = and b =. Find the area of the parallelogram with adjacent sides a and b. A = a b a ı j k b = = ı j + k = ı + 4 j 3 k Thus, A = 9. a b = () + (4) + ( 3)

More information

Lone Star College-CyFair Formula Sheet

Lone Star College-CyFair Formula Sheet Lone Star College-CyFair Formula Sheet The following formulas are critical for success in the indicated course. Student CANNOT bring these formulas on a formula sheet or card to tests and instructors MUST

More information

Geometry The Unit Circle

Geometry The Unit Circle Geometry The Unit Circle Day Date Class Homework F 3/10 N: Area & Circumference M 3/13 Trig Test T 3/14 N: Sketching Angles (Degrees) WKS: Angles (Degrees) W 3/15 N: Arc Length & Converting Measures WKS:

More information

School of Distance Education UNIVERSITY OF CALICUT SCHOOL OF DISTANCE EDUCATION. B Sc Mathematics. (2011 Admission Onwards) IV Semester.

School of Distance Education UNIVERSITY OF CALICUT SCHOOL OF DISTANCE EDUCATION. B Sc Mathematics. (2011 Admission Onwards) IV Semester. School of Dtance Education UNIVERSITY OF CALICUT SCHOOL OF DISTANCE EDUCATION B Sc Mathematics 0 Admsion Onwards IV Semester Core Course CALCULUS AND ANALYTIC GEOMETRY QUESTION BANK The natural logarithm

More information

Complex Analysis Homework 1: Solutions

Complex Analysis Homework 1: Solutions Complex Analysis Fall 007 Homework 1: Solutions 1.1.. a) + i)4 + i) 8 ) + 1 + )i 5 + 14i b) 8 + 6i) 64 6) + 48 + 48)i 8 + 96i c) 1 + ) 1 + i 1 + 1 i) 1 + i)1 i) 1 + i ) 5 ) i 5 4 9 ) + 4 4 15 i ) 15 4

More information

IYGB Mathematical Methods 1

IYGB Mathematical Methods 1 IYGB Mathematical Methods Practice Paper B Time: 3 hours Candidates may use any non programmable, non graphical calculator which does not have the capability of storing data or manipulating algebraic expressions

More information

Tangent and Normal Vector - (11.5)

Tangent and Normal Vector - (11.5) Tangent and Normal Vector - (.5). Principal Unit Normal Vector Let C be the curve traced out bythe vector-valued function r!!t # f!t, g!t, h!t $. The vector T!!t r! % r! %!t!t is the unit tangent vector

More information