MA3D9. Geometry of curves and surfaces. T (s) = κ(s)n(s),

Size: px
Start display at page:

Download "MA3D9. Geometry of curves and surfaces. T (s) = κ(s)n(s),"

Transcription

1 MA3D9. Geometry of 2. Planar curves. Let : I R 2 be a curve parameterised by arc-length. Given s I, let T(s) = (s) be the unit tangent. Let N(s) be the unit normal obtained by rotating T(s) through π/2 anticlockwise. Now T.T = 1 and so T.T = 0. Thus we can write T (s) = κ(s)n(s), where κ(s) R. Here κ is a smooth function of s. Definition : κ is the (signed) curvature of. (We refer to κ as the unsigned curvature.) Note that κ(s) = T (s) = (s). Example : Circle of radius r. This has constant curvature 1/r. Definition : If κ 0, then ρ(s) = 1/κ(s) is the (signed) radius of curvature. The point c(s) = (s) + ρ(s)n(s) is the centre of curvature. The circle of centre c(s) and radius ρ(s) is the osculating circle. Note that for a circle, the osculating circle is constant and equal to the original curve. General formula. Suppose (t) = (x(t), y(t)) is regular (not necessarily parameterised by arc-length). Proposition 2.1 : The unsigned curvature of is given by: κ(t) = x y y x ((x ) 2 + (y ) 2 ) 3/2. Proof : Exercise. 1

2 Example : The ellipse: (t) = (a cost, b sint): κ(t) = ab (a2 + (b 2 a 2 ) cos 2 t) 3 ). What are the maximum and minimum curvatures? Remarks : (1) Unsigned curvature is invariant under (postcompositon with) rigid motion of R 2. The sign remains the same if and only if the rigid motion is orientation What are the maximum and minimum curvatures? preserving. (2) Under dilation by a factor of λ > 0, it gets multiplied by 1/λ. The tractrix. The tractrix is defined as a curve (t) = (x(t), y(t)) such that the tangent at any point (t) intercepts the y-axis at a point a unit distance away from (t). In other words: Using the formula for curvature we get: dy dx = 1 x 2. κ = x 1 x 2. Let s (s) s 0 be the arc length paramerisation, with (0) = (1, 0). Since (x ) 2 + (y ) 2 = 1, we get x = x, and so x = e s. Also Integrating: so dy 1 x ds = 2 dx x ds = 1 x 2 = 1 e 2s. y = cosh 1 (e s ) 1 e 2s (s) = (e s, cosh 1 (e s ) 1 e 2s ) κ(s) = e s / 1 e 2s. Another parametrisation, used in Section 8, is derived by taking x = sin(θ). Integrating for y (as in lectures) we get: Note that κ(θ) = tan(θ). (θ) = (sin(θ), log(tan(θ/2)) cos(θ)). 2

3 Other examples : Ellipse, cycloid etc. Closed curves. Definition : A curve : R R 2 is periodic with period t 0 > 0 if (t + t 0 ) = (t) for all t R. Example : The circle (t) = (r cos t, r sin t) has period 2π. Definition : A fundamental domain is any interval of the form [a, b] R, where b = a+t 0. Thus (a) = (b), (a) = (b), (a) = (b) etc. Remark : We can more intuitively think of as a map of the circle into R 2 gluing the endpoints a and b together to form circle. In these terms, we can refer to as a closed curve. To be more specific we can identify the circle with the unit circle in the plane, with the parameter t corresponding to the point (cos(2πt/t 0 ), sin(2πt/t 0 )) in the circle. If f(t) is any continuous periodic function in t, we can define f(t)dt = b a f(t)dt, where [a, b] is any fundamental domain. It is independent of the choice of fundamental domain. Again, we can think of it more informally as an integral over the circle. Total turning Suppose that is a regular closed curve. We write T(t) for the unit tangent. Thus T(t) = (cos θ, sinθ) for some θ R well defined up to some integer multiple of 2π. Definition : The total turning of is equal to θ (t)dt. Since θ(a) = θ(b) up to some multiple of 2π, we have that the total turning of is equal to 2πn for some n Z. Here n is called the turning number of. Examples : n = 1, 1, 0, 2 etc. Jordan curves. We state some facts which are intuitively clear, though they are more difficult to prove formally. They more properly belong in a course on topology. Definition : A (smooth) Jordan curve is a closed curve that is injective (as a map from the circle into R 2 ). 3

4 Examples : Circle, ellipse. The following, though intuitively reasonable, will not be proven in this course. Theorem 2.2 : (Smooth Schoenflies) If is a smooth Jordan curve, then there is a diffeomorphism f : R 2 R 2 sending the unit circle to. Here a diffeomorphism f is a bijective map f : R 2 R 2 such that f and f 1 are both smooth. If we think of as a map of the unit circle into R 2 then this means that f is simply an extention of : S 1 R 2. If we think of as a periodic map of period t 0, then we get (t) = f((cos(2πt/t 0 ), sin(2πt/t 0 )). Let D = {x R 2 x 1} be the unit disc. Its boundary is the unit circle, and so mapping under f we see that the image of is the boundary of Ω, where Ω = f(d). Definition : A (smooth) Jordan domain is the image of a smooth disc under some diffeomorphism of R 2. Thus, the image any smooth Jordan curve,, is the boundary of a smooth Jordan domain, Ω. We can think of Ω as the inside of. We shall sometimes write informally: = Ω. (In fact, Ω is uniquely determined by.) Note that may be positively or negatively oriented depending on whether the unit normal (as defined above) points in or out of Ω. In the former case, it has total turing 2π and in the latter case, it has total turning 2π (though we won t prove that here). We can generalise this to a piecewise smooth closed curve. This has a sequence of exterior angles, θ 1,..., θ n, in [ π, π] at the vertices where f is not differentiable. In this case, the total turning is defined as θ dt + i θ i. For example, for a polygonal curve, we have θ = 0 on all the straight segments, and so the total turning is just i θ i. Thus, for a positively oriented polygonal Jordan curve (i.e. a polygon in the traditional sense) we get the familiar formula: i θ i = 2π. Area. (We will assume the notion of integration of smooth functions over a nice subset, Ω of R 2. Thus, for example, the area of Ω can be defined by intergating the constant function 1 over Ω. The formal definitions of these concepts requires some measure theory, beyond the scope of this course. See [Measure theory course???].) Suppose that Ω is a Jordan domain with boundary the smooth Jordan curve,. We write (t) = (x(t), y(t)). Let A be the area of Ω. 4

5 Lemma 2.3 : A = y(t)x (t)dt = x(t)y (t)dt = 1 xy yx dt. 2 Proof : See lectures. Example : Circle. Remark : We have the following: Theorem : Let Ω be a Jordan domain, with boundary = Ω. Let l = length() and A = area(ω). Then A l 2 /4π, with equality if and only if is a circle. A relatively simple proof can be found for example in [C, p33]. Green s Theorem. Suppose that Ω is a Jordan domain, and = Ω is positively oriented. Suppose that P, Q : R 2 R are smooth functions. (We only really need them defined in a neighbournood of Ω.) Then: Theorem 2.4 : (Green): Px + Qy dt = Ω Q y da. Here (t) = (x(t), y(t)) R 2, and da = dx dy is the area element. Proof : See vector analysis course???. Remark : This is sometimes expressed as follows. We can view w = (P, Q) as a vector field on R 2, that is w(x, y) = (P(x, y), Q(x, y)) is the vector based at (x, y). Embedding R 2 R 3 by (x, y) (x, y, 0), its curl is: Thus, curlw.da = curlw.kda = curlw = ( 0, 0, Q w((t)). (t). Thus, Green s Theorem reduces to: w((t)). (t)dt = ). y ( ) Q y dt. Also (t) = (x (t), y (t)) so Px +Qy = Ω curl w.da for any planar vector field w. (This is Stokes s Theorem in the plane.) 5

6 Area again. Thus Set P = y and Q = x. Then Q y as before. LHS = RHS = A = 1 2 = 2. So yx + xy dt Ω 2 da = 2A. xy yx dt 6

Math 32A Discussion Session Week 5 Notes November 7 and 9, 2017

Math 32A Discussion Session Week 5 Notes November 7 and 9, 2017 Math 32A Discussion Session Week 5 Notes November 7 and 9, 2017 This week we want to talk about curvature and osculating circles. You might notice that these notes contain a lot of the same theory or proofs

More information

Geometry and Motion Selected answers to Sections A and C Dwight Barkley 2016

Geometry and Motion Selected answers to Sections A and C Dwight Barkley 2016 MA34 Geometry and Motion Selected answers to Sections A and C Dwight Barkley 26 Example Sheet d n+ = d n cot θ n r θ n r = Θθ n i. 2. 3. 4. Possible answers include: and with opposite orientation: 5..

More information

Visual interactive differential geometry. Lisbeth Fajstrup and Martin Raussen

Visual interactive differential geometry. Lisbeth Fajstrup and Martin Raussen Visual interactive differential geometry Lisbeth Fajstrup and Martin Raussen August 27, 2008 2 Contents 1 Curves in Plane and Space 7 1.1 Vector functions and parametrized curves.............. 7 1.1.1

More information

Figure 10: Tangent vectors approximating a path.

Figure 10: Tangent vectors approximating a path. 3 Curvature 3.1 Curvature Now that we re parametrizing curves, it makes sense to wonder how we might measure the extent to which a curve actually curves. That is, how much does our path deviate from being

More information

Exercises for Multivariable Differential Calculus XM521

Exercises for Multivariable Differential Calculus XM521 This document lists all the exercises for XM521. The Type I (True/False) exercises will be given, and should be answered, online immediately following each lecture. The Type III exercises are to be done

More information

THE FUNDAMENTAL THEOREM OF SPACE CURVES

THE FUNDAMENTAL THEOREM OF SPACE CURVES THE FUNDAMENTAL THEOREM OF SPACE CURVES JOSHUA CRUZ Abstract. In this paper, we show that curves in R 3 can be uniquely generated by their curvature and torsion. By finding conditions that guarantee the

More information

Geometry and Motion, MA 134 Week 1

Geometry and Motion, MA 134 Week 1 Geometry and Motion, MA 134 Week 1 Mario J. Micallef Spring, 2007 Warning. These handouts are not intended to be complete lecture notes. They should be supplemented by your own notes and, importantly,

More information

Kevin James. MTHSC 206 Section 16.4 Green s Theorem

Kevin James. MTHSC 206 Section 16.4 Green s Theorem MTHSC 206 Section 16.4 Green s Theorem Theorem Let C be a positively oriented, piecewise smooth, simple closed curve in R 2. Let D be the region bounded by C. If P(x, y)( and Q(x, y) have continuous partial

More information

Practice Problems for Exam 3 (Solutions) 1. Let F(x, y) = xyi+(y 3x)j, and let C be the curve r(t) = ti+(3t t 2 )j for 0 t 2. Compute F dr.

Practice Problems for Exam 3 (Solutions) 1. Let F(x, y) = xyi+(y 3x)j, and let C be the curve r(t) = ti+(3t t 2 )j for 0 t 2. Compute F dr. 1. Let F(x, y) xyi+(y 3x)j, and let be the curve r(t) ti+(3t t 2 )j for t 2. ompute F dr. Solution. F dr b a 2 2 F(r(t)) r (t) dt t(3t t 2 ), 3t t 2 3t 1, 3 2t dt t 3 dt 1 2 4 t4 4. 2. Evaluate the line

More information

M435: INTRODUCTION TO DIFFERENTIAL GEOMETRY

M435: INTRODUCTION TO DIFFERENTIAL GEOMETRY M435: INTODUCTION TO DIFFNTIAL GOMTY MAK POWLL Contents 7. The Gauss-Bonnet Theorem 1 7.1. Statement of local Gauss-Bonnet theorem 1 7.2. Area of geodesic triangles 2 7.3. Special case of the plane 2 7.4.

More information

Created by T. Madas LINE INTEGRALS. Created by T. Madas

Created by T. Madas LINE INTEGRALS. Created by T. Madas LINE INTEGRALS LINE INTEGRALS IN 2 DIMENSIONAL CARTESIAN COORDINATES Question 1 Evaluate the integral ( x + 2y) dx, C where C is the path along the curve with equation y 2 = x + 1, from ( ) 0,1 to ( )

More information

Math 234 Exam 3 Review Sheet

Math 234 Exam 3 Review Sheet Math 234 Exam 3 Review Sheet Jim Brunner LIST OF TOPIS TO KNOW Vector Fields lairaut s Theorem & onservative Vector Fields url Divergence Area & Volume Integrals Using oordinate Transforms hanging the

More information

An Introduction to Gaussian Geometry

An Introduction to Gaussian Geometry Lecture Notes in Mathematics An Introduction to Gaussian Geometry Sigmundur Gudmundsson (Lund University) (version 2.068-16th of November 2017) The latest version of this document can be found at http://www.matematik.lu.se/matematiklu/personal/sigma/

More information

2011 Mathematics Extension 1 HSC Examination Sample Answers

2011 Mathematics Extension 1 HSC Examination Sample Answers 0 Mathematics Extension HSC Examination Sample Answers When examination committees develop questions for the examination, they may write sample answers or, in the case of some questions, answers could

More information

ENGI 4430 Line Integrals; Green s Theorem Page 8.01

ENGI 4430 Line Integrals; Green s Theorem Page 8.01 ENGI 4430 Line Integrals; Green s Theorem Page 8.01 8. Line Integrals Two applications of line integrals are treated here: the evaluation of work done on a particle as it travels along a curve in the presence

More information

Exercise 1 (Formula for connection 1-forms) Using the first structure equation, show that

Exercise 1 (Formula for connection 1-forms) Using the first structure equation, show that 1 Stokes s Theorem Let D R 2 be a connected compact smooth domain, so that D is a smooth embedded circle. Given a smooth function f : D R, define fdx dy fdxdy, D where the left-hand side is the integral

More information

Name: SOLUTIONS Date: 11/9/2017. M20550 Calculus III Tutorial Worksheet 8

Name: SOLUTIONS Date: 11/9/2017. M20550 Calculus III Tutorial Worksheet 8 Name: SOLUTIONS Date: /9/7 M55 alculus III Tutorial Worksheet 8. ompute R da where R is the region bounded by x + xy + y 8 using the change of variables given by x u + v and y v. Solution: We know R is

More information

Volumes of Solids of Revolution Lecture #6 a

Volumes of Solids of Revolution Lecture #6 a Volumes of Solids of Revolution Lecture #6 a Sphereoid Parabaloid Hyperboloid Whateveroid Volumes Calculating 3-D Space an Object Occupies Take a cross-sectional slice. Compute the area of the slice. Multiply

More information

Green s Theorem in the Plane

Green s Theorem in the Plane hapter 6 Green s Theorem in the Plane Recall the following special case of a general fact proved in the previous chapter. Let be a piecewise 1 plane curve, i.e., a curve in R defined by a piecewise 1 -function

More information

PARAMETRIC EQUATIONS AND POLAR COORDINATES

PARAMETRIC EQUATIONS AND POLAR COORDINATES 10 PARAMETRIC EQUATIONS AND POLAR COORDINATES PARAMETRIC EQUATIONS & POLAR COORDINATES We have seen how to represent curves by parametric equations. Now, we apply the methods of calculus to these parametric

More information

OHSx XM521 Multivariable Differential Calculus: Homework Solutions 14.1

OHSx XM521 Multivariable Differential Calculus: Homework Solutions 14.1 OHSx XM5 Multivariable Differential Calculus: Homework Solutions 4. (8) Describe the graph of the equation. r = i + tj + (t )k. Solution: Let y(t) = t, so that z(t) = t = y. In the yz-plane, this is just

More information

Math 265H: Calculus III Practice Midterm II: Fall 2014

Math 265H: Calculus III Practice Midterm II: Fall 2014 Name: Section #: Math 65H: alculus III Practice Midterm II: Fall 14 Instructions: This exam has 7 problems. The number of points awarded for each question is indicated in the problem. Answer each question

More information

Dr. Allen Back. Dec. 3, 2014

Dr. Allen Back. Dec. 3, 2014 Dr. Allen Back Dec. 3, 2014 forms are sums of wedge products of the basis 1-forms dx, dy, and dz. They are kinds of tensors generalizing ordinary scalar functions and vector fields. They have a skew-symmetry

More information

MATH 317 Fall 2016 Assignment 5

MATH 317 Fall 2016 Assignment 5 MATH 37 Fall 26 Assignment 5 6.3, 6.4. ( 6.3) etermine whether F(x, y) e x sin y îı + e x cos y ĵj is a conservative vector field. If it is, find a function f such that F f. enote F (P, Q). We have Q x

More information

(c) The first thing to do for this problem is to create a parametric curve for C. One choice would be. (cos(t), sin(t)) with 0 t 2π

(c) The first thing to do for this problem is to create a parametric curve for C. One choice would be. (cos(t), sin(t)) with 0 t 2π 1. Let g(x, y) = (y, x) ompute gds for a circle with radius 1 centered at the origin using the line integral. (Hint: use polar coordinates for your parametrization). (a) Write out f((t)) so that f is a

More information

4. Line Integrals in the Plane

4. Line Integrals in the Plane 4. Line Integrals in the Plane 4A. Plane Vector Fields 4A- a) All vectors in the field are identical; continuously differentiable everywhere. b) The vector at P has its tail at P and head at the origin;

More information

Green s, Divergence, Stokes: Statements and First Applications

Green s, Divergence, Stokes: Statements and First Applications Math 425 Notes 12: Green s, Divergence, tokes: tatements and First Applications The Theorems Theorem 1 (Divergence (planar version)). Let F be a vector field in the plane. Let be a nice region of the plane

More information

Math 212-Lecture 8. The chain rule with one independent variable

Math 212-Lecture 8. The chain rule with one independent variable Math 212-Lecture 8 137: The multivariable chain rule The chain rule with one independent variable w = f(x, y) If the particle is moving along a curve x = x(t), y = y(t), then the values that the particle

More information

10.1 Review of Parametric Equations

10.1 Review of Parametric Equations 10.1 Review of Parametric Equations Recall that often, instead of representing a curve using just x and y (called a Cartesian equation), it is more convenient to define x and y using parametric equations

More information

Calculus and Parametric Equations

Calculus and Parametric Equations Calculus and Parametric Equations MATH 211, Calculus II J. Robert Buchanan Department of Mathematics Spring 2018 Introduction Given a pair a parametric equations x = f (t) y = g(t) for a t b we know how

More information

Contents. 1. Introduction

Contents. 1. Introduction FUNDAMENTAL THEOREM OF THE LOCAL THEORY OF CURVES KAIXIN WANG Abstract. In this expository paper, we present the fundamental theorem of the local theory of curves along with a detailed proof. We first

More information

Vector Calculus, Maths II

Vector Calculus, Maths II Section A Vector Calculus, Maths II REVISION (VECTORS) 1. Position vector of a point P(x, y, z) is given as + y and its magnitude by 2. The scalar components of a vector are its direction ratios, and represent

More information

Figure: Aparametriccurveanditsorientation

Figure: Aparametriccurveanditsorientation Parametric Equations Not all curves are functions. To deal with curves that are not of the form y = f (x) orx = g(y), we use parametric equations. Define both x and y in terms of a parameter t: x = x(t)

More information

16.2 Line Integrals. Lukas Geyer. M273, Fall Montana State University. Lukas Geyer (MSU) 16.2 Line Integrals M273, Fall / 21

16.2 Line Integrals. Lukas Geyer. M273, Fall Montana State University. Lukas Geyer (MSU) 16.2 Line Integrals M273, Fall / 21 16.2 Line Integrals Lukas Geyer Montana State University M273, Fall 211 Lukas Geyer (MSU) 16.2 Line Integrals M273, Fall 211 1 / 21 Scalar Line Integrals Definition f (x) ds = lim { s i } N f (P i ) s

More information

ENGI 4430 Line Integrals; Green s Theorem Page 8.01

ENGI 4430 Line Integrals; Green s Theorem Page 8.01 ENGI 443 Line Integrals; Green s Theorem Page 8. 8. Line Integrals Two applications of line integrals are treated here: the evaluation of work done on a particle as it travels along a curve in the presence

More information

MATH H53 : Final exam

MATH H53 : Final exam MATH H53 : Final exam 11 May, 18 Name: You have 18 minutes to answer the questions. Use of calculators or any electronic items is not permitted. Answer the questions in the space provided. If you run out

More information

Review Sheet for the Final

Review Sheet for the Final Review Sheet for the Final Math 6-4 4 These problems are provided to help you study. The presence of a problem on this handout does not imply that there will be a similar problem on the test. And the absence

More information

3 = arccos. A a and b are parallel, B a and b are perpendicular, C a and b are normalized, or D this is always true.

3 = arccos. A a and b are parallel, B a and b are perpendicular, C a and b are normalized, or D this is always true. Math 210-101 Test #1 Sept. 16 th, 2016 Name: Answer Key Be sure to show your work! 1. (20 points) Vector Basics: Let v = 1, 2,, w = 1, 2, 2, and u = 2, 1, 1. (a) Find the area of a parallelogram spanned

More information

MTH4100 Calculus I. Week 6 (Thomas Calculus Sections 3.5 to 4.2) Rainer Klages. School of Mathematical Sciences Queen Mary, University of London

MTH4100 Calculus I. Week 6 (Thomas Calculus Sections 3.5 to 4.2) Rainer Klages. School of Mathematical Sciences Queen Mary, University of London MTH4100 Calculus I Week 6 (Thomas Calculus Sections 3.5 to 4.2) Rainer Klages School of Mathematical Sciences Queen Mary, University of London Autumn 2008 R. Klages (QMUL) MTH4100 Calculus 1 Week 6 1 /

More information

Green s Theorem, Cauchy s Theorem, Cauchy s Formula

Green s Theorem, Cauchy s Theorem, Cauchy s Formula Math 425 Spring 2003 Green s Theorem, Cauchy s Theorem, Cauchy s Formula These notes supplement the discussion of real line integrals and Green s Theorem presented in.6 of our text, and they discuss applications

More information

Multivariable Calculus Notes. Faraad Armwood. Fall: Chapter 1: Vectors, Dot Product, Cross Product, Planes, Cylindrical & Spherical Coordinates

Multivariable Calculus Notes. Faraad Armwood. Fall: Chapter 1: Vectors, Dot Product, Cross Product, Planes, Cylindrical & Spherical Coordinates Multivariable Calculus Notes Faraad Armwood Fall: 2017 Chapter 1: Vectors, Dot Product, Cross Product, Planes, Cylindrical & Spherical Coordinates Chapter 2: Vector-Valued Functions, Tangent Vectors, Arc

More information

Lecture 11: Arclength and Line Integrals

Lecture 11: Arclength and Line Integrals Lecture 11: Arclength and Line Integrals Rafikul Alam Department of Mathematics IIT Guwahati Parametric curves Definition: A continuous mapping γ : [a, b] R n is called a parametric curve or a parametrized

More information

49. Green s Theorem. The following table will help you plan your calculation accordingly. C is a simple closed loop 0 Use Green s Theorem

49. Green s Theorem. The following table will help you plan your calculation accordingly. C is a simple closed loop 0 Use Green s Theorem 49. Green s Theorem Let F(x, y) = M(x, y), N(x, y) be a vector field in, and suppose is a path that starts and ends at the same point such that it does not cross itself. Such a path is called a simple

More information

im Γ (i) Prove (s) = { x R 3 x γ(s), T(s) = 0 }. (ii) Consider x R 3 and suppose the function s x γ(s) attains a minimum at s 0 J.

im Γ (i) Prove (s) = { x R 3 x γ(s), T(s) = 0 }. (ii) Consider x R 3 and suppose the function s x γ(s) attains a minimum at s 0 J. Exercise 0.1 (Formulae of Serret Frenet and tubular neighborhood of curve). Let J R be an open interval in R and let γ : J R 3 be a C curve in R 3. For any s J, denote by (s) the plane in R 3 that contains

More information

An Investigation of the Four Vertex Theorem and its Converse

An Investigation of the Four Vertex Theorem and its Converse Union College Union Digital Works Honors Theses Student Work 6-2017 An Investigation of the Four Vertex Theorem and its Converse Rebeka Kelmar Union College - Schenectady, NY Follow this and additional

More information

Week 3: Differential Geometry of Curves

Week 3: Differential Geometry of Curves Week 3: Differential Geometry of Curves Introduction We now know how to differentiate and integrate along curves. This week we explore some of the geometrical properties of curves that can be addressed

More information

f dr. (6.1) f(x i, y i, z i ) r i. (6.2) N i=1

f dr. (6.1) f(x i, y i, z i ) r i. (6.2) N i=1 hapter 6 Integrals In this chapter we will look at integrals in more detail. We will look at integrals along a curve, and multi-dimensional integrals in 2 or more dimensions. In physics we use these integrals

More information

MAT 272 Test 1 Review. 1. Let P = (1,1) and Q = (2,3). Find the unit vector u that has the same

MAT 272 Test 1 Review. 1. Let P = (1,1) and Q = (2,3). Find the unit vector u that has the same 11.1 Vectors in the Plane 1. Let P = (1,1) and Q = (2,3). Find the unit vector u that has the same direction as. QP a. u =< 1, 2 > b. u =< 1 5, 2 5 > c. u =< 1, 2 > d. u =< 1 5, 2 5 > 2. If u has magnitude

More information

Mathematics (Course B) Lent Term 2005 Examples Sheet 2

Mathematics (Course B) Lent Term 2005 Examples Sheet 2 N12d Natural Sciences, Part IA Dr M. G. Worster Mathematics (Course B) Lent Term 2005 Examples Sheet 2 Please communicate any errors in this sheet to Dr Worster at M.G.Worster@damtp.cam.ac.uk. Note that

More information

Exam 1 Review SOLUTIONS

Exam 1 Review SOLUTIONS 1. True or False (and give a short reason): Exam 1 Review SOLUTIONS (a) If the parametric curve x = f(t), y = g(t) satisfies g (1) = 0, then it has a horizontal tangent line when t = 1. FALSE: To make

More information

Math 212-Lecture 20. P dx + Qdy = (Q x P y )da. C

Math 212-Lecture 20. P dx + Qdy = (Q x P y )da. C 15. Green s theorem Math 212-Lecture 2 A simple closed curve in plane is one curve, r(t) : t [a, b] such that r(a) = r(b), and there are no other intersections. The positive orientation is counterclockwise.

More information

Parametric Equations and Polar Coordinates

Parametric Equations and Polar Coordinates Parametric Equations and Polar Coordinates Parametrizations of Plane Curves In previous chapters, we have studied curves as the graphs of functions or equations involving the two variables x and y. Another

More information

Math 113 Final Exam Practice

Math 113 Final Exam Practice Math Final Exam Practice The Final Exam is comprehensive. You should refer to prior reviews when studying material in chapters 6, 7, 8, and.-9. This review will cover.0- and chapter 0. This sheet has three

More information

10.1 Curves Defined by Parametric Equation

10.1 Curves Defined by Parametric Equation 10.1 Curves Defined by Parametric Equation 1. Imagine that a particle moves along the curve C shown below. It is impossible to describe C by an equation of the form y = f (x) because C fails the Vertical

More information

PRACTICE PROBLEMS. Please let me know if you find any mistakes in the text so that i can fix them. 1. Mixed partial derivatives.

PRACTICE PROBLEMS. Please let me know if you find any mistakes in the text so that i can fix them. 1. Mixed partial derivatives. PRACTICE PROBLEMS Please let me know if you find any mistakes in the text so that i can fix them. 1.1. Let Show that f is C 1 and yet How is that possible? 1. Mixed partial derivatives f(x, y) = {xy x

More information

Tangent and Normal Vector - (11.5)

Tangent and Normal Vector - (11.5) Tangent and Normal Vector - (.5). Principal Unit Normal Vector Let C be the curve traced out by the vector-valued function rt vector T t r r t t is the unit tangent vector to the curve C. Now define N

More information

Section 17.4 Green s Theorem

Section 17.4 Green s Theorem Section 17.4 Green s Theorem alculating Line Integrals using ouble Integrals In the previous section, we saw an easy way to determine line integrals in the special case when a vector field F is conservative.

More information

The Awesome Averaging Power of Heat. Heat in Geometry

The Awesome Averaging Power of Heat. Heat in Geometry The Awesome Averaging Power of Heat in Geometry exemplified by the curve shortening flow PUMS lecture 17 October 2012 1 The Heat Equation 2 The Curve Shortening Flow 3 Proof of Grayson s Theorem 4 Postscript

More information

Module 16 : Line Integrals, Conservative fields Green's Theorem and applications. Lecture 48 : Green's Theorem [Section 48.

Module 16 : Line Integrals, Conservative fields Green's Theorem and applications. Lecture 48 : Green's Theorem [Section 48. Module 16 : Line Integrals, Conservative fields Green's Theorem and applications Lecture 48 : Green's Theorem [Section 48.1] Objectives In this section you will learn the following : Green's theorem which

More information

Metric spaces and metrizability

Metric spaces and metrizability 1 Motivation Metric spaces and metrizability By this point in the course, this section should not need much in the way of motivation. From the very beginning, we have talked about R n usual and how relatively

More information

Vector Calculus lecture notes

Vector Calculus lecture notes Vector Calculus lecture notes Thomas Baird December 13, 21 Contents 1 Geometry of R 3 2 1.1 Coordinate Systems............................... 2 1.1.1 Distance................................. 3 1.1.2 Surfaces.................................

More information

Vector Calculus Lecture Notes

Vector Calculus Lecture Notes Vector Calculus Lecture Notes by Thomas Baird December 5, 213 Contents 1 Geometry of R 3 2 1.1 Coordinate Systems............................... 2 1.1.1 Distance................................. 4 1.1.2

More information

Mathematics Engineering Calculus III Fall 13 Test #1

Mathematics Engineering Calculus III Fall 13 Test #1 Mathematics 2153-02 Engineering Calculus III Fall 13 Test #1 Instructor: Dr. Alexandra Shlapentokh (1) Which of the following statements is always true? (a) If x = f(t), y = g(t) and f (1) = 0, then dy/dx(1)

More information

t f(u)g (u) g(u)f (u) du,

t f(u)g (u) g(u)f (u) du, Chapter 2 Notation. Recall that F(R 3 ) denotes the set of all differentiable real-valued functions f : R 3 R and V(R 3 ) denotes the set of all differentiable vector fields on R 3. 2.1 7. The problem

More information

APPM 2350, Summer 2018: Exam 1 June 15, 2018

APPM 2350, Summer 2018: Exam 1 June 15, 2018 APPM 2350, Summer 2018: Exam 1 June 15, 2018 Instructions: Please show all of your work and make your methods and reasoning clear. Answers out of the blue with no supporting work will receive no credit

More information

Green s Theorem in the Plane

Green s Theorem in the Plane hapter 6 Green s Theorem in the Plane Introduction Recall the following special case of a general fact proved in the previous chapter. Let be a piecewise 1 plane curve, i.e., a curve in R defined by a

More information

Section Arclength and Curvature. (1) Arclength, (2) Parameterizing Curves by Arclength, (3) Curvature, (4) Osculating and Normal Planes.

Section Arclength and Curvature. (1) Arclength, (2) Parameterizing Curves by Arclength, (3) Curvature, (4) Osculating and Normal Planes. Section 10.3 Arclength and Curvature (1) Arclength, (2) Parameterizing Curves by Arclength, (3) Curvature, (4) Osculating and Normal Planes. MATH 127 (Section 10.3) Arclength and Curvature The University

More information

MAC2313 Final A. (5 pts) 1. How many of the following are necessarily true? i. The vector field F = 2x + 3y, 3x 5y is conservative.

MAC2313 Final A. (5 pts) 1. How many of the following are necessarily true? i. The vector field F = 2x + 3y, 3x 5y is conservative. MAC2313 Final A (5 pts) 1. How many of the following are necessarily true? i. The vector field F = 2x + 3y, 3x 5y is conservative. ii. The vector field F = 5(x 2 + y 2 ) 3/2 x, y is radial. iii. All constant

More information

ACCESS TO SCIENCE, ENGINEERING AND AGRICULTURE: MATHEMATICS 1 MATH00030 SEMESTER / Functions

ACCESS TO SCIENCE, ENGINEERING AND AGRICULTURE: MATHEMATICS 1 MATH00030 SEMESTER / Functions ACCESS TO SCIENCE, ENGINEERING AND AGRICULTURE: MATHEMATICS 1 MATH00030 SEMESTER 1 2017/2018 DR. ANTHONY BROWN 4. Functions 4.1. What is a Function: Domain, Codomain and Rule. In the course so far, we

More information

Arc Length and Surface Area in Parametric Equations

Arc Length and Surface Area in Parametric Equations Arc Length and Surface Area in Parametric Equations MATH 211, Calculus II J. Robert Buchanan Department of Mathematics Spring 2011 Background We have developed definite integral formulas for arc length

More information

Gauss Theorem Egregium, Gauss-Bonnet etc. We know that for a simple closed curve in the plane. kds = 2π.

Gauss Theorem Egregium, Gauss-Bonnet etc. We know that for a simple closed curve in the plane. kds = 2π. Gauss Theorem Egregium, Gauss-Bonnet etc. We know that for a simple closed curve in the plane kds = 2π. Now we want to consider a simple closed curve C in a surface S R 3. We suppose C is the boundary

More information

Lecture 13 - Wednesday April 29th

Lecture 13 - Wednesday April 29th Lecture 13 - Wednesday April 29th jacques@ucsdedu Key words: Systems of equations, Implicit differentiation Know how to do implicit differentiation, how to use implicit and inverse function theorems 131

More information

Final Exam Math 317 April 18th, 2015

Final Exam Math 317 April 18th, 2015 Math 317 Final Exam April 18th, 2015 Final Exam Math 317 April 18th, 2015 Last Name: First Name: Student # : Instructor s Name : Instructions: No memory aids allowed. No calculators allowed. No communication

More information

A different parametric curve ( t, t 2 ) traces the same curve, but this time the par-

A different parametric curve ( t, t 2 ) traces the same curve, but this time the par- Parametric Curves: Suppose a particle is moving around in a circle or any curve that fails the vertical line test, then we cannot describe the path of this particle using an equation of the form y fx)

More information

Tangent and Normal Vectors

Tangent and Normal Vectors Tangent and Normal Vectors MATH 311, Calculus III J. Robert Buchanan Department of Mathematics Fall 2011 Navigation When an observer is traveling along with a moving point, for example the passengers in

More information

Lectures in Discrete Differential Geometry 2 Surfaces

Lectures in Discrete Differential Geometry 2 Surfaces Lectures in Discrete Differential Geometry 2 Surfaces Etienne Vouga February 4, 24 Smooth Surfaces in R 3 In this section we will review some properties of smooth surfaces R 3. We will assume that is parameterized

More information

Mathematical Tripos Part IA Lent Term Example Sheet 1. Calculate its tangent vector dr/du at each point and hence find its total length.

Mathematical Tripos Part IA Lent Term Example Sheet 1. Calculate its tangent vector dr/du at each point and hence find its total length. Mathematical Tripos Part IA Lent Term 205 ector Calculus Prof B C Allanach Example Sheet Sketch the curve in the plane given parametrically by r(u) = ( x(u), y(u) ) = ( a cos 3 u, a sin 3 u ) with 0 u

More information

1 The Differential Geometry of Surfaces

1 The Differential Geometry of Surfaces 1 The Differential Geometry of Surfaces Three-dimensional objects are bounded by surfaces. This section reviews some of the basic definitions and concepts relating to the geometry of smooth surfaces. 1.1

More information

Problem Set 6 Math 213, Fall 2016

Problem Set 6 Math 213, Fall 2016 Problem Set 6 Math 213, Fall 216 Directions: Name: Show all your work. You are welcome and encouraged to use Mathematica, or similar software, to check your answers and aid in your understanding of the

More information

MAT 211 Final Exam. Spring Jennings. Show your work!

MAT 211 Final Exam. Spring Jennings. Show your work! MAT 211 Final Exam. pring 215. Jennings. how your work! Hessian D = f xx f yy (f xy ) 2 (for optimization). Polar coordinates x = r cos(θ), y = r sin(θ), da = r dr dθ. ylindrical coordinates x = r cos(θ),

More information

Lecture 6, September 1, 2017

Lecture 6, September 1, 2017 Engineering Mathematics Fall 07 Lecture 6, September, 07 Escape Velocity Suppose we have a planet (or any large near to spherical heavenly body) of radius R and acceleration of gravity at the surface of

More information

THEODORE VORONOV DIFFERENTIABLE MANIFOLDS. Fall Last updated: November 26, (Under construction.)

THEODORE VORONOV DIFFERENTIABLE MANIFOLDS. Fall Last updated: November 26, (Under construction.) 4 Vector fields Last updated: November 26, 2009. (Under construction.) 4.1 Tangent vectors as derivations After we have introduced topological notions, we can come back to analysis on manifolds. Let M

More information

Lecture 5 - Fundamental Theorem for Line Integrals and Green s Theorem

Lecture 5 - Fundamental Theorem for Line Integrals and Green s Theorem Lecture 5 - Fundamental Theorem for Line Integrals and Green s Theorem Math 392, section C September 14, 2016 392, section C Lect 5 September 14, 2016 1 / 22 Last Time: Fundamental Theorem for Line Integrals:

More information

Properties of surfaces II: Second moment of area

Properties of surfaces II: Second moment of area Properties of surfaces II: Second moment of area Just as we have discussing first moment of an area and its relation with problems in mechanics, we will now describe second moment and product of area of

More information

Maxima and Minima. (a, b) of R if

Maxima and Minima. (a, b) of R if Maxima and Minima Definition Let R be any region on the xy-plane, a function f (x, y) attains its absolute or global, maximum value M on R at the point (a, b) of R if (i) f (x, y) M for all points (x,

More information

ẋ = f(x, y), ẏ = g(x, y), (x, y) D, can only have periodic solutions if (f,g) changes sign in D or if (f,g)=0in D.

ẋ = f(x, y), ẏ = g(x, y), (x, y) D, can only have periodic solutions if (f,g) changes sign in D or if (f,g)=0in D. 4 Periodic Solutions We have shown that in the case of an autonomous equation the periodic solutions correspond with closed orbits in phase-space. Autonomous two-dimensional systems with phase-space R

More information

MATH 2730: Multivariable Calculus. Fall 2018 C. Caruvana

MATH 2730: Multivariable Calculus. Fall 2018 C. Caruvana MATH 273: Multivariable Calculus Fall 218 C. Caruvana Contents 1 Vectors 1 1.1 Vectors in the Plane.................................... 1 1.1.1 Vector Addition.................................. 3 1.1.2

More information

Parametric Curves. (Com S 477/577 Notes) Yan-Bin Jia. Oct 3, 2017

Parametric Curves. (Com S 477/577 Notes) Yan-Bin Jia. Oct 3, 2017 Parametric Curves (Com S 477/577 Notes) Yan-Bin Jia Oct 3, 2017 1 Introduction A curve in R 2 (or R 3 ) is a differentiable function α : [a,b] R 2 (or R 3 ). The initial point is α[a] and the final point

More information

MATH 32A: MIDTERM 2 REVIEW. sin 2 u du z(t) = sin 2 t + cos 2 2

MATH 32A: MIDTERM 2 REVIEW. sin 2 u du z(t) = sin 2 t + cos 2 2 MATH 3A: MIDTERM REVIEW JOE HUGHES 1. Curvature 1. Consider the curve r(t) = x(t), y(t), z(t), where x(t) = t Find the curvature κ(t). 0 cos(u) sin(u) du y(t) = Solution: The formula for curvature is t

More information

Practice problems for Exam 1. a b = (2) 2 + (4) 2 + ( 3) 2 = 29

Practice problems for Exam 1. a b = (2) 2 + (4) 2 + ( 3) 2 = 29 Practice problems for Exam.. Given a = and b =. Find the area of the parallelogram with adjacent sides a and b. A = a b a ı j k b = = ı j + k = ı + 4 j 3 k Thus, A = 9. a b = () + (4) + ( 3)

More information

Green s Theorem. MATH 311, Calculus III. J. Robert Buchanan. Fall Department of Mathematics. J. Robert Buchanan Green s Theorem

Green s Theorem. MATH 311, Calculus III. J. Robert Buchanan. Fall Department of Mathematics. J. Robert Buchanan Green s Theorem Green s Theorem MATH 311, alculus III J. obert Buchanan Department of Mathematics Fall 2011 Main Idea Main idea: the line integral around a positively oriented, simple closed curve is related to a double

More information

Math 323 Exam 1 Practice Problem Solutions

Math 323 Exam 1 Practice Problem Solutions Math Exam Practice Problem Solutions. For each of the following curves, first find an equation in x and y whose graph contains the points on the curve. Then sketch the graph of C, indicating its orientation.

More information

WORKSHEET #13 MATH 1260 FALL 2014

WORKSHEET #13 MATH 1260 FALL 2014 WORKSHEET #3 MATH 26 FALL 24 NOT DUE. Short answer: (a) Find the equation of the tangent plane to z = x 2 + y 2 at the point,, 2. z x (, ) = 2x = 2, z y (, ) = 2y = 2. So then the tangent plane equation

More information

Math 11 Fall 2007 Practice Problem Solutions

Math 11 Fall 2007 Practice Problem Solutions Math 11 Fall 27 Practice Problem olutions Here are some problems on the material we covered since the second midterm. This collection of problems is not intended to mimic the final in length, content,

More information

n4 + 1 n 4 1 ] [5] (b) Find the interval of convergence of the following series 1

n4 + 1 n 4 1 ] [5] (b) Find the interval of convergence of the following series 1 ode No: R05010102 Set No. 1 I B.Tech Supplimentary Examinations, February 2008 MATHEMATIS-I ( ommon to ivil Engineering, Electrical & Electronic Engineering, Mechanical Engineering, Electronics & ommunication

More information

Contents. MATH 32B-2 (18W) (L) G. Liu / (TA) A. Zhou Calculus of Several Variables. 1 Multiple Integrals 3. 2 Vector Fields 9

Contents. MATH 32B-2 (18W) (L) G. Liu / (TA) A. Zhou Calculus of Several Variables. 1 Multiple Integrals 3. 2 Vector Fields 9 MATH 32B-2 (8W) (L) G. Liu / (TA) A. Zhou Calculus of Several Variables Contents Multiple Integrals 3 2 Vector Fields 9 3 Line and Surface Integrals 5 4 The Classical Integral Theorems 9 MATH 32B-2 (8W)

More information

arxiv: v1 [math.dg] 11 Nov 2007

arxiv: v1 [math.dg] 11 Nov 2007 Length of parallel curves arxiv:711.167v1 [math.dg] 11 Nov 27 E. Macías-Virgós Abstract We prove that the length difference between a closed periodic curve and its parallel curve at a sufficiently small

More information

Introduction to Algebraic and Geometric Topology Week 14

Introduction to Algebraic and Geometric Topology Week 14 Introduction to Algebraic and Geometric Topology Week 14 Domingo Toledo University of Utah Fall 2016 Computations in coordinates I Recall smooth surface S = {f (x, y, z) =0} R 3, I rf 6= 0 on S, I Chart

More information

Lecture Wise Questions from 23 to 45 By Virtualians.pk. Q105. What is the impact of double integration in finding out the area and volume of Regions?

Lecture Wise Questions from 23 to 45 By Virtualians.pk. Q105. What is the impact of double integration in finding out the area and volume of Regions? Lecture Wise Questions from 23 to 45 By Virtualians.pk Q105. What is the impact of double integration in finding out the area and volume of Regions? Ans: It has very important contribution in finding the

More information

Affine invariant Fourier descriptors

Affine invariant Fourier descriptors Affine invariant Fourier descriptors Sought: a generalization of the previously introduced similarityinvariant Fourier descriptors H. Burkhardt, Institut für Informatik, Universität Freiburg ME-II, Kap.

More information