Figure: Aparametriccurveanditsorientation

Save this PDF as:
 WORD  PNG  TXT  JPG

Size: px
Start display at page:

Download "Figure: Aparametriccurveanditsorientation"

Transcription

1 Parametric Equations Not all curves are functions. To deal with curves that are not of the form y = f (x) orx = g(y), we use parametric equations. Define both x and y in terms of a parameter t: x = x(t) y = y(t) It is typical to reuse x and y as their function names. Each value of t (time) givesapoint(x(t), y(t)) (position). Ranging over all possible values of t gives a curve, a parametric curve. Figure: Aparametriccurveanditsorientation As t increases, the curve gets an orientation. Math 267 (University of Calgary) Fall 2015, Winter / 12

2 Example Sketch the parametric curve with equations Describe the orientation of the curve. x = t 2 + t y =2t 1 1< t < 1 Solution: Method 1 Make a table of values. Plot and trace the movement of the point. t x y /2-1/ Figure: Aparametriccurveanditsorientation Math 267 (University of Calgary) Fall 2015, Winter / 12

3 Solution: Method 2 Eliminate the parameter t. Start with y =2t 1, write t = y Substitute into x = t 2 + t: y +1 2 y +1 x = = 1 4 y 2 + y The curve is a parabola that opens right. Since y increases as t, thepointmovesinthedirectionofincreasingvalueofy. Math 267 (University of Calgary) Fall 2015, Winter / 12

4 Example Sketch and describe x =5sin(3t) y =5cos(3t) 0 apple t apple 2. Solution: Eliminate t. Instead of solving for t, weuse sin 2 +cos 2 =1 Using =3t: sin(3t) = x 5 and cos (3t) = y x 2 y 2 5 =) + =1 5 5 Multiply by 25: x 2 + y 2 =25. The curve is the circle centered at the origin with radius 5. As t ranges from 0 to 2, wetravelclockwisearoundthecircleexactlythreetimes. Figure: Aparametriccurvetracingthesamecircleclockwisethreetimes Math 267 (University of Calgary) Fall 2015, Winter / 12

5 Example Let a be a positive constant. The parametric equations represents an astroid. Eliminating t: x = a cos 3 t y = a sin 3 t x 2/3 + y 2/3 = a 2/3. Figure: Aplotofanastroid(a =1)withMaple18 The astroid can be viewed also as an example of a hypocycloid, acurvetracedoutbyafixedpointona smaller circle rolling on the inside of a bigger circle. See, for example, for a demonstration. Math 267 (University of Calgary) Fall 2015, Winter / 12

6 Example Let a be a positive constant. The parametric equations x = a(t sin t) y = a(1 cos t) represents a cycloid. Figure: Aplotofacycloid(a =1)withMaple18 It is the curve traced out by a fixed point on a smaller rolling on the horizontal axis. See, for example, for a demonstration. Math 267 (University of Calgary) Fall 2015, Winter / 12

7 Let s trace the cycloid Let C be a circle of radius a. Place the centre of C at (0, a) andletp be the point on C which initially coincides with the origin. Let C roll along the positive x-axis, and we trace the movement of the point P. Figure: Finding x(t) andy(t) forthepointp that traces a cycloid After the circle has rotated through an angle of t radians, the arc from P to the point of contact of C with the x-axis has length s = at. C has moved a horizontal distance of at. The horizontal distance between P and the centre is a sin t. So, x(t) =at a sin t = a(t sin t). The vertical distance between P and the centre is a cos t. So, y(t) =a a cos t = a(1 cos t). Math 267 (University of Calgary) Fall 2015, Winter / 12

8 Further examples/exercises Plot su cient number of points and trace the curve. 1 x =3+5cost, y =2+5sint 2 x =2+t 2, y =3t + t 2 3 x =cost, y =1+cos 2 t Use WolframAlpha to plot the following parametric curves. Vary the domain to view di erent portions of the curve. 1 x =sin3t, y =cos5t 2 x = 0.5 +cost, y = 0.5tant +sint 3 x = t +sin2t, y = t 2 +cos5t 4 x = t 1+t 3, y = t2 1+t 3 Math 267 (University of Calgary) Fall 2015, Winter / 12

9 Calculus with parametric curves Derivatives: Suppose x = x(t), y = y(t) defineaparametriccurvesuchthaty varies with x in a di erentiable manner. Example By the chain rule, dy dt = dy dx dx dt. If dx dt dy 6=0,then dx = dy/dt dx/dt Find the tangent line to the parametric curve x = t 2, y = t 3 12t at the point (1, 11). Solution: The point (1, 11) occurs at t =1. dy dx = dy/dt dx/dt = 3t2 12 2t =) m = dy = 3t2 12 dx t=1 2t The tangent line has equation y ( 11) = 9 (x 1) 2 t=1 = 9 2. Figure: Tangent line to a parametric curve Math 267 (University of Calgary) Fall 2015, Winter / 12

10 Area with parametric curves Recall: If y = f (x) isanon-negativefunctionontheintervala apple x apple b, thentheareaunderthegraphoff and above the x-axis between x = a and x = b is given by A = Z b a f (x) dx If this function f has a parametric representation as x = x(t), y = y(t), where apple t apple y(t) =f (x(t)) and the above integral is equal to Z b Z Z A = f (x) dx = f (x(t)) x 0 (t) dt = y(t) x 0 (t) dt a,then Example Find the area under one arch of the cycloid x = a(t sin t) y = a(1 cos t). Solution. Thecycloidmeetsthex-axis exactly when y =0,i.e.,cost =1. In particular, one arch is formed on the interval 0 apple t apple 2. So, the area is A = Z 2 0 y(t)x 0 (t) dt = Z 2 Z 2 Z 2 = a 2 (1 cos t) 2 dt = a 2 0 = a 2 Z cost + 1+cos2t 2 0 a(1 cos t)a(1 cos t) dt 0 1 2cost +cos 2 t dt =... =3 a 2 Math 267 (University of Calgary) Fall 2015, Winter / 12 dt

11 Arclength with parametric curves Recall that the length of the curve y = f (x), a apple x apple b is given by where ds = L = Z x=b x=a ds, s q dy 2 (dx) 2 +(dy) 2 = 1+ dx. dx If this function f has a parametric representation as x = x(t), y = y(t), where apple t apple,then dx = x 0 (t) dt and dy = y 0 (t) dt. So, the arclength element ds is s q dx 2 dy 2 q ds = (dx) 2 +(dy) 2 = + dt = (x 0 (t)) 2 +(y 0 (t)) 2 dt dt dt The above integral is equal to A = Z t= t= Z ds = q (x 0 (t)) 2 +(y 0 (t)) 2 dt. Note that a polar curve r = g( ), apple apple,definestheparametriccurve x = r cos = g( )cos, y = r sin = g( )sin. One can prove that the arclength element can be simplified into s dx 2 s dy 2 dr 2 ds = + d = r 2 + d. d d d Math 267 (University of Calgary) Fall 2015, Winter / 12

12 Further Examples/Exercises 1 Find the length of one arch of a cycloid. 2 Find the area bounded inside the astroid x = a cos 3 t, y = a sin 3 t. 3 Find the total length of the astroid. 4 Find the length of the polar curve r =2cos. 5 Find the length of the polar curve r =, 0 apple apple 2. 6 Prove the arclength formula for a polar curve: s dr 2 ds = r 2 + d. d 7 Find a formula to compute the area of the surface obtained by revolving a polar curve about the polar axis. 8 Let 0 < b < a. Showthatthetotallengthoftheellipse x 2 a + y 2 2 b =1 2 is given by Z /2 p L =4a 1 e2 sin 2 d, 0 where e is the eccentricity of the ellipse p a 2 b 2 e =. a Math 267 (University of Calgary) Fall 2015, Winter / 12

Calculus and Parametric Equations

Calculus and Parametric Equations Calculus and Parametric Equations MATH 211, Calculus II J. Robert Buchanan Department of Mathematics Spring 2018 Introduction Given a pair a parametric equations x = f (t) y = g(t) for a t b we know how

More information

9.4 CALCULUS AND PARAMETRIC EQUATIONS

9.4 CALCULUS AND PARAMETRIC EQUATIONS 9.4 Calculus with Parametric Equations Contemporary Calculus 1 9.4 CALCULUS AND PARAMETRIC EQUATIONS The previous section discussed parametric equations, their graphs, and some of their uses for visualizing

More information

Exam 3. MA 114 Exam 3 Fall Multiple Choice Questions. 1. Find the average value of the function f (x) = 2 sin x sin 2x on 0 x π. C. 0 D. 4 E.

Exam 3. MA 114 Exam 3 Fall Multiple Choice Questions. 1. Find the average value of the function f (x) = 2 sin x sin 2x on 0 x π. C. 0 D. 4 E. Exam 3 Multiple Choice Questions 1. Find the average value of the function f (x) = sin x sin x on x π. A. π 5 π C. E. 5. Find the volume of the solid S whose base is the disk bounded by the circle x +

More information

Definition (Polar Coordinates) Figure: The polar coordinates (r, )ofapointp

Definition (Polar Coordinates) Figure: The polar coordinates (r, )ofapointp Polar Coordinates Acoordinatesystemusesapairofnumberstorepresentapointontheplane. We are familiar with the Cartesian or rectangular coordinate system, (x, y). It is not always the most convenient system

More information

ENGI Parametric Vector Functions Page 5-01

ENGI Parametric Vector Functions Page 5-01 ENGI 3425 5. Parametric Vector Functions Page 5-01 5. Parametric Vector Functions Contents: 5.1 Arc Length (Cartesian parametric and plane polar) 5.2 Surfaces of Revolution 5.3 Area under a Parametric

More information

Mathematics Engineering Calculus III Fall 13 Test #1

Mathematics Engineering Calculus III Fall 13 Test #1 Mathematics 2153-02 Engineering Calculus III Fall 13 Test #1 Instructor: Dr. Alexandra Shlapentokh (1) Which of the following statements is always true? (a) If x = f(t), y = g(t) and f (1) = 0, then dy/dx(1)

More information

Math 106 Answers to Exam 3a Fall 2015

Math 106 Answers to Exam 3a Fall 2015 Math 6 Answers to Exam 3a Fall 5.. Consider the curve given parametrically by x(t) = cos(t), y(t) = (t 3 ) 3, for t from π to π. (a) (6 points) Find all the points (x, y) where the graph has either a vertical

More information

Parametric Curves. Calculus 2 Lia Vas

Parametric Curves. Calculus 2 Lia Vas Calculus Lia Vas Parametric Curves In the past, we mostly worked with curves in the form y = f(x). However, this format does not encompass all the curves one encounters in applications. For example, consider

More information

PARAMETRIC EQUATIONS AND POLAR COORDINATES

PARAMETRIC EQUATIONS AND POLAR COORDINATES 10 PARAMETRIC EQUATIONS AND POLAR COORDINATES PARAMETRIC EQUATIONS & POLAR COORDINATES We have seen how to represent curves by parametric equations. Now, we apply the methods of calculus to these parametric

More information

5.2 LENGTHS OF CURVES & AREAS OF SURFACES OF REVOLUTION

5.2 LENGTHS OF CURVES & AREAS OF SURFACES OF REVOLUTION 5.2 Arc Length & Surface Area Contemporary Calculus 1 5.2 LENGTHS OF CURVES & AREAS OF SURFACES OF REVOLUTION This section introduces two additional geometric applications of integration: finding the length

More information

MTH4100 Calculus I. Week 6 (Thomas Calculus Sections 3.5 to 4.2) Rainer Klages. School of Mathematical Sciences Queen Mary, University of London

MTH4100 Calculus I. Week 6 (Thomas Calculus Sections 3.5 to 4.2) Rainer Klages. School of Mathematical Sciences Queen Mary, University of London MTH4100 Calculus I Week 6 (Thomas Calculus Sections 3.5 to 4.2) Rainer Klages School of Mathematical Sciences Queen Mary, University of London Autumn 2008 R. Klages (QMUL) MTH4100 Calculus 1 Week 6 1 /

More information

10.1 Review of Parametric Equations

10.1 Review of Parametric Equations 10.1 Review of Parametric Equations Recall that often, instead of representing a curve using just x and y (called a Cartesian equation), it is more convenient to define x and y using parametric equations

More information

Speed and Velocity: Recall from Calc 1: If f (t) gives the position of an object at time t, then. velocity at time t = f (t) speed at time t = f (t)

Speed and Velocity: Recall from Calc 1: If f (t) gives the position of an object at time t, then. velocity at time t = f (t) speed at time t = f (t) Speed and Velocity: Recall from Calc 1: If f (t) gives the position of an object at time t, then velocity at time t = f (t) speed at time t = f (t) Math 36-Multi (Sklensky) In-Class Work January 8, 013

More information

Department of Mathematical and Statistical Sciences University of Alberta

Department of Mathematical and Statistical Sciences University of Alberta MATH 4 (R) Winter 8 Intermediate Calculus I Solutions to Problem Set #5 Completion Date: Frida Februar 5, 8 Department of Mathematical and Statistical Sciences Universit of Alberta Question. [Sec.., #

More information

A different parametric curve ( t, t 2 ) traces the same curve, but this time the par-

A different parametric curve ( t, t 2 ) traces the same curve, but this time the par- Parametric Curves: Suppose a particle is moving around in a circle or any curve that fails the vertical line test, then we cannot describe the path of this particle using an equation of the form y fx)

More information

Section 8.4 Plane Curves and Parametric Equations

Section 8.4 Plane Curves and Parametric Equations Section 8.4 Plane Curves and Parametric Equations Suppose that x and y are both given as functions of a third variable t (called a parameter) by the equations x = f(t), y = g(t) (called parametric equations).

More information

AP Calculus (BC) Chapter 10 Test No Calculator Section. Name: Date: Period:

AP Calculus (BC) Chapter 10 Test No Calculator Section. Name: Date: Period: AP Calculus (BC) Chapter 10 Test No Calculator Section Name: Date: Period: Part I. Multiple-Choice Questions (5 points each; please circle the correct answer.) 1. The graph in the xy-plane represented

More information

Chapter 10 Conics, Parametric Equations, and Polar Coordinates Conics and Calculus

Chapter 10 Conics, Parametric Equations, and Polar Coordinates Conics and Calculus Chapter 10 Conics, Parametric Equations, and Polar Coordinates 10.1 Conics and Calculus 1. Parabola A parabola is the set of all points x, y ( ) that are equidistant from a fixed line and a fixed point

More information

Practice Problems for Exam 3 (Solutions) 1. Let F(x, y) = xyi+(y 3x)j, and let C be the curve r(t) = ti+(3t t 2 )j for 0 t 2. Compute F dr.

Practice Problems for Exam 3 (Solutions) 1. Let F(x, y) = xyi+(y 3x)j, and let C be the curve r(t) = ti+(3t t 2 )j for 0 t 2. Compute F dr. 1. Let F(x, y) xyi+(y 3x)j, and let be the curve r(t) ti+(3t t 2 )j for t 2. ompute F dr. Solution. F dr b a 2 2 F(r(t)) r (t) dt t(3t t 2 ), 3t t 2 3t 1, 3 2t dt t 3 dt 1 2 4 t4 4. 2. Evaluate the line

More information

10.3 Parametric Equations. 1 Math 1432 Dr. Almus

10.3 Parametric Equations. 1 Math 1432 Dr. Almus Math 1432 DAY 39 Dr. Melahat Almus almus@math.uh.edu OFFICE HOURS (212 PGH) MW12-1:30pm, F:12-1pm. If you email me, please mention the course (1432) in the subject line. Check your CASA account for Quiz

More information

a k 0, then k + 1 = 2 lim 1 + 1

a k 0, then k + 1 = 2 lim 1 + 1 Math 7 - Midterm - Form A - Page From the desk of C. Davis Buenger. https://people.math.osu.edu/buenger.8/ Problem a) [3 pts] If lim a k = then a k converges. False: The divergence test states that if

More information

Parametric Curves You Should Know

Parametric Curves You Should Know Parametric Curves You Should Know Straight Lines Let a and c be constants which are not both zero. Then the parametric equations determining the straight line passing through (b d) with slope c/a (i.e.

More information

SCORE. Exam 3. MA 114 Exam 3 Fall 2016

SCORE. Exam 3. MA 114 Exam 3 Fall 2016 Exam 3 Name: Section and/or TA: Do not remove this answer page you will return the whole exam. You will be allowed two hours to complete this test. No books or notes may be used. You may use a graphing

More information

Math 190 (Calculus II) Final Review

Math 190 (Calculus II) Final Review Math 90 (Calculus II) Final Review. Sketch the region enclosed by the given curves and find the area of the region. a. y = 7 x, y = x + 4 b. y = cos ( πx ), y = x. Use the specified method to find the

More information

Exam 1 Review SOLUTIONS

Exam 1 Review SOLUTIONS 1. True or False (and give a short reason): Exam 1 Review SOLUTIONS (a) If the parametric curve x = f(t), y = g(t) satisfies g (1) = 0, then it has a horizontal tangent line when t = 1. FALSE: To make

More information

Arc Length and Surface Area in Parametric Equations

Arc Length and Surface Area in Parametric Equations Arc Length and Surface Area in Parametric Equations MATH 211, Calculus II J. Robert Buchanan Department of Mathematics Spring 2011 Background We have developed definite integral formulas for arc length

More information

10.1 Curves Defined by Parametric Equation

10.1 Curves Defined by Parametric Equation 10.1 Curves Defined by Parametric Equation 1. Imagine that a particle moves along the curve C shown below. It is impossible to describe C by an equation of the form y = f (x) because C fails the Vertical

More information

JUST THE MATHS UNIT NUMBER INTEGRATION APPLICATIONS 10 (Second moments of an arc) A.J.Hobson

JUST THE MATHS UNIT NUMBER INTEGRATION APPLICATIONS 10 (Second moments of an arc) A.J.Hobson JUST THE MATHS UNIT NUMBER 13.1 INTEGRATION APPLICATIONS 1 (Second moments of an arc) by A.J.Hobson 13.1.1 Introduction 13.1. The second moment of an arc about the y-axis 13.1.3 The second moment of an

More information

MATH 317 Fall 2016 Assignment 5

MATH 317 Fall 2016 Assignment 5 MATH 37 Fall 26 Assignment 5 6.3, 6.4. ( 6.3) etermine whether F(x, y) e x sin y îı + e x cos y ĵj is a conservative vector field. If it is, find a function f such that F f. enote F (P, Q). We have Q x

More information

D. Correct! This is the correct answer. It is found by dy/dx = (dy/dt)/(dx/dt).

D. Correct! This is the correct answer. It is found by dy/dx = (dy/dt)/(dx/dt). Calculus II - Problem Solving Drill 4: Calculus for Parametric Equations Question No. of 0 Instructions: () Read the problem and answer choices carefully () Work the problems on paper as. Find dy/dx where

More information

INTEGRAL CALCULUS DIFFERENTIATION UNDER THE INTEGRAL SIGN: Consider an integral involving one parameter and denote it as

INTEGRAL CALCULUS DIFFERENTIATION UNDER THE INTEGRAL SIGN: Consider an integral involving one parameter and denote it as INTEGRAL CALCULUS DIFFERENTIATION UNDER THE INTEGRAL SIGN: Consider an integral involving one parameter and denote it as, where a and b may be constants or functions of. To find the derivative of when

More information

Math 107. Rumbos Fall Solutions to Review Problems for Exam 3

Math 107. Rumbos Fall Solutions to Review Problems for Exam 3 Math 17. umbos Fall 29 1 Solutions to eview Problems for Eam 3 1. Consider a wheel of radius a which is rolling on the ais in the plane. Suppose that the center of the wheel moves in the positive direction

More information

Math 113 Final Exam Practice

Math 113 Final Exam Practice Math Final Exam Practice The Final Exam is comprehensive. You should refer to prior reviews when studying material in chapters 6, 7, 8, and.-9. This review will cover.0- and chapter 0. This sheet has three

More information

SCORE. Exam 3. MA 114 Exam 3 Fall 2016

SCORE. Exam 3. MA 114 Exam 3 Fall 2016 Exam 3 Name: Section and/or TA: Do not remove this answer page you will return the whole exam. You will be allowed two hours to complete this test. No books or notes may be used. You may use a graphing

More information

Open the TI-Nspire file: Astroid. Navigate to page 1.2 of the file. Drag point A on the rim of the bicycle wheel and observe point P on the rim.

Open the TI-Nspire file: Astroid. Navigate to page 1.2 of the file. Drag point A on the rim of the bicycle wheel and observe point P on the rim. Astroid Student Activity 7 9 TI-Nspire Investigation Student min Introduction How is the motion of a ladder sliding down a wall related to the motion of the valve on a bicycle wheel or to a popular amusement

More information

MTHE 227 Problem Set 2 Solutions

MTHE 227 Problem Set 2 Solutions MTHE 7 Problem Set Solutions 1 (Great Circles). The intersection of a sphere with a plane passing through its center is called a great circle. Let Γ be the great circle that is the intersection of the

More information

Exam 3 Solutions. Multiple Choice Questions

Exam 3 Solutions. Multiple Choice Questions MA 4 Exam 3 Solutions Fall 26 Exam 3 Solutions Multiple Choice Questions. The average value of the function f (x) = x + sin(x) on the interval [, 2π] is: A. 2π 2 2π B. π 2π 2 + 2π 4π 2 2π 4π 2 + 2π 2.

More information

Topic 2-2: Derivatives of Vector Functions. Textbook: Section 13.2, 13.4

Topic 2-2: Derivatives of Vector Functions. Textbook: Section 13.2, 13.4 Topic 2-2: Derivatives of Vector Functions Textbook: Section 13.2, 13.4 Warm-Up: Parametrization of Circles Each of the following vector functions describe the position of an object traveling around the

More information

AP Calculus BC - Problem Solving Drill 19: Parametric Functions and Polar Functions

AP Calculus BC - Problem Solving Drill 19: Parametric Functions and Polar Functions AP Calculus BC - Problem Solving Drill 19: Parametric Functions and Polar Functions Question No. 1 of 10 Instructions: (1) Read the problem and answer choices carefully () Work the problems on paper as

More information

MATH 162. Midterm 2 ANSWERS November 18, 2005

MATH 162. Midterm 2 ANSWERS November 18, 2005 MATH 62 Midterm 2 ANSWERS November 8, 2005. (0 points) Does the following integral converge or diverge? To get full credit, you must justify your answer. 3x 2 x 3 + 4x 2 + 2x + 4 dx You may not be able

More information

HOMEWORK 2 SOLUTIONS

HOMEWORK 2 SOLUTIONS HOMEWORK SOLUTIONS MA11: ADVANCED CALCULUS, HILARY 17 (1) Find parametric equations for the tangent line of the graph of r(t) = (t, t + 1, /t) when t = 1. Solution: A point on this line is r(1) = (1,,

More information

Title Intuition Formalities Examples 3-D. Curvature. Nicholas Dibble-Kahn. University of California, Santa Barbara. May 19, 2014

Title Intuition Formalities Examples 3-D. Curvature. Nicholas Dibble-Kahn. University of California, Santa Barbara. May 19, 2014 Curvature Nicholas Dibble-Kahn University of California, Santa Barbara May 19, 2014 When drawing two circles of different radii it certainly seems like the smaller one is curving more rapidly than the

More information

Name: SOLUTIONS Date: 11/9/2017. M20550 Calculus III Tutorial Worksheet 8

Name: SOLUTIONS Date: 11/9/2017. M20550 Calculus III Tutorial Worksheet 8 Name: SOLUTIONS Date: /9/7 M55 alculus III Tutorial Worksheet 8. ompute R da where R is the region bounded by x + xy + y 8 using the change of variables given by x u + v and y v. Solution: We know R is

More information

Section Arclength and Curvature. (1) Arclength, (2) Parameterizing Curves by Arclength, (3) Curvature, (4) Osculating and Normal Planes.

Section Arclength and Curvature. (1) Arclength, (2) Parameterizing Curves by Arclength, (3) Curvature, (4) Osculating and Normal Planes. Section 10.3 Arclength and Curvature (1) Arclength, (2) Parameterizing Curves by Arclength, (3) Curvature, (4) Osculating and Normal Planes. MATH 127 (Section 10.3) Arclength and Curvature The University

More information

Volumes of Solids of Revolution Lecture #6 a

Volumes of Solids of Revolution Lecture #6 a Volumes of Solids of Revolution Lecture #6 a Sphereoid Parabaloid Hyperboloid Whateveroid Volumes Calculating 3-D Space an Object Occupies Take a cross-sectional slice. Compute the area of the slice. Multiply

More information

Power Series. x n. Using the ratio test. n n + 1. x n+1 n 3. = lim x. lim n + 1. = 1 < x < 1. Then r = 1 and I = ( 1, 1) ( 1) n 1 x n.

Power Series. x n. Using the ratio test. n n + 1. x n+1 n 3. = lim x. lim n + 1. = 1 < x < 1. Then r = 1 and I = ( 1, 1) ( 1) n 1 x n. .8 Power Series. n x n x n n Using the ratio test. lim x n+ n n + lim x n n + so r and I (, ). By the ratio test. n Then r and I (, ). n x < ( ) n x n < x < n lim x n+ n (n + ) x n lim xn n (n + ) x

More information

Fall Exam 4: 8&11-11/14/13 - Write all responses on separate paper. Show your work for credit.

Fall Exam 4: 8&11-11/14/13 - Write all responses on separate paper. Show your work for credit. Math Fall - Exam : 8& - // - Write all responses on separate paper. Show your work for credit. Name (Print):. Convert the rectangular equation to polar coordinates and solve for r. (a) x + (y ) = 6 Solution:

More information

Math 226 Calculus Spring 2016 Exam 2V1

Math 226 Calculus Spring 2016 Exam 2V1 Math 6 Calculus Spring 6 Exam V () (35 Points) Evaluate the following integrals. (a) (7 Points) tan 5 (x) sec 3 (x) dx (b) (8 Points) cos 4 (x) dx Math 6 Calculus Spring 6 Exam V () (Continued) Evaluate

More information

MATH 280 Multivariate Calculus Fall Integrating a vector field over a curve

MATH 280 Multivariate Calculus Fall Integrating a vector field over a curve MATH 280 Multivariate alculus Fall 2012 Definition Integrating a vector field over a curve We are given a vector field F and an oriented curve in the domain of F as shown in the figure on the left below.

More information

FINAL EXAM CALCULUS 2. Name PRACTICE EXAM SOLUTIONS

FINAL EXAM CALCULUS 2. Name PRACTICE EXAM SOLUTIONS FINAL EXAM CALCULUS MATH 00 FALL 08 Name PRACTICE EXAM SOLUTIONS Please answer all of the questions, and show your work. You must explain your answers to get credit. You will be graded on the clarity of

More information

Tangent and Normal Vector - (11.5)

Tangent and Normal Vector - (11.5) Tangent and Normal Vector - (.5). Principal Unit Normal Vector Let C be the curve traced out by the vector-valued function rt vector T t r r t t is the unit tangent vector to the curve C. Now define N

More information

Parametric Equations and Polar Coordinates

Parametric Equations and Polar Coordinates Parametric Equations and Polar Coordinates Parametrizations of Plane Curves In previous chapters, we have studied curves as the graphs of functions or equations involving the two variables x and y. Another

More information

Math 323 Exam 1 Practice Problem Solutions

Math 323 Exam 1 Practice Problem Solutions Math Exam Practice Problem Solutions. For each of the following curves, first find an equation in x and y whose graph contains the points on the curve. Then sketch the graph of C, indicating its orientation.

More information

Lecture 7 - Separable Equations

Lecture 7 - Separable Equations Lecture 7 - Separable Equations Separable equations is a very special type of differential equations where you can separate the terms involving only y on one side of the equation and terms involving only

More information

DIFFERENTIATION RULES

DIFFERENTIATION RULES 3 DIFFERENTIATION RULES DIFFERENTIATION RULES Before starting this section, you might need to review the trigonometric functions. DIFFERENTIATION RULES In particular, it is important to remember that,

More information

n and C and D be positive constants so that nn 1

n and C and D be positive constants so that nn 1 Math Activity 0 (Due by end of class August 6). The graph of the equation y is called an astroid. a) Find the length of this curve. {Hint: One-fourth of the curve is given by the graph of y for 0.} b)

More information

Worksheet 1.7: Introduction to Vector Functions - Position

Worksheet 1.7: Introduction to Vector Functions - Position Boise State Math 275 (Ultman) Worksheet 1.7: Introduction to Vector Functions - Position From the Toolbox (what you need from previous classes): Cartesian Coordinates: Coordinates of points in general,

More information

MATH 18.01, FALL PROBLEM SET # 8

MATH 18.01, FALL PROBLEM SET # 8 MATH 18.01, FALL 01 - PROBLEM SET # 8 Professor: Jared Speck Due: by 1:45pm on Tuesday 11-7-1 (in the boxes outside of Room -55 during the day; stick it under the door if the room is locked; write your

More information

Topic 5.1: Line Element and Scalar Line Integrals

Topic 5.1: Line Element and Scalar Line Integrals Math 275 Notes Topic 5.1: Line Element and Scalar Line Integrals Textbook Section: 16.2 More Details on Line Elements (vector dr, and scalar ds): http://www.math.oregonstate.edu/bridgebook/book/math/drvec

More information

Ratio Test Recall that every convergent series X a k either

Ratio Test Recall that every convergent series X a k either Ratio Test Recall that every convergent series X a either X converges absolutely a converges, thus so does X a,or X converges conditionally a converges, but X a does not We will loo at two tests (Rato

More information

Parametric Equations, Function Composition and the Chain Rule: A Worksheet

Parametric Equations, Function Composition and the Chain Rule: A Worksheet Parametric Equations, Function Composition and the Chain Rule: A Worksheet Prof.Rebecca Goldin Oct. 8, 003 1 Parametric Equations We have seen that the graph of a function f(x) of one variable consists

More information

Math 212-Lecture 20. P dx + Qdy = (Q x P y )da. C

Math 212-Lecture 20. P dx + Qdy = (Q x P y )da. C 15. Green s theorem Math 212-Lecture 2 A simple closed curve in plane is one curve, r(t) : t [a, b] such that r(a) = r(b), and there are no other intersections. The positive orientation is counterclockwise.

More information

FINAL EXAM CALCULUS 2. Name PRACTICE EXAM

FINAL EXAM CALCULUS 2. Name PRACTICE EXAM FINAL EXAM CALCULUS 2 MATH 2300 FALL 208 Name PRACTICE EXAM Please answer all of the questions, and show your work. You must explain your answers to get credit. You will be graded on the clarity of your

More information

Parametric Functions and Vector Functions (BC Only)

Parametric Functions and Vector Functions (BC Only) Parametric Functions and Vector Functions (BC Only) Parametric Functions Parametric functions are another way of viewing functions. This time, the values of x and y are both dependent on another independent

More information

= cos(cos(tan t)) ( sin(tan t)) d (tan t) = cos(cos(tan t)) ( sin(tan t)) sec 2 t., we get. 4x 3/4 f (t) 4 [ ln(f (t)) ] 3/4 f (t)

= cos(cos(tan t)) ( sin(tan t)) d (tan t) = cos(cos(tan t)) ( sin(tan t)) sec 2 t., we get. 4x 3/4 f (t) 4 [ ln(f (t)) ] 3/4 f (t) Tuesday, January 2 Solutions A review of some important calculus topics 1. Chain Rule: (a) Let h(t) = sin ( cos(tan t) ). Find the derivative with respect to t. Solution. d (h(t)) = d (sin(cos(tan t)))

More information

Plane Curves and Parametric Equations

Plane Curves and Parametric Equations Plane Curves and Parametric Equations MATH 211, Calculus II J. Robert Buchanan Department of Mathematics Spring 2018 Introduction We typically think of a graph as a curve in the xy-plane generated by the

More information

Taylor Series and stationary points

Taylor Series and stationary points Chapter 5 Taylor Series and stationary points 5.1 Taylor Series The surface z = f(x, y) and its derivatives can give a series approximation for f(x, y) about some point (x 0, y 0 ) as illustrated in Figure

More information

3 = arccos. A a and b are parallel, B a and b are perpendicular, C a and b are normalized, or D this is always true.

3 = arccos. A a and b are parallel, B a and b are perpendicular, C a and b are normalized, or D this is always true. Math 210-101 Test #1 Sept. 16 th, 2016 Name: Answer Key Be sure to show your work! 1. (20 points) Vector Basics: Let v = 1, 2,, w = 1, 2, 2, and u = 2, 1, 1. (a) Find the area of a parallelogram spanned

More information

Taylor Series and Maclaurin Series

Taylor Series and Maclaurin Series Taylor Series and Maclaurin Series Definition (Taylor Series) Suppose the function f is infinitely di erentiable at a. The Taylor series of f about a (or at a or centered at a) isthepowerseries f (n) (a)

More information

VII. Techniques of Integration

VII. Techniques of Integration VII. Techniques of Integration Integration, unlike differentiation, is more of an art-form than a collection of algorithms. Many problems in applied mathematics involve the integration of functions given

More information

Math 234. What you should know on day one. August 28, You should be able to use general principles like. x = cos t, y = sin t, 0 t π.

Math 234. What you should know on day one. August 28, You should be able to use general principles like. x = cos t, y = sin t, 0 t π. Math 234 What you should know on day one August 28, 2001 1 You should be able to use general principles like Length = ds, Area = da, Volume = dv For example the length of the semi circle x = cos t, y =

More information

Lecture 6, September 1, 2017

Lecture 6, September 1, 2017 Engineering Mathematics Fall 07 Lecture 6, September, 07 Escape Velocity Suppose we have a planet (or any large near to spherical heavenly body) of radius R and acceleration of gravity at the surface of

More information

AP Calculus Testbank (Chapter 10) (Mr. Surowski)

AP Calculus Testbank (Chapter 10) (Mr. Surowski) AP Calculus Testbank (Chater 1) (Mr. Surowski) Part I. Multile-Choice Questions 1. The grah in the xy-lane reresented by x = 3 sin t and y = cost is (A) a circle (B) an ellise (C) a hyerbola (D) a arabola

More information

ENGI 4430 Parametric Vector Functions Page dt dt dt

ENGI 4430 Parametric Vector Functions Page dt dt dt ENGI 4430 Parametric Vector Functions Page 2-01 2. Parametric Vector Functions (continued) Any non-zero vector r can be decomposed into its magnitude r and its direction: r rrˆ, where r r 0 Tangent Vector:

More information

Calculus III. George Voutsadakis 1. LSSU Math 251. Lake Superior State University. 1 Mathematics and Computer Science

Calculus III. George Voutsadakis 1. LSSU Math 251. Lake Superior State University. 1 Mathematics and Computer Science Calculus III George Voutsadakis 1 1 Mathematics and Computer Science Lake Superior State University LSSU Math 251 George Voutsadakis (LSSU) Calculus III January 2016 1 / 76 Outline 1 Parametric Equations,

More information

MATH 32A: MIDTERM 2 REVIEW. sin 2 u du z(t) = sin 2 t + cos 2 2

MATH 32A: MIDTERM 2 REVIEW. sin 2 u du z(t) = sin 2 t + cos 2 2 MATH 3A: MIDTERM REVIEW JOE HUGHES 1. Curvature 1. Consider the curve r(t) = x(t), y(t), z(t), where x(t) = t Find the curvature κ(t). 0 cos(u) sin(u) du y(t) = Solution: The formula for curvature is t

More information

Chapter 11 Parametric Equations, Polar Curves, and Conic Sections

Chapter 11 Parametric Equations, Polar Curves, and Conic Sections Chapter 11 Parametric Equations, Polar Curves, and Conic Sections ü 11.1 Parametric Equations Students should read Sections 11.1-11. of Rogawski's Calculus [1] for a detailed discussion of the material

More information

MAC Calculus II Spring Homework #6 Some Solutions.

MAC Calculus II Spring Homework #6 Some Solutions. MAC 2312-15931-Calculus II Spring 23 Homework #6 Some Solutions. 1. Find the centroid of the region bounded by the curves y = 2x 2 and y = 1 2x 2. Solution. It is obvious, by inspection, that the centroid

More information

Math Test #3 Info and Review Exercises

Math Test #3 Info and Review Exercises Math 181 - Test #3 Info and Review Exercises Fall 2018, Prof. Beydler Test Info Date: Wednesday, November 28, 2018 Will cover sections 10.1-10.4, 11.1-11.7. You ll have the entire class to finish the test.

More information

Volume of Solid of Known Cross-Sections

Volume of Solid of Known Cross-Sections Volume of Solid of Known Cross-Sections Problem: To find the volume of a given solid S. What do we know about the solid? Suppose we are told what the cross-sections perpendicular to some axis are. Figure:

More information

Vector Calculus, Maths II

Vector Calculus, Maths II Section A Vector Calculus, Maths II REVISION (VECTORS) 1. Position vector of a point P(x, y, z) is given as + y and its magnitude by 2. The scalar components of a vector are its direction ratios, and represent

More information

Edexcel past paper questions. Core Mathematics 4. Parametric Equations

Edexcel past paper questions. Core Mathematics 4. Parametric Equations Edexcel past paper questions Core Mathematics 4 Parametric Equations Edited by: K V Kumaran Email: kvkumaran@gmail.com C4 Maths Parametric equations Page 1 Co-ordinate Geometry A parametric equation of

More information

GEORGE ANDROULAKIS THE 7 INDETERMINATE FORMS OF LIMITS : usually we use L Hospital s rule. Two important such limits are lim

GEORGE ANDROULAKIS THE 7 INDETERMINATE FORMS OF LIMITS : usually we use L Hospital s rule. Two important such limits are lim MATH 4 (CALCULUS II) IN ORDER TO OBTAIN A PERFECT SCORE IN ANDROULAKIS MATH 4 CLASS YOU NEED TO MEMORIZE THIS HANDOUT AND SOLVE THE ASSIGNED HOMEWORK ON YOUR OWN GEORGE ANDROULAKIS TRIGONOMETRY θ sin(θ)

More information

MATH 124. Midterm 2 Topics

MATH 124. Midterm 2 Topics MATH 124 Midterm 2 Topics Anything you ve learned in class (from lecture and homework) so far is fair game, but here s a list of some main topics since the first midterm that you should be familiar with:

More information

Sections minutes. 5 to 10 problems, similar to homework problems. No calculators, no notes, no books, no phones. No green book needed.

Sections minutes. 5 to 10 problems, similar to homework problems. No calculators, no notes, no books, no phones. No green book needed. MTH 34 Review for Exam 4 ections 16.1-16.8. 5 minutes. 5 to 1 problems, similar to homework problems. No calculators, no notes, no books, no phones. No green book needed. Review for Exam 4 (16.1) Line

More information

Learning Objectives for Math 166

Learning Objectives for Math 166 Learning Objectives for Math 166 Chapter 6 Applications of Definite Integrals Section 6.1: Volumes Using Cross-Sections Draw and label both 2-dimensional perspectives and 3-dimensional sketches of the

More information

MA3D9. Geometry of curves and surfaces. T (s) = κ(s)n(s),

MA3D9. Geometry of curves and surfaces. T (s) = κ(s)n(s), MA3D9. Geometry of 2. Planar curves. Let : I R 2 be a curve parameterised by arc-length. Given s I, let T(s) = (s) be the unit tangent. Let N(s) be the unit normal obtained by rotating T(s) through π/2

More information

CURVATURE AND RADIUS OF CURVATURE

CURVATURE AND RADIUS OF CURVATURE CHAPTER 5 CURVATURE AND RADIUS OF CURVATURE 5.1 Introduction: Curvature is a numerical measure of bending of the curve. At a particular point on the curve, a tangent can be drawn. Let this line makes an

More information

Math 1272 Solutions for Fall 2005 Final Exam

Math 1272 Solutions for Fall 2005 Final Exam Math 7 Solutions for Fall 5 Final Exam ) This fraction appears in Problem 5 of the undated-? exam; a solution can be found in that solution set. (E) ) This integral appears in Problem 6 of the Fall 4 exam;

More information

Chapter 9 Overview: Parametric and Polar Coordinates

Chapter 9 Overview: Parametric and Polar Coordinates Chapter 9 Overview: Parametric and Polar Coordinates As we saw briefly last year, there are axis systems other than the Cartesian System for graphing (vector coordinates, polar coordinates, rectangular

More information

f. D that is, F dr = c c = [2"' (-a sin t)( -a sin t) + (a cos t)(a cost) dt = f2"' dt = 2

f. D that is, F dr = c c = [2' (-a sin t)( -a sin t) + (a cos t)(a cost) dt = f2' dt = 2 SECTION 16.4 GREEN'S THEOREM 1089 X with center the origin and radius a, where a is chosen to be small enough that C' lies inside C. (See Figure 11.) Let be the region bounded by C and C'. Then its positively

More information

1. Taylor Polynomials of Degree 1: Linear Approximation. Reread Example 1.

1. Taylor Polynomials of Degree 1: Linear Approximation. Reread Example 1. Math 114, Taylor Polynomials (Section 10.1) Name: Section: Read Section 10.1, focusing on pages 58-59. Take notes in your notebook, making sure to include words and phrases in italics and formulas in blue

More information

(1) Recap of Differential Calculus and Integral Calculus (2) Preview of Calculus in three dimensional space (3) Tools for Calculus 3

(1) Recap of Differential Calculus and Integral Calculus (2) Preview of Calculus in three dimensional space (3) Tools for Calculus 3 Math 127 Introduction and Review (1) Recap of Differential Calculus and Integral Calculus (2) Preview of Calculus in three dimensional space (3) Tools for Calculus 3 MATH 127 Introduction to Calculus III

More information

MA 126 CALCULUS II Wednesday, December 10, 2014 FINAL EXAM. Closed book - Calculators and One Index Card are allowed! PART I

MA 126 CALCULUS II Wednesday, December 10, 2014 FINAL EXAM. Closed book - Calculators and One Index Card are allowed! PART I CALCULUS II, FINAL EXAM 1 MA 126 CALCULUS II Wednesday, December 10, 2014 Name (Print last name first):................................................ Student Signature:.........................................................

More information

16.2 Line Integrals. Lukas Geyer. M273, Fall Montana State University. Lukas Geyer (MSU) 16.2 Line Integrals M273, Fall / 21

16.2 Line Integrals. Lukas Geyer. M273, Fall Montana State University. Lukas Geyer (MSU) 16.2 Line Integrals M273, Fall / 21 16.2 Line Integrals Lukas Geyer Montana State University M273, Fall 211 Lukas Geyer (MSU) 16.2 Line Integrals M273, Fall 211 1 / 21 Scalar Line Integrals Definition f (x) ds = lim { s i } N f (P i ) s

More information

a Write down the coordinates of the point on the curve where t = 2. b Find the value of t at the point on the curve with coordinates ( 5 4, 8).

a Write down the coordinates of the point on the curve where t = 2. b Find the value of t at the point on the curve with coordinates ( 5 4, 8). Worksheet A 1 A curve is given by the parametric equations x = t + 1, y = 4 t. a Write down the coordinates of the point on the curve where t =. b Find the value of t at the point on the curve with coordinates

More information

9.1 (10.1) Parametric Curves ( 參數曲線 )

9.1 (10.1) Parametric Curves ( 參數曲線 ) 9.1 (10.1) Parametric Curves ( 參數曲線 ) [Ex]Sketch and identify the curve defined by parametric equations x= 6 t, y = t, t 4 (a) Sketch the curve by using the parametric equations to plot points: (b) Eliminate

More information

Sample Final Questions: Solutions Math 21B, Winter y ( y 1)(1 + y)) = A y + B

Sample Final Questions: Solutions Math 21B, Winter y ( y 1)(1 + y)) = A y + B Sample Final Questions: Solutions Math 2B, Winter 23. Evaluate the following integrals: tan a) y y dy; b) x dx; c) 3 x 2 + x dx. a) We use partial fractions: y y 3 = y y ) + y)) = A y + B y + C y +. Putting

More information

APPM 1360 Final Exam Spring 2016

APPM 1360 Final Exam Spring 2016 APPM 36 Final Eam Spring 6. 8 points) State whether each of the following quantities converge or diverge. Eplain your reasoning. a) The sequence a, a, a 3,... where a n ln8n) lnn + ) n!) b) ln d c) arctan

More information

MA CALCULUS II Friday, December 09, 2011 FINAL EXAM. Closed Book - No calculators! PART I Each question is worth 4 points.

MA CALCULUS II Friday, December 09, 2011 FINAL EXAM. Closed Book - No calculators! PART I Each question is worth 4 points. CALCULUS II, FINAL EXAM 1 MA 126 - CALCULUS II Friday, December 09, 2011 Name (Print last name first):...................................................... Signature:........................................................................

More information