4. Line Integrals in the Plane

Size: px
Start display at page:

Download "4. Line Integrals in the Plane"

Transcription

1 4. Line Integrals in the Plane 4A. Plane Vector Fields 4A- a) All vectors in the field are identical; continuously differentiable everywhere. b) The vector at P has its tail at P and head at the origin; field is cont. diff. everywhere. c) All vectors have unit length and point radially outwards; cont. diff. except at (,). d) Vector at P has unit length, and the clockwise direction perpendicular to OP. 4A- a) ai +bj b) xi +yj r 4A-3 a) i +j b) r(xi +yj) c) 4A-4 k 4B- yi +xj r a) On : y =, dy = ; therefore On : y = x, dy = xdx; c) f xi +yj (r) r yi xj r 3 d) f(x,y)(i + j) 4B. Line Integrals in the Plane = (x y)dx+xdy = (x y)dx+xdy = [ ( x )dx = 3 x3 +x ] ] x dx = x3 = 3 3. (x )dx 4x dx = 4 3 = 3. b) : use the parametrization x = cost, y = sint; then dx = sintdt, dy = costdt ] xydx x dy = sin tcostdt cos tcostdt = costdt = sint =. π/ c) = ; : x = dx = ; : y = x; 3 : y = dy = ydx xdy = + ( x)dx x( dx)+ = dx =. 3 π d) : x = cost, y = sint; dx = sintdt ydx = sin tdt = π. e) : x = t, y = t 3 ; dx = tdt, dy = 3t dt 6ydx+xdy = 6t 3 (tdt)+t (3t dt) = f) (x+y)dx+xydy = + (x+)dx = x +x π/ (5t 4 )dt = 3t 5 ] = 3 3. ] = 5. 4B- a) The field F points radially outward, the unit tangent t to the circle is always perpendicular to the radius; therefore F t = and F dr = F tds = b) The field F is always tangent to the circle of radius a, in the clockwise direction, and of magnitude a. Therefore F = at, so that F dr = F tds = ads = πa. π/

2 E. 8. EXEISES 4B-3 a) maximum if is in the direction of the field: = i + j b) minimum if is in the opposite direction to the field: = i + j c) zero if is perpendicular to the field: = ± i j d) max =, min = : by (a) and (b), for the max or min F and have respectively the same or opposite constant direction, so F dr = ± F = ±. 4. Gradient Fields and Exact Differentials 4- a) F = f = 3x yi +(x 3 +3y )j b) (i) Using y as parameter, is: x = y, y = y; thus dx = ydy, and F dr = 3(y ) y ydy+[(y ) 3 +3y ]dy = (7y 6 +3y )dy = (y 7 +y 3 ) ] = 4. b) (ii) Using y as parameter, is: x =, y = y; thus dx =, and F dr = (+3y )dy = (y +y 3 ) ] = 4. b) (iii) By the Fundamental Theorem of alculus for line integrals, f dr = f(b) f(a). Here A = (, ) and B = (,), so that f dr = (+) ( ) = a) F = f = (xye xy +e xy )i +(x e xy )j. b) (i) Using x as parameter, is: x = x, y = /x, so dy = dx/x, and so F dr = (e+e)dx+(x e)( dx/x ) = (ex ex) ] = e. b) (ii) Using the F.T.. for line integrals, F dr = f(, ) f(,) = e = e. 4-3 a) F = f = (cosxcosy)i (sinxsiny)j. b) Since F dr is path-independent, for any connecting A : (x,y ) to B : (x,y ), we have by the F.T.. for line integrals, F dr = sinx cosy sinx cosy This difference on the right-hand side is maximized if sinx cosy is maximized, and sinx cosy is minimized. Since sinxcosy = sinx cosy, the difference on the right hand side has a maximum of, attained when sinx cosy = and sinx cosy =. (For example, a running from ( π/,) to (π/,) gives this maximum value.)

3 4. LINE INTEGALS IN THE PLANE a) F is a gradient field only if M y = N x, that is, if y = ay, so a =. By inspection, the potential function is f(x,y) = xy +x +c; you can check that F = f. b)theequationm y = N x becomese x+y (x+a) = xe x+y +e x+y, which= e x+y (x+). Therefore a =. To find the potential function f(x,y), using Method we have f x = e y e x (x+) f(x,y) = e y xe x +g(y). Differentiating, and comparing the result with N, we find f y = e y xe x +g (y) = xe x+y ; therefore g (y) =, so g(y) = c and f(x,y) = xe x+y +c. 4-6 a) ydx xdy is not exact, since M y = but N x =. b) y(x+y)dx+x(y +x)dy is exact, since M y = x+y = N x. Using Method to find the potential function f(x,y), we calculate the line integral over the standard broken line path shown, = +. (x,y ) f(x,y ) = F dr = y(x+y)dx+x(y +x)dy. (,) On we have y = and dy =, so F dr =. On, we have x = x and dx =, so F dr = y (x,y ) x x (y +x )dx = x y +x y. Therefore, f(x,y) = x y +xy ; to get all possible functions, add +c. 4D. Green s Theorem 4D- a) Evaluating the line integral first, we have : x = cost, y = sint, so π π ( t ydx+xdy = ( sin t+cos t)dt = ( 3sin t)dt = t 3 sint 4 For the double integral over the circular region inside the, we have (N x M y )da = ( )da = area of = π. b) Evaluating the line integral, over the indicated path = , x dx+x dy = x dx+ 4dy + x dx+ dy = 4, since the first and third integrals cancel, and the fourth is. For the double integral over the rectangle, ] xda = xdydx = x = 4. )] π 4 = π. 3

4 4 E. 8. EXEISES c) Evaluating the line integral over = +, we have : x = x, y = x ; xydx+y dy = x x dx+x 4 xdx = x4 4 + x6 3 : x = x, y = x; xydx+y dy = (x dx+x dx) = ] 3 x3 = 3. Therefore, xydx+y dy = 7 3 =. Evaluating the double integral over the interior of, we have x xda = xdydx; x ] y=x ] evaluating: Inner: xy = x +x 3 ; Outer: x3 y=x 3 + x4 = =. 4D- By Green s theorem, 4x 3 ydx+x 4 dy = (4x 3 4x 3 )da =. ] = 7 This is true for every closed curve in the plane, since M and N have continuous derivatives for all x, y. 4D-3 We use the symmetric form for the integrand since the parametrization of the curve does not favor x or y; this leads to the easiest calculation. Area= ydx+xdy = π 3sin 4 tcos tdt+3sin tcos 4 tdt = 3 π sin tcos tdt Using sin tcos t = 4 (sint) = 4 ( cos4t), the above = 3 ( t 8 sin4t ) π = 3π D-4 By Green s theorem, is always positive outside the origin. y 3 dx+x 3 dy = (3x +3y )da >, since the integrand 4D-5 Let be a square, and its interior. Using Green s theorem, xy dx+(x y +x)dy = (xy + xy)da = da = (area of ). 4E. Two-dimensional Flux 4E- The vector F is the velocity vector for a rotating disc; it is at each point tangent to the circle centered at the origin and passing through that point. a) Since F is tangent to the circle, F n = at every point on the circle, so the flux is. b) F = xj at the point (x,) on the line. So if x >, the flux at x has the same magnitude as the flux at x but the opposite sign, so the net flux over the line is. c) n = j, so F n = xj j = x. Thus F nds = xdx =.

5 4. LINE INTEGALS IN THE PLANE 5 4E- All the vectors of F have length and point northeast. So the flux across a line segment of length will be a) maximal, if points northwest; b) minimal, if point southeast; c) zero, if points northeast or southwest; d), if has the direction and magnitude of i or j; the corresponding normal vectors are then respectively j and i, by convention, so that F n = (i + j) j =. or (i + j) i =. e) respectively and, since the angle θ between F and n is respectively and π, so that respectively F n = F cosθ = ±. 4E-3 M dy N dx = x dy xydx = (t+) tdt (t+)t dt = (t 3 +3t +t)dt = t4 4 +t3 +t ] = E-4 Taking the curve = as shown, xdy ydx = + dx+ dy + =. 4 4E-5 Since F and n both point radially outwards, F n = F = a m, at every point of the circle of radius a centered at the origin. a) The flux across is a m πa = πa m+. b) The flux will be independent of a if m =. 4F. Green s Theorem in Normal Form 4F- a) both are b) div F = x+y; curl F = c) div F = x+y; curl F = y x 4F- a) div F = ( ωy) x +(ωx) y = ; curl F = (ωx) x ( ωy) y = ω. b) Since F is the velocity field of a fluid rotating with constant angular velocity (like a rigid disc), there are no sources or sinks: fluid is not being added to or subtracted from the flow at any point. c) A paddlewheel placed at the origin will clearly spin with the same angular velocity ω as the rotating fluid, so by Notes V4,(), the curl should be ω at the origin. (It is much less clear that the curl is ω at all other points as well.) 4F-3 The line integral for flux is xdy ydx; its value is on any segment of the x-axis since y = dy = ; on the upper half of the unit semicircle (oriented counterclockwise), F n =, so the flux is the length of the semicircle: π. - Letting be the region inside, div FdA = da = (π/) = π. 4F-4 For the flux integral we get for the four sides respectively x dy xydx over = , + dy+ xdx+ = (,) 3 (,)

6 6 E. 8. EXEISES For the double integral, div FdA = 3xdA = 3xdydx = 3 x ] = 3. 4F-5 r = (x +y ) / r x = (x +y ) / x = x r ; by symmetry, r y = y r. To calculate div F, we have M = r n x and N = r n y; therefore by the chain rule, and the above values for r x and r y, we have M x = r n +nr n x x r = rn +nr n x ; similarly (or by symmetry), N y = r n +nr n y y r = rn +nr n y, so that div F = M x +N y = r n +nr n (x +y ) = r n (+n), which = if n =. To calculate curl F, we have by the chain rule N x = nr n x r y; M y = nr n y r x, so that curl F = N x M y =, for all n. 4G. Simply-connected egions 4G- Hypotheses: the region is simply connected, F = M i + N j has continuous derivatives in, and curl F = in. onclusion: F is a gradient field in (or, M dx+n dy is an exact differential). a) curl F = y y =, and is the whole xy-plane. Therefore F = f in the plane. b) curl F = ysinx xsiny, so the differential is not exact. c) curl F =, but is the exterior of the unit circle, which is not simply-connected; criterion fails. d) curl F =, and is the interior of the unit circle, which is simply-connected, so the differential is exact. e) curl F = and is the first quadrant, which is simply-connected, so F is a gradient field. 4G- a) f(x,y) = xy +x b) f(x,y) = 3 x3/ + 3 y3/ c) Using Method, we take the origin as the starting point and use the straight line to (x,y ) as the path. In polar coordinates, x = r cosθ, y = r sinθ ; we use r as the parameter, so the path is : x = rcosθ, y = rsinθ, r r. Then f(x,y ) = Therefore, xdx+ydy r xdx+ydy r = = r r rcos θ +rsin θ r dr r r dr = r ] r = d( r ). = r +. Anotherapproach: xdx+ydy = d(r ); therefore xdx+ydy r (Think of r as a new variable u, and integrate.) = d(r ) = d( r ). r

7 4. LINE INTEGALS IN THE PLANE 7 4G-3 By Example 3 in Notes V5, we know that F = Therefore, (3,4) (,) = r 4G-4 By Green s theorem ] 5 = 5. xydx+x dy = xda. xi +yj r 3 ( = ). r For any plane region of density, we have xda = x (area of ), where x is the x-component of its center of mass. Since our region is symmetric with respect to the y-axis, its center of mass is on the y-axis, hence x = and so xda =. 4G-5 a) yes b) no (a circle surrounding the line segment lies in, but its interior does not) c) yes (no finite curve could surround the entire positive x-axis) d) no (the region does not consist of one connected piece) e) yes if θ < π; no if θ π, since then is the plane with (,) removed f) no (a circle between the two boundary circles lies in, but its interior does not) g) yes 4G-6 a) continuously differentiable for x,y > ; thus is the first quadrant without the two axes, which is simply-connected. b) continuous differentiable if r < ; thus is the interior of the unit circle, and is simply-connected. c) continuously differentiable if r > ; thus is the exterior of the unit circle, and is not simply-connected. d) continuously differentiable if r ; thus is the plane with the origin removed, and is not simply-connected. e) continuously differentiable if r ; same as (d). 4H. Multiply-connected egions 4H- a) ; b) ; 4π c) ; π d) ; 4π 4H- In each case, the winding number about each of the points is given, then the value of the line integral of F around the curve. a) (,,); + 3 b) (,,); + 3 c) (,,); d) (,,); + 3

8 8. Notes and Exercises by A. Mattuck with the assistance of T.Shifrin and S. LeDuc, and including a section on non-independent variables by Bjorn Poonen. c M.I.T. -4

c) LC=Cl+C2+C3; C1:x=dx=O; C2: y=1-x; C3:y=dy=0 1 ydx-xdy (1-x)~x-x(-dx)+ = Jdldx = 1.

c) LC=Cl+C2+C3; C1:x=dx=O; C2: y=1-x; C3:y=dy=0 1 ydx-xdy (1-x)~x-x(-dx)+ = Jdldx = 1. 4. Line Integrals in the Plane 4A. Plane Vector Fields 4A- a) All vectors in the field are identical; continuously differentiable everywhere. b) he vector at P has its tail at P and head at the origin;

More information

4B. Line Integrals in the Plane

4B. Line Integrals in the Plane 4. Line Integrals in the Plane 4A. Plane Vector Fields 4A-1 Describe geometrically how the vector fields determined by each of the following vector functions looks. Tell for each what the largest region

More information

18.02 Multivariable Calculus Fall 2007

18.02 Multivariable Calculus Fall 2007 MIT OpenCourseWare http://ocw.mit.edu 18.02 Multivariable Calculus Fall 2007 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. 4. Line Integrals in the

More information

18.02 Multivariable Calculus Fall 2007

18.02 Multivariable Calculus Fall 2007 MIT OpenourseWare http://ocw.mit.edu 18.02 Multivariable alculus Fall 2007 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. 18.02 Lecture 21. Test for

More information

Solutions to old Exam 3 problems

Solutions to old Exam 3 problems Solutions to old Exam 3 problems Hi students! I am putting this version of my review for the Final exam review here on the web site, place and time to be announced. Enjoy!! Best, Bill Meeks PS. There are

More information

16.2. Line Integrals

16.2. Line Integrals 16. Line Integrals Review of line integrals: Work integral Rules: Fdr F d r = Mdx Ndy Pdz FT r'( t) ds r t since d '(s) and hence d ds '( ) r T r r ds T = Fr '( t) dt since r r'( ) dr d dt t dt dt does

More information

6. Vector Integral Calculus in Space

6. Vector Integral Calculus in Space 6. Vector Integral alculus in pace 6A. Vector Fields in pace 6A-1 Describegeometricallythefollowingvectorfields: a) xi +yj +zk ρ b) xi zk 6A-2 Write down the vector field where each vector runs from (x,y,z)

More information

worked out from first principles by parameterizing the path, etc. If however C is a A path C is a simple closed path if and only if the starting point

worked out from first principles by parameterizing the path, etc. If however C is a A path C is a simple closed path if and only if the starting point III.c Green s Theorem As mentioned repeatedly, if F is not a gradient field then F dr must be worked out from first principles by parameterizing the path, etc. If however is a simple closed path in the

More information

Math 11 Fall 2007 Practice Problem Solutions

Math 11 Fall 2007 Practice Problem Solutions Math 11 Fall 27 Practice Problem olutions Here are some problems on the material we covered since the second midterm. This collection of problems is not intended to mimic the final in length, content,

More information

Math 212-Lecture 20. P dx + Qdy = (Q x P y )da. C

Math 212-Lecture 20. P dx + Qdy = (Q x P y )da. C 15. Green s theorem Math 212-Lecture 2 A simple closed curve in plane is one curve, r(t) : t [a, b] such that r(a) = r(b), and there are no other intersections. The positive orientation is counterclockwise.

More information

49. Green s Theorem. The following table will help you plan your calculation accordingly. C is a simple closed loop 0 Use Green s Theorem

49. Green s Theorem. The following table will help you plan your calculation accordingly. C is a simple closed loop 0 Use Green s Theorem 49. Green s Theorem Let F(x, y) = M(x, y), N(x, y) be a vector field in, and suppose is a path that starts and ends at the same point such that it does not cross itself. Such a path is called a simple

More information

Mathematics (Course B) Lent Term 2005 Examples Sheet 2

Mathematics (Course B) Lent Term 2005 Examples Sheet 2 N12d Natural Sciences, Part IA Dr M. G. Worster Mathematics (Course B) Lent Term 2005 Examples Sheet 2 Please communicate any errors in this sheet to Dr Worster at M.G.Worster@damtp.cam.ac.uk. Note that

More information

C 3 C 4. R k C 1. (x,y)

C 3 C 4. R k C 1. (x,y) 16.4 1 16.4 Green s Theorem irculation Density (x,y + y) 3 (x+ x,y + y) 4 k 2 (x,y) 1 (x+ x,y) Suppose that F(x,y) M(x,y)i+N(x,y)j is the velocity field of a fluid flow in the plane and that the first

More information

HOMEWORK 8 SOLUTIONS

HOMEWORK 8 SOLUTIONS HOMEWOK 8 OLUTION. Let and φ = xdy dz + ydz dx + zdx dy. let be the disk at height given by: : x + y, z =, let X be the region in 3 bounded by the cone and the disk. We orient X via dx dy dz, then by definition

More information

(b) Find the range of h(x, y) (5) Use the definition of continuity to explain whether or not the function f(x, y) is continuous at (0, 0)

(b) Find the range of h(x, y) (5) Use the definition of continuity to explain whether or not the function f(x, y) is continuous at (0, 0) eview Exam Math 43 Name Id ead each question carefully. Avoid simple mistakes. Put a box around the final answer to a question (use the back of the page if necessary). For full credit you must show your

More information

Problem Set 6 Math 213, Fall 2016

Problem Set 6 Math 213, Fall 2016 Problem Set 6 Math 213, Fall 216 Directions: Name: Show all your work. You are welcome and encouraged to use Mathematica, or similar software, to check your answers and aid in your understanding of the

More information

Practice Problems for Exam 3 (Solutions) 1. Let F(x, y) = xyi+(y 3x)j, and let C be the curve r(t) = ti+(3t t 2 )j for 0 t 2. Compute F dr.

Practice Problems for Exam 3 (Solutions) 1. Let F(x, y) = xyi+(y 3x)j, and let C be the curve r(t) = ti+(3t t 2 )j for 0 t 2. Compute F dr. 1. Let F(x, y) xyi+(y 3x)j, and let be the curve r(t) ti+(3t t 2 )j for t 2. ompute F dr. Solution. F dr b a 2 2 F(r(t)) r (t) dt t(3t t 2 ), 3t t 2 3t 1, 3 2t dt t 3 dt 1 2 4 t4 4. 2. Evaluate the line

More information

ARNOLD PIZER rochester problib from CVS Summer 2003

ARNOLD PIZER rochester problib from CVS Summer 2003 ARNOLD PIZER rochester problib from VS Summer 003 WeBWorK assignment Vectoralculus due 5/3/08 at :00 AM.( pt) setvectoralculus/ur V.pg onsider the transformation T : x 8 53 u 45 45 53v y 53 u 8 53 v A.

More information

Power Series. x n. Using the ratio test. n n + 1. x n+1 n 3. = lim x. lim n + 1. = 1 < x < 1. Then r = 1 and I = ( 1, 1) ( 1) n 1 x n.

Power Series. x n. Using the ratio test. n n + 1. x n+1 n 3. = lim x. lim n + 1. = 1 < x < 1. Then r = 1 and I = ( 1, 1) ( 1) n 1 x n. .8 Power Series. n x n x n n Using the ratio test. lim x n+ n n + lim x n n + so r and I (, ). By the ratio test. n Then r and I (, ). n x < ( ) n x n < x < n lim x n+ n (n + ) x n lim xn n (n + ) x

More information

18.02 Multivariable Calculus Fall 2007

18.02 Multivariable Calculus Fall 2007 MIT OpenourseWare http://ocw.mit.edu 8.02 Multivariable alculus Fall 2007 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. 8.02 Lecture 8. hange of variables.

More information

SOLUTIONS TO THE FINAL EXAM. December 14, 2010, 9:00am-12:00 (3 hours)

SOLUTIONS TO THE FINAL EXAM. December 14, 2010, 9:00am-12:00 (3 hours) SOLUTIONS TO THE 18.02 FINAL EXAM BJORN POONEN December 14, 2010, 9:00am-12:00 (3 hours) 1) For each of (a)-(e) below: If the statement is true, write TRUE. If the statement is false, write FALSE. (Please

More information

f. D that is, F dr = c c = [2"' (-a sin t)( -a sin t) + (a cos t)(a cost) dt = f2"' dt = 2

f. D that is, F dr = c c = [2' (-a sin t)( -a sin t) + (a cos t)(a cost) dt = f2' dt = 2 SECTION 16.4 GREEN'S THEOREM 1089 X with center the origin and radius a, where a is chosen to be small enough that C' lies inside C. (See Figure 11.) Let be the region bounded by C and C'. Then its positively

More information

Tom Robbins WW Prob Lib1 Math , Fall 2001

Tom Robbins WW Prob Lib1 Math , Fall 2001 Tom Robbins WW Prob Lib Math 220-2, Fall 200 WeBWorK assignment due 9/7/0 at 6:00 AM..( pt) A child walks due east on the deck of a ship at 3 miles per hour. The ship is moving north at a speed of 7 miles

More information

29.3. Integral Vector Theorems. Introduction. Prerequisites. Learning Outcomes

29.3. Integral Vector Theorems. Introduction. Prerequisites. Learning Outcomes Integral ector Theorems 9. Introduction arious theorems exist relating integrals involving vectors. Those involving line, surface and volume integrals are introduced here. They are the multivariable calculus

More information

(a) 0 (b) 1/4 (c) 1/3 (d) 1/2 (e) 2/3 (f) 3/4 (g) 1 (h) 4/3

(a) 0 (b) 1/4 (c) 1/3 (d) 1/2 (e) 2/3 (f) 3/4 (g) 1 (h) 4/3 Math 114 Practice Problems for Test 3 omments: 0. urface integrals, tokes Theorem and Gauss Theorem used to be in the Math40 syllabus until last year, so we will look at some of the questions from those

More information

Arnie Pizer Rochester Problem Library Fall 2005 WeBWorK assignment VectorCalculus1 due 05/03/2008 at 02:00am EDT.

Arnie Pizer Rochester Problem Library Fall 2005 WeBWorK assignment VectorCalculus1 due 05/03/2008 at 02:00am EDT. Arnie Pizer Rochester Problem Library Fall 005 WeBWorK assignment Vectoralculus due 05/03/008 at 0:00am EDT.. ( pt) rochesterlibrary/setvectoralculus/ur V.pg onsider the transformation T : x = 35 35 37u

More information

(c) The first thing to do for this problem is to create a parametric curve for C. One choice would be. (cos(t), sin(t)) with 0 t 2π

(c) The first thing to do for this problem is to create a parametric curve for C. One choice would be. (cos(t), sin(t)) with 0 t 2π 1. Let g(x, y) = (y, x) ompute gds for a circle with radius 1 centered at the origin using the line integral. (Hint: use polar coordinates for your parametrization). (a) Write out f((t)) so that f is a

More information

Section 4.3 Vector Fields

Section 4.3 Vector Fields Section 4.3 Vector Fields DEFINITION: A vector field in R n is a map F : A R n R n that assigns to each point x in its domain A a vector F(x). If n = 2, F is called a vector field in the plane, and if

More information

Math 234 Exam 3 Review Sheet

Math 234 Exam 3 Review Sheet Math 234 Exam 3 Review Sheet Jim Brunner LIST OF TOPIS TO KNOW Vector Fields lairaut s Theorem & onservative Vector Fields url Divergence Area & Volume Integrals Using oordinate Transforms hanging the

More information

Math 350 Solutions for Final Exam Page 1. Problem 1. (10 points) (a) Compute the line integral. F ds C. z dx + y dy + x dz C

Math 350 Solutions for Final Exam Page 1. Problem 1. (10 points) (a) Compute the line integral. F ds C. z dx + y dy + x dz C Math 35 Solutions for Final Exam Page Problem. ( points) (a) ompute the line integral F ds for the path c(t) = (t 2, t 3, t) with t and the vector field F (x, y, z) = xi + zj + xk. (b) ompute the line

More information

Name: Date: 12/06/2018. M20550 Calculus III Tutorial Worksheet 11

Name: Date: 12/06/2018. M20550 Calculus III Tutorial Worksheet 11 1. ompute the surface integral M255 alculus III Tutorial Worksheet 11 x + y + z) d, where is a surface given by ru, v) u + v, u v, 1 + 2u + v and u 2, v 1. olution: First, we know x + y + z) d [ ] u +

More information

Practice problems. m zδdv. In our case, we can cancel δ and have z =

Practice problems. m zδdv. In our case, we can cancel δ and have z = Practice problems 1. Consider a right circular cone of uniform density. The height is H. Let s say the distance of the centroid to the base is d. What is the value d/h? We can create a coordinate system

More information

Lecture 5 - Fundamental Theorem for Line Integrals and Green s Theorem

Lecture 5 - Fundamental Theorem for Line Integrals and Green s Theorem Lecture 5 - Fundamental Theorem for Line Integrals and Green s Theorem Math 392, section C September 14, 2016 392, section C Lect 5 September 14, 2016 1 / 22 Last Time: Fundamental Theorem for Line Integrals:

More information

Section 17.4 Green s Theorem

Section 17.4 Green s Theorem Section 17.4 Green s Theorem alculating Line Integrals using ouble Integrals In the previous section, we saw an easy way to determine line integrals in the special case when a vector field F is conservative.

More information

Vector Calculus, Maths II

Vector Calculus, Maths II Section A Vector Calculus, Maths II REVISION (VECTORS) 1. Position vector of a point P(x, y, z) is given as + y and its magnitude by 2. The scalar components of a vector are its direction ratios, and represent

More information

Math 210, Final Exam, Fall 2010 Problem 1 Solution. v cosθ = u. v Since the magnitudes of the vectors are positive, the sign of the dot product will

Math 210, Final Exam, Fall 2010 Problem 1 Solution. v cosθ = u. v Since the magnitudes of the vectors are positive, the sign of the dot product will Math, Final Exam, Fall Problem Solution. Let u,, and v,,3. (a) Is the angle between u and v acute, obtuse, or right? (b) Find an equation for the plane through (,,) containing u and v. Solution: (a) The

More information

Math 233. Practice Problems Chapter 15. i j k

Math 233. Practice Problems Chapter 15. i j k Math 233. Practice Problems hapter 15 1. ompute the curl and divergence of the vector field F given by F (4 cos(x 2 ) 2y)i + (4 sin(y 2 ) + 6x)j + (6x 2 y 6x + 4e 3z )k olution: The curl of F is computed

More information

Peter Alfeld Math , Fall 2005

Peter Alfeld Math , Fall 2005 WeBWorK assignment due 9/2/05 at :59 PM..( pt) Consider the parametric equation x = 2(cosθ + θsinθ) y = 2(sinθ θcosθ) What is the length of the curve for θ = 0 to θ = 7 6 π? 2.( pt) Let a = (-2 4 2) and

More information

Practice problems **********************************************************

Practice problems ********************************************************** Practice problems I will not test spherical and cylindrical coordinates explicitly but these two coordinates can be used in the problems when you evaluate triple integrals. 1. Set up the integral without

More information

Math 31CH - Spring Final Exam

Math 31CH - Spring Final Exam Math 3H - Spring 24 - Final Exam Problem. The parabolic cylinder y = x 2 (aligned along the z-axis) is cut by the planes y =, z = and z = y. Find the volume of the solid thus obtained. Solution:We calculate

More information

Review problems for the final exam Calculus III Fall 2003

Review problems for the final exam Calculus III Fall 2003 Review problems for the final exam alculus III Fall 2003 1. Perform the operations indicated with F (t) = 2t ı 5 j + t 2 k, G(t) = (1 t) ı + 1 t k, H(t) = sin(t) ı + e t j a) F (t) G(t) b) F (t) [ H(t)

More information

10.1 Curves Defined by Parametric Equation

10.1 Curves Defined by Parametric Equation 10.1 Curves Defined by Parametric Equation 1. Imagine that a particle moves along the curve C shown below. It is impossible to describe C by an equation of the form y = f (x) because C fails the Vertical

More information

Calculus III. George Voutsadakis 1. LSSU Math 251. Lake Superior State University. 1 Mathematics and Computer Science

Calculus III. George Voutsadakis 1. LSSU Math 251. Lake Superior State University. 1 Mathematics and Computer Science Calculus III George Voutsadakis 1 1 Mathematics and Computer Science Lake Superior State University LSSU Math 251 George Voutsadakis (LSSU) Calculus III January 2016 1 / 76 Outline 1 Parametric Equations,

More information

Math 10C - Fall Final Exam

Math 10C - Fall Final Exam Math 1C - Fall 217 - Final Exam Problem 1. Consider the function f(x, y) = 1 x 2 (y 1) 2. (i) Draw the level curve through the point P (1, 2). Find the gradient of f at the point P and draw the gradient

More information

Practice problems ********************************************************** 1. Divergence, curl

Practice problems ********************************************************** 1. Divergence, curl Practice problems 1. Set up the integral without evaluation. The volume inside (x 1) 2 + y 2 + z 2 = 1, below z = 3r but above z = r. This problem is very tricky in cylindrical or Cartesian since we must

More information

Ma 1c Practical - Solutions to Homework Set 7

Ma 1c Practical - Solutions to Homework Set 7 Ma 1c Practical - olutions to omework et 7 All exercises are from the Vector Calculus text, Marsden and Tromba (Fifth Edition) Exercise 7.4.. Find the area of the portion of the unit sphere that is cut

More information

MATH H53 : Final exam

MATH H53 : Final exam MATH H53 : Final exam 11 May, 18 Name: You have 18 minutes to answer the questions. Use of calculators or any electronic items is not permitted. Answer the questions in the space provided. If you run out

More information

M273Q Multivariable Calculus Spring 2017 Review Problems for Exam 3

M273Q Multivariable Calculus Spring 2017 Review Problems for Exam 3 M7Q Multivariable alculus Spring 7 Review Problems for Exam Exam covers material from Sections 5.-5.4 and 6.-6. and 7.. As you prepare, note well that the Fall 6 Exam posted online did not cover exactly

More information

1 Area calculations. 1.1 Area of an ellipse or a part of it Without using parametric equations

1 Area calculations. 1.1 Area of an ellipse or a part of it Without using parametric equations Area calculations. Area of an ellipse or a part of it.. Without using parametric equations We calculate the area in the first quadrant. We start from the standard equation of the ellipse and we put that

More information

Calculus III. Math 233 Spring Final exam May 3rd. Suggested solutions

Calculus III. Math 233 Spring Final exam May 3rd. Suggested solutions alculus III Math 33 pring 7 Final exam May 3rd. uggested solutions This exam contains twenty problems numbered 1 through. All problems are multiple choice problems, and each counts 5% of your total score.

More information

Vector Calculus. Chapter Vector Fields A vector field describes the motion of the air as a vector at each point in the room

Vector Calculus. Chapter Vector Fields A vector field describes the motion of the air as a vector at each point in the room hapter 5 Vector alculus 5. Vector Fields 5.. A vector field describes the motion of the air as a vector at each point in the room. 5.. y 4 4 4 4 5..3 At selected points a, b, plot the vector fa, b,ga,

More information

Math 120: Examples. Green s theorem. x 2 + y 2 dx + x. x 2 + y 2 dy. y x 2 + y 2, Q = x. x 2 + y 2

Math 120: Examples. Green s theorem. x 2 + y 2 dx + x. x 2 + y 2 dy. y x 2 + y 2, Q = x. x 2 + y 2 Math 12: Examples Green s theorem Example 1. onsider the integral Evaluate it when (a) is the circle x 2 + y 2 = 1. (b) is the ellipse x 2 + y2 4 = 1. y x 2 + y 2 dx + Solution. (a) We did this in class.

More information

18.02 Multivariable Calculus Fall 2007

18.02 Multivariable Calculus Fall 2007 MIT OpenourseWare http://ocw.mit.edu 18.02 Multivariable alculus Fall 2007 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. 18.02 Lecture 30. Tue, Nov

More information

Review for the Final Test

Review for the Final Test Math 7 Review for the Final Test () Decide if the limit exists and if it exists, evaluate it. lim (x,y,z) (0,0,0) xz. x +y +z () Use implicit differentiation to find z if x + y z = 9 () Find the unit tangent

More information

MTH 234 Solutions to Exam 2 April 13, Multiple Choice. Circle the best answer. No work needed. No partial credit available.

MTH 234 Solutions to Exam 2 April 13, Multiple Choice. Circle the best answer. No work needed. No partial credit available. MTH 234 Solutions to Exam 2 April 3, 25 Multiple Choice. Circle the best answer. No work needed. No partial credit available.. (5 points) Parametrize of the part of the plane 3x+2y +z = that lies above

More information

Lecture Notes for MATH2230. Neil Ramsamooj

Lecture Notes for MATH2230. Neil Ramsamooj Lecture Notes for MATH3 Neil amsamooj Table of contents Vector Calculus................................................ 5. Parametric curves and arc length...................................... 5. eview

More information

Math 11 Fall 2018 Practice Final Exam

Math 11 Fall 2018 Practice Final Exam Math 11 Fall 218 Practice Final Exam Disclaimer: This practice exam should give you an idea of the sort of questions we may ask on the actual exam. Since the practice exam (like the real exam) is not long

More information

Math Review for Exam 3

Math Review for Exam 3 1. ompute oln: (8x + 36xy)ds = Math 235 - Review for Exam 3 (8x + 36xy)ds, where c(t) = (t, t 2, t 3 ) on the interval t 1. 1 (8t + 36t 3 ) 1 + 4t 2 + 9t 4 dt = 2 3 (1 + 4t2 + 9t 4 ) 3 2 1 = 2 3 ((14)

More information

18.02 Multivariable Calculus Fall 2007

18.02 Multivariable Calculus Fall 2007 MIT OpenCourseWare http://ocw.mit.edu 18.02 Multivariable Calculus Fall 2007 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. V9. Surface Integrals Surface

More information

Review Questions for Test 3 Hints and Answers

Review Questions for Test 3 Hints and Answers eview Questions for Test 3 Hints and Answers A. Some eview Questions on Vector Fields and Operations. A. (a) The sketch is left to the reader, but the vector field appears to swirl in a clockwise direction,

More information

18.1. Math 1920 November 29, ) Solution: In this function P = x 2 y and Q = 0, therefore Q. Converting to polar coordinates, this gives I =

18.1. Math 1920 November 29, ) Solution: In this function P = x 2 y and Q = 0, therefore Q. Converting to polar coordinates, this gives I = Homework 1 elected olutions Math 19 November 9, 18 18.1 5) olution: In this function P = x y and Q =, therefore Q x P = x. We obtain the following integral: ( Q I = x ydx = x P ) da = x da. onverting to

More information

Math 265H: Calculus III Practice Midterm II: Fall 2014

Math 265H: Calculus III Practice Midterm II: Fall 2014 Name: Section #: Math 65H: alculus III Practice Midterm II: Fall 14 Instructions: This exam has 7 problems. The number of points awarded for each question is indicated in the problem. Answer each question

More information

Math 323 Exam 1 Practice Problem Solutions

Math 323 Exam 1 Practice Problem Solutions Math Exam Practice Problem Solutions. For each of the following curves, first find an equation in x and y whose graph contains the points on the curve. Then sketch the graph of C, indicating its orientation.

More information

( ) ( ) ( ) ( ) Calculus III - Problem Drill 24: Stokes and Divergence Theorem

( ) ( ) ( ) ( ) Calculus III - Problem Drill 24: Stokes and Divergence Theorem alculus III - Problem Drill 4: tokes and Divergence Theorem Question No. 1 of 1 Instructions: (1) Read the problem and answer choices carefully () Work the problems on paper as needed () Pick the 1. Use

More information

f dr. (6.1) f(x i, y i, z i ) r i. (6.2) N i=1

f dr. (6.1) f(x i, y i, z i ) r i. (6.2) N i=1 hapter 6 Integrals In this chapter we will look at integrals in more detail. We will look at integrals along a curve, and multi-dimensional integrals in 2 or more dimensions. In physics we use these integrals

More information

Math 263 Final. (b) The cross product is. i j k c. =< c 1, 1, 1 >

Math 263 Final. (b) The cross product is. i j k c. =< c 1, 1, 1 > Math 63 Final Problem 1: [ points, 5 points to each part] Given the points P : (1, 1, 1), Q : (1,, ), R : (,, c 1), where c is a parameter, find (a) the vector equation of the line through P and Q. (b)

More information

ES.182A Topic 44 Notes Jeremy Orloff

ES.182A Topic 44 Notes Jeremy Orloff E.182A Topic 44 Notes Jeremy Orloff 44 urface integrals and flux Note: Much of these notes are taken directly from the upplementary Notes V8, V9 by Arthur Mattuck. urface integrals are another natural

More information

Let F be a field defined on an open region D in space, and suppose that the (work) integral A

Let F be a field defined on an open region D in space, and suppose that the (work) integral A 16.3 1 16.3 Path Independence and Conservative Fields Definition. Path Independence Let F be a field defined on an open region D in space, and suppose B that the work) integral A F dr is the same for all

More information

Math 11 Fall 2016 Final Practice Problem Solutions

Math 11 Fall 2016 Final Practice Problem Solutions Math 11 Fall 216 Final Practice Problem olutions Here are some problems on the material we covered since the second midterm. This collection of problems is not intended to mimic the final in length, content,

More information

Math 3435 Homework Set 11 Solutions 10 Points. x= 1,, is in the disk of radius 1 centered at origin

Math 3435 Homework Set 11 Solutions 10 Points. x= 1,, is in the disk of radius 1 centered at origin Math 45 Homework et olutions Points. ( pts) The integral is, x + z y d = x + + z da 8 6 6 where is = x + z 8 x + z = 4 o, is the disk of radius centered on the origin. onverting to polar coordinates then

More information

MA3D9. Geometry of curves and surfaces. T (s) = κ(s)n(s),

MA3D9. Geometry of curves and surfaces. T (s) = κ(s)n(s), MA3D9. Geometry of 2. Planar curves. Let : I R 2 be a curve parameterised by arc-length. Given s I, let T(s) = (s) be the unit tangent. Let N(s) be the unit normal obtained by rotating T(s) through π/2

More information

Green s Theorem Jeremy Orloff

Green s Theorem Jeremy Orloff Green s Theorem Jerem Orloff Line integrals and Green s theorem. Vector Fields Vector notation. In 8.4 we will mostl use the notation (v) = (a, b) for vectors. The other common notation (v) = ai + bj runs

More information

8.1 Solutions to Exercises

8.1 Solutions to Exercises Last edited 9/6/17 8.1 Solutions to Exercises 1. Since the sum of all angles in a triangle is 180, 180 = 70 + 50 + α. Thus α = 60. 10 α B The easiest way to find A and B is to use Law of Sines. sin( )

More information

154 Chapter 9 Hints, Answers, and Solutions The particular trajectories are highlighted in the phase portraits below.

154 Chapter 9 Hints, Answers, and Solutions The particular trajectories are highlighted in the phase portraits below. 54 Chapter 9 Hints, Answers, and Solutions 9. The Phase Plane 9.. 4. The particular trajectories are highlighted in the phase portraits below... 3. 4. 9..5. Shown below is one possibility with x(t) and

More information

Integral Vector Calculus

Integral Vector Calculus ontents 29 Integral Vector alculus 29.1 Line Integrals Involving Vectors 2 29.2 Surface and Volume Integrals 34 29.3 Integral Vector Theorems 54 Learning outcomes In this Workbook you will learn how to

More information

MAT 211 Final Exam. Spring Jennings. Show your work!

MAT 211 Final Exam. Spring Jennings. Show your work! MAT 211 Final Exam. pring 215. Jennings. how your work! Hessian D = f xx f yy (f xy ) 2 (for optimization). Polar coordinates x = r cos(θ), y = r sin(θ), da = r dr dθ. ylindrical coordinates x = r cos(θ),

More information

Green s, Divergence, Stokes: Statements and First Applications

Green s, Divergence, Stokes: Statements and First Applications Math 425 Notes 12: Green s, Divergence, tokes: tatements and First Applications The Theorems Theorem 1 (Divergence (planar version)). Let F be a vector field in the plane. Let be a nice region of the plane

More information

Practice Problems for the Final Exam

Practice Problems for the Final Exam Math 114 Spring 2017 Practice Problems for the Final Exam 1. The planes 3x + 2y + z = 6 and x + y = 2 intersect in a line l. Find the distance from the origin to l. (Answer: 24 3 ) 2. Find the area of

More information

18.02 Multivariable Calculus Fall 2007

18.02 Multivariable Calculus Fall 2007 MIT OpenCourseWare http://ocw.mit.edu 18.02 Multivariable Calculus Fall 2007 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. 3. Double Integrals 3A. Double

More information

Review Sheet for the Final

Review Sheet for the Final Review Sheet for the Final Math 6-4 4 These problems are provided to help you study. The presence of a problem on this handout does not imply that there will be a similar problem on the test. And the absence

More information

Math 210, Final Exam, Practice Fall 2009 Problem 1 Solution AB AC AB. cosθ = AB BC AB (0)(1)+( 4)( 2)+(3)(2)

Math 210, Final Exam, Practice Fall 2009 Problem 1 Solution AB AC AB. cosθ = AB BC AB (0)(1)+( 4)( 2)+(3)(2) Math 2, Final Exam, Practice Fall 29 Problem Solution. A triangle has vertices at the points A (,,), B (, 3,4), and C (2,,3) (a) Find the cosine of the angle between the vectors AB and AC. (b) Find an

More information

MATH 228: Calculus III (FALL 2016) Sample Problems for FINAL EXAM SOLUTIONS

MATH 228: Calculus III (FALL 2016) Sample Problems for FINAL EXAM SOLUTIONS MATH 228: Calculus III (FALL 216) Sample Problems for FINAL EXAM SOLUTIONS MATH 228 Page 2 Problem 1. (2pts) Evaluate the line integral C xy dx + (x + y) dy along the parabola y x2 from ( 1, 1) to (2,

More information

Notes on Green s Theorem Northwestern, Spring 2013

Notes on Green s Theorem Northwestern, Spring 2013 Notes on Green s Theorem Northwestern, Spring 2013 The purpose of these notes is to outline some interesting uses of Green s Theorem in situations where it doesn t seem like Green s Theorem should be applicable.

More information

Contents. MATH 32B-2 (18W) (L) G. Liu / (TA) A. Zhou Calculus of Several Variables. 1 Multiple Integrals 3. 2 Vector Fields 9

Contents. MATH 32B-2 (18W) (L) G. Liu / (TA) A. Zhou Calculus of Several Variables. 1 Multiple Integrals 3. 2 Vector Fields 9 MATH 32B-2 (8W) (L) G. Liu / (TA) A. Zhou Calculus of Several Variables Contents Multiple Integrals 3 2 Vector Fields 9 3 Line and Surface Integrals 5 4 The Classical Integral Theorems 9 MATH 32B-2 (8W)

More information

MATH 261 FINAL EXAM PRACTICE PROBLEMS

MATH 261 FINAL EXAM PRACTICE PROBLEMS MATH 261 FINAL EXAM PRACTICE PROBLEMS These practice problems are pulled from the final exams in previous semesters. The 2-hour final exam typically has 8-9 problems on it, with 4-5 coming from the post-exam

More information

Maxima and Minima. (a, b) of R if

Maxima and Minima. (a, b) of R if Maxima and Minima Definition Let R be any region on the xy-plane, a function f (x, y) attains its absolute or global, maximum value M on R at the point (a, b) of R if (i) f (x, y) M for all points (x,

More information

Practice Problems: Exam 2 MATH 230, Spring 2011 Instructor: Dr. Zachary Kilpatrick Show all your work. Simplify as much as possible.

Practice Problems: Exam 2 MATH 230, Spring 2011 Instructor: Dr. Zachary Kilpatrick Show all your work. Simplify as much as possible. Practice Problems: Exam MATH, Spring Instructor: Dr. Zachary Kilpatrick Show all your work. Simplify as much as possible.. Write down a table of x and y values associated with a few t values. Then, graph

More information

x + ye z2 + ze y2, y + xe z2 + ze x2, z and where T is the

x + ye z2 + ze y2, y + xe z2 + ze x2, z and where T is the 1.(8pts) Find F ds where F = x + ye z + ze y, y + xe z + ze x, z and where T is the T surface in the pictures. (The two pictures are two views of the same surface.) The boundary of T is the unit circle

More information

EE2007: Engineering Mathematics II Vector Calculus

EE2007: Engineering Mathematics II Vector Calculus EE2007: Engineering Mathematics II Vector Calculus Ling KV School of EEE, NTU ekvling@ntu.edu.sg Rm: S2-B2a-22 Ver: August 28, 2010 Ver 1.6: Martin Adams, Sep 2009 Ver 1.5: Martin Adams, August 2008 Ver

More information

Sections minutes. 5 to 10 problems, similar to homework problems. No calculators, no notes, no books, no phones. No green book needed.

Sections minutes. 5 to 10 problems, similar to homework problems. No calculators, no notes, no books, no phones. No green book needed. MTH 34 Review for Exam 4 ections 16.1-16.8. 5 minutes. 5 to 1 problems, similar to homework problems. No calculators, no notes, no books, no phones. No green book needed. Review for Exam 4 (16.1) Line

More information

Math Review for Exam Compute the second degree Taylor polynomials about (0, 0) of the following functions: (a) f(x, y) = e 2x 3y.

Math Review for Exam Compute the second degree Taylor polynomials about (0, 0) of the following functions: (a) f(x, y) = e 2x 3y. Math 35 - Review for Exam 1. Compute the second degree Taylor polynomial of f e x+3y about (, ). Solution. A computation shows that f x(, ), f y(, ) 3, f xx(, ) 4, f yy(, ) 9, f xy(, ) 6. The second degree

More information

Answer sheet: Final exam for Math 2339, Dec 10, 2010

Answer sheet: Final exam for Math 2339, Dec 10, 2010 Answer sheet: Final exam for Math 9, ec, Problem. Let the surface be z f(x,y) ln(y + cos(πxy) + e ). (a) Find the gradient vector of f f(x,y) y + cos(πxy) + e πy sin(πxy), y πx sin(πxy) (b) Evaluate f(,

More information

Chapter 9 Overview: Parametric and Polar Coordinates

Chapter 9 Overview: Parametric and Polar Coordinates Chapter 9 Overview: Parametric and Polar Coordinates As we saw briefly last year, there are axis systems other than the Cartesian System for graphing (vector coordinates, polar coordinates, rectangular

More information

Exam 1 Review SOLUTIONS

Exam 1 Review SOLUTIONS 1. True or False (and give a short reason): Exam 1 Review SOLUTIONS (a) If the parametric curve x = f(t), y = g(t) satisfies g (1) = 0, then it has a horizontal tangent line when t = 1. FALSE: To make

More information

Green s Theorem in the Plane

Green s Theorem in the Plane hapter 6 Green s Theorem in the Plane Introduction Recall the following special case of a general fact proved in the previous chapter. Let be a piecewise 1 plane curve, i.e., a curve in R defined by a

More information

Green s Theorem in the Plane

Green s Theorem in the Plane hapter 6 Green s Theorem in the Plane Recall the following special case of a general fact proved in the previous chapter. Let be a piecewise 1 plane curve, i.e., a curve in R defined by a piecewise 1 -function

More information

Summary of various integrals

Summary of various integrals ummary of various integrals Here s an arbitrary compilation of information about integrals Moisés made on a cold ecember night. 1 General things o not mix scalars and vectors! In particular ome integrals

More information

MA227 Surface Integrals

MA227 Surface Integrals MA7 urface Integrals Parametrically Defined urfaces We discussed earlier the concept of fx,y,zds where is given by z x,y.wehad fds fx,y,x,y1 x y 1 da R where R is the projection of onto the x,y - plane.

More information

Created by T. Madas LINE INTEGRALS. Created by T. Madas

Created by T. Madas LINE INTEGRALS. Created by T. Madas LINE INTEGRALS LINE INTEGRALS IN 2 DIMENSIONAL CARTESIAN COORDINATES Question 1 Evaluate the integral ( x + 2y) dx, C where C is the path along the curve with equation y 2 = x + 1, from ( ) 0,1 to ( )

More information

MAT 211 Final Exam. Fall Jennings.

MAT 211 Final Exam. Fall Jennings. MAT 211 Final Exam. Fall 218. Jennings. Useful formulas polar coordinates spherical coordinates: SHOW YOUR WORK! x = rcos(θ) y = rsin(θ) da = r dr dθ x = ρcos(θ)cos(φ) y = ρsin(θ)cos(φ) z = ρsin(φ) dv

More information