# M273Q Multivariable Calculus Spring 2017 Review Problems for Exam 3

Save this PDF as:

Size: px
Start display at page:

## Transcription

1 M7Q Multivariable alculus Spring 7 Review Problems for Exam Exam covers material from Sections and and 7.. As you prepare, note well that the Fall 6 Exam posted online did not cover exactly the same material. The formulas in the box will be provided on the exam. da = r dr dθ dv = r dz dr dθ dv = ρ sin φ dρ dφ dθ. Let F be a vector field in R and f a scalar function of three variables. For each of the following, state whether the operations shown produce a vector field, a scalar function, or whether they cannot be computed, in which case the statement is nonsense. Vector Scalar Nonsense F Vector Scalar Nonsense F Vector Scalar Nonsense F Vector Scalar Nonsense f F Vector Scalar Nonsense F F. alculate x da where D is the triangular region with vertices,,,, and,. D D x da = x x dy dx = x xy y=x y= x dx = x dx = x =. Evaluate e /x xye xy dy dx. We use integration by parts with u = y, du = dy, dv = xe xy dy, v = e xy to start the integration. e /x [ e /x ] /x [ e ] xye xy dy dx = ye xy e xy e dy dx = x exy /x e dx x dx = x = 4. Evaluate π π x/ sin y dy dx. We change the order of integration and evaluate. π π sin y dy dx = π y sin y dx dy = π π y sin y dy = cos y = x/ 5. Let W = { x, y, z x + y + z 4, x, y, z }. Evaluate W xz dv.

2 M7Q Multivariable alculus Review Problems for Exam - Page of 4 x 4 x y xz dz dy dx = 4 x x 4 x y dy dx = [ 4 x x 4 x 4 x ] / dx = x 4 x / dx = 4 x 5/ 5 = 5 6. alculate y x + y dx dy by changing to polar coordinates. y π/4 r r dr dθ = π/4 4 r4 r= r= dθ = π/4 dθ = π/4. 7. a Sketch the region of integration for x + y / 5 dydx. b Switch the order of integration for the integral in part a. y y + y / 5 dxdy c alculate the integral from part b. = y y + y / 6 = y / 5 dxdy = + y / 5 x= y x 6 = 4. x= y dy = + y / 5 y / dy 8. Set up but do not evaluate iterated triple integrals, with appropriate limits, for find the volume of the solid under by z = x + y and z = 8 x y in: a rectangular coordinates

3 M7Q Multivariable alculus Review Problems for Exam - Page of Volume = 4 x 8 x y 4 x x +y dz dy dx. b cylindrical coordinates Volume = π 8 r r r dzdrdθ 9. Set up an iterated triple integral, with the appropriate limits in the coordinates of your choice, for finding the volume of the region that lies between the spheres x + y + z = and x + y + z = 9, and inside the cone z = x + y. That is, z x + y. DO NOT EVALUATE. Volume of S = dv. In spherical coordinates: Volume = dv = S π π/4 S ρ sin φ dρ dφ dθ.. onvert order. 4 4 x x/4 4 x fx, y, z dz dy dx to an integral in dy dx dz order and to integrals in dx dz dy

4 M7Q Multivariable alculus Review Problems for Exam - Page 4 of z x y 4 4z 4 x In dxdzdy order two integrals are required. y /4 4 y 4 x fx, y, z dy dx dz. fx, y, z dx dz dy + y /4 4 4z fx, y, z dx dz dy. Express, as an iterated triple integral, the volume of the solid given by x + y z x + 4y + 4. The surfaces intersect when x + y = x + 4y + 4, i.e. x + y = 9, so the projection in the xy-plane is a circle of radius centered at, x x+4y+4 V = dz dy dx 9 x x +y. ircle whether the following quantities are vectors, scalars, or are nonsensical that is, the statement is not defined or does not make sense: Vector Scalar Nonsense f Vector Scalar Nonsense F Vector Scalar Nonsense F Vector Scalar Nonsense F Vector Scalar Nonsense f. Sketch the domain of integration and express as an iterated integral in the opposite order. Do not evaluate the integral. e e x fx, y dy dx Since y = e x implies ln y = x, our integral is: e ln y fx, y dx dy 4. Evaluate y + x da, where D is the region bounded by y = x, x = and the x axis. D

5 M7Q Multivariable alculus Review Problems for Exam - Page 5 of D is shown above. So our integral is + x, we get 4 x u du = 4 ln 4 ln = ln. 4 y + x dy dx = x dx, which when letting u = + x 5. Evaluate D e y da, where D is the region bounded by x y, x 4. If we choose to integrate in y first, e y has no elementary antiderivative. Thus we should integrate in y x first. We get e y dx dy = ye y dy = e u du = e Evaluate the volume of the solid under fx, y = x + over the triangle with vertices,, 5,,, 5, pictured below. This is neither a horizontally nor vertically simple region, so we must use a sum of two integrals regardless of whether we select to integrate in x or y first. Let s choose to integrate in y.

6 M7Q Multivariable alculus Review Problems for Exam - Page 6 of The line between, and 5, is, finding the equation from two points: y = x +. The line between, and, 5 is y = x. The line between, 5 and 5, is y = 8 x. So we will get x 5 8 x two integrals: x + dy dx + x + dy dx. x+ For our first integral, x x+ 7 9 =. For our second integral, = 5 5 x+ x + dy dx = 8 x x+ 5 x x + dx = x + dy dx = Thus the volume of this region is + 4 = 4 5 x x x + dx = 5 x + x + 5 dx = 4. 8 x x x + dx x dx = 7. alculate the line integrals, a x + y ds where is the straight line segment from, to 4, 6. xt = + t, yt = + 4t, t 4t + 4 dt = + 7t5 dt = 65 x + y ds = + t + + b c x dy y dx where is the semi-circle x + y = 4, y, oriented counterclockwise. xt = cos t, yt = sin t, t π π 4 cos t + 4 sin tdt = π 4dt = 4π. π F dr, where Fx, y =< x + y, x y > and is as pictured. cos t cos t sin t sintdt =

7 M7Q Multivariable alculus Review Problems for Exam - Page 7 of Evaluate Let P x, y = x+y and Qx, y = x y. Then P y = = Q, and F is conservative x with fx, y = x +xy y a potential function for F. Thus, F dr = f, f, = 4+ = integral represent? ds where the curve is parametrized by rt = 4t, t, t for t 5. What does this This integral represents the length of the curve. r t = 4,,. So r t = =. ds = dt = 5 = alculate the total mass of a metal tube in the helical shape rt = cost, sint, t distance in centimeters for t π if the mass density is δx, y, z = z g/cm. To find the total mass M, we must calculate δds where is parametrized by rt. r t = sin t, cos t, t, so r t = sin t + cos t + 4t = π + 4t. So M = δds = t + 4t dt. Let u = + 4t, du = 8t dt, so we have 8 +6π u / du = [ ] + 6π / = g.. Find the work done by the force field F = x, y, z on a particle moving along the piecewise linear path from,, to,,, and from,, to,,. Work is the line integral over the vector field, so we will split this into two line integrals over F, one for each line segment. The line segment from,, to,, has parametrization r t = t,, = t, t, t, with t. r t =,,, Fr t = t, 4t, t. So our line integral over the first line segment is t, 4t, t,, dt = t + 8t t dt = 8. Our second line segment has parametrization r t =,, + t,, = + t,, + t, with t. r t =,,, Fr t = + t, 4, t. Thus our line integral over the second line segment is + 8t + 8t + t t + dt = + t, 4, t,, dt = 9t + 6t + dt = + + = t + 4t, 4, t t +,, dt =

8 M7Q Multivariable alculus Review Problems for Exam - Page 8 of. Let F = x sinx, e y + e z, e y e z. a Show that F is not conservative. Notice that e y + e z = e z and e y e z = e y. Since these partials are z y not equal, F can not be conservative. b ompute F. F = x x sinx+ e y + e z + e y e z = sinx+x cosx+e y +e z y z c ompute F. F y F z, F z F x, F y F = e y + e z,,. x. Let d = x + y + z and F = x, y, z. d a Show that fx, y, z = lnd is a potential for F. Notice that fx, y, z = ln x + y + z = ln x + y + z, so f = x x + y + z, y x + y + z, z x + y + z = x, y, z. d b Find the divergence of F. Notice that x x d = x + y + z xx x + y + z = d x d 4. Similarly for the other partials we get F = d x d 4 + d y d 4 + d z d 4 = d d d 4 = d = x + y + z. c Verify that the curlf =. We calculate each component of the curl on a line below. z y x + y + z y zy z x + y + z = x + y + z yz x + y + z =, x z x + y + z z xz x x + y + z = x + y + z zx x + y + z =, y x x + y + z x yx y x + y + z = x + y + z xy x + y + z =. Since each component of the curl is, curl F =,,.. Let Fx, y, z be a vector field and rt, a t b be a parameterization of a curve. ircle the correct completion of each sentence. Vector Line Integral Scalar Line Integral Nonsense F dr Vector Line Integral Scalar Line Integral Nonsense F dr Vector Line Integral Scalar Line Integral Nonsense F ds Vector Line Integral Scalar Line Integral Nonsense F dr

9 M7Q Multivariable alculus Review Problems for Exam - Page 9 of 4. a ompute y, x dr where is the three quarters of the circle of radius oriented clockwise from, to,. We notice that y, x = f with fx, y = xy, so y, x dr = f, f, = =. b ompute y, x dr from, to,. where is the three quarters of the circle of radius oriented clockwise Since y, x is not conservative, we must parameterize the curve. One option is to notice that has the usual parameterization rt = cost, sint, π 4 t 7π 4, so y, x dr = 7π 4 π 4 sint, cost sint, cost dt = 7π 4 π 4 dt = π. 5. Let fx, y = e x +y. ompute f dr where is the line segment from, to,. f dr = f, f, = e 8 e 6. Let Fx, y = y + xy, x + xy a Find a potential function for F.. fx, y = arctanxy b alculate F dr where is any curve from the origin to a, a and a is any nonzero constant. F dr = arctanaa arctan = π Let Fx, y, z = x + y, y, z. a Show that F is not conservative. Notice that x y = and x + y =. Since these partial derivatives are not y equal, F cannot be conservative. b alculate the work done by the vector field Fx, y, z = x+y, y, z along the curve parameterized by rt = t, t, t, t.

10 M7Q Multivariable alculus Review Problems for Exam - Page of W = F dr = = t + t, t, t, t, t dt t + t + 4t + 6t 5 dt = t + t + t 4 + t 6 = 8. The following statement is false. If F is a gradient vector field, then the line integral of F along every curve is zero. Which single word must be added to make it true? LOSED path 9. Find a potential function for the vector field Fx, y, z =< z sec x, z, y + tan x >. fx, y, z = zy + z tanx.. Let fx, y, z = x yz, and let be a path with parameterization ct = Evaluate f dr. t, sin πt 4, t, t [, ]. et Alternative formulation: integrate over a piecewise defined curve. f dr = fc fc = f4,, f,, = 6. For what values of b and c will Fx, y, z = y + czx, ybx + cz, y + cx be a conservative gradient vector field? We want curlf =< cy,, b y >=, so b = c =.. a Is Fx, y, z =< x cos y, cos y x sin y, z > conservative? Justify your answer. F =,, x sin y + x sin y =<,, >, and all partial derivatives of component functions are continuous, so yes, F is conservative. b alculate F dr, where is the curve rt =< te t, tπ, + t >, t. If fx, y, z = x cos y + sin y + z, then f = F. So, F dr = fr fr.. Use Green s Theorem to calculate wedge shaped region pictured. x y dx + x ydy, where is the closed curve bounding the

11 M7Q Multivariable alculus Review Problems for Exam - Page of π/4 x y dx + x ydy = r r dr dθ = π/4 4 r4 R dθ = π. x y x y da = x y R x + y da = 4. Verify that the vector field Fx, y, z =< xy + z, x +, x + z > is conservative and calculate the work done by F in moving an object from,, to,,. F =,, z x =, so F is conservative. Let fx, y, z = x y + xz + z. Then f = F and the work done is W = F dr = f,, f,, = = alculate y dx + xy dy where is the counterclockwise oriented simple closed curve consisting of the piece of the parabola y = x between, and, together with the piece of the x axis between, and,. Use Green s theorem. y dx + xy dy = D x = y dx = x + x 4 dx = 8 5. y + y da = x y dy dx

### 1. If the line l has symmetric equations. = y 3 = z+2 find a vector equation for the line l that contains the point (2, 1, 3) and is parallel to l.

. If the line l has symmetric equations MA 6 PRACTICE PROBLEMS x = y = z+ 7, find a vector equation for the line l that contains the point (,, ) and is parallel to l. r = ( + t) i t j + ( + 7t) k B. r

### SOLUTIONS TO THE FINAL EXAM. December 14, 2010, 9:00am-12:00 (3 hours)

SOLUTIONS TO THE 18.02 FINAL EXAM BJORN POONEN December 14, 2010, 9:00am-12:00 (3 hours) 1) For each of (a)-(e) below: If the statement is true, write TRUE. If the statement is false, write FALSE. (Please

### Solutions for the Practice Final - Math 23B, 2016

olutions for the Practice Final - Math B, 6 a. True. The area of a surface is given by the expression d, and since we have a parametrization φ x, y x, y, f x, y with φ, this expands as d T x T y da xy

### 7a3 2. (c) πa 3 (d) πa 3 (e) πa3

1.(6pts) Find the integral x, y, z d S where H is the part of the upper hemisphere of H x 2 + y 2 + z 2 = a 2 above the plane z = a and the normal points up. ( 2 π ) Useful Facts: cos = 1 and ds = ±a sin

### Line and Surface Integrals. Stokes and Divergence Theorems

Math Methods 1 Lia Vas Line and urface Integrals. tokes and Divergence Theorems Review of urves. Intuitively, we think of a curve as a path traced by a moving particle in space. Thus, a curve is a function

### MATHS 267 Answers to Stokes Practice Dr. Jones

MATH 267 Answers to tokes Practice Dr. Jones 1. Calculate the flux F d where is the hemisphere x2 + y 2 + z 2 1, z > and F (xz + e y2, yz, z 2 + 1). Note: the surface is open (doesn t include any of the

### Final Exam Review Sheet : Comments and Selected Solutions

MATH 55 Applied Honors alculus III Winter Final xam Review heet : omments and elected olutions Note: The final exam will cover % among topics in chain rule, linear approximation, maximum and minimum values,

### Math 20C Homework 2 Partial Solutions

Math 2C Homework 2 Partial Solutions Problem 1 (12.4.14). Calculate (j k) (j + k). Solution. The basic properties of the cross product are found in Theorem 2 of Section 12.4. From these properties, we

### Without fully opening the exam, check that you have pages 1 through 10.

MTH 234 Solutions to Exam 2 April 11th 216 Name: Section: Recitation Instructor: INSTRUTIONS Fill in your name, etc. on this first page. Without fully opening the exam, check that you have pages 1 through

### Math 234 Exam 3 Review Sheet

Math 234 Exam 3 Review Sheet Jim Brunner LIST OF TOPIS TO KNOW Vector Fields lairaut s Theorem & onservative Vector Fields url Divergence Area & Volume Integrals Using oordinate Transforms hanging the

### Math Exam IV - Fall 2011

Math 233 - Exam IV - Fall 2011 December 15, 2011 - Renato Feres NAME: STUDENT ID NUMBER: General instructions: This exam has 16 questions, each worth the same amount. Check that no pages are missing and

### MA FINAL EXAM Form 01 May 1, 2017

MA 26100 FINAL EXAM Form 01 May 1, 2017 NAME STUDENT ID # YOUR TA S NAME RECITATION TIME 1. You must use a #2 pencil on the scantron 2. a. Write 01 in the TEST/QUIZ NUMBER boxes and darken the appropriate

### Section 17.4 Green s Theorem

Section 17.4 Green s Theorem alculating Line Integrals using ouble Integrals In the previous section, we saw an easy way to determine line integrals in the special case when a vector field F is conservative.

### MIDTERM EXAMINATION. Spring MTH301- Calculus II (Session - 3)

ASSALAM O ALAIKUM All Dear fellows ALL IN ONE MTH3 Calculus II Midterm solved papers Created BY Ali Shah From Sahiwal BSCS th semester alaoudin.bukhari@gmail.com Remember me in your prayers MIDTERM EXAMINATION

### 36. Double Integration over Non-Rectangular Regions of Type II

36. Double Integration over Non-Rectangular Regions of Type II When establishing the bounds of a double integral, visualize an arrow initially in the positive x direction or the positive y direction. A

### Ma 227 Final Exam Solutions 12/13/11

Ma 7 Final Exam Solutions /3/ Name: Lecture Section: (A and B: Prof. Levine, C: Prof. Brady) Problem a) ( points) Find the eigenvalues and eigenvectors of the matrix A. A 3 5 Solution. First we find the

### Practice problems for Exam 1. a b = (2) 2 + (4) 2 + ( 3) 2 = 29

Practice problems for Exam.. Given a = and b =. Find the area of the parallelogram with adjacent sides a and b. A = a b a ı j k b = = ı j + k = ı + 4 j 3 k Thus, A = 9. a b = () + (4) + ( 3)

### Math 210, Final Exam, Practice Fall 2009 Problem 1 Solution AB AC AB. cosθ = AB BC AB (0)(1)+( 4)( 2)+(3)(2)

Math 2, Final Exam, Practice Fall 29 Problem Solution. A triangle has vertices at the points A (,,), B (, 3,4), and C (2,,3) (a) Find the cosine of the angle between the vectors AB and AC. (b) Find an

### Math 147 Exam II Practice Problems

Math 147 Exam II Practice Problems This review should not be used as your sole source for preparation for the exam. You should also re-work all examples given in lecture, all homework problems, all lab

### Dimensions = xyz dv. xyz dv as an iterated integral in rectangular coordinates.

Math Show Your Work! Page of 8. () A rectangular box is to hold 6 cubic meters. The material used for the top and bottom of the box is twice as expensive per square meter than the material used for the

### MATH 2400 Final Exam Review Solutions

MATH Final Eam eview olutions. Find an equation for the collection of points that are equidistant to A, 5, ) and B6,, ). AP BP + ) + y 5) + z ) 6) y ) + z + ) + + + y y + 5 + z 6z + 9 + 6 + y y + + z +

### 18.02 Multivariable Calculus Fall 2007

MIT OpenourseWare http://ocw.mit.edu 18.02 Multivariable alculus Fall 2007 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. 18.02 Lecture 30. Tue, Nov

### 4B. Line Integrals in the Plane

4. Line Integrals in the Plane 4A. Plane Vector Fields 4A-1 Describe geometrically how the vector fields determined by each of the following vector functions looks. Tell for each what the largest region

### f dr. (6.1) f(x i, y i, z i ) r i. (6.2) N i=1

hapter 6 Integrals In this chapter we will look at integrals in more detail. We will look at integrals along a curve, and multi-dimensional integrals in 2 or more dimensions. In physics we use these integrals

### Parametric Curves. Calculus 2 Lia Vas

Calculus Lia Vas Parametric Curves In the past, we mostly worked with curves in the form y = f(x). However, this format does not encompass all the curves one encounters in applications. For example, consider

### Calculus I Review Solutions

Calculus I Review Solutions. Compare and contrast the three Value Theorems of the course. When you would typically use each. The three value theorems are the Intermediate, Mean and Extreme value theorems.

### SOLUTIONS TO HOMEWORK ASSIGNMENT #2, Math 253

SOLUTIONS TO HOMEWORK ASSIGNMENT #, Math 5. Find the equation of a sphere if one of its diameters has end points (, 0, 5) and (5, 4, 7). The length of the diameter is (5 ) + ( 4 0) + (7 5) = =, so the

### is a surface above the xy-plane over R.

Chapter 13 Multiple Integration Section 13.1Double Integrals over ectangular egions ecall the Definite Integral from Chapter 5 b a n * lim i f x dx f x x n i 1 b If f x 0 then f xdx is the area under the

### 1. (a) The volume of a piece of cake, with radius r, height h and angle θ, is given by the formula: [Yes! It s a piece of cake.]

1. (a The volume of a piece of cake, with radius r, height h and angle θ, is given by the formula: / 3 V (r,h,θ = 1 r θh. Calculate V r, V h and V θ. [Yes! It s a piece of cake.] V r = 1 r θh = rθh V h

### Math 3435 Homework Set 11 Solutions 10 Points. x= 1,, is in the disk of radius 1 centered at origin

Math 45 Homework et olutions Points. ( pts) The integral is, x + z y d = x + + z da 8 6 6 where is = x + z 8 x + z = 4 o, is the disk of radius centered on the origin. onverting to polar coordinates then

### Answer Key 1973 BC 1969 BC 24. A 14. A 24. C 25. A 26. C 27. C 28. D 29. C 30. D 31. C 13. C 12. D 12. E 3. A 32. B 27. E 34. C 14. D 25. B 26.

Answer Key 969 BC 97 BC. C. E. B. D 5. E 6. B 7. D 8. C 9. D. A. B. E. C. D 5. B 6. B 7. B 8. E 9. C. A. B. E. D. C 5. A 6. C 7. C 8. D 9. C. D. C. B. A. D 5. A 6. B 7. D 8. A 9. D. E. D. B. E. E 5. E.

### Problem Solving 1: Line Integrals and Surface Integrals

A. Line Integrals MASSACHUSETTS INSTITUTE OF TECHNOLOY Department of Physics Problem Solving 1: Line Integrals and Surface Integrals The line integral of a scalar function f ( xyz),, along a path C is

### Green s, Divergence, Stokes: Statements and First Applications

Math 425 Notes 12: Green s, Divergence, tokes: tatements and First Applications The Theorems Theorem 1 (Divergence (planar version)). Let F be a vector field in the plane. Let be a nice region of the plane

### Green s Theorem. MATH 311, Calculus III. J. Robert Buchanan. Fall Department of Mathematics. J. Robert Buchanan Green s Theorem

Green s Theorem MATH 311, alculus III J. obert Buchanan Department of Mathematics Fall 2011 Main Idea Main idea: the line integral around a positively oriented, simple closed curve is related to a double

### Section 14.1 Vector Functions and Space Curves

Section 14.1 Vector Functions and Space Curves Functions whose range does not consists of numbers A bulk of elementary mathematics involves the study of functions - rules that assign to a given input a

### Study Guide/Practice Exam 3

Study Guide/Practice Exam 3 This study guide/practice exam covers only the material since exam. The final exam, however, is cumulative so you should be sure to thoroughly study earlier material. The distribution

### Math 340 Final Exam December 16, 2006

Math 34 Final Exam December 6, 6. () Suppose A 3 4. a) Find the row-reduced echelon form of A. 3 4 so the row reduced echelon form is b) What is rank(a)? 3 4 4 The rank is two since there are two pivots.

### Math 263 Final. (b) The cross product is. i j k c. =< c 1, 1, 1 >

Math 63 Final Problem 1: [ points, 5 points to each part] Given the points P : (1, 1, 1), Q : (1,, ), R : (,, c 1), where c is a parameter, find (a) the vector equation of the line through P and Q. (b)

### 4.1 Analysis of functions I: Increase, decrease and concavity

4.1 Analysis of functions I: Increase, decrease and concavity Definition Let f be defined on an interval and let x 1 and x 2 denote points in that interval. a) f is said to be increasing on the interval

### MA 114 Worksheet Calendar Fall 2017

MA 4 Worksheet Calendar Fall 7 Thur, Aug 4: Worksheet Integration by parts Tues, Aug 9: Worksheet Partial fractions Thur, Aug 3: Worksheet3 Special trig integrals Tues, Sep 5: Worksheet4 Special trig integrals

### INTEGRAL CALCULUS DIFFERENTIATION UNDER THE INTEGRAL SIGN: Consider an integral involving one parameter and denote it as

INTEGRAL CALCULUS DIFFERENTIATION UNDER THE INTEGRAL SIGN: Consider an integral involving one parameter and denote it as, where a and b may be constants or functions of. To find the derivative of when

### Some common examples of vector fields: wind shear off an object, gravitational fields, electric and magnetic fields, etc

Vector Analysis Vector Fields Suppose a region in the plane or space is occupied by a moving fluid such as air or water. Imagine this fluid is made up of a very large number of particles that at any instant

### Department of Mathematical and Statistical Sciences University of Alberta

MATH 214 (R1) Winter 2008 Intermediate Calculus I Solutions to Problem Set #8 Completion Date: Friday March 14, 2008 Department of Mathematical and Statistical Sciences University of Alberta Question 1.

### MA 351 Fall 2007 Exam #1 Review Solutions 1

MA 35 Fall 27 Exam # Review Solutions THERE MAY BE TYPOS in these solutions. Please let me know if you find any.. Consider the two surfaces ρ 3 csc θ in spherical coordinates and r 3 in cylindrical coordinates.

### Polytechnic Institute of NYU MA 2132 Final Practice Answers Fall 2012

Polytechnic Institute of NYU MA Final Practice Answers Fall Studying from past or sample exams is NOT recommended. If you do, it should be only AFTER you know how to do all of the homework and worksheet

### V11. Line Integrals in Space

V11. Line Integrals in Space 1. urves in space. In order to generalize to three-space our earlier work with line integrals in the plane, we begin by recalling the relevant facts about parametrized space

### 234 Review Sheet 2 Solutions

4 Review Sheet Solutions. Find all the critical points of the following functions and apply the second derivative test. (a) f(x, y) (x y)(x + y) ( ) x f + y + (x y)x (x + y) + (x y) ( ) x + ( x)y x + x

### 1 st ORDER O.D.E. EXAM QUESTIONS

1 st ORDER O.D.E. EXAM QUESTIONS Question 1 (**) 4y + = 6x 5, x > 0. dx x Determine the solution of the above differential equation subject to the boundary condition is y = 1 at x = 1. Give the answer

### Practice Midterm Exam 1. Instructions. You have 60 minutes. No calculators allowed. Show all your work in order to receive full credit.

MATH202X-F01/UX1 Spring 2015 Practice Midterm Exam 1 Name: Answer Key Instructions You have 60 minutes No calculators allowed Show all your work in order to receive full credit 1 Consider the points P

### Arc Length and Surface Area in Parametric Equations

Arc Length and Surface Area in Parametric Equations MATH 211, Calculus II J. Robert Buchanan Department of Mathematics Spring 2011 Background We have developed definite integral formulas for arc length

### Calculus I Sample Final exam

Calculus I Sample Final exam Solutions [] Compute the following integrals: a) b) 4 x ln x) Substituting u = ln x, 4 x ln x) = ln 4 ln u du = u ln 4 ln = ln ln 4 Taking common denominator, using properties

### MA 114 Worksheet # 1: Improper Integrals

MA 4 Worksheet # : Improper Integrals. For each of the following, determine if the integral is proper or improper. If it is improper, explain why. Do not evaluate any of the integrals. (c) 2 0 2 2 x x

### = cos(cos(tan t)) ( sin(tan t)) d (tan t) = cos(cos(tan t)) ( sin(tan t)) sec 2 t., we get. 4x 3/4 f (t) 4 [ ln(f (t)) ] 3/4 f (t)

Tuesday, January 2 Solutions A review of some important calculus topics 1. Chain Rule: (a) Let h(t) = sin ( cos(tan t) ). Find the derivative with respect to t. Solution. d (h(t)) = d (sin(cos(tan t)))

### Dr. Sophie Marques. MAM1020S Tutorial 8 August Divide. 1. 6x 2 + x 15 by 3x + 5. Solution: Do a long division show your work.

Dr. Sophie Marques MAM100S Tutorial 8 August 017 1. Divide 1. 6x + x 15 by 3x + 5. 6x + x 15 = (x 3)(3x + 5) + 0. 1a 4 17a 3 + 9a + 7a 6 by 3a 1a 4 17a 3 + 9a + 7a 6 = (4a 3 3a + a + 3)(3a ) + 0 3. 1a

### S12.1 SOLUTIONS TO PROBLEMS 12 (ODD NUMBERS)

OLUTION TO PROBLEM 2 (ODD NUMBER) 2. The electric field is E = φ = 2xi + 2y j and at (2, ) E = 4i + 2j. Thus E = 2 5 and its direction is 2i + j. At ( 3, 2), φ = 6i + 4 j. Thus the direction of most rapid

### MATH 32A: MIDTERM 2 REVIEW. sin 2 u du z(t) = sin 2 t + cos 2 2

MATH 3A: MIDTERM REVIEW JOE HUGHES 1. Curvature 1. Consider the curve r(t) = x(t), y(t), z(t), where x(t) = t Find the curvature κ(t). 0 cos(u) sin(u) du y(t) = Solution: The formula for curvature is t

### Math 180, Final Exam, Fall 2012 Problem 1 Solution

Math 80, Final Exam, Fall 0 Problem Solution. Find the derivatives of the following functions: (a) ln(ln(x)) (b) x 6 + sin(x) e x (c) tan(x ) + cot(x ) (a) We evaluate the derivative using the Chain Rule.

### MATH 255 Applied Honors Calculus III Winter Homework 11. Due: Monday, April 18, 2011

MATH 255 Applied Honors Calculus III Winter 211 Homework 11 ue: Monday, April 18, 211 ection 17.7, pg. 1155: 5, 13, 19, 24. ection 17.8, pg. 1161: 3, 7, 13, 17 ection 17.9, pg. 1168: 3, 7, 19, 25. 17.7

### 11.6. Parametric Differentiation. Introduction. Prerequisites. Learning Outcomes

Parametric Differentiation 11.6 Introduction Sometimes the equation of a curve is not be given in Cartesian form y f(x) but in parametric form: x h(t), y g(t). In this Section we see how to calculate the

### t 2 + 2t dt = (t + 1) dt + 1 = arctan t x + 6 x(x 3)(x + 2) = A x +

MATH 06 0 Practice Exam #. (0 points) Evaluate the following integrals: (a) (0 points). t +t+7 This is an irreducible quadratic; its denominator can thus be rephrased via completion of the square as a

### SOME PROBLEMS YOU SHOULD BE ABLE TO DO

SOME PROBLEMS YOU SHOULD BE ABLE TO DO I ve attempted to make a list of the main calculations you should be ready for on the exam, and included a handful of the more important formulas. There are no examples

### 18.02 Multivariable Calculus Fall 2007

MIT OpenourseWare http://ocw.mit.edu 8.02 Multivariable alculus Fall 2007 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. 8.02 Lecture 8. hange of variables.

### 1 Area calculations. 1.1 Area of an ellipse or a part of it Without using parametric equations

Area calculations. Area of an ellipse or a part of it.. Without using parametric equations We calculate the area in the first quadrant. We start from the standard equation of the ellipse and we put that

### Integrated Calculus II Exam 1 Solutions 2/6/4

Integrated Calculus II Exam Solutions /6/ Question Determine the following integrals: te t dt. We integrate by parts: u = t, du = dt, dv = e t dt, v = dv = e t dt = e t, te t dt = udv = uv vdu = te t (

### Stokes Theorem. MATH 311, Calculus III. J. Robert Buchanan. Summer Department of Mathematics. J. Robert Buchanan Stokes Theorem

tokes Theorem MATH 311, alculus III J. Robert Buchanan Department of Mathematics ummer 2011 Background (1 of 2) Recall: Green s Theorem, M(x, y) dx + N(x, y) dy = R ( N x M ) da y where is a piecewise

### Here are some solutions to the sample problems assigned for Chapter 6.8 to 6.11.

Lecture 3 Appendi B: Some sample problems from Boas Here are some solutions to the sample problems assigned for Chapter 6.8 to 6.. 6.8: Solution: We want to practice doing closed line integrals of the

### University of Waterloo Final Examination MATH 116 Calculus 1 for Engineering

Last name (Print): First name (Print): UW Student ID Number: University of Waterloo Final Eamination MATH 116 Calculus 1 for Engineering Instructor: Matthew Douglas Johnston Section: 001 Date: Monday,

### Sudoku Puzzle A.P. Exam (Part B) Questions are from the 1997 and 1998 A.P. Exams A Puzzle by David Pleacher

Sudoku Puzzle A.P. Exam (Part B) Questions are from the 1997 and 1998 A.P. Exams A Puzzle by David Pleacher Solve the 4 multiple-choice problems below. A graphing calculator is required for some questions

### Basic Theory of Differential Equations

page 104 104 CHAPTER 1 First-Order Differential Equations 16. The following initial-value problem arises in the analysis of a cable suspended between two fixed points y = 1 a 1 + (y ) 2, y(0) = a, y (0)

### MATH503 - HOMEWORK #2. v k. + v i. (fv i ) = f v i. + v k. ) + u j (ɛ ijk. ) u j (ɛ jik

1 KO UNIVERITY Mon April 18, ollege of Arts and ciences Handout # Department of Physics Instructor: Alkan Kabakço lu MATH - HOMEWORK # 1 ( f) = Using Einstein notation and expressing x, y, x as e 1, e,

### Virtual University of Pakistan

Calculus II MTH31 Virtual University of Pakistan Knowledge beyond the boundaries 1 Table of Contents Lecture No. 1 Introduction....3 Lecture No. Values of function..7 Lecture No. 3 Elements of three dimensional

### THE UNIVERSITY OF WESTERN ONTARIO

Instructor s Name (Print) Student s Name (Print) Student s Signature THE UNIVERSITY OF WESTERN ONTARIO LONDON CANADA DEPARTMENTS OF APPLIED MATHEMATICS AND MATHEMATICS Calculus 1A Final Examination Code

### GRE Math Subject Test #5 Solutions.

GRE Math Subject Test #5 Solutions. 1. E (Calculus) Apply L Hôpital s Rule two times: cos(3x) 1 3 sin(3x) 9 cos(3x) lim x 0 = lim x 2 x 0 = lim 2x x 0 = 9. 2 2 2. C (Geometry) Note that a line segment

### Solutions to Math 41 Final Exam December 10, 2012

Solutions to Math 4 Final Exam December,. ( points) Find each of the following limits, with justification. If there is an infinite limit, then explain whether it is or. x ln(t + ) dt (a) lim x x (5 points)

### 4. Line Integrals in the Plane

4. Line Integrals in the Plane 4A. Plane Vector Fields 4A- a) All vectors in the field are identical; continuously differentiable everywhere. b) The vector at P has its tail at P and head at the origin;

### Problem 01 C. 50. What is the length of a line segment with a slope of 4/3, measured from the y-axis to a point (6,4)? B. 25 D. 75 A.

FE Review-Math 1 2 3 4 Problem 01 What is the length of a line segment with a slope of 4/3, measured from the y-axis to a point (6,4)? A. 10 B. 25 C. 50 D. 75 5 Problem 02 What is the general form of the

### 1 Vectors and the Scalar Product

1 Vectors and the Scalar Product 1.1 Vector Algebra vector in R n : an n-tuple of real numbers v = a 1, a 2,..., a n. For example, if n = 2 and a 1 = 1 and a 2 = 1, then w = 1, 1 is vector in R 2. Vectors

### (x + y) ds. 2 (1) dt = p Find the work done by the force eld. yzk

MATH Final Exam (Version 1) Solutions May 4, 11 S. F. Ellermeyer Name Instructions. Your work on this exam will be graded according to two criteria: mathematical correctness and clarity of presentation.

### 1969 AP Calculus BC: Section I

969 AP Calculus BC: Section I 9 Minutes No Calculator Note: In this eamination, ln denotes the natural logarithm of (that is, logarithm to the base e).. t The asymptotes of the graph of the parametric

### ( ) as a fraction. If both numerator and denominator are

A. Limits and Horizontal Asymptotes What you are finding: You can be asked to find lim f x x a (H.A.) problem is asking you find lim f x x ( ) and lim f x x ( ). ( ) or lim f x x ± ( ). Typically, a horizontal

### Calculus 1 Exam 1 MAT 250, Spring 2011 D. Ivanšić. Name: Show all your work!

Calculus 1 Exam 1 MAT 250, Spring 2011 D. Ivanšić Name: Show all your work! 1. (16pts) Use the graph of the function to answer the following. Justify your answer if a limit does not exist. lim x 2 f(x)

### (p) p(y) = (e) g(t) = (t + t 2 )(1 5t + 4t 2 ) (r) x(t) = sin(t) cos(t) tan(t) (s) f(x) = x ( 3 x + 5 x) (t) f(x) = 1 2 (x ) (u) f(x) = 4x3 3x 2

1. Find the derivative! (a) f(x) = x + x 2 x 3 + 1 (o) g(t) = sin(t) cos(t) tan(t) (b) f(x) = x + x 2 3 x 2 (c) f(x) = 1 x + 2 x 2 2 x + 312 (p) p(y) = 2 cos(y) + tan(y) sin(y) (d) h(t) = 2 t 3 + t 4 +

### 8. Set up the integral to determine the force on the side of a fish tank that has a length of 4 ft and a heght of 2 ft if the tank is full.

. Determine the volume of the solid formed by rotating the region bounded by y = 2 and y = 2 for 2 about the -ais. 2. Determine the volume of the solid formed by rotating the region bounded by the -ais

### PLEASE MARK YOUR ANSWERS WITH AN X, not a circle! 1. (a) (b) (c) (d) (e) 2. (a) (b) (c) (d) (e) (a) (b) (c) (d) (e) 4. (a) (b) (c) (d) (e)...

Math, Exam III November 6, 7 The Honor Code is in effect for this examination. All work is to be your own. No calculators. The exam lasts for hour and min. Be sure that your name is on every page in case

### Topic 5.5: Green s Theorem

Math 275 Notes Topic 5.5: Green s Theorem Textbook Section: 16.4 From the Toolbox (what you need from previous classes): omputing partial derivatives. Setting up and computing double integrals (this includes

### Introduction to Vector Calculus (29) SOLVED EXAMPLES. (d) B. C A. (f) a unit vector perpendicular to both B. = ˆ 2k = = 8 = = 8

Introduction to Vector Calculus (9) SOLVED EXAMPLES Q. If vector A i ˆ ˆj k, ˆ B i ˆ ˆj, C i ˆ 3j ˆ kˆ (a) A B (e) A B C (g) Solution: (b) A B (c) A. B C (d) B. C A then find (f) a unit vector perpendicular

### Solutions to Exam 2, Math 10560

Solutions to Exam, Math 6. Which of the following expressions gives the partial fraction decomposition of the function x + x + f(x = (x (x (x +? Solution: Notice that (x is not an irreducile factor. If

### AP Calculus AB Winter Break Packet Happy Holidays!

AP Calculus AB Winter Break Packet 04 Happy Holidays! Section I NO CALCULATORS MAY BE USED IN THIS PART OF THE EXAMINATION. Directions: Solve each of the following problems. After examining the form of

### Tangent Plane. Linear Approximation. The Gradient

Calculus 3 Lia Vas Tangent Plane. Linear Approximation. The Gradient The tangent plane. Let z = f(x, y) be a function of two variables with continuous partial derivatives. Recall that the vectors 1, 0,

### 5 Integrals reviewed Basic facts U-substitution... 4

Contents 5 Integrals reviewed 5. Basic facts............................... 5.5 U-substitution............................. 4 6 Integral Applications 0 6. Area between two curves.......................

### Green s Theorem Jeremy Orloff

Green s Theorem Jerem Orloff Line integrals and Green s theorem. Vector Fields Vector notation. In 8.4 we will mostl use the notation (v) = (a, b) for vectors. The other common notation (v) = ai + bj runs

### x 1. x n i + x 2 j (x 1, x 2, x 3 ) = x 1 j + x 3

Version: 4/1/06. Note: These notes are mostly from my 5B course, with the addition of the part on components and projections. Look them over to make sure that we are on the same page as regards inner-products,

### Errata for Vector and Geometric Calculus Printings 1-4

October 21, 2017 Errata for Vector and Geometric Calculus Printings 1-4 Note: p. m (n) refers to page m of Printing 4 and page n of Printings 1-3. p. 31 (29), just before Theorem 3.10. f x(h) = [f x][h]

### Find all points where the function is discontinuous. 1) Find all vertical asymptotes of the given function. x(x - 1) 2) f(x) =

Math 90 Final Review Find all points where the function is discontinuous. ) Find all vertical asymptotes of the given function. x(x - ) 2) f(x) = x3 + 4x Provide an appropriate response. 3) If x 3 f(x)

### Elements of Vector Calculus : Line and Surface Integrals

Elements of Vector Calculus : Line and Surface Integrals Lecture 2: Electromagnetic Theory Professor D. K. Ghosh, Physics Department, I.I.T., Bombay In this lecture we will talk about special functions

### Section 5.6. Integration By Parts. MATH 126 (Section 5.6) Integration By Parts The University of Kansas 1 / 10

Section 5.6 Integration By Parts MATH 126 (Section 5.6) Integration By Parts The University of Kansas 1 / 10 Integration By Parts Manipulating the Product Rule d dx (f (x) g(x)) = f (x) g (x) + f (x) g(x)

### 52. The Del Operator: Divergence and Curl

52. The Del Operator: Divergence and Curl Let F(x, y, z) = M(x, y, z), N(x, y, z), P(x, y, z) be a vector field in R 3. The del operator is represented by the symbol, and is written = x, y, z, or = x,

### Implicit Differentiation and Related Rates

Math 31A Discussion Session Week 5 Notes February 2 and 4, 2016 This week we re going to learn how to find tangent lines to curves which aren t necessarily graphs of functions, using an approach called