ESCI 342 Atmospheric Dynamics I Lesson 6 Scale Analysis

Size: px
Start display at page:

Download "ESCI 342 Atmospheric Dynamics I Lesson 6 Scale Analysis"

Transcription

1 ESCI 34 Atmospheric Dynmics I Lesson 6 Scle Anlysis SCALE ANALYSIS OF THE MOMENTUM EQUATIONS Not ll of the terms in the momentum equtions re sinificnt. If term is much smller thn the others then it is resonble to inore it under certin circumstnces. To ssess which terms cn be nelected, we ssin n order of mnitude to ll the vribles nd prmeters in the equtions. For scle nlysis we often don t ssin exct numbers just orders of mnitude. The orders of mnitude re ssined for specific scles of motion. For instnce, they would be quite different for the study of torndoes thn they would be for the study of hurricnes. The prmeters tht need to be scled re shown in the tble below: Nme Symbol Horizontl velocity U Verticl velocity W Horizontl lenth scle L Verticl lenth scle H Pressure chne P Density Time 1 = L /U Approprite scles for ech re determined s follows: Horizontl velocity, U: For most tmospheric circultions the u nd v components re of similr mnitude, nd so we use sinle scle prmeter, U, to represent both. Verticl velocity, W. Horizontl lenth scle, L: The horizontl lenth scle cn be defined in few wys. For wvelike fetures in the tmosphere it is usully tken to be one-fourth of the totl wvelenth, L 4. This is becuse the scle of the sptil velocity derivtives such s u xre of the order of U L(see fiure below). For vortex, L is tken to be the rdius R (not dimeter), since the sptil derivtive of velocity in vortex will be of the order of U R. 1 The time scle = L /U is clled the dvective time scle. It is the time it would tke for prcel of fluid to trvel the entire horizontl lenth of the flow. In very erly work (Chrney, J.G: On the scle of tmospheric motions, Geof. Publ., 17, 3-17; Burer, A.P., 1957: Scle considertion of plnetry motions of the tmosphere, Tellus, 10, ) horizontl scle of / ws postulted. This ws ltered to /4 in Phillips, N.A., 1963: Geostrophic motion, Rev. Geophys., 1,

2 Verticl lenth scle, H: The verticl lenth scle is the heiht of the circultion or disturbnce. Pressure chne, : The pressure chne is needed for terms involvin derivtives of the pressure. In the horizontl, this will be the rne between the mximum nd minimum pressures found movin horizontlly cross the circultion. In the verticl, it will be the mximum nd minimum pressures found movin verticlly throuh the circultion. There my be very lre differences for in the horizontl versus in the verticl. Time, : For the time scle we use the dvective time scle, defined s LU. P This is the time it would tke for prcel of fluid trvelin t speed U to trvel the distnce L. SYNOPTIC SCALE ANALYSIS OF THE HORIZONTAL MOMENTUM EQUATIONS For synoptic scles the followin orders of mnitude re pproprite: p Nme Symbol Order of mnitude Horizontl velocity U 10 m s 1 Verticl velocity W 0.01 m s 1 Horizontl distnce L 1000 km (10 6 m) Verticl distnce H 10 km (10 4 m) Pressure chne P Horizontl: 10 mb (10 3 P) Verticl: 1000 mb (10 5 P) Time = L /U 1 dy (10 5 s)

3 The followin prmeters re lso used: density 1 k m 3 kinemtic viscosity m s 1 ome rd s 1 ltitude 45 rdius of Erth m Usin these scles nd prmeters, the terms in the u-momentum eqution hve the followin orders of mnitude u t u u u v x y w u z uv tn uw 1 p x v sin w cos U /L U /L WU/H U / UW/ P/( L) U sin 45 W cos u u x y u z u (tn 1) v tn x w x U/L U/H U/ U/L W/L A similr nlysis for the v-momentum eqution is v t v v u v x y w v z u tn vw 1 p y u sin U /L U /L WU/H U / UW/ P/( L) U sin v v x y v z v tn 1 u tn x w tn w y U/L U/H U/ U/L W/ W/L Mny of the terms re very smll compred to others, nd cn be inored without sinificnt loss of ccurcy. We cn therefore inore the curvture terms, the viscous terms, nd the Coriolis term tht involves the verticl velocity. Inorin these terms yields much simpler version of the horizontl equtions of motions: u u u u 1 p u v w v sin (1) t x y z x v v v v 1 p u v w u sin () t x y z y 3

4 Note: We could hve lso inored the verticl dvection terms, but it is not too much of n inconvenience to keep them. By definin the Coriolis prmeter s f sin (3) the horizontl momentum equtions ssume the form Du 1 p fv (4) Dt x Dv 1 p fu (5) Dt y In vector form the horizontl momentum eqution is DV 1 p kˆ f V. (6) Dt In (6), ll derivtives nd vectors re horizontl, V u iˆv ˆj ˆ i ˆ j. x y The totl derivtive terms in (4), (5), nd (6) re known s the inertil terms. The terms on the riht-hnd-side re the pressure rdient nd Coriolis terms respectively. THE ROSSBY NUMBER Dividin the horizontl momentum eqution, (6), throuh by fv we et 1 DV 1 ˆ f V p k. f V Dt f V f V Usin the representtive scles the order of mnitude of these terms re U P 1 f L f U. The dimensionless combintion U/f L is defined s the Rossby number (nmed for Gustv Rossby), Ro U f L (7) GEOSTROPHIC BALANCE (VERY SMALL ROSSBY NUMBER) When the Rossby number is much less thn unity (Ro << 1), then the ccelertion (inertil) term cn be inored nd the only two terms left re the pressure rdient term nd the Coriolis term, which must be nerly in blnce. This is known s eostrophic blnce, nd the velocity in this cse is known s the eostrophic wind. 4

5 The momentum eqution in this cse reduces to kˆ 1 f V p which is solved for the eostrophic wind to yield 1 V ˆ k p, (8) f with wind speed (mnitude) equl to V p f 5. (9) CYCLOSTROPHIC BALANCE (VERY LARGE ROSSBY NUMBER) When the Rossby number is much reter thn unity (Ro >> 1) then the Coriolis term cn be inored. In this instnce the only terms tht re left re the ccelertion nd the pressure rdient terms, nd so the ccelertion is direct result of the pressure rdient force DV 1 p. (10) Dt This type of blnce is clled cyclostrophic. In cyclostrophic blnce the pressure rdient ccelertion is exctly tht required for the centripetl ccelertion, nd so we hve V c p r or r p Vc (11) where r is the rdius of curvture of the flow. GRADIENT BALANCE (ROSSBY NUMBER NEAR UNITY) If the Rossby number is of the order of unity (Ro ~ 1), then ll three terms must be retined. This is known s rdient blnce, nd the wind in this cse is known s the rdient wind. Detils of rdient wind will be discussed in future lesson. The followin tble summrized these results Ro Terms Blnce << 1 pressure rdient nd Coriolis eostrophic ~1 ccelertion, pressure rdient, nd Coriolis rdient >> 1 ccelertion nd pressure rdient cyclostrophic For lre-scle (synoptic scle) motion, the Rossby number is of the order (10m / s) Ro ~ (10 s )(10 m), which shows tht on these scles the tmosphere is close to bein in eostrophic blnce. Hence, the ctul wind should be close to the eostrophic wind.

6 INERTIAL FLOW (ROSSBY NUMBER EXACTLY EQUAL TO ONE) If the pressure rdient is exctly zero, then the inertil terms must exctly blnce the Coriolis term. 3 The blnce in this cse is clled inertil blnce, with the speed iven by V f r. (1) in In inertil blnce the flow is circulr, with rdius of R Vin f. Since by definition V is lwys positive, then R must be netive nd so inertil flow is nticyclonic. The period of the inertil flow is found by dividin the circumference of the inertil circle by the speed, r. (13) V f in The inertil period is shorter t hiher ltitudes, nd is infinity t the Equtor. MORE ON THE GEOSTROPHIC WIND The eostrophic wind is definition! On the synoptic scle the ctul wind should be close to the eostrophic wind (becuse Ro << 1), but will rrely be exctly equl to the eostrophic wind. The components of the eostrophic wind re 1 p u (14) f y 1 p v (15) f x The eostrophic wind is prllel to the isobrs with lower pressure to the left (in the Northern Hemisphere). The eostrophic wind speed is directly proportionl to the pressure rdient. In pressure coordintes, the eostrophic wind nd components re 1 ˆ 0 V ˆ k k Z f f (16) 1 0 Z u (17) f y f y 1 0 Z v (18) f x f x Therefore, on constnt pressure surfce The eostrophic wind is prllel to the isohypses with lower heihts to the left (in the Northern Hemisphere). 3 In this instnce the Rossby number would be exctly equl to one. However, Rossby number of one does not utomticlly imply inertil blnce, becuse when clcultin Rossby number we use chrcteristic orders of mnitude for the flow prmeters, not exct vlues. Only if the pressure rdient is exctly zero do we hve inertil blnce. Pure inertil flow rrely if ever occurs. However, there often is n inertil component to the flow. Inertil blnce plys role in some tmospheric phenomen such s nocturnl low-level jets. 6

7 The eostrophic wind speed is directly proportionl to the eopotentil heiht rdient. Another importnt feture of the eostrophic wind is tht it is non-diverent ( V 0 ) if f is constnt. The eostrophic wind is sometimes written in terms of the stremfunction,, defined s p f (in pressure coordintes ). where f nd re constnt. In this cse, the eostrophic wind is V kˆ (19) THE AGEOSTROPHIC WIND u v y x The difference between the ctul wind nd the eostrophic wind is clled the eostrophic wind. V V V () f (0) (1) Since the tmosphere is usully close to eostrophic blnce, the eostrophic wind is typiclly smll in comprison to the eostrophic wind. Horizontl diverence is very importnt mechnism for risin nd sinkin motions in the tmosphere. Since the eostrophic wind is non-diverent, ny diverence must be due to the eostrophic wind. Therefore, even thouht the eostrophic wind is smll, it is very importnt! 7

8 SCALE ANALYSIS OF THE VERTICAL MOMENTUM EQUATION Scle nlysis of the verticl momentum eqution proceeds s follows (note tht in this cse P is the verticl vrition in pressure, which is ~ 1000 mb or 10 5 P). w t w w u v x y w w z u v 1 p z u cos UW/L UW/L W /H U / P/H U cos w w x y w z w v tn u v x y W/L W/H W/ U/ U/L This nlysis shows tht the pressure rdient nd rvity terms re dominnt. Therefore, on the synoptic scle, the tmosphere cn be ssumed to be in hydrosttic blnce, nd the verticl momentum eqution simplifies to p. z A more riorous nlysis (see Mesoscle Meteoroloicl Modelin by Pielke) shows tht the hydrosttic reltion is pproprite if the verticl lenth scle is much smller thn the horizontl lenth scle, H << L. This condition certinly pplies on the synoptic scle. 8

9 EXERCISES 1. Perform scle nlysis of the horizontl momentum equtions (in component form) for the whirlpool formed s your bthroom sink drins. Which terms re importnt in this cse? Wter hs density of 1000 k/m 3 nd kinemtic viscosity of = m s 1. The horizontl pressure difference cross the whirlpool is ~ 10 P. (Use resonble estimte for the horizontl velocity bsed on your own experiences.). Wht is the Rossby number for torndo? Does the Coriolis force effect torndo? 3. Expnd the horizontl momentum eqution DV 1 p kˆ f V Dt to show tht in pure Crtesin-component form it is Du 1 p ˆ Dv 1 p fvi fu ˆj 0 Dt x Dt y, nd therefore yields the two component equtions Du 1 p fv Dt x 4. Show tht kˆ ( kˆ V ) V. Dv 1 p Dt y fu 9

10 5. At the four points shown in the picture below, estimte the mnitude of the eostrophic wind. Assume density of 1.3 k/m 3 nd ltitude of 45. The isobrs re lbeled in mb. 6. Perform scle nlysis of the verticl momentum eqution for midltitude thunderstorm to find out wht terms cn be inored. 10

ESCI 343 Atmospheric Dynamics II Lesson 14 Inertial/slantwise Instability

ESCI 343 Atmospheric Dynamics II Lesson 14 Inertial/slantwise Instability ESCI 343 Atmospheric Dynmics II Lesson 14 Inertil/slntwise Instbility Reference: An Introduction to Dynmic Meteorology (3 rd edition), J.R. Holton Atmosphere-Ocen Dynmics, A.E. Gill Mesoscle Meteorology

More information

Vorticity. curvature: shear: fluid elements moving in a straight line but at different speeds. t 1 t 2. ATM60, Shu-Hua Chen

Vorticity. curvature: shear: fluid elements moving in a straight line but at different speeds. t 1 t 2. ATM60, Shu-Hua Chen Vorticity We hve previously discussed the ngulr velocity s mesure of rottion of body. This is suitble quntity for body tht retins its shpe but fluid cn distort nd we must consider two components to rottion:

More information

Synoptic Meteorology I: Finite Differences September Partial Derivatives (or, Why Do We Care About Finite Differences?

Synoptic Meteorology I: Finite Differences September Partial Derivatives (or, Why Do We Care About Finite Differences? Synoptic Meteorology I: Finite Differences 16-18 September 2014 Prtil Derivtives (or, Why Do We Cre About Finite Differences?) With the exception of the idel gs lw, the equtions tht govern the evolution

More information

(3.2.3) r x x x y y y. 2. Average Velocity and Instantaneous Velocity 2 1, (3.2.2)

(3.2.3) r x x x y y y. 2. Average Velocity and Instantaneous Velocity 2 1, (3.2.2) Lecture 3- Kinemtics in Two Dimensions Durin our preious discussions we he been tlkin bout objects moin lon the striht line. In relity, howeer, it rrely hppens when somethin moes lon the striht pth. For

More information

Chapter E - Problems

Chapter E - Problems Chpter E - Problems Blinn Collee - Physic425 - Terry Honn Problem E.1 () Wht is the centripetl (rdil) ccelertion of point on the erth's equtor? (b) Give n expression for the centripetl ccelertion s function

More information

Plates on elastic foundation

Plates on elastic foundation Pltes on elstic foundtion Circulr elstic plte, xil-symmetric lod, Winkler soil (fter Timoshenko & Woinowsky-Krieger (1959) - Chpter 8) Prepred by Enzo Mrtinelli Drft version ( April 016) Introduction Winkler

More information

Physics 201 Lab 3: Measurement of Earth s local gravitational field I Data Acquisition and Preliminary Analysis Dr. Timothy C. Black Summer I, 2018

Physics 201 Lab 3: Measurement of Earth s local gravitational field I Data Acquisition and Preliminary Analysis Dr. Timothy C. Black Summer I, 2018 Physics 201 Lb 3: Mesurement of Erth s locl grvittionl field I Dt Acquisition nd Preliminry Anlysis Dr. Timothy C. Blck Summer I, 2018 Theoreticl Discussion Grvity is one of the four known fundmentl forces.

More information

Flow in porous media

Flow in porous media Red: Ch 2. nd 2.2 PART 4 Flow in porous medi Drcy s lw Imgine point (A) in column of wter (figure below); the point hs following chrcteristics: () elevtion z (2) pressure p (3) velocity v (4) density ρ

More information

Math 0230 Calculus 2 Lectures

Math 0230 Calculus 2 Lectures Mth Clculus Lectures Chpter 7 Applictions of Integrtion Numertion of sections corresponds to the text Jmes Stewrt, Essentil Clculus, Erly Trnscendentls, Second edition. Section 7. Ares Between Curves Two

More information

Math& 152 Section Integration by Parts

Math& 152 Section Integration by Parts Mth& 5 Section 7. - Integrtion by Prts Integrtion by prts is rule tht trnsforms the integrl of the product of two functions into other (idelly simpler) integrls. Recll from Clculus I tht given two differentible

More information

Answers to selected problems from Essential Physics, Chapter 3

Answers to selected problems from Essential Physics, Chapter 3 Answers to selected problems from Essentil Physics, Chpter 3 1. FBD 1 is the correct free-body dirm in ll five cses. As fr s forces re concerned, t rest nd constnt velocity situtions re equivlent. 3. ()

More information

Terminal Velocity and Raindrop Growth

Terminal Velocity and Raindrop Growth Terminl Velocity nd Rindrop Growth Terminl velocity for rindrop represents blnce in which weight mss times grvity is equl to drg force. F 3 π3 ρ L g in which is drop rdius, g is grvittionl ccelertion,

More information

Goals: Determine how to calculate the area described by a function. Define the definite integral. Explore the relationship between the definite

Goals: Determine how to calculate the area described by a function. Define the definite integral. Explore the relationship between the definite Unit #8 : The Integrl Gols: Determine how to clculte the re described by function. Define the definite integrl. Eplore the reltionship between the definite integrl nd re. Eplore wys to estimte the definite

More information

The momentum of a body of constant mass m moving with velocity u is, by definition, equal to the product of mass and velocity, that is

The momentum of a body of constant mass m moving with velocity u is, by definition, equal to the product of mass and velocity, that is Newtons Lws 1 Newton s Lws There re three lws which ber Newton s nme nd they re the fundmentls lws upon which the study of dynmics is bsed. The lws re set of sttements tht we believe to be true in most

More information

ESCI 343 Atmospheric Dynamics II Lesson 1 Ageostrophic Wind

ESCI 343 Atmospheric Dynamics II Lesson 1 Ageostrophic Wind ESCI 343 Atmospheric Dynamics II Lesson 1 Aeostrophic Wind References: An Introduction to Dynamic Meteoroloy (3 rd edition), J.R. Holton THE QG MOMENTUM EQUATIONS The QG momentum equations are derived

More information

Conservation Law. Chapter Goal. 5.2 Theory

Conservation Law. Chapter Goal. 5.2 Theory Chpter 5 Conservtion Lw 5.1 Gol Our long term gol is to understnd how mny mthemticl models re derived. We study how certin quntity chnges with time in given region (sptil domin). We first derive the very

More information

8A Review Solutions. Roger Mong. February 24, 2007

8A Review Solutions. Roger Mong. February 24, 2007 8A Review Solutions Roer Mon Ferury 24, 2007 Question We ein y doin Free Body Dirm on the mss m. Since the rope runs throuh the lock 3 times, the upwrd force on the lock is 3T. (Not ecuse there re 3 pulleys!)

More information

Chapter 4 Contravariance, Covariance, and Spacetime Diagrams

Chapter 4 Contravariance, Covariance, and Spacetime Diagrams Chpter 4 Contrvrince, Covrince, nd Spcetime Digrms 4. The Components of Vector in Skewed Coordintes We hve seen in Chpter 3; figure 3.9, tht in order to show inertil motion tht is consistent with the Lorentz

More information

First Semester Review Calculus BC

First Semester Review Calculus BC First Semester Review lculus. Wht is the coordinte of the point of inflection on the grph of Multiple hoice: No lcultor y 3 3 5 4? 5 0 0 3 5 0. The grph of piecewise-liner function f, for 4, is shown below.

More information

INTRODUCTION. The three general approaches to the solution of kinetics problems are:

INTRODUCTION. The three general approaches to the solution of kinetics problems are: INTRODUCTION According to Newton s lw, prticle will ccelerte when it is subjected to unblnced forces. Kinetics is the study of the reltions between unblnced forces nd the resulting chnges in motion. The

More information

State space systems analysis (continued) Stability. A. Definitions A system is said to be Asymptotically Stable (AS) when it satisfies

State space systems analysis (continued) Stability. A. Definitions A system is said to be Asymptotically Stable (AS) when it satisfies Stte spce systems nlysis (continued) Stbility A. Definitions A system is sid to be Asymptoticlly Stble (AS) when it stisfies ut () = 0, t > 0 lim xt () 0. t A system is AS if nd only if the impulse response

More information

Question 1: Figure 1: Schematic

Question 1: Figure 1: Schematic Question : θ Figure : Schemtic Consider chnnel of height with rectngulr cross section s shown in the sketch. A hinged plnk of length L < nd t n ngle θ is locted t the center of the chnnel. You my ssume

More information

APPLICATIONS OF THE DEFINITE INTEGRAL

APPLICATIONS OF THE DEFINITE INTEGRAL APPLICATIONS OF THE DEFINITE INTEGRAL. Volume: Slicing, disks nd wshers.. Volumes by Slicing. Suppose solid object hs boundries extending from x =, to x = b, nd tht its cross-section in plne pssing through

More information

PART 1 MULTIPLE CHOICE Circle the appropriate response to each of the questions below. Each question has a value of 1 point.

PART 1 MULTIPLE CHOICE Circle the appropriate response to each of the questions below. Each question has a value of 1 point. PART MULTIPLE CHOICE Circle the pproprite response to ech of the questions below. Ech question hs vlue of point.. If in sequence the second level difference is constnt, thn the sequence is:. rithmetic

More information

4.4 Areas, Integrals and Antiderivatives

4.4 Areas, Integrals and Antiderivatives . res, integrls nd ntiderivtives 333. Ares, Integrls nd Antiderivtives This section explores properties of functions defined s res nd exmines some connections mong res, integrls nd ntiderivtives. In order

More information

A REVIEW OF CALCULUS CONCEPTS FOR JDEP 384H. Thomas Shores Department of Mathematics University of Nebraska Spring 2007

A REVIEW OF CALCULUS CONCEPTS FOR JDEP 384H. Thomas Shores Department of Mathematics University of Nebraska Spring 2007 A REVIEW OF CALCULUS CONCEPTS FOR JDEP 384H Thoms Shores Deprtment of Mthemtics University of Nebrsk Spring 2007 Contents Rtes of Chnge nd Derivtives 1 Dierentils 4 Are nd Integrls 5 Multivrite Clculus

More information

Explain shortly the meaning of the following eight words in relation to shells structures.

Explain shortly the meaning of the following eight words in relation to shells structures. Delft University of Technology Fculty of Civil Engineering nd Geosciences Structurl Mechnics Section Write your nme nd study number t the top right-hnd of your work. Exm CIE4143 Shell Anlysis Tuesdy 15

More information

Review of Calculus, cont d

Review of Calculus, cont d Jim Lmbers MAT 460 Fll Semester 2009-10 Lecture 3 Notes These notes correspond to Section 1.1 in the text. Review of Clculus, cont d Riemnn Sums nd the Definite Integrl There re mny cses in which some

More information

Mathematics of Motion II Projectiles

Mathematics of Motion II Projectiles Chmp+ Fll 2001 Dn Stump 1 Mthemtics of Motion II Projectiles Tble of vribles t time v velocity, v 0 initil velocity ccelertion D distnce x position coordinte, x 0 initil position x horizontl coordinte

More information

Trigonometric Functions

Trigonometric Functions Exercise. Degrees nd Rdins Chpter Trigonometric Functions EXERCISE. Degrees nd Rdins 4. Since 45 corresponds to rdin mesure of π/4 rd, we hve: 90 = 45 corresponds to π/4 or π/ rd. 5 = 7 45 corresponds

More information

Linear Approximation and the Fundamental Theorem of Calculus

Linear Approximation and the Fundamental Theorem of Calculus Mth 3A Discussion Session Week 9 Notes Mrch nd 3, 26 Liner Approimtion nd the Fundmentl Theorem of Clculus We hve three primry ols in tody s discussion of the fundmentl theorem of clculus. By the end of

More information

Unit #9 : Definite Integral Properties; Fundamental Theorem of Calculus

Unit #9 : Definite Integral Properties; Fundamental Theorem of Calculus Unit #9 : Definite Integrl Properties; Fundmentl Theorem of Clculus Gols: Identify properties of definite integrls Define odd nd even functions, nd reltionship to integrl vlues Introduce the Fundmentl

More information

Not for reproduction

Not for reproduction AREA OF A SURFACE OF REVOLUTION cut h FIGURE FIGURE πr r r l h FIGURE A surfce of revolution is formed when curve is rotted bout line. Such surfce is the lterl boundry of solid of revolution of the type

More information

Improper Integrals. Type I Improper Integrals How do we evaluate an integral such as

Improper Integrals. Type I Improper Integrals How do we evaluate an integral such as Improper Integrls Two different types of integrls cn qulify s improper. The first type of improper integrl (which we will refer to s Type I) involves evluting n integrl over n infinite region. In the grph

More information

Physics 9 Fall 2011 Homework 2 - Solutions Friday September 2, 2011

Physics 9 Fall 2011 Homework 2 - Solutions Friday September 2, 2011 Physics 9 Fll 0 Homework - s Fridy September, 0 Mke sure your nme is on your homework, nd plese box your finl nswer. Becuse we will be giving prtil credit, be sure to ttempt ll the problems, even if you

More information

The Wave Equation I. MA 436 Kurt Bryan

The Wave Equation I. MA 436 Kurt Bryan 1 Introduction The Wve Eqution I MA 436 Kurt Bryn Consider string stretching long the x xis, of indeterminte (or even infinite!) length. We wnt to derive n eqution which models the motion of the string

More information

Applications of Bernoulli s theorem. Lecture - 7

Applications of Bernoulli s theorem. Lecture - 7 Applictions of Bernoulli s theorem Lecture - 7 Prcticl Applictions of Bernoulli s Theorem The Bernoulli eqution cn be pplied to gret mny situtions not just the pipe flow we hve been considering up to now.

More information

5.7 Improper Integrals

5.7 Improper Integrals 458 pplictions of definite integrls 5.7 Improper Integrls In Section 5.4, we computed the work required to lift pylod of mss m from the surfce of moon of mss nd rdius R to height H bove the surfce of the

More information

Motion of Electrons in Electric and Magnetic Fields & Measurement of the Charge to Mass Ratio of Electrons

Motion of Electrons in Electric and Magnetic Fields & Measurement of the Charge to Mass Ratio of Electrons n eperiment of the Electron topic Motion of Electrons in Electric nd Mgnetic Fields & Mesurement of the Chrge to Mss Rtio of Electrons Instructor: 梁生 Office: 7-318 Emil: shling@bjtu.edu.cn Purposes 1.

More information

Before we can begin Ch. 3 on Radicals, we need to be familiar with perfect squares, cubes, etc. Try and do as many as you can without a calculator!!!

Before we can begin Ch. 3 on Radicals, we need to be familiar with perfect squares, cubes, etc. Try and do as many as you can without a calculator!!! Nme: Algebr II Honors Pre-Chpter Homework Before we cn begin Ch on Rdicls, we need to be fmilir with perfect squres, cubes, etc Try nd do s mny s you cn without clcultor!!! n The nth root of n n Be ble

More information

Math 8 Winter 2015 Applications of Integration

Math 8 Winter 2015 Applications of Integration Mth 8 Winter 205 Applictions of Integrtion Here re few importnt pplictions of integrtion. The pplictions you my see on n exm in this course include only the Net Chnge Theorem (which is relly just the Fundmentl

More information

Math 124A October 04, 2011

Math 124A October 04, 2011 Mth 4A October 04, 0 Viktor Grigoryn 4 Vibrtions nd het flow In this lecture we will derive the wve nd het equtions from physicl principles. These re second order constnt coefficient liner PEs, which model

More information

Consequently, the temperature must be the same at each point in the cross section at x. Let:

Consequently, the temperature must be the same at each point in the cross section at x. Let: HW 2 Comments: L1-3. Derive the het eqution for n inhomogeneous rod where the therml coefficients used in the derivtion of the het eqution for homogeneous rod now become functions of position x in the

More information

A. Limits - L Hopital s Rule ( ) How to find it: Try and find limits by traditional methods (plugging in). If you get 0 0 or!!, apply C.! 1 6 C.

A. Limits - L Hopital s Rule ( ) How to find it: Try and find limits by traditional methods (plugging in). If you get 0 0 or!!, apply C.! 1 6 C. A. Limits - L Hopitl s Rule Wht you re finding: L Hopitl s Rule is used to find limits of the form f ( x) lim where lim f x x! c g x ( ) = or lim f ( x) = limg( x) = ". ( ) x! c limg( x) = 0 x! c x! c

More information

5.2 Volumes: Disks and Washers

5.2 Volumes: Disks and Washers 4 pplictions of definite integrls 5. Volumes: Disks nd Wshers In the previous section, we computed volumes of solids for which we could determine the re of cross-section or slice. In this section, we restrict

More information

Homework # 4 Solution Key

Homework # 4 Solution Key PHYSICS 631: Generl Reltivity 1. 6.30 Homework # 4 Solution Key The metric for the surfce of cylindr of rdius, R (fixed), for coordintes z, φ ( ) 1 0 g µν = 0 R 2 In these coordintes ll derivtives with

More information

( dg. ) 2 dt. + dt. dt j + dh. + dt. r(t) dt. Comparing this equation with the one listed above for the length of see that

( dg. ) 2 dt. + dt. dt j + dh. + dt. r(t) dt. Comparing this equation with the one listed above for the length of see that Arc Length of Curves in Three Dimensionl Spce If the vector function r(t) f(t) i + g(t) j + h(t) k trces out the curve C s t vries, we cn mesure distnces long C using formul nerly identicl to one tht we

More information

Conducting Ellipsoid and Circular Disk

Conducting Ellipsoid and Circular Disk 1 Problem Conducting Ellipsoid nd Circulr Disk Kirk T. McDonld Joseph Henry Lbortories, Princeton University, Princeton, NJ 08544 (September 1, 00) Show tht the surfce chrge density σ on conducting ellipsoid,

More information

In-Class Problems 2 and 3: Projectile Motion Solutions. In-Class Problem 2: Throwing a Stone Down a Hill

In-Class Problems 2 and 3: Projectile Motion Solutions. In-Class Problem 2: Throwing a Stone Down a Hill MASSACHUSETTS INSTITUTE OF TECHNOLOGY Deprtment of Physics Physics 8T Fll Term 4 In-Clss Problems nd 3: Projectile Motion Solutions We would like ech group to pply the problem solving strtegy with the

More information

APPROXIMATE INTEGRATION

APPROXIMATE INTEGRATION APPROXIMATE INTEGRATION. Introduction We hve seen tht there re functions whose nti-derivtives cnnot be expressed in closed form. For these resons ny definite integrl involving these integrnds cnnot be

More information

potentials A z, F z TE z Modes We use the e j z z =0 we can simply say that the x dependence of E y (1)

potentials A z, F z TE z Modes We use the e j z z =0 we can simply say that the x dependence of E y (1) 3e. Introduction Lecture 3e Rectngulr wveguide So fr in rectngulr coordintes we hve delt with plne wves propgting in simple nd inhomogeneous medi. The power density of plne wve extends over ll spce. Therefore

More information

Definition of Continuity: The function f(x) is continuous at x = a if f(a) exists and lim

Definition of Continuity: The function f(x) is continuous at x = a if f(a) exists and lim Mth 9 Course Summry/Study Guide Fll, 2005 [1] Limits Definition of Limit: We sy tht L is the limit of f(x) s x pproches if f(x) gets closer nd closer to L s x gets closer nd closer to. We write lim f(x)

More information

Fig. 1. Open-Loop and Closed-Loop Systems with Plant Variations

Fig. 1. Open-Loop and Closed-Loop Systems with Plant Variations ME 3600 Control ystems Chrcteristics of Open-Loop nd Closed-Loop ystems Importnt Control ystem Chrcteristics o ensitivity of system response to prmetric vritions cn be reduced o rnsient nd stedy-stte responses

More information

ME 141. Lecture 10: Kinetics of particles: Newton s 2 nd Law

ME 141. Lecture 10: Kinetics of particles: Newton s 2 nd Law ME 141 Engineering Mechnics Lecture 10: Kinetics of prticles: Newton s nd Lw Ahmd Shhedi Shkil Lecturer, Dept. of Mechnicl Engg, BUET E-mil: sshkil@me.buet.c.bd, shkil6791@gmil.com Website: techer.buet.c.bd/sshkil

More information

and that at t = 0 the object is at position 5. Find the position of the object at t = 2.

and that at t = 0 the object is at position 5. Find the position of the object at t = 2. 7.2 The Fundmentl Theorem of Clculus 49 re mny, mny problems tht pper much different on the surfce but tht turn out to be the sme s these problems, in the sense tht when we try to pproimte solutions we

More information

AP Physics 1. Slide 1 / 71. Slide 2 / 71. Slide 3 / 71. Circular Motion. Topics of Uniform Circular Motion (UCM)

AP Physics 1. Slide 1 / 71. Slide 2 / 71. Slide 3 / 71. Circular Motion. Topics of Uniform Circular Motion (UCM) Slide 1 / 71 Slide 2 / 71 P Physics 1 irculr Motion 2015-12-02 www.njctl.org Topics of Uniform irculr Motion (UM) Slide 3 / 71 Kinemtics of UM lick on the topic to go to tht section Period, Frequency,

More information

Vadose Zone Hydrology

Vadose Zone Hydrology Objectives Vdose Zone Hydrology 1. Review bsic concepts nd terminology of soil physics. 2. Understnd the role of wter-tble dynmics in GW-SW interction. Drcy s lw is useful in region A. Some knowledge of

More information

MASTER CLASS PROGRAM UNIT 4 SPECIALIST MATHEMATICS WEEK 11 WRITTEN EXAMINATION 2 SOLUTIONS SECTION 1 MULTIPLE CHOICE QUESTIONS

MASTER CLASS PROGRAM UNIT 4 SPECIALIST MATHEMATICS WEEK 11 WRITTEN EXAMINATION 2 SOLUTIONS SECTION 1 MULTIPLE CHOICE QUESTIONS MASTER CLASS PROGRAM UNIT 4 SPECIALIST MATHEMATICS WEEK WRITTEN EXAMINATION SOLUTIONS FOR ERRORS AND UPDATES, PLEASE VISIT WWW.TSFX.COM.AU/MC-UPDATES SECTION MULTIPLE CHOICE QUESTIONS QUESTION QUESTION

More information

The Form of Hanging Slinky

The Form of Hanging Slinky Bulletin of Aichi Univ. of Eduction, 66Nturl Sciences, pp. - 6, Mrch, 07 The Form of Hnging Slinky Kenzi ODANI Deprtment of Mthemtics Eduction, Aichi University of Eduction, Kriy 448-854, Jpn Introduction

More information

Model Solutions to Assignment 4

Model Solutions to Assignment 4 Oberlin College Physics 110, Fll 2011 Model Solutions to Assignment 4 Additionl problem 56: A girl, sled, nd n ice-covered lke geometry digrm: girl shore rope sled ice free body digrms: force on girl by

More information

UCSD Phys 4A Intro Mechanics Winter 2016 Ch 4 Solutions

UCSD Phys 4A Intro Mechanics Winter 2016 Ch 4 Solutions USD Phys 4 Intro Mechnics Winter 06 h 4 Solutions 0. () he 0.0 k box restin on the tble hs the free-body dir shown. Its weiht 0.0 k 9.80 s 96 N. Since the box is t rest, the net force on is the box ust

More information

KINEMATICS OF RIGID BODIES

KINEMATICS OF RIGID BODIES KINEMTICS OF RIGID ODIES Introduction In rigid body kinemtics, e use the reltionships governing the displcement, velocity nd ccelertion, but must lso ccount for the rottionl motion of the body. Description

More information

Mathematics Extension 2

Mathematics Extension 2 00 HIGHER SCHOOL CERTIFICATE EXAMINATION Mthemtics Etension Generl Instructions Reding time 5 minutes Working time hours Write using blck or blue pen Bord-pproved clcultors my be used A tble of stndrd

More information

Math 426: Probability Final Exam Practice

Math 426: Probability Final Exam Practice Mth 46: Probbility Finl Exm Prctice. Computtionl problems 4. Let T k (n) denote the number of prtitions of the set {,..., n} into k nonempty subsets, where k n. Argue tht T k (n) kt k (n ) + T k (n ) by

More information

Indefinite Integral. Chapter Integration - reverse of differentiation

Indefinite Integral. Chapter Integration - reverse of differentiation Chpter Indefinite Integrl Most of the mthemticl opertions hve inverse opertions. The inverse opertion of differentition is clled integrtion. For exmple, describing process t the given moment knowing the

More information

Math 113 Exam 2 Practice

Math 113 Exam 2 Practice Mth 3 Exm Prctice Februry 8, 03 Exm will cover 7.4, 7.5, 7.7, 7.8, 8.-3 nd 8.5. Plese note tht integrtion skills lerned in erlier sections will still be needed for the mteril in 7.5, 7.8 nd chpter 8. This

More information

Chapter 6 Notes, Larson/Hostetler 3e

Chapter 6 Notes, Larson/Hostetler 3e Contents 6. Antiderivtives nd the Rules of Integrtion.......................... 6. Are nd the Definite Integrl.................................. 6.. Are............................................ 6. Reimnn

More information

f(a+h) f(a) x a h 0. This is the rate at which

f(a+h) f(a) x a h 0. This is the rate at which M408S Concept Inventory smple nswers These questions re open-ended, nd re intended to cover the min topics tht we lerned in M408S. These re not crnk-out-n-nswer problems! (There re plenty of those in the

More information

US01CMTH02 UNIT Curvature

US01CMTH02 UNIT Curvature Stu mteril of BSc(Semester - I) US1CMTH (Rdius of Curvture nd Rectifiction) Prepred by Nilesh Y Ptel Hed,Mthemtics Deprtment,VPnd RPTPScience College US1CMTH UNIT- 1 Curvture Let f : I R be sufficiently

More information

Sample Problems for the Final of Math 121, Fall, 2005

Sample Problems for the Final of Math 121, Fall, 2005 Smple Problems for the Finl of Mth, Fll, 5 The following is collection of vrious types of smple problems covering sections.8,.,.5, nd.8 6.5 of the text which constitute only prt of the common Mth Finl.

More information

7.2 The Definite Integral

7.2 The Definite Integral 7.2 The Definite Integrl the definite integrl In the previous section, it ws found tht if function f is continuous nd nonnegtive, then the re under the grph of f on [, b] is given by F (b) F (), where

More information

f(x) dx, If one of these two conditions is not met, we call the integral improper. Our usual definition for the value for the definite integral

f(x) dx, If one of these two conditions is not met, we call the integral improper. Our usual definition for the value for the definite integral Improper Integrls Every time tht we hve evluted definite integrl such s f(x) dx, we hve mde two implicit ssumptions bout the integrl:. The intervl [, b] is finite, nd. f(x) is continuous on [, b]. If one

More information

Minnesota State University, Mankato 44 th Annual High School Mathematics Contest April 12, 2017

Minnesota State University, Mankato 44 th Annual High School Mathematics Contest April 12, 2017 Minnesot Stte University, Mnkto 44 th Annul High School Mthemtics Contest April, 07. A 5 ft. ldder is plced ginst verticl wll of uilding. The foot of the ldder rests on the floor nd is 7 ft. from the wll.

More information

Math Calculus with Analytic Geometry II

Math Calculus with Analytic Geometry II orem of definite Mth 5.0 with Anlytic Geometry II Jnury 4, 0 orem of definite If < b then b f (x) dx = ( under f bove x-xis) ( bove f under x-xis) Exmple 8 0 3 9 x dx = π 3 4 = 9π 4 orem of definite Problem

More information

Math 113 Exam 1-Review

Math 113 Exam 1-Review Mth 113 Exm 1-Review September 26, 2016 Exm 1 covers 6.1-7.3 in the textbook. It is dvisble to lso review the mteril from 5.3 nd 5.5 s this will be helpful in solving some of the problems. 6.1 Are Between

More information

Riemann Sums and Riemann Integrals

Riemann Sums and Riemann Integrals Riemnn Sums nd Riemnn Integrls Jmes K. Peterson Deprtment of Biologicl Sciences nd Deprtment of Mthemticl Sciences Clemson University August 26, 2013 Outline 1 Riemnn Sums 2 Riemnn Integrls 3 Properties

More information

4 The dynamical FRW universe

4 The dynamical FRW universe 4 The dynmicl FRW universe 4.1 The Einstein equtions Einstein s equtions G µν = T µν (7) relte the expnsion rte (t) to energy distribution in the universe. On the left hnd side is the Einstein tensor which

More information

Properties of Integrals, Indefinite Integrals. Goals: Definition of the Definite Integral Integral Calculations using Antiderivatives

Properties of Integrals, Indefinite Integrals. Goals: Definition of the Definite Integral Integral Calculations using Antiderivatives Block #6: Properties of Integrls, Indefinite Integrls Gols: Definition of the Definite Integrl Integrl Clcultions using Antiderivtives Properties of Integrls The Indefinite Integrl 1 Riemnn Sums - 1 Riemnn

More information

7.6 The Use of Definite Integrals in Physics and Engineering

7.6 The Use of Definite Integrals in Physics and Engineering Arknss Tech University MATH 94: Clculus II Dr. Mrcel B. Finn 7.6 The Use of Definite Integrls in Physics nd Engineering It hs been shown how clculus cn be pplied to find solutions to geometric problems

More information

Spherical Coordinates

Spherical Coordinates Sphericl Coordintes This is the coordinte system tht is most nturl to use - for obvious resons (e.g. NWP etc.). λ longitude (λ increses towrd est) ltitude ( increses towrd north) z rdil coordinte, locl

More information

ME 309 Fluid Mechanics Fall 2006 Solutions to Exam3. (ME309_Fa2006_soln3 Solutions to Exam 3)

ME 309 Fluid Mechanics Fall 2006 Solutions to Exam3. (ME309_Fa2006_soln3 Solutions to Exam 3) Fll 6 Solutions to Exm3 (ME39_F6_soln3 Solutions to Exm 3) Fll 6. ( pts totl) Unidirectionl Flow in Tringulr Duct (A Multiple-Choice Problem) We revisit n old friend, the duct with n equilterl-tringle

More information

New Expansion and Infinite Series

New Expansion and Infinite Series Interntionl Mthemticl Forum, Vol. 9, 204, no. 22, 06-073 HIKARI Ltd, www.m-hikri.com http://dx.doi.org/0.2988/imf.204.4502 New Expnsion nd Infinite Series Diyun Zhng College of Computer Nnjing University

More information

Riemann Sums and Riemann Integrals

Riemann Sums and Riemann Integrals Riemnn Sums nd Riemnn Integrls Jmes K. Peterson Deprtment of Biologicl Sciences nd Deprtment of Mthemticl Sciences Clemson University August 26, 203 Outline Riemnn Sums Riemnn Integrls Properties Abstrct

More information

a < a+ x < a+2 x < < a+n x = b, n A i n f(x i ) x. i=1 i=1

a < a+ x < a+2 x < < a+n x = b, n A i n f(x i ) x. i=1 i=1 Mth 33 Volume Stewrt 5.2 Geometry of integrls. In this section, we will lern how to compute volumes using integrls defined by slice nlysis. First, we recll from Clculus I how to compute res. Given the

More information

The Moving Center of Mass of a Leaking Bob

The Moving Center of Mass of a Leaking Bob The Moving Center of Mss of Leking Bob rxiv:1002.956v1 [physics.pop-ph] 21 Feb 2010 P. Arun Deprtment of Electronics, S.G.T.B. Khls College University of Delhi, Delhi 110 007, Indi. Februry 2, 2010 Abstrct

More information

ES.182A Topic 32 Notes Jeremy Orloff

ES.182A Topic 32 Notes Jeremy Orloff ES.8A Topic 3 Notes Jerem Orloff 3 Polr coordintes nd double integrls 3. Polr Coordintes (, ) = (r cos(θ), r sin(θ)) r θ Stndrd,, r, θ tringle Polr coordintes re just stndrd trigonometric reltions. In

More information

Lecture 13 - Linking E, ϕ, and ρ

Lecture 13 - Linking E, ϕ, and ρ Lecture 13 - Linking E, ϕ, nd ρ A Puzzle... Inner-Surfce Chrge Density A positive point chrge q is locted off-center inside neutrl conducting sphericl shell. We know from Guss s lw tht the totl chrge on

More information

INTRODUCTION TO INTEGRATION

INTRODUCTION TO INTEGRATION INTRODUCTION TO INTEGRATION 5.1 Ares nd Distnces Assume f(x) 0 on the intervl [, b]. Let A be the re under the grph of f(x). b We will obtin n pproximtion of A in the following three steps. STEP 1: Divide

More information

1 1D heat and wave equations on a finite interval

1 1D heat and wave equations on a finite interval 1 1D het nd wve equtions on finite intervl In this section we consider generl method of seprtion of vribles nd its pplictions to solving het eqution nd wve eqution on finite intervl ( 1, 2. Since by trnsltion

More information

Operations with Polynomials

Operations with Polynomials 38 Chpter P Prerequisites P.4 Opertions with Polynomils Wht you should lern: How to identify the leding coefficients nd degrees of polynomils How to dd nd subtrct polynomils How to multiply polynomils

More information

Physics 2135 Exam 3 April 21, 2015

Physics 2135 Exam 3 April 21, 2015 Em Totl hysics 2135 Em 3 April 21, 2015 Key rinted Nme: 200 / 200 N/A Rec. Sec. Letter: Five multiple choice questions, 8 points ech. Choose the best or most nerly correct nswer. 1. C Two long stright

More information

Space Curves. Recall the parametric equations of a curve in xy-plane and compare them with parametric equations of a curve in space.

Space Curves. Recall the parametric equations of a curve in xy-plane and compare them with parametric equations of a curve in space. Clculus 3 Li Vs Spce Curves Recll the prmetric equtions of curve in xy-plne nd compre them with prmetric equtions of curve in spce. Prmetric curve in plne x = x(t) y = y(t) Prmetric curve in spce x = x(t)

More information

Partial Derivatives. Limits. For a single variable function f (x), the limit lim

Partial Derivatives. Limits. For a single variable function f (x), the limit lim Limits Prtil Derivtives For single vrible function f (x), the limit lim x f (x) exists only if the right-hnd side limit equls to the left-hnd side limit, i.e., lim f (x) = lim f (x). x x + For two vribles

More information

NUMERICAL INTEGRATION. The inverse process to differentiation in calculus is integration. Mathematically, integration is represented by.

NUMERICAL INTEGRATION. The inverse process to differentiation in calculus is integration. Mathematically, integration is represented by. NUMERICAL INTEGRATION 1 Introduction The inverse process to differentition in clculus is integrtion. Mthemticlly, integrtion is represented by f(x) dx which stnds for the integrl of the function f(x) with

More information

Physics 319 Classical Mechanics. G. A. Krafft Old Dominion University Jefferson Lab Lecture 2

Physics 319 Classical Mechanics. G. A. Krafft Old Dominion University Jefferson Lab Lecture 2 Physics 319 Clssicl Mechnics G. A. Krfft Old Dominion University Jefferson Lb Lecture Undergrdute Clssicl Mechnics Spring 017 Sclr Vector or Dot Product Tkes two vectors s inputs nd yields number (sclr)

More information

The Fundamental Theorem of Calculus, Particle Motion, and Average Value

The Fundamental Theorem of Calculus, Particle Motion, and Average Value The Fundmentl Theorem of Clculus, Prticle Motion, nd Averge Vlue b Three Things to Alwys Keep In Mind: (1) v( dt p( b) p( ), where v( represents the velocity nd p( represents the position. b (2) v ( dt

More information

20 MATHEMATICS POLYNOMIALS

20 MATHEMATICS POLYNOMIALS 0 MATHEMATICS POLYNOMIALS.1 Introduction In Clss IX, you hve studied polynomils in one vrible nd their degrees. Recll tht if p(x) is polynomil in x, the highest power of x in p(x) is clled the degree of

More information

A5682: Introduction to Cosmology Course Notes. 4. Cosmic Dynamics: The Friedmann Equation. = GM s

A5682: Introduction to Cosmology Course Notes. 4. Cosmic Dynamics: The Friedmann Equation. = GM s 4. Cosmic Dynmics: The Friedmnn Eqution Reding: Chpter 4 Newtonin Derivtion of the Friedmnn Eqution Consider n isolted sphere of rdius R s nd mss M s, in uniform, isotropic expnsion (Hubble flow). The

More information

Pressure Wave Analysis of a Cylindrical Drum

Pressure Wave Analysis of a Cylindrical Drum Pressure Wve Anlysis of Cylindricl Drum Chris Clrk, Brin Anderson, Brin Thoms, nd Josh Symonds Deprtment of Mthemtics The University of Rochester, Rochester, NY 4627 (Dted: December, 24 In this pper, hypotheticl

More information

Newly Established Hydrometer Calibration Set Up at UM. Ümit Y. AKÇADAĞ, S. Eren SAN TÜBİTAK, Ulusal Metroloji Enstitüsü (UME) Gebze Kocaeli, Turkey

Newly Established Hydrometer Calibration Set Up at UM. Ümit Y. AKÇADAĞ, S. Eren SAN TÜBİTAK, Ulusal Metroloji Enstitüsü (UME) Gebze Kocaeli, Turkey Proceedins of the 7 th Interntionl Conference on Force, Mss, Torque nd Pressure Mesurements, IMEKO TC3, 7- Sept. 00, Istnbul, Turkey Newly Estblished Hydrometer Clibrtion Set Up t UM Ümit Y. AKÇADAĞ, S.

More information