The MAinzer MIcrotron MAMI:

Size: px
Start display at page:

Download "The MAinzer MIcrotron MAMI:"

Transcription

1 The MAinzer MIcrotron MAMI: An cw Electron-Accelerator for Nuclear-Physics Andreas Jankowiak Institut für Kernphysik Johannes Gutenberg Universität Mainz March 2007

2 ~ 1975: strong demand for cw e - in the some 100MeV to GeV range to perform coincidence experiments (Lindenberger and Pinkau Ausschuß, Livingston Report, Barnes Report) nc-copper structure in cw-operation: ~ 15kW/m 2m The straightforward way to reach 800MeV: A long Linear Accelerator with -400 sections -ca. 1km length MW rf power (and at 100µA only 80kW for the beam, η~0.6%) Andreas Jankowiak, Institut für Kernphysik, Johannes Gutenberg Universität Mainz 2

3 Possible solutions: Independent Orbit Re-Circulator Stretcher-Ring Linac 100MeV - ~GeV high energy gain / turn necessary (super conducting rf) low number of turns complex but flexible optics (achromatic, isochronous) excellent rf-amplitude and phase stability essential for good beam quality 100MeV - ~GeV Injektor high energies possible limited in average current somewhat limited in duty cycle (no real cw-operation) Andreas Jankowiak, Institut für Kernphysik, Johannes Gutenberg Universität Mainz 3

4 The basis of our solution (H. Herminghaus) Race Track Microtron (RTM), normal conducting e.g.: single pass energy gain 7.5MeV, 90 turns 675MeV total energy gain and only 170kW for 67.5kW of beam power (100µA) η=40% Andreas Jankowiak, Institut für Kernphysik, Johannes Gutenberg Universität Mainz 4

5 B=const. d E out =E Inj +z E magnet distance 2 R i i+1 R E = β e c B E= E max cos(ϕ s ) λ rf 1 E k rf z - ωt E Inj (β 1) static coherence-condition: dynamic coherence-condition: L 1 = k λ rf 2π (EInj + E) + 2 d = k λ e c B rf = n λ ( = 2π R) Andreas Jankowiak, Institut für Kernphysik, Johannes Gutenberg Universität Mainz 5 L i+ 1 L i rf e c B E = 2π n λ rf

6 Ingredients: 1) strong longitudinal focussing E : reference particle E max n=1: < ϕ s < ϕ s <0 k rf z - ω t Drift Lens Drift e.g. particle: arrives earlier, gains more energy has longer path lengths needs more time approaches reference particle Andreas Jankowiak, Institut für Kernphysik, Johannes Gutenberg Universität Mainz 6

7 Examples (development of synchronous phase ϕ during acceleration) RTM1, MAMI: 4MeV 15MeV, 18 turns, E=0.6MeV, d=1.67m RTM2, MAMI: 15MeV 180MeV, 51 turns, E=3.24MeV, d=5.60m ϕ [ ] ϕ s = turn ϕ [ ] ϕ s = turn β in = / β in = β in = / β in = Andreas Jankowiak, Institut für Kernphysik, Johannes Gutenberg Universität Mainz 7

8 i δep max ell δe [kev] 1i, 1000 ellreal 1i, (1) (2) Ψ Q (0) 1 = 10keV (4) e.g. ϕ s =-16, n=1 E=7.5MeV z=90 turns +500keV δep min 50 (3) φp min ell 0i, ellreal φp δφ 0i, max, [ ] rad rad Spur 1 Spur 2 Injection Extraction δφ=2-500kev Andreas Jankowiak, Institut für Kernphysik, Johannes Gutenberg Universität Mainz 8

9 Ingredients: 2) simple scheme for transverse focussing beam outside midplane of the dipole experiences vertical defocussing in the fringe field of the dipole. v v B v reverse field stripes B fringe field B 0 reverse field z By adjusting the reverse field, vertical defocussing of the fringe field can be compensated or even vertical focussing can be introduced! Andreas Jankowiak, Institut für Kernphysik, Johannes Gutenberg Universität Mainz 9

10 Ingredients: 2) simple scheme for transverse focussing Focussing (quadrupole singlets / doublets) only on linac axis! only few components focussing only in dispersion free region, no coupling of hor. and long. motion quadrupole doublet: 1/f doub ~ 1/f 2, focussing strength decreases with 1/E 2 increasing beta functions. e.g. horizontal beam ellipse RTM3 each 10th turn Due to pseudo damping of beam emittance during acceleration: 1 norm εx,y = εx,y β γ beam size stays nearly constant! Andreas Jankowiak, Institut für Kernphysik, Johannes Gutenberg Universität Mainz 10

11 Ingredients: 3) dipole field homogenization by surface correction coils deflection errors / longitudinal dynamic requires: B/B 0 ~ 10-4 B=1G RTM3 Dip2 B/B 0 = without correction B=1G RTM2 Dip2 B/B 0 = with correction Andreas Jankowiak, Institut für Kernphysik, Johannes Gutenberg Universität Mainz 11

12 The Mainz Microtron MAMI, scheme RTM 2 51 turns 180MeV B=0.55T 9 klystrons, 2.45GHz total power@100µa = 280kW E=7.5MeV ϕ s =-16 E=3.24MeV ϕ s =-16 B=0.10T E=0.6MeV ϕ s =-22 LINAC 3.5MeV 100kV thermionic + photo gun (pol. e - ) beam parameters: 100µA max cw current (86kW beam power) injector linac: σe=1.2kev ( ) ε x,n = m rad RTM 1 18 turns 14.9MeV RTM 1: σe=1.2kev ( ) ε x.n = m rad RTM 3 max. 90 turns 180MeV-855MeV in steps of 15MeV RTM 2: σe=2.8kev ( ) ε x,n = m rad B=1.28T RTM 3: σe=13kev ( ) ε x,n = m rad ε x,abs = m rad *) Increase in energy spread and emittance due to sr-effects Andreas Jankowiak, Institut für Kernphysik, Johannes Gutenberg Universität Mainz 12 *)

13 RTM tons, 1.28T, 90 turns 180MeV - 855MeV, 100µA Andreas Jankowiak, Institut für Kernphysik, Johannes Gutenberg Universität Mainz 13

14 The Mainz Microtron MAMI, Floorplan (1999) 1988: commissioning of injector linac 1989: re-commissioning of RTM 1 06/1990: re-commissioning of RTM : first 855MeV beam MAMI B : first experiment starts (A2) 885MeV, σ E =0.013MeV (0.001%) max. 103µA cw current ε h =8 nm rad, ε v =0.5 nm rad (allows for beam foci of ~µm) Halo: < 10-5 at r > 5 σ r Andreas Jankowiak, Institut für Kernphysik, Johannes Gutenberg Universität Mainz 14

15 Beam Diagnostic at MAMI: essential for fast machine setup Luminescence Monitor TM 110 -Cavity Monitor (ZnS-Screen, Position+Profile, Scanner (Position, non-invasive) invasive, very simple ) (Position+Profile, invasive) beam + Synchrotron Radiation Monitors (position + profile) + DCCT ( Förster-Sonde, current) on RTM3 linac axis + TM 010 -Cavity Monitor (Phase+Current, non-invasive) Andreas Jankowiak, Institut für Kernphysik, Johannes Gutenberg Universität Mainz 15

16 Beam Diagnostic at MAMI: essential for fast machine setup automatic beam steering through RTMs corrector magnets, angle x, y Linac-Axis SR-Monitor 10ns 10ns 0.1ms TM 110 -Cavity Monitor, Position x,y turn (in diagnostic pulse mode for each turn) turn x 1 y 1 x 2 y 2 ϕ I Andreas Jankowiak, Institut für Kernphysik, Johannes Gutenberg Universität Mainz 16

17 Beam Diagnostic at MAMI: very special Measurement of longitudinal phase space behind injector linac faraday-cup diaphragm cavity-deflector (16 khz-saw-tooth) horizontal phase video-in 3ps 408ps sync-out dipole (50 Hz-saw-tooth) vertical energy bunched electron beam E Intra Beam Streak Camera φ TV-screen 1 deg = 1.13 ps Andreas Jankowiak, Institut für Kernphysik, Johannes Gutenberg Universität Mainz 17

18 Specials: measurement and stabilization of beam energy Absolute energy calibration: using RTM3 dipole 1 as a spectrometer 2 R 9.80GHz TM 110 beam position monitor (well aligned with respect to linac axis) Measuring the average bending radius of turn 73 results in: ±140keV ( ± MeV (well defined position on linac axis and accurate measurement of beam position in turn No. 73) Andreas Jankowiak, Institut für Kernphysik, Johannes Gutenberg Universität Mainz 18

19 Energy stabilization: E < E < E L < L < L RTM GHz TM 010 -resonator (λ=30.6mm) Time of flight measurement in the last 180 extraction turn via relative phase measurement between two 9.80GHz resonators (TM 010 ). By selecting a proper longitudinal Q-value it is possible to use this phase signal to steer the RTM 3 injection phase to stabilize the output energy! λ 2 rf 2 λ9.80ghz = = 8.16 mm/mev = 96 /MeV E 7.5MeV With a phase resolution of better 0.1 we get an energy stabilization of: ~ 855MeV = GHz Cavities (free aperture 8mm): 18 / 32 / 44 / 52 / 90 turn 315 / 420 / 510 / 570 /855 MeV Andreas Jankowiak, Institut für Kernphysik, Johannes Gutenberg Universität Mainz 19

20 MAMI B operation hours Operation Time [h] 8000, , , , , ,00 Half year shutdown setup, for tuning, upgrading the beam polarized transfer development tunnel to 1.5GeV. unpolarized 4277h of 4428h total in the first 6 months+2d = 97% , ,00 Total of 90026h of operation (since 1991)! 0, Andreas Jankowiak, Institut für Kernphysik, Johannes Gutenberg Universität Mainz 20 year 1999: Approval of the MAMI C project! HDSM (855MeV 1.5GeV) as fourth stage of MAMI B

21 Why and How MAMI C 1999: new Collaborative Research Center SFB443 Many body structure of strongly interacting systems need for cw beam with E=1.5GeV but: preservation of the excellent beam quality of MAMI B machine shutdowns as short as possible no new buildings therefore: simple and reliable technology make use of the Institutes expertise and installations (normal conducting rf-systems and iron core electromagnets) Decision to add a fourth stage realising MAMI C Andreas Jankowiak, Institut für Kernphysik, Johannes Gutenberg Universität Mainz 21

22 A Race-Track-Microtron? E=855MeV E=1500MeV ( B = 1.28 T = const. ) t 2000t Andreas Jankowiak, Institut für Kernphysik, Johannes Gutenberg Universität Mainz 22

23 Double Sided Microtron (DSM) 250 t 250 t our solution 2000 to 2000 to 250 t 250 t 43 turns, 855MeV 1,5GeV Andreas Jankowiak, Institut für Kernphysik, Johannes Gutenberg Universität Mainz 23

24 dynamic coherence condition of a DSM: per magnet R i+1 R i E = λ e c B π 2 2π (Ri+1 - R i ) - 4 (R i+1 - R i ) 4 = 2 (π-2) R=2 λ phase advance / turn must be 2 2π in a DSM! e.g.: B=1.28T, λ=0.1224m (2.45GHz) E=41.1MeV (with cw-sections: linac ~ 45m) Therefore here: λ DSM = m E=20.5MeV (linac ~ 20m) The fundamental frequency of the HDSM must be 4.90GHz instead of 2.45GHz! Andreas Jankowiak, Institut für Kernphysik, Johannes Gutenberg Universität Mainz 24

25 Specials (i): field gradient compensation of fringe-field defocusing? 45 entry and exit angle top view side view Andreas Jankowiak, Institut für Kernphysik, Johannes Gutenberg Universität Mainz 25

26 Specials (i): field gradient compensation of fringe-field defocusing! 45 entry and exit angle dipole with field-gradient B y [T] 1,6 1,5 1,4 1,3 1,2 1,1 1,0 0,9 0,8 0,7 0,6 0,5 0,4 0,3 0,2 0,1 0,0 B max =1.539T focussing defocusing Polschuh-Kante 60% B max -0,4-0,2 0,0 0,2 0,4 0,6 0,8 1,0 1,2 z [m] F B (force F normal to magnetic field B) Andreas Jankowiak, Institut für Kernphysik, Johannes Gutenberg Universität Mainz 26

27 Consequences of the field gradient for the longitudinal dynamic: synchronous energy gain / turn [MeV] 17,0 16,5 16,0 15,5 15,0 14,5 14,0 13, Turn [#] With increasing energy the beam intrudes deeper and deeper into the 90 dipoles and experiences, compared to a homogenous dipole, turn by turn a relatively decreasing field-integral, which requires less energy gain per turn to fulfil the dynamic coherence condition. Andreas Jankowiak, Institut für Kernphysik, Johannes Gutenberg Universität Mainz 27

28 Consequences of the field gradient for the longitudinal dynamic: Q= 1/2 1/3 1/4 1/5 1,05 1/6 1,00 0,95 0,90 0,85 0,80 0, Andreas Jankowiak, Institut für Kernphysik, Johannes Gutenberg Universität Mainz 28 ϕφ 0 stop band when certain phasing error between linac 1 and linac 2

29 Scheme of longitudinal bunch positions in a DSM (remember: sub-harmonic injection with 2.45GHz in a 4.90GHz rf-system) λ DSM l 1 =23 (2x11.5) l 2 =25 (2x12.5) (in units of λ DSM ) λ DSM λ=2 λ DSM 2 Linacs operating at ν 1 =4.90GHz and ν 2 =2.45GHz Harmonic Double Sided Microtron (HDSM) Andreas Jankowiak, Institut für Kernphysik, Johannes Gutenberg Universität Mainz 29

30 Specials (ii): harmonic operation 1,2 1,1 1,0 0,9 0,8 0,7 0,6 0,5 0,4 0,3 less steep gradient of 2.45GHz wave avoids reaching instable area HDSM one 4.90GHz linac + one 2.45GHz linac DSM 0,2 LINACI 0,1 LINACII 0, Andreas Jankowiak, Institut für Kernphysik, Johannes Gutenberg Universität Mainz 30 φ 1,2 2 times a 4.90GHz linac instable region of longitudinal motion for 4.90GHz wave

31 Harmonic-operation (highest longitudinal beam stability) δe [kev] DSM, 2 x 4.90GHz linac longitudinal phase-space DSM Longitudinaler Phase-Raum DSM linacs φ=3 φ=3grad error (relativ (relative zu 4.90GHz) to 4.90GHz) Injektion -250 Extraktion ,0-1,5-1,0-0,5 0,0 0,5 1,0 1,5 2,0 δφ [Grad] δe [kev] HDSM, 4.90GHz GHz Linac longitudinal phase-space HDSM linacs φ=5 error (relative to 4.90GHz) Longitudinaler Phase-Raum HDSM φ=2.5grad (relativ zu 2.45GHz) Injektion Extraction ,0-1,5-1,0-0,5 0,0 0,5 1,0 1,5 2,0 δφ [Grad] Andreas Jankowiak, Institut für Kernphysik, Johannes Gutenberg Universität Mainz 31

32 The Harmonic Double Sided Microtron (HDSM) for MAMI C No. 3 LINAC I (4.90GHz) No. 2 Extraction 1507MeV Matching-Section 4.90GHz B=1.539T max 43 turns 10m Injection 855MeV No. 4 LINAC II (2.45GHz) No. 1 Best adaptation to the inherent stable and reliable RTM principle Andreas Jankowiak, Institut für Kernphysik, Johannes Gutenberg Universität Mainz 32

33 90 bending dipoles, some photos transport and installation of all four magnets (finished in 2002) power supplies by: measurement of the magnetic field of all 4 magnets to get the data for the construction of surface correction coils! Magnet as it is: B/B ~ 10-3 (in the central area: ~10-4, excellent manufacturing quality) required is: B/B ~ 10-4 measurements finished: 09/2003 correction coils ready and checked, magnets final assembled: 03/2006 Andreas Jankowiak, Institut für Kernphysik, Johannes Gutenberg Universität Mainz 33

34 Surface correction coils, some photos All pairs of surface correction coils for all 4 dipole magnets are manufactured, tested and ready for installation. Manufactured by water-jet cutting out of Al-plates Andreas Jankowiak, Institut für Kernphysik, Johannes Gutenberg Universität Mainz 34

35 Field correction: HDSM DIPOLE 02 left without correction right without correction with correction with correction at the edges some further correction by iron shims is applied Andreas Jankowiak, Institut für Kernphysik, Johannes Gutenberg Universität Mainz 35

36 Vacuum-system, some photos 7m Andreas Jankowiak, Institut für Kernphysik, Johannes Gutenberg Universität Mainz 36

37 2.45GHz linac + rf-system klystrons (5 x TH2174, 50kw cw) linac sections (5 x MAMI B type, 33ACs, 72MΩ/m) INP/MSU + aside some modification and modernisation: copy of RTM3 linac ready installed, under vacuum, power tested (08/2005) Andreas Jankowiak, Institut für Kernphysik, Johannes Gutenberg Universität Mainz 37

38 4.90GHz linac + rf-system linac sections (8 x, in house development, 35ACs, 80MΩ/m) + PMB (France) klystrons (4 x TH2166, 55kw cw) all 13 sections in house and power tested (02/2006) linac ready for operation since (12/2006) matching section installed all klystrons in house (5 + 4 spare) long-term sales agreement with THALES 1m Andreas Jankowiak, Institut für Kernphysik, Johannes Gutenberg Universität Mainz 38

39 2.45GHz and 4.90GHz sections manufactured by ACCEL 2.45GHz section 4.90GHz section Andreas Jankowiak, Institut für Kernphysik, Johannes Gutenberg Universität Mainz 39

40 In 12/2006 Beam tests in diagnostic pulse mode Only some vacuum tubes of extraction system are missing Andreas Jankowiak, Institut für Kernphysik, Johannes Gutenberg Universität Mainz 40

41 Intensity signal of low-q rf-intensity monitor on the axis of the 2.45GHz and 4.90GHz linacs 2.45GHz linac turn (after 8h of operation) 4.90GHz linac turn 43 RTM 3 855MeV 1508MeV The intensity signals of the two linacs are interleaved. The drop in amplitude is partly related to beam losses, but also due to the phase advance the beam experiences during the acceleration process in both linacs. Andreas Jankowiak, Institut für Kernphysik, Johannes Gutenberg Universität Mainz 41

42 Intensity signal of low-q rf-intensity monitor on the axis of the 2.45GHz linac turn 1 turn GHz linac RTM 3 855MeV 1508MeV After transverse beam matching the drop in amplitude is now dominated by the phase advance the beam experiences during the acceleration process. Andreas Jankowiak, Institut für Kernphysik, Johannes Gutenberg Universität Mainz 42

43 , beam not good matched, beam losses observed! turn MeV turn 1 855MeV , beam good matched, no beam losses observable (with the available diagnostics) turn MeV turn 1 855MeV Andreas Jankowiak, Institut für Kernphysik, Johannes Gutenberg Universität Mainz 43

44 Longitudinal dynamics after optimisation: simulation versus measurement (the parameters of the simulation are fitted to the measured data) Φ1 i ΦM1 i Φ2 i ΦM2 i GHz Linac simulation / measurement 4.90GHz Linac simulation / measurement Fitting the simulation parameters by comparison of measured and simulated phase advances results in the following parameter set (design parameters in brackets): E INJ = MeV ( MeV) turn 1-43 φ 4.90GHz = ( ) / E max.,4.90ghz =9.021MV (9.052MV) φ 2.45GHz = ( ) / E max.,2.45ghz =9.399MV (9.298MV) Andreas Jankowiak, Institut für Kernphysik, Johannes Gutenberg Universität Mainz 44

45 Since : User operation 1.508GeV / 10µA, polarized beam (83%) Andreas Jankowiak, Institut für Kernphysik, Johannes Gutenberg Universität Mainz 45

46 User operation A1 (the first 10 day run): 1.508GeV, 10µA, polarized beam ( 83%) short high current test: 50µA (75kW beam power) beam on target: >80% Fr., , till Mo., , Andreas Jankowiak, Institut für Kernphysik, Johannes Gutenberg Universität Mainz 46

47 MAMI C beam parameters 1508MeV, σe=0.100mev max. 100µA εh~10 nm rad, εv~0.5 nm rad as MAMI B! MAMI B beam parameters (in operation since 1990) 885MeV, σe=0.013mev (0.001%) max. 103µA cw current εh=8 nm rad, εv=0.5 nm rad (allows for beam foci of ~µm) Halo: < 10-5 at r > 5 σr ca. 6000h 7000h operation / year Andreas Jankowiak, Institut für Kernphysik, Johannes Gutenberg Universität Mainz 47

48 Why all this: Many body structure of strongly interacting systems 1 nucleon (proton, neutron)? 2 E out, p out, S ou E in, p in, S in Well known electron beam: E=854.5MeV ± 0.013MeV (0.0015%) I= ~ pa 100µA 3 E i, p i, S i From it is possible to determine? Andreas Jankowiak, Institut für Kernphysik, Johannes Gutenberg Universität Mainz 48

49 For orientation: floorplan RTM1+Inj. Linac Andreas Jankowiak, Institut für Kernphysik, Johannes Gutenberg Universität Mainz 49

50 For orientation: Birds Eye View: RTM RTM 3 The accelerator and experimental areas are 10m to 15m below surface and behind 2m to 3m of concrete! Andreas Jankowiak, Institut für Kernphysik, Johannes Gutenberg Universität Mainz 50

The Mainz Microtron MAMI

The Mainz Microtron MAMI The Mainz Microtron MAMI Hans-Jürgen Arends Institut für Kernphysik Johannes Gutenberg-Universität Mainz Race-Track-Mikrotron D E out =z E L i+1 L i L 1 E λ coherence condition: (for lowest possible energy

More information

SLS at the Paul Scherrer Institute (PSI), Villigen, Switzerland

SLS at the Paul Scherrer Institute (PSI), Villigen, Switzerland SLS at the Paul Scherrer Institute (PSI), Villigen, Switzerland Michael Böge 1 SLS Team at PSI Michael Böge 2 Layout of the SLS Linac, Transferlines Booster Storage Ring (SR) Beamlines and Insertion Devices

More information

6 Bunch Compressor and Transfer to Main Linac

6 Bunch Compressor and Transfer to Main Linac II-159 6 Bunch Compressor and Transfer to Main Linac 6.1 Introduction The equilibrium bunch length in the damping ring (DR) is 6 mm, too long by an order of magnitude for optimum collider performance (σ

More information

First propositions of a lattice for the future upgrade of SOLEIL. A. Nadji On behalf of the Accelerators and Engineering Division

First propositions of a lattice for the future upgrade of SOLEIL. A. Nadji On behalf of the Accelerators and Engineering Division First propositions of a lattice for the future upgrade of SOLEIL A. Nadji On behalf of the Accelerators and Engineering Division 1 SOLEIL : A 3 rd generation synchrotron light source 29 beamlines operational

More information

SRF GUN CHARACTERIZATION - PHASE SPACE AND DARK CURRENT MEASUREMENTS AT ELBE*

SRF GUN CHARACTERIZATION - PHASE SPACE AND DARK CURRENT MEASUREMENTS AT ELBE* SRF GUN CHARACTERIZATION - PHASE SPACE AND DARK CURRENT MEASUREMENTS AT ELBE* E. Panofski #, A. Jankowiak, T. Kamps, Helmholtz-Zentrum Berlin, Berlin, Germany P.N. Lu, J. Teichert, Helmholtz-Zentrum Dresden-Rossendorf,

More information

Physics 610. Adv Particle Physics. April 7, 2014

Physics 610. Adv Particle Physics. April 7, 2014 Physics 610 Adv Particle Physics April 7, 2014 Accelerators History Two Principles Electrostatic Cockcroft-Walton Van de Graaff and tandem Van de Graaff Transformers Cyclotron Betatron Linear Induction

More information

Chopping High-Intensity Ion Beams at FRANZ

Chopping High-Intensity Ion Beams at FRANZ Chopping High-Intensity Ion Beams at FRANZ C. Wiesner, M. Droba, O. Meusel, D. Noll, O. Payir, U. Ratzinger, P. Schneider IAP, Goethe-Universität Frankfurt am Main Outline 1) Introduction: The FRANZ facility

More information

LOLA: Past, present and future operation

LOLA: Past, present and future operation LOLA: Past, present and future operation FLASH Seminar 1/2/29 Christopher Gerth, DESY 8/5/29 FLASH Seminar Christopher Gerth 1 Outline Past Present Future 8/5/29 FLASH Seminar Christopher Gerth 2 Past

More information

Short Introduction to CLIC and CTF3, Technologies for Future Linear Colliders

Short Introduction to CLIC and CTF3, Technologies for Future Linear Colliders Short Introduction to CLIC and CTF3, Technologies for Future Linear Colliders Explanation of the Basic Principles and Goals Visit to the CTF3 Installation Roger Ruber Collider History p p hadron collider

More information

III. CesrTA Configuration and Optics for Ultra-Low Emittance David Rice Cornell Laboratory for Accelerator-Based Sciences and Education

III. CesrTA Configuration and Optics for Ultra-Low Emittance David Rice Cornell Laboratory for Accelerator-Based Sciences and Education III. CesrTA Configuration and Optics for Ultra-Low Emittance David Rice Cornell Laboratory for Accelerator-Based Sciences and Education Introduction Outline CESR Overview CESR Layout Injector Wigglers

More information

Diagnostic Systems for Characterizing Electron Sources at the Photo Injector Test Facility at DESY, Zeuthen site

Diagnostic Systems for Characterizing Electron Sources at the Photo Injector Test Facility at DESY, Zeuthen site 1 Diagnostic Systems for Characterizing Electron Sources at the Photo Injector Test Facility at DESY, Zeuthen site Sakhorn Rimjaem (on behalf of the PITZ team) Motivation Photo Injector Test Facility at

More information

Transverse dynamics Selected topics. Erik Adli, University of Oslo, August 2016, v2.21

Transverse dynamics Selected topics. Erik Adli, University of Oslo, August 2016, v2.21 Transverse dynamics Selected topics Erik Adli, University of Oslo, August 2016, Erik.Adli@fys.uio.no, v2.21 Dispersion So far, we have studied particles with reference momentum p = p 0. A dipole field

More information

COMBINER RING LATTICE

COMBINER RING LATTICE CTFF3 TECHNICAL NOTE INFN - LNF, Accelerator Division Frascati, April 4, 21 Note: CTFF3-2 COMBINER RING LATTICE C. Biscari 1. Introduction The 3 rd CLIC test facility, CTF3, is foreseen to check the feasibility

More information

!"#$%$!&'()$"('*+,-')'+-$#..+/+,0)&,$%.1&&/$ LONGITUDINAL BEAM DYNAMICS

!#$%$!&'()$('*+,-')'+-$#..+/+,0)&,$%.1&&/$ LONGITUDINAL BEAM DYNAMICS LONGITUDINAL BEAM DYNAMICS Elias Métral BE Department CERN The present transparencies are inherited from Frank Tecker (CERN-BE), who gave this course last year and who inherited them from Roberto Corsini

More information

FACET-II Design Update

FACET-II Design Update FACET-II Design Update October 17-19, 2016, SLAC National Accelerator Laboratory Glen White FACET-II CD-2/3A Director s Review, August 9, 2016 Planning for FACET-II as a Community Resource FACET-II Photo

More information

ThomX Machine Advisory Committee. (LAL Orsay, March ) Ring Beam Dynamics

ThomX Machine Advisory Committee. (LAL Orsay, March ) Ring Beam Dynamics ThomX Machine Advisory Committee (LAL Orsay, March 20-21 2017) Ring Beam Dynamics A. Loulergue, M. Biagini, C. Bruni, I. Chaikovska I. Debrot, N. Delerue, A. Gamelin, H. Guler, J. Zang Programme Investissements

More information

10 GeV Synchrotron Longitudinal Dynamics

10 GeV Synchrotron Longitudinal Dynamics 0 GeV Synchrotron Longitudinal Dynamics G. Dugan Laboratory of Nuclear Studies Cornell University Ithaca, NY 483 In this note, I provide some estimates of the parameters of longitudinal dynamics in the

More information

PIP-II Injector Test s Low Energy Beam Transport: Commissioning and Selected Measurements

PIP-II Injector Test s Low Energy Beam Transport: Commissioning and Selected Measurements PIP-II Injector Test s Low Energy Beam Transport: Commissioning and Selected Measurements A. Shemyakin 1, M. Alvarez 1, R. Andrews 1, J.-P. Carneiro 1, A. Chen 1, R. D Arcy 2, B. Hanna 1, L. Prost 1, V.

More information

Diagnostics at the MAX IV 3 GeV storage ring during commissioning. PPT-mall 2. Åke Andersson On behalf of the MAX IV team

Diagnostics at the MAX IV 3 GeV storage ring during commissioning. PPT-mall 2. Åke Andersson On behalf of the MAX IV team Diagnostics at the MAX IV 3 GeV storage ring during commissioning PPT-mall 2 Åke Andersson On behalf of the MAX IV team IBIC Med 2016, linje Barcelona Outline MAX IV facility overview Linac injector mode

More information

Longitudinal Dynamics

Longitudinal Dynamics Longitudinal Dynamics F = e (E + v x B) CAS Bruges 16-25 June 2009 Beam Dynamics D. Brandt 1 Acceleration The accelerator has to provide kinetic energy to the charged particles, i.e. increase the momentum

More information

Small Isochronous Ring (SIR) project at NSCL, MSU. Eduard Pozdeyev NSCL, Michigan Sate University

Small Isochronous Ring (SIR) project at NSCL, MSU. Eduard Pozdeyev NSCL, Michigan Sate University Small Isochronous Ring (SIR) project at NSCL, MSU Eduard Pozdeyev NSCL, Michigan Sate University Talk Outline Isochronous regime in accelerators, application to Isochronous Cyclotrons Space charge effects

More information

Design Status of the PEFP RCS

Design Status of the PEFP RCS Design Status of the PEFP RCS HB2010, Morschach, Switzerland J.H. Jang 1) Y.S. Cho 1), H.S. Kim 1), H.J. Kwon 1), Y.Y. Lee 2) 1) PEFP/KAERI, 2) BNL (www.komac.re.kr) Contents PEFP (proton engineering frontier

More information

X-band Experience at FEL

X-band Experience at FEL X-band Experience at FERMI@Elettra FEL Gerardo D Auria Elettra - Sincrotrone Trieste GdA_TIARA Workshop, Ångström Laboratory, June 17-19, 2013 1 Outline The FERMI@Elettra FEL project Machine layout and

More information

Lattice Design and Performance for PEP-X Light Source

Lattice Design and Performance for PEP-X Light Source Lattice Design and Performance for PEP-X Light Source Yuri Nosochkov SLAC National Accelerator Laboratory With contributions by M-H. Wang, Y. Cai, X. Huang, K. Bane 48th ICFA Advanced Beam Dynamics Workshop

More information

The FAIR Accelerator Facility

The FAIR Accelerator Facility The FAIR Accelerator Facility SIS300 existing GSI proton linac SIS18 UNILAC SIS100 HESR pbar target SuperFRS goals: higher intensity (low charge states) higher energy (high charge states) production of

More information

USPAS Course on Recirculating Linear Accelerators

USPAS Course on Recirculating Linear Accelerators USPAS Course on Recirculating Linear Accelerators G. A. Krafft and L. Merminga Jefferson Lab Lecture 4 Outline Independent Orbit Recirculators The Stanford-HEPL Superconducting Recyclotron Basic Design

More information

Low slice emittance preservation during bunch compression

Low slice emittance preservation during bunch compression Low slice emittance preservation during bunch compression S. Bettoni M. Aiba, B. Beutner, M. Pedrozzi, E. Prat, S. Reiche, T. Schietinger Outline. Introduction. Experimental studies a. Measurement procedure

More information

ACCELERATION, DECELERATION AND BUNCHING OF STORED AND COOLED ION BEAMS AT THE TSR, HEIDELBERG

ACCELERATION, DECELERATION AND BUNCHING OF STORED AND COOLED ION BEAMS AT THE TSR, HEIDELBERG ACCELERATION, DECELERATION AND BUNCHING OF STORED AND COOLED ION BEAMS AT THE TSR, HEIDELBERG M. Grieser, R. Bastert, K. Blaum, H. Buhr, R. von Hahn, M. B. Mendes, R. Repnow, A. Wolf Max-Planck-Institut

More information

Diagnostics Needs for Energy Recovery Linacs

Diagnostics Needs for Energy Recovery Linacs Diagnostics Needs for Energy Recovery Linacs Georg H. Hoffstaetter Cornell Laboratory for Accelerator-based Sciences and Education & Physics Department Cornell University, Ithaca New York 14853-2501 gh77@cornell.edu

More information

CEPC Linac Injector. HEP Jan, Cai Meng, Guoxi Pei, Jingru Zhang, Xiaoping Li, Dou Wang, Shilun Pei, Jie Gao, Yunlong Chi

CEPC Linac Injector. HEP Jan, Cai Meng, Guoxi Pei, Jingru Zhang, Xiaoping Li, Dou Wang, Shilun Pei, Jie Gao, Yunlong Chi HKUST Jockey Club Institute for Advanced Study CEPC Linac Injector HEP218 22 Jan, 218 Cai Meng, Guoxi Pei, Jingru Zhang, Xiaoping Li, Dou Wang, Shilun Pei, Jie Gao, Yunlong Chi Institute of High Energy

More information

Conceptual design of an accumulator ring for the Diamond II upgrade

Conceptual design of an accumulator ring for the Diamond II upgrade Journal of Physics: Conference Series PAPER OPEN ACCESS Conceptual design of an accumulator ring for the Diamond II upgrade To cite this article: I P S Martin and R Bartolini 218 J. Phys.: Conf. Ser. 167

More information

Notes on the HIE-ISOLDE HEBT

Notes on the HIE-ISOLDE HEBT EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH HIE-ISOLDE-PROJECT-Note-13 Notes on the HIE-ISOLDE HEBT M.A. Fraser Abstract The HEBT will need to transfer the beam from the HIE-ISOLDE linac to up to four experimental

More information

STATUS OF THE NOVOSIBIRSK ENERGY RECOVERY LINAC

STATUS OF THE NOVOSIBIRSK ENERGY RECOVERY LINAC STATUS OF THE NOVOSIBIRSK ENERGY RECOVERY LINAC V.P. Bolotin, N.A. Vinokurov, N.G. Gavrilov, D.A. Kayran, B.A. Knyazev, E.I. Kolobanov, V. V. Kotenkov, V.V. Kubarev, G.N. Kulipanov, A.N. Matveenko, L.E.

More information

RHIC Electron Lens Commissioning

RHIC Electron Lens Commissioning RHIC Electron Lens Commissioning Xiaofeng Gu Z. Altinbas, M. Anerella, D. Bruno, M. Costanzo, W.C. Dawson, A.K. Drees, W. Fischer, B. M. Frak, D.M. Gassner, K. Hamdi, J. Hock, L.T. Hoff, A.K. Jain, J.

More information

DESIGN AND CONSTRUCTION OF LOW ENERGY ELECTRON ACCELERATORS AT SINP MSU

DESIGN AND CONSTRUCTION OF LOW ENERGY ELECTRON ACCELERATORS AT SINP MSU DESIGN AND CONSTRUCTION OF LOW ENERGY ELECTRON ACCELERATORS AT SINP MSU V. Shvedunov Skobeltsyn Institute of Nuclear Physics Lomonosov Moscow State University 26 November 2013 Betatron 1959-1985 Low intensity

More information

Beam Diagnostics and Instrumentation JUAS, Archamps Peter Forck Gesellschaft für Schwerionenforschnung (GSI)

Beam Diagnostics and Instrumentation JUAS, Archamps Peter Forck Gesellschaft für Schwerionenforschnung (GSI) Beam Diagnostics and Instrumentation JUAS, Archamps Peter Forck Gesellschaft für Schwerionenforschnung (GSI), 2003, A dedicated proton accelerator for 1p-physics at the future GSI Demands facilities for

More information

Putting it all together

Putting it all together Putting it all together Werner Herr, CERN (Version n.n) http://cern.ch/werner.herr/cas24/lectures/praha review.pdf 01 0 1 00 11 00 11 00 11 000 111 01 0 1 00 11 00 11 00 11 000 111 01 0 1 00 11 00 11 00

More information

On-axis injection into small dynamic aperture

On-axis injection into small dynamic aperture On-axis injection into small dynamic aperture L. Emery Accelerator Systems Division Argonne National Laboratory Future Light Source Workshop 2010 Tuesday March 2nd, 2010 On-Axis (Swap-Out) injection for

More information

September 20-21, 2010 JLAB, Newport News, USA. Achim Denig Institut für Kernphysik Johannes Gutenberg-Universität Mainz

September 20-21, 2010 JLAB, Newport News, USA. Achim Denig Institut für Kernphysik Johannes Gutenberg-Universität Mainz 1 September 20-21, 2010 JLAB, Newport News, USA Institut für Kernphysik Johannes Gutenberg-Universität Mainz 2 Outline Brief Introduction MAMI accelerator, experiments Experiences from Pilot Run (A1 Spectrometers)

More information

Emittance preservation in TESLA

Emittance preservation in TESLA Emittance preservation in TESLA R.Brinkmann Deutsches Elektronen-Synchrotron DESY,Hamburg, Germany V.Tsakanov Yerevan Physics Institute/CANDLE, Yerevan, Armenia The main approaches to the emittance preservation

More information

$)ODW%HDP(OHFWURQ6RXUFHIRU/LQHDU&ROOLGHUV

$)ODW%HDP(OHFWURQ6RXUFHIRU/LQHDU&ROOLGHUV $)ODW%HDP(OHFWURQ6RXUFHIRU/LQHDU&ROOLGHUV R. Brinkmann, Ya. Derbenev and K. Flöttmann, DESY April 1999 $EVWUDFW We discuss the possibility of generating a low-emittance flat (ε y

More information

Time resolved transverse and longitudinal phase space measurements at the high brightness photo injector PITZ

Time resolved transverse and longitudinal phase space measurements at the high brightness photo injector PITZ Time resolved transverse and longitudinal phase space measurements at the high brightness photo injector PITZ 1. Motivation 2. Transverse deflecting structure 3. Longitudinal phase space tomography 4.

More information

Boster Synchrotron COMMISSIONING RESULTS LINAC. Storage Ring. Proceedings of IPAC2011, San Sebastián, Spain

Boster Synchrotron COMMISSIONING RESULTS LINAC. Storage Ring. Proceedings of IPAC2011, San Sebastián, Spain Proceedings of IPAC211, San Sebastián, Spain MOXAA1 ALBA SYNCHROTRON LIGHT SOURCE COMMISSIONING D. Einfeld, on behalf of the CELLS - Commissioning Team; CELLS-ALBA, E-829 Cerdanyola del Vallés, Spain,

More information

Phase Space Study of the Synchrotron Oscillation and Radiation Damping of the Longitudinal and Transverse Oscillations

Phase Space Study of the Synchrotron Oscillation and Radiation Damping of the Longitudinal and Transverse Oscillations ScienceAsia 28 (2002 : 393-400 Phase Space Study of the Synchrotron Oscillation and Radiation Damping of the Longitudinal and Transverse Oscillations Balabhadrapatruni Harita*, Masumi Sugawara, Takehiko

More information

SPPS: The SLAC Linac Bunch Compressor and Its Relevance to LCLS

SPPS: The SLAC Linac Bunch Compressor and Its Relevance to LCLS LCLS Technical Advisory Committee December 10-11, 2001. SPPS: The SLAC Linac Bunch Compressor and Its Relevance to LCLS Patrick Krejcik LCLS Technical Advisory Committee Report 1: July 14-15, 1999 The

More information

WG2 on ERL light sources CHESS & LEPP

WG2 on ERL light sources CHESS & LEPP Charge: WG2 on ERL light sources Address and try to answer a list of critical questions for ERL light sources. Session leaders can approach each question by means of (a) (Very) short presentations (b)

More information

PAL LINAC UPGRADE FOR A 1-3 Å XFEL

PAL LINAC UPGRADE FOR A 1-3 Å XFEL PAL LINAC UPGRADE FOR A 1-3 Å XFEL J. S. Oh, W. Namkung, Pohang Accelerator Laboratory, POSTECH, Pohang 790-784, Korea Y. Kim, Deutsches Elektronen-Synchrotron DESY, D-603 Hamburg, Germany Abstract With

More information

Generation and characterization of ultra-short electron and x-ray x pulses

Generation and characterization of ultra-short electron and x-ray x pulses Generation and characterization of ultra-short electron and x-ray x pulses Zhirong Huang (SLAC) Compact XFEL workshop July 19-20, 2010, Shanghai, China Ultra-bright Promise of XFELs Ultra-fast LCLS Methods

More information

MEASURING AND CONTROLLING ENERGY SPREAD IN CEBAF

MEASURING AND CONTROLLING ENERGY SPREAD IN CEBAF MEASURING AND CONTROLLING ENERGY SPREAD IN CEBAF Abstract G. A. Krafft, J.-C. Denard, R. W. Dickson, R. Kazimi, V. A. Lebedev, and M. G. Tiefenback TJNAF, Newport News, VA2366, USA As compared to electron

More information

ELIC Design. Center for Advanced Studies of Accelerators. Jefferson Lab. Second Electron-Ion Collider Workshop Jefferson Lab March 15-17, 2004

ELIC Design. Center for Advanced Studies of Accelerators. Jefferson Lab. Second Electron-Ion Collider Workshop Jefferson Lab March 15-17, 2004 ELIC Design Ya. Derbenev, K. Beard, S. Chattopadhyay, J. Delayen, J. Grames, A. Hutton, G. Krafft, R. Li, L. Merminga, M. Poelker, E. Pozdeyev, B. Yunn, Y. Zhang Center for Advanced Studies of Accelerators

More information

Investigation of the Effect of Space Charge in the compact-energy Recovery Linac

Investigation of the Effect of Space Charge in the compact-energy Recovery Linac Investigation of the Effect of Space Charge in the compact-energy Recovery Linac Ji-Gwang Hwang and Eun-San Kim, Kyungpook National University. 1370 Sankyok-dong, Buk-ku, Daegu, 702-701, Korea Tsukasa

More information

Longitudinal Top-up Injection for Small Aperture Storage Rings

Longitudinal Top-up Injection for Small Aperture Storage Rings Longitudinal Top-up Injection for Small Aperture Storage Rings M. Aiba, M. Böge, Á. Saá Hernández, F. Marcellini and A. Streun Paul Scherrer Institut Introduction Lower and lower horizontal emittances

More information

Optics considerations for

Optics considerations for Optics considerations for ERL x-ray x sources Georg H. Hoffstaetter* Physics Department Cornell University Ithaca / NY Georg.Hoffstaetter@cornell.edu 1. Overview of Parameters 2. Critical Topics 3. Phase

More information

Overview of LHC Accelerator

Overview of LHC Accelerator Overview of LHC Accelerator Mike Syphers UT-Austin 1/31/2007 Large Hadron Collider ( LHC ) Outline of Presentation Brief history... Luminosity Magnets Accelerator Layout Major Accelerator Issues U.S. Participation

More information

DEVELOPMENT OF LARGE SCALE OPTIMIZATION TOOLS FOR BEAM TRACKING CODES*

DEVELOPMENT OF LARGE SCALE OPTIMIZATION TOOLS FOR BEAM TRACKING CODES* Proceedings of Hadron Beam 8, Nashville, Tennessee, USA DEVELOPMENT OF LARGE SCALE OPTIMIZATION TOOLS FOR BEAM TRACKING CODES* B. Mustapha # and P. N. Ostroumov Argonne National Laboratory, 97 S. Cass

More information

The Metrology Light Source - Status

The Metrology Light Source - Status The Metrology Light Source - Status Jörg Feikes, Paul Goslawski, Tobias Goetsch, Markus Ries, Martin Ruprecht, Gode Wüstefeld, Helmholtz-Zentrum Berlin, Germany J. Feikes et al., Phys. Rev. ST Accel. Beams

More information

BERLinPro. An ERL Demonstration facility at the HELMHOLTZ ZENTRUM BERLIN

BERLinPro. An ERL Demonstration facility at the HELMHOLTZ ZENTRUM BERLIN BERLinPro An ERL Demonstration facility at the HELMHOLTZ ZENTRUM BERLIN BERLinPro: ERL demonstration facility to prepare the ground for a few GeV ERL @ Berlin-Adlershof Goal: 100MeV, 100mA beam Small emittance,

More information

Preliminary design study of JUICE. Joint Universities International Circular Electronsynchrotron

Preliminary design study of JUICE. Joint Universities International Circular Electronsynchrotron Preliminary design study of JUICE Joint Universities International Circular Electronsynchrotron Goal Make a 3th generation Synchrotron Radiation Lightsource at 3 GeV Goal Make a 3th generation Synchrotron

More information

Abstract. 1. Introduction

Abstract. 1. Introduction The New Upgrade of SESAME D.Einfeld1, R.H.Sarraf2, M.Attal3, H.Hashemi4, A.Elsisi5, A.Amro6, H.Hassanzadegan4, K.Tavakoli3, B.Kalantari7, S. Varnasery8, E. Al-Dmour8, D. Foudeh6, H.Tarawneh9, A.Aladwan7

More information

The TESLA Dogbone Damping Ring

The TESLA Dogbone Damping Ring The TESLA Dogbone Damping Ring Winfried Decking for the TESLA Collaboration April 6 th 2004 Outline The Dogbone Issues: Kicker Design Dynamic Aperture Emittance Dilution due to Stray-Fields Collective

More information

LCLS Injector Straight Ahead Spectrometer C.Limborg-Deprey Stanford Linear Accelerator Center 8 th June 2005

LCLS Injector Straight Ahead Spectrometer C.Limborg-Deprey Stanford Linear Accelerator Center 8 th June 2005 LCLS Injector Straight Ahead Spectrometer C.Limborg-Deprey Stanford Linear Accelerator Center 8 th June 2005 Summary The spectrometer design was modified to allow the measurement of uncorrelated energy

More information

Historical developments. of particle acceleration

Historical developments. of particle acceleration Historical developments of particle acceleration Y.Papaphilippou N. Catalan-Lasheras USPAS, Cornell University, Ithaca, NY 20 th June 1 st July 2005 1 Outline Principles of Linear Acceleration Electrostatic

More information

PoS(EPS-HEP2017)533. First Physics Results of AWAKE, a Plasma Wakefield Acceleration Experiment at CERN. Patric Muggli, Allen Caldwell

PoS(EPS-HEP2017)533. First Physics Results of AWAKE, a Plasma Wakefield Acceleration Experiment at CERN. Patric Muggli, Allen Caldwell First Physics Results of AWAKE, a Plasma Wakefield Acceleration Experiment at CERN Patric Muggli, Max Planck Institute for Physics E-mail: muggli@mpp.mpg.de AWAKE is a plasma wakefield acceleration experiment

More information

Accelerator Physics. Accelerator Development

Accelerator Physics. Accelerator Development Accelerator Physics The Taiwan Light Source (TLS) is the first large accelerator project in Taiwan. The goal was to build a high performance accelerator which provides a powerful and versatile light source

More information

Commissioning of PETRA III. Klaus Balewski on behalf of the PETRA III Team IPAC 2010, 25 May, 2010

Commissioning of PETRA III. Klaus Balewski on behalf of the PETRA III Team IPAC 2010, 25 May, 2010 Commissioning of PETRA III Klaus Balewski on behalf of the PETRA III Team IPAC 2010, 25 May, 2010 PETRA III Parameters Circumference (m) Energy (GeV) ε x (nm rad) ε y (pm rad) Current (ma) # bunches Straight

More information

The Booster has three magnet systems for extraction: Kicker Ke, comprising two identical magnets and power supplies Septum Se

The Booster has three magnet systems for extraction: Kicker Ke, comprising two identical magnets and power supplies Septum Se 3.2.7 Booster Injection and Extraction 3.2.7.1 Overview The Booster has two magnet systems for injection: Septum Si Kicker Ki The Booster has three magnet systems for extraction: Kicker Ke, comprising

More information

Low Energy RHIC electron Cooling (LEReC)

Low Energy RHIC electron Cooling (LEReC) Low Energy RHIC electron Cooling (LEReC) LEReC overview: project goal and cooling approach Alexei Fedotov MEIC Collaboration Meeting 30 31 LEReC Project Mission/Purpose The purpose of the LEReC is to provide

More information

LCLS Accelerator Parameters and Tolerances for Low Charge Operations

LCLS Accelerator Parameters and Tolerances for Low Charge Operations LCLS-TN-99-3 May 3, 1999 LCLS Accelerator Parameters and Tolerances for Low Charge Operations P. Emma SLAC 1 Introduction An option to control the X-ray FEL output power of the LCLS [1] by reducing the

More information

Introduction to accelerators for teachers (Korean program) Mariusz Sapiński CERN, Beams Department August 9 th, 2012

Introduction to accelerators for teachers (Korean program) Mariusz Sapiński CERN, Beams Department August 9 th, 2012 Introduction to accelerators for teachers (Korean program) Mariusz Sapiński (mariusz.sapinski@cern.ch) CERN, Beams Department August 9 th, 2012 Definition (Britannica) Particle accelerator: A device producing

More information

Juliane Rönsch Hamburg University. Investigations of the longitudinal phase space at a photo injector for the X-FEL

Juliane Rönsch Hamburg University. Investigations of the longitudinal phase space at a photo injector for the X-FEL Juliane Rönsch Hamburg University Investigations of the longitudinal phase space at a photo injector for the X-FEL Juliane Rönsch 1/15/28 1 Contents Introduction PITZ Longitudinal phase space of a photoinjector

More information

FURTHER UNDERSTANDING THE LCLS INJECTOR EMITTANCE*

FURTHER UNDERSTANDING THE LCLS INJECTOR EMITTANCE* Proceedings of FEL014, Basel, Switzerland FURTHER UNDERSTANDING THE LCLS INJECTOR EMITTANCE* F. Zhou, K. Bane, Y. Ding, Z. Huang, and H. Loos, SLAC, Menlo Park, CA 9405, USA Abstract Coherent optical transition

More information

Beam Diagnostics Lecture 3. Measuring Complex Accelerator Parameters Uli Raich CERN AB-BI

Beam Diagnostics Lecture 3. Measuring Complex Accelerator Parameters Uli Raich CERN AB-BI Beam Diagnostics Lecture 3 Measuring Complex Accelerator Parameters Uli Raich CERN AB-BI Contents of lecture 3 Some examples of measurements done with the instruments explained during the last 2 lectures

More information

II) Experimental Design

II) Experimental Design SLAC Experimental Advisory Committee --- September 12 th, 1997 II) Experimental Design Theory and simulations Great promise of significant scientific and technological achievements! How to realize this

More information

S2E (Start-to-End) Simulations for PAL-FEL. Eun-San Kim

S2E (Start-to-End) Simulations for PAL-FEL. Eun-San Kim S2E (Start-to-End) Simulations for PAL-FEL Aug. 25 2008 Kyungpook Nat l Univ. Eun-San Kim 1 Contents I Lattice and layout for a 10 GeV linac II Beam parameters and distributions III Pulse-to-pulse stability

More information

PBL SCENARIO ON ACCELERATORS: SUMMARY

PBL SCENARIO ON ACCELERATORS: SUMMARY PBL SCENARIO ON ACCELERATORS: SUMMARY Elias Métral Elias.Metral@cern.ch Tel.: 72560 or 164809 CERN accelerators and CERN Control Centre Machine luminosity Transverse beam dynamics + space charge Longitudinal

More information

ILC Damping Ring Alternative Lattice Design **

ILC Damping Ring Alternative Lattice Design ** ILC Damping Ring Alternative Lattice Design ** Yi-Peng Sun *,1,2, Jie Gao 1, Zhi-Yu Guo 2 1 Institute of High Energy Physics, CAS, Beijing 2 Key Laboratory of Heavy Ion Physics, Peking University, Beijing

More information

Low Emittance Machines

Low Emittance Machines Advanced Accelerator Physics Course RHUL, Egham, UK September 2017 Low Emittance Machines Part 1: Beam Dynamics with Synchrotron Radiation Andy Wolski The Cockcroft Institute, and the University of Liverpool,

More information

Linac4: From Initial Design to Final Commissioning

Linac4: From Initial Design to Final Commissioning Linac4: From Initial Design to Final Commissioning Alessandra M Lombardi for the LINAC4 Team 1 Oliver.Abevrle,Davide.Aguglia,Luca.Arnaudon,Philippe.Baudrenghien, Giulia.Bellodi Caterina.Bertone,Yannic.Body,Jan.Borburgh,Enrico.Bravin,Olivier.Brunner,Jean-

More information

LCLS Injector Prototyping at the GTF

LCLS Injector Prototyping at the GTF LCLS Injector Prototyping at at the GTF John John Schmerge, SLAC SLAC November 3, 3, 23 23 GTF GTF Description Summary of of Previous Measurements Longitudinal Emittance Transverse Emittance Active LCLS

More information

TEST MEASUREMENTS WITH THE REX-ISOLDE LINAC STRUCTURES*

TEST MEASUREMENTS WITH THE REX-ISOLDE LINAC STRUCTURES* TEST MEASUREMENTS WITH THE REX-ISOLDE LINAC STRUCTURES* O. Kester, D. Habs, T. Sieber, S. Emhofer, K. Rudolph, LMU München, Garching Germany R. von Hahn, H. Podlech, R. Repnow, D. Schwalm, MPI- K, Heidelberg,

More information

3. Particle accelerators

3. Particle accelerators 3. Particle accelerators 3.1 Relativistic particles 3.2 Electrostatic accelerators 3.3 Ring accelerators Betatron // Cyclotron // Synchrotron 3.4 Linear accelerators 3.5 Collider Van-de-Graaf accelerator

More information

Proposal to convert TLS Booster for hadron accelerator

Proposal to convert TLS Booster for hadron accelerator Proposal to convert TLS Booster for hadron accelerator S.Y. Lee -- Department of Physics IU, Bloomington, IN -- NSRRC Basic design TLS is made of a 50 MeV electron linac, a booster from 50 MeV to 1.5 GeV,

More information

VELA/CLARA as Advanced Accelerator Studies Test-bed at Daresbury Lab.

VELA/CLARA as Advanced Accelerator Studies Test-bed at Daresbury Lab. VELA/CLARA as Advanced Accelerator Studies Test-bed at Daresbury Lab. Yuri Saveliev on behalf of VELA and CLARA teams STFC, ASTeC, Cockcroft Institute Daresbury Lab., UK Outline VELA (Versatile Electron

More information

Operational Experience with HERA

Operational Experience with HERA PAC 07, Albuquerque, NM, June 27, 2007 Operational Experience with HERA Joachim Keil / DESY On behalf of the HERA team Contents Introduction HERA II Luminosity Production Experiences with HERA Persistent

More information

CERN LIBRARIES, GENEVA CM-P Nuclear Physics Institute, Siberian Branch of the USSR Academy of Sciences. Preprint

CERN LIBRARIES, GENEVA CM-P Nuclear Physics Institute, Siberian Branch of the USSR Academy of Sciences. Preprint CERN LIBRARIES, GENEVA CM-P00100512 Nuclear Physics Institute, Siberian Branch of the USSR Academy of Sciences Preprint Experimental Study of Charge Exchange Injection of Protons into Accelerator and Storage

More information

Compressor Lattice Design for SPL Beam

Compressor Lattice Design for SPL Beam EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH CERN A&B DIVISION AB-Note-27-34 BI CERN-NUFACT-Note-153 Compressor Lattice Design for SPL Beam M. Aiba Abstract A compressor ring providing very short proton

More information

4GLS Status. Susan L Smith ASTeC Daresbury Laboratory

4GLS Status. Susan L Smith ASTeC Daresbury Laboratory 4GLS Status Susan L Smith ASTeC Daresbury Laboratory Contents ERLP Introduction Status (Kit on site ) Plan 4GLS (Conceptual Design) Concept Beam transport Injectors SC RF FELs Combining Sources May 2006

More information

Accelerator Physics Issues of ERL Prototype

Accelerator Physics Issues of ERL Prototype Accelerator Physics Issues of ERL Prototype Ivan Bazarov, Geoffrey Krafft Cornell University TJNAF ERL site visit (Mar 7-8, ) Part I (Bazarov). Optics. Space Charge Emittance Compensation in the Injector

More information

Iranian Light Source Facility (ILSF) Project

Iranian Light Source Facility (ILSF) Project Iranian Light Source Facility (ILSF) Project Hossein Ghasem On behalf of ILSF technical staff School of Particles and Accelerators, IPM 1390 29 28 1 Iranian users requirements Source Energy range Photon

More information

LHeC Recirculator with Energy Recovery Beam Optics Choices

LHeC Recirculator with Energy Recovery Beam Optics Choices LHeC Recirculator with Energy Recovery Beam Optics Choices Alex Bogacz in collaboration with Frank Zimmermann and Daniel Schulte Alex Bogacz 1 Alex Bogacz 2 Alex Bogacz 3 Alex Bogacz 4 Alex Bogacz 5 Alex

More information

FACET-II Design, Parameters and Capabilities

FACET-II Design, Parameters and Capabilities FACET-II Design, Parameters and Capabilities 217 FACET-II Science Workshop, October 17-2, 217 Glen White Overview Machine design overview Electron systems Injector, Linac & Bunch compressors, Sector 2

More information

Accelerator Design and Construction Progress of TPS Project

Accelerator Design and Construction Progress of TPS Project Accelerator Design and Construction Progress of TPS Project Taiwan Light Source (TLS), a 120-m storage ring originally designed for 1.3 GeV, was commissioned and opened to users in 1993. The energy of

More information

Experience on Coupling Correction in the ESRF electron storage ring

Experience on Coupling Correction in the ESRF electron storage ring Experience on Coupling Correction in the ESRF electron storage ring Laurent Farvacque & Andrea Franchi, on behalf of the Accelerator and Source Division Future Light Source workshop 2012 Jefferson Lab,

More information

STATUS BESSY II. P. Kuske

STATUS BESSY II. P. Kuske STATUS BESSY II P. Kuske Content Introduction: Some Facts about BESSY II On-going Projects: new 50 MeV LINAC Fast Orbit Feedback Top-Up Operation EMIL Modernization Future Projects: BESSY_VSR Other Projects

More information

3.2.2 Magnets. The properties of the quadrupoles, sextupoles and correctors are listed in tables t322_b,_c and _d.

3.2.2 Magnets. The properties of the quadrupoles, sextupoles and correctors are listed in tables t322_b,_c and _d. 3.2.2 Magnets The characteristics for the two types of combined function magnets,bd and BF, are listed in table t322_a. Their cross-sections are shown, together with the vacuum chamber, in Figure f322_a.

More information

1.5-GeV FFAG Accelerator as Injector to the BNL-AGS

1.5-GeV FFAG Accelerator as Injector to the BNL-AGS 1.5-GeV FFAG Accelerator as Injector to the BNL-AGS Alessandro G. Ruggiero M. Blaskiewicz,, T. Roser, D. Trbojevic,, N. Tsoupas,, W. Zhang Oral Contribution to EPAC 04. July 5-9, 5 2004 Present BNL - AGS

More information

Free-electron laser SACLA and its basic. Yuji Otake, on behalf of the members of XFEL R&D division RIKEN SPring-8 Center

Free-electron laser SACLA and its basic. Yuji Otake, on behalf of the members of XFEL R&D division RIKEN SPring-8 Center Free-electron laser SACLA and its basic Yuji Otake, on behalf of the members of XFEL R&D division RIKEN SPring-8 Center Light and Its Wavelength, Sizes of Material Virus Mosquito Protein Bacteria Atom

More information

TUNE SPREAD STUDIES AT INJECTION ENERGIES FOR THE CERN PROTON SYNCHROTRON BOOSTER

TUNE SPREAD STUDIES AT INJECTION ENERGIES FOR THE CERN PROTON SYNCHROTRON BOOSTER TUNE SPREAD STUDIES AT INJECTION ENERGIES FOR THE CERN PROTON SYNCHROTRON BOOSTER B. Mikulec, A. Findlay, V. Raginel, G. Rumolo, G. Sterbini, CERN, Geneva, Switzerland Abstract In the near future, a new

More information

Lattices for Light Sources

Lattices for Light Sources Andreas Streun Swiss Light Source SLS, Paul Scherrer Institute, Villigen, Switzerland Contents: Global requirements: size, brightness, stability Lattice building blocks: magnets and other devices Emittance:

More information

S. Guiducci. Table 1 PADME beam from Linac. Energy (MeV) 550. Number of positrons per pulse Pulse length (ns)

S. Guiducci. Table 1 PADME beam from Linac. Energy (MeV) 550. Number of positrons per pulse Pulse length (ns) K K DA ΦNE TECHNICAL NOTE INFN - LNF, Accelerator Division Frascati, 11/01/2017 Note: G-73 PRELIMINARY CONSIDERATIONS ON THE USE OF DAΦNE POSITRON RING AS A PULSE STRETCHER FOR THE DAΦNE LINAC S. Guiducci

More information