Filling the THz Gap GWYN P. WILLIAMS. Jefferson Lab Jefferson Avenue - MS 7A Newport News, VA

Size: px
Start display at page:

Download "Filling the THz Gap GWYN P. WILLIAMS. Jefferson Lab Jefferson Avenue - MS 7A Newport News, VA"

Transcription

1 Filling the THz Gap GWYN P. WILLIAMS Jefferson Lab Jefferson Avenue - MS 7A Newport News, VA gwyn@mailaps.org CASA Seminar, Novemer 14, 2003

2 x ma Diff. Limit GROWTH IN SYNCHROTRON X-RAY SOURCE BRIGHTNESS (Photons/sec/0.1%bw/sq.mm/mrad 2 ) rd. Gen. original design What s new? nd. Gen. 1st. Gen. Synch. Rad. Cray T Short pulses/ Multiparticle coherence CDC 6600 Cray 1 GROWTH IN LEADING EDGE COMPUTING SPEED (Millions of operations/sec) Calendar Year Near-field

3 The THz Gap Many important dynamical processes occur in the THz region (5 mev). Superconducting band-gaps, protein conformational modes, phonons. With high coherent power the key niche areas are non-linear dynamics and imaging.

4 THz Brief History After Nichols left Berlin, Rubens continued the work, and in 1900 he isolated wavelengths of 6THz (50 microns) and made careful measurements which he gave to Max Planck who derived the Radiation Law. Planck wrote in 1922 Without the intervention of Rubens the formulation of the radiation law, and consequently the formulation of quantum theory would have taken place in a totally different manner, and perhaps even not at all in Germany.

5 The Paper That Started it all. 1981

6 1 micron

7 Backing up.auston Switch for producing THz light 2 2 2ea Larmor's Formula: Power = (cgs units) 3 3c Auston, D.H., Cheung, K.P., Valdmanis, J.A. and Kleinman, D.A., Phys. Rev.Letters (1984).

8 Radiation from Accelerated Electron Electric field goes linearly in the electric charge and the acceleration electron field - so intensity (power) goes like e 2 a 2 But units of power are: Power Force Distance Time MLT 2 L 2 3 acceleration = = ML T T Now for an electric charge, force is e 2 /L 2, so we can derive units for e thus: = e L 2 = MLT 2 2 So e 2 a 2 has units of :ML 3 T -2 L 2 T -4 = ML 5 T -6 And if we divide by c 3, or L 3 T -3, we get ML 2 T -3.

9 Radiation from Accelerated Electron Also we note that radiation is emitted in only 2 out of 3 directions, so we have a 2/3 factor, yielding: Larmor s Formula 2 2 Power = 2ea 3 3 Noting that the units of power are ML 2 T -3, and noting that M goes like gamma, L goes like 1/gamma and T goes like gamma in the moving frame, in the rest frame the relativistic version is : 2 2 Power = 2eaγ4 3 3 N.B. Radiated energy and elapsed time transform in the same manner under Lorentz transforms c c

10 Comparing Coherent THz Synchrotron and Conventional THz Sources 2 2 2ea 4 Larmor's Formula: Power = (cgs units) 3 γ 3c a=acceleration c=vel. of light γ=mass/rest mass a ~100 V THz fsec laser GaAs pulse 100V 6 E = = 10 V 4 10 m m F 10 V 10 ( 3 10 ) = = = 2 6 m.5mev /c m 2 sec GaAs fsec laser pulse e - -> 40 MeV ρ c (3 10 ) 17 m a = = 10 ρ 1 if ρ = 1 m γ = = sec THz and 80 10!!!! 2

11 Synchrotron Radiation Generation e- e- e- e- e- e- e- e- e- e- e- e- e- e- e- e-

12 Synchrotron Radiation Generation electron(s) Electric field time E/N Intensity E 2 N THz super-radiant enhancement freq. (1/time) W.D. Duncan and G.P. Williams, Infra-red Synchrotron Radiation From Electron Storage Rings, Applied Optics 22, 29l4 (1983).

13 Synchrotron Radiation Generation - actual situation Statistics of an electron bunch in a storage ring Time Scale 1 Time Scale 2 Hirschmugl, Sagurton and Williams, Physical Review A44, 1316, (1991).

14 Coherent Synchrotron Radiation Generation - theory 2 f ω eiω nz ˆ / c S z dz = nr(t) ˆ. / iω t c d2i 2 e2 2 N[1 f( )] N f( ) ω / = ω + ω nˆ β nˆ e dt dω dω 4π 2c f(ω) is the form factor the Fourier transform of the normalized longitudinal particle distribution within the bunch, S(z) REFERENCES S.L. Hulbert and G.P. Williams, Handbook of Optics: Classical, Vision, and X-Ray Optics, 2nd ed., vol. III. Bass, Michael, Enoch, Jay M., Van Stryland, Eric W. and Wolfe William L. (eds.). New York: McGraw-Hill, (2001). S. Nodvick and D.S. Saxon, Suppression of coherent radiation by electrons in a synchrotron. Physical Review 96, (1954). Carol J. Hirschmugl, Michael Sagurton and Gwyn P. Williams, Multiparticle Coherence Calculations for Synchrotron Radiation Emission, Physical Review A44, 1316, (1991). 2

15 Synchrotron Radiation - so what s new here? radio-freq. cavity

16 Synchrotron Radiation - so what s new here? radio-freq. cavity Showstopper. Solution.. 3 Energy GeV at Recovery 100 ma is 300 Megawatts!!!!!

17 THz Setup on JLab IR-DEMO FEL FTIR System FTIR System e - We measured the bend-magnet synchrotron radiation right before the FEL, when the beam is maximally compressed.

18 THz Setup on JLab IR-DEMO FEL Crystal quartz window Collimating optic Nicolet Nexus 670 FTIR bench LHe cooled Si bolometer detector

19

20 October 2002

21 THz Expt and Calculation Frequency (THz) Diffraction losses Measured Calculated (500fs bunch length) ~ 20 Watts integrated Watts/cm Carr, Martin, McKinney, Neil, Jordan & Williams Nature 420, 153 (2002) Frequency (cm -1 )

22 Coherent THz vs. Current Intensity (Arb. Units) Integrated THz Intensity (Arb. Units) Measured intensity Measured Intensity Fit N 2 to (Current) 2 Fit Beam Current (µa) Current (µa) 50 µa 80 µa 105 µa 110 µa 170 µa 230 µa Wavenumbers (cm -1 )

23 Polarization of Coherent THz Measured Intensity (Arb. Units) 3500 I = 0.04 ma Polarizer Horizontal Polarizer Vertical Expected polarization ratio for 60 mrad port at 30 cm -1 is 6:1. We observed 5:1. Good agreement Wavenumbers (cm -1 )

24 Why do this? Terahertz Imaging Clery, Science (2002)

25 IR Spectroscopy & Dynamics is based on Vibrations Simple molecule More complicated molecule - protein Slide courtesy Paul Dumas, LURE, Orsay, France

26 Protein Structure / Folding Dynamics Amide I Secondary Structure Assignments: β-sheet 1644 extended coil (D 2 O) α-helix helix anti-parallel β-sheet, β-turn 0.2 Carboxypeptidase β-turn β-sheet Absorbance extended coil α-helix Frequency (cm -1 )

27 Protein Folding Dynamics - Silk Fiber Formation SCAN PARAMETERS: %T: silk fibroin on BaF 2 disk 32 scans at 200 KHz (2.3 sec) 4 cm -1 resolution MCT detector Absorbance random coil beta sheet 10 sec 30 sec 90 sec 180 sec Frequency Lisa Miller, Mark Chance et al.

28 THz Spectroscopy Anthrax proxy DNA Globus et al. University of Virginia J. App. Phys (2002)

29 THz Imaging A tooth cavity shows up clearly in red. Teraview Ltd.

30 The Promise of THz novel imaging

31 The Promise of THz novel imaging

32 THz Imaging Basal cell carcinoma shows malignancy in red. Teraview Ltd.

33 Terahertz computerized tomography 3cm Turkey Bone Test Object Ferguson et. al. Phys. Med. Biol (2002)

34 So where are we going at JLab with THz?

35 FEL upgrade, phase 1 THz light port Jefferson Lab s new ERL/FEL/THz source Turned-on June 2003!!

36 JFEL THz Port Description Final Rev. 1 Dated s M1 to dimad start of bend = 667mm ρ=1.2 meter 0 o Penetration location 1040 mm from dimad start of bend point. 85 mr 0 o 3.58 o 50 mr mr M1 (110 x 155) mm 10.2 o = 173 milliradians 146 mr View from the back of M1 looking at beam 60 Beamline Center Line to be: 2 0 tangent, 35 mrads from zero degrees 7/24/03 GPW This puts F1=667-( )=625

37 JFEL THz Port Description Final Rev. 1 Dated Dimensions in mm not to scale M1 110 x 155 M2 120 x 170 M3 183 x 258 M4 183 x 258 M2 (plane) Neil/GPW M4(ellipsoid) F1 F M3 ellipsoid M1(ellipsoid) F Floor 2480 Ceiling 2330 e-beam

38 SRW Calculation of light on screen 3.0 m from source by Paul Dumas Phot/s/0.1%bw/mm 2 1.0x x Spectral Flux / Surface vertical cut 0-0.2m Vertical Position Vertical Position Spectral Flux / Surface at λ=100 µm 3 m from downstr. BM Edge m m Horizontal Position -0.2m Horizontal Position Flux after 1-st Aperture: e+13 Photons/s/.1%bw

39 What is Edge Radiation? Dipole Radiation Edge Radiation Edge Radiation is light emitted as the electrons enter the fringe field of a dipole magnet. For long wavelengths the fringe field maybe treated as an impulse acceleration. Thus edge radiation has characteristics similar to transition radiation. In the far field approximation for a single edge the angular spectral flux is white up to a cutoff determined by the details of the fringe and is given by, df dω = α ω ω I eπ ( γ θ ) 2 Reference: R.A. Bosch, Nuclear Instr. & Methods A (1999). 2 γ 4 θ 2 d F dw gq

40 E = ec i + R c dτ ω n [( n βe ) βe ] cr γ + ( n βe ) exp[ ω( τ / )] (1 nβ ) 2 e R Full formula

41 What does edge Radiation look like? Daresbury Lab Ann Rep 1984/5

42 Two Edges Interfere Screen Edge 1 Edge 2 L Interference of Two Edges in Far Field Near Field Calculation of Two Edges using SRW (Chubar& Elleaume, ESRF) df dω 2 df dω 1 df 4 dω πl 1 Exp 2 λγ 1 Sin 2 πl 2λγ 2 ( γ θ ) ( 2 2) 1+ γ θ 2 Spectrum is no longer white Opening angle depends on λ

43 JLab s new THz Beamline

44 JLab s new THz Beamline Watts/cm E-3 1E-4 1E-5 1E-6 1E-7 1E-8 1E-9 Frequency (THz) Jlab Demo 5mA 100pc 500 fsecs fwhm 60hX60v Synchrotron radiation (NSLS, Brookhaven) 800 ma 90X K Black Body 10 mm 2 JLab Upgrade 135 pc 75 MHz (10mA) 300fs 150x150 Integrated Intensity Watts 1E Frequency (cm -1 )

45 JLab s new THz Beamline Watts/cm E-3 1E-4 1E-5 1E-6 1E-7 1E-8 1E-9 Frequency (THz) JLab FEL - THz Port 75 MHz 135 pc (10 ma) 150 x 150 mr Int. Power 100 fs FWHM 1.1kW 400 fs FWHM.26kW 800 fs FWHM.11kW 1E Frequency (cm -1 )

46 Flux (Watts/cm -1 ) E-3 1E-4 1E-5 1E-6 1E-7 1E-8 1E-9 1E-10 1E-11 Brightness of IR Sources Energy (mev) JLab THz Synchrotrons Globar 1E Wavenumbers (cm -1 ) JLab FEL Table-top sub-ps lasers THz proof of principle: Carr, Martin, McKinney, Neil, Jordan & Williams Nature 420, 153 (2002) FEL proof of principle: Neil et al. Phys. Rev.Letts 84, 662 (2000)

47 Thanks to. George Neil, Fred Dylla and the Jefferson Lab FEL Team Larry Carr (Brookhaven National Laboratory) Lisa Miller (Brookhaven National Laboratory) Carol Hirschmugl (UW Milwaukee) Paul Dumas (University of Paris, France) Oleg Chubar (Soleil project, Saclay, France) Mike Martin (Berkeley Lab) Wayne McKinney (Berkeley Lab) Funded by United States DOE, DOD DE-AC05-84-ER40150 TJNAF

Synchrotron Radiation and Free Electron Lasers

Synchrotron Radiation and Free Electron Lasers Synchrotron Radiation and Free Electron Lasers Gwyn P. Williams Jefferson Lab 12000 Jefferson Avenue - MS 7A Newport News, VA 23606 gwyn@mailaps.org UVa April 14, 2004 Synchrotron Radiation and Free Electron

More information

The Broadband High Power THz User Facility at the Jefferson Lab - FEL

The Broadband High Power THz User Facility at the Jefferson Lab - FEL The Broadband High Power THz User Facility at the Jefferson Lab - FEL J. Michael Klopf Jefferson Lab Core Managers Meeting June 8, 2006 Jefferson Lab Site Free Electron Laser Facility / THz Lab What is

More information

Terahertz imaging using the Jefferson Lab - FEL high power broadband terahertz source

Terahertz imaging using the Jefferson Lab - FEL high power broadband terahertz source Terahertz imaging using the Jefferson Lab - FEL high power broadband terahertz source J. Michael Klopf a), Matthew Coppinger b), Nathan Sustersic b), James Kolodzey b), and Gwyn P. Williams a) a) Jefferson

More information

Investigation of Coherent Emission from the NSLS VUV Ring

Investigation of Coherent Emission from the NSLS VUV Ring SPIE Accelerator Based Infrared Sources and Spectroscopic Applications Proc. 3775, 88 94 (1999) Investigation of Coherent Emission from the NSLS VUV Ring G.L. Carr, R.P.S.M. Lobo, J.D. LaVeigne, D.H. Reitze,

More information

Compact Wideband THz Source

Compact Wideband THz Source Compact Wideband THz Source G. A. Krafft Center for Advanced Studies of Accelerators Jefferson Lab Newport News, VA 3608 Previously, I have published a paper describing compact THz radiation sources based

More information

Filling the THz gap high power sources and applications

Filling the THz gap high power sources and applications Home Search Collections Journals About Contact us My IOPscience Filling the THz gap high power sources and applications This content has been downloaded from IOPscience. Please scroll down to see the full

More information

Electron Linear Accelerators & Free-Electron Lasers

Electron Linear Accelerators & Free-Electron Lasers Electron Linear Accelerators & Free-Electron Lasers Bryant Garcia Wednesday, July 13 2016. SASS Summer Seminar Bryant Garcia Linacs & FELs 1 of 24 Light Sources Why? Synchrotron Radiation discovered in

More information

New Electron Source for Energy Recovery Linacs

New Electron Source for Energy Recovery Linacs New Electron Source for Energy Recovery Linacs Ivan Bazarov 20m Cornell s photoinjector: world s brightest electron source 1 Outline Uses of high brightness electron beams Physics of brightness High brightness

More information

3. Synchrotrons. Synchrotron Basics

3. Synchrotrons. Synchrotron Basics 1 3. Synchrotrons Synchrotron Basics What you will learn about 2 Overview of a Synchrotron Source Losing & Replenishing Electrons Storage Ring and Magnetic Lattice Synchrotron Radiation Flux, Brilliance

More information

Research with Synchrotron Radiation. Part I

Research with Synchrotron Radiation. Part I Research with Synchrotron Radiation Part I Ralf Röhlsberger Generation and properties of synchrotron radiation Radiation sources at DESY Synchrotron Radiation Sources at DESY DORIS III 38 beamlines XFEL

More information

USPAS course on Recirculated and Energy Recovered Linacs Ivan Bazarov, Cornell University Geoff Krafft, JLAB. ERL as a X-ray Light Source

USPAS course on Recirculated and Energy Recovered Linacs Ivan Bazarov, Cornell University Geoff Krafft, JLAB. ERL as a X-ray Light Source USPAS course on Recirculated and Energy Recovered Linacs Ivan Bazarov, Cornell University Geoff Krafft, JLAB ERL as a X-ray Light Source Contents Introduction Light sources landscape General motivation

More information

WG2 on ERL light sources CHESS & LEPP

WG2 on ERL light sources CHESS & LEPP Charge: WG2 on ERL light sources Address and try to answer a list of critical questions for ERL light sources. Session leaders can approach each question by means of (a) (Very) short presentations (b)

More information

Coherent THz Pulses: Source and Science at the NSLS

Coherent THz Pulses: Source and Science at the NSLS Coherent THz Pulses: Source and Science at the NSLS H. Loos, B. Sheehy, D. Arena, J.B. Murphy, X.-J. Wang and G. L. Carr Brookhaven National Laboratory carr@bnl.gov http://www.nsls.bnl.gov http://infrared.nsls.bnl.gov

More information

Characteristics and Applications of High Intensity Coherent THz Pulses from Linear Accelerators

Characteristics and Applications of High Intensity Coherent THz Pulses from Linear Accelerators Characteristics and Applications of High Intensity Coherent THz Pulses from Linear Accelerators G. Lawrence Carr National Synchrotron Light Source Brookhaven National Laboratory In collaboration with Henrik

More information

Introduction to electron and photon beam physics. Zhirong Huang SLAC and Stanford University

Introduction to electron and photon beam physics. Zhirong Huang SLAC and Stanford University Introduction to electron and photon beam physics Zhirong Huang SLAC and Stanford University August 03, 2015 Lecture Plan Electron beams (1.5 hrs) Photon or radiation beams (1 hr) References: 1. J. D. Jackson,

More information

Energy Recovery Linac (ERL) Properties. Physics Dept. & Cornell High Energy Synchrotron Source (CHESS) Ithaca, NY Cornell University

Energy Recovery Linac (ERL) Properties. Physics Dept. & Cornell High Energy Synchrotron Source (CHESS) Ithaca, NY Cornell University Energy Recovery Linac (ERL) Properties Sol M. Gruner Physics Dept. & Cornell High Energy Synchrotron Source (CHESS) Cornell University Ithaca, NY 14853-2501 Acknowledgements T. Allen (Special thanks to

More information

Scanning Near-Field Infrared Microscopy (SNFIM) LPC, Newport News, VA, January 17, Edward Gillman

Scanning Near-Field Infrared Microscopy (SNFIM) LPC, Newport News, VA, January 17, Edward Gillman Scanning Near-Field Infrared Microscopy (SNFIM) LPC, Newport News, VA, January 17, 00 Edward Gillman (gillman@jlab.org) Scanning Near-Field Optical Microscope (SNOM) The scanning near-field optical microscope

More information

Light Source I. Takashi TANAKA (RIKEN SPring-8 Center) Cheiron 2012: Light Source I

Light Source I. Takashi TANAKA (RIKEN SPring-8 Center) Cheiron 2012: Light Source I Light Source I Takashi TANAKA (RIKEN SPring-8 Center) Light Source I Light Source II CONTENTS Introduction Fundamentals of Light and SR Overview of SR Light Source Characteristics of SR (1) Characteristics

More information

What is an Energy Recovery Linac and Why is there one in your Future?

What is an Energy Recovery Linac and Why is there one in your Future? What is an Energy Recovery Linac and Why is there one in your Future? Sol M. Gruner CHESS, Physics Dept. Cornell University Ithaca, NY 14853 Outline 1. Who needs another synchrotron source? 2. What is

More information

THE FIRST SYNCHROTRON INFRARED BEAMLINES AT THE ADVANCED LIGHT SOURCE: SPECTROMICROSCOPY AND FAST TIMING

THE FIRST SYNCHROTRON INFRARED BEAMLINES AT THE ADVANCED LIGHT SOURCE: SPECTROMICROSCOPY AND FAST TIMING THE FIRST SYNCHROTRON INFRARED BEAMLINES AT THE ADVANCED LIGHT SOURCE: SPECTROMICROSCOPY AND FAST TIMING MICHAEL C. MARTIN AND WAYNE R. MCKINNEY Advanced Light Source, Lawrence Berkeley National Laboratory

More information

Simulations of the IR/THz source at PITZ (SASE FEL and CTR)

Simulations of the IR/THz source at PITZ (SASE FEL and CTR) Simulations of the IR/THz source at PITZ (SASE FEL and CTR) Introduction Outline Simulations of SASE FEL Simulations of CTR Summary Issues for Discussion Mini-Workshop on THz Option at PITZ DESY, Zeuthen

More information

Brightness and Coherence of Synchrotron Radiation and Free Electron Lasers. Zhirong Huang SLAC, Stanford University May 13, 2013

Brightness and Coherence of Synchrotron Radiation and Free Electron Lasers. Zhirong Huang SLAC, Stanford University May 13, 2013 Brightness and Coherence of Synchrotron Radiation and Free Electron Lasers Zhirong Huang SLAC, Stanford University May 13, 2013 Introduction GE synchrotron (1946) opened a new era of accelerator-based

More information

Short Pulse, Low charge Operation of the LCLS. Josef Frisch for the LCLS Commissioning Team

Short Pulse, Low charge Operation of the LCLS. Josef Frisch for the LCLS Commissioning Team Short Pulse, Low charge Operation of the LCLS Josef Frisch for the LCLS Commissioning Team 1 Normal LCLS Parameters First Lasing in April 10, 2009 Beam to AMO experiment August 18 2009. Expect first user

More information

X-ray Free-electron Lasers

X-ray Free-electron Lasers X-ray Free-electron Lasers Ultra-fast Dynamic Imaging of Matter II Ischia, Italy, 4/30-5/3/ 2009 Claudio Pellegrini UCLA Department of Physics and Astronomy Outline 1. Present status of X-ray free-electron

More information

INVESTIGATIONS OF THE DISTRIBUTION IN VERY SHORT ELECTRON BUNCHES LONGITUDINAL CHARGE

INVESTIGATIONS OF THE DISTRIBUTION IN VERY SHORT ELECTRON BUNCHES LONGITUDINAL CHARGE INVESTIGATIONS OF THE LONGITUDINAL CHARGE DISTRIBUTION IN VERY SHORT ELECTRON BUNCHES Markus Hüning III. Physikalisches Institut RWTH Aachen IIIa and DESY Invited talk at the DIPAC 2001 Methods to obtain

More information

Optics considerations for

Optics considerations for Optics considerations for ERL x-ray x sources Georg H. Hoffstaetter* Physics Department Cornell University Ithaca / NY Georg.Hoffstaetter@cornell.edu 1. Overview of Parameters 2. Critical Topics 3. Phase

More information

Edge Radiation IR end-station at ESRF

Edge Radiation IR end-station at ESRF X-TIP Workshop Coupling of Synchrotron Radiation IR and X-rays with Tip based Scanning Probe Microscopies 16-18 November 2005 Edge Radiation IR end-station at ESRF Jean Susini European Synchrotron Radiation

More information

Survey on Laser Spectroscopic Techniques for Condensed Matter

Survey on Laser Spectroscopic Techniques for Condensed Matter Survey on Laser Spectroscopic Techniques for Condensed Matter Coherent Radiation Sources for Small Laboratories CW: Tunability: IR Visible Linewidth: 1 Hz Power: μw 10W Pulsed: Tunabality: THz Soft X-ray

More information

Insertion Devices Lecture 2 Wigglers and Undulators. Jim Clarke ASTeC Daresbury Laboratory

Insertion Devices Lecture 2 Wigglers and Undulators. Jim Clarke ASTeC Daresbury Laboratory Insertion Devices Lecture 2 Wigglers and Undulators Jim Clarke ASTeC Daresbury Laboratory Summary from Lecture #1 Synchrotron Radiation is emitted by accelerated charged particles The combination of Lorentz

More information

Experimental Optimization of Electron Beams for Generating THz CTR and CDR with PITZ

Experimental Optimization of Electron Beams for Generating THz CTR and CDR with PITZ Experimental Optimization of Electron Beams for Generating THz CTR and CDR with PITZ Introduction Outline Optimization of Electron Beams Calculations of CTR/CDR Pulse Energy Summary & Outlook Prach Boonpornprasert

More information

Transverse dynamics Selected topics. Erik Adli, University of Oslo, August 2016, v2.21

Transverse dynamics Selected topics. Erik Adli, University of Oslo, August 2016, v2.21 Transverse dynamics Selected topics Erik Adli, University of Oslo, August 2016, Erik.Adli@fys.uio.no, v2.21 Dispersion So far, we have studied particles with reference momentum p = p 0. A dipole field

More information

Accelerator Physics Issues of ERL Prototype

Accelerator Physics Issues of ERL Prototype Accelerator Physics Issues of ERL Prototype Ivan Bazarov, Geoffrey Krafft Cornell University TJNAF ERL site visit (Mar 7-8, ) Part I (Bazarov). Optics. Space Charge Emittance Compensation in the Injector

More information

SPARCLAB. Source For Plasma Accelerators and Radiation Compton with Laser And Beam

SPARCLAB. Source For Plasma Accelerators and Radiation Compton with Laser And Beam SPARCLAB Source For Plasma Accelerators and Radiation Compton with Laser And Beam EMITTANCE X X X X X X X X Introduction to SPARC_LAB 2 BRIGHTNESS (electrons) B n 2I nx ny A m 2 rad 2 The current can be

More information

Future Light Sources March 5-9, 2012 Low- alpha mode at SOLEIL 1

Future Light Sources March 5-9, 2012 Low- alpha mode at SOLEIL 1 Introduction: bunch length measurements Reminder of optics Non- linear dynamics Low- alpha operation On the user side: THz and X- ray short bunch science CSR measurement and modeling Future Light Sources

More information

High Power Terahertz Light: Commissioning and Characterization

High Power Terahertz Light: Commissioning and Characterization High Power Terahertz Light: Commissioning and Characterization A thesis submitted in partial fulfillment of the requirement for the degree of Bachelor of Science in Physics from the College of William

More information

RADIATION SOURCES AT SIBERIA-2 STORAGE RING

RADIATION SOURCES AT SIBERIA-2 STORAGE RING RADIATION SOURCES AT SIBERIA-2 STORAGE RING V.N. Korchuganov, N.Yu. Svechnikov, N.V. Smolyakov, S.I. Tomin RRC «Kurchatov Institute», Moscow, Russia Kurchatov Center Synchrotron Radiation undulator undulator

More information

The New Superconducting RF Photoinjector a High-Average Current & High-Brightness Gun

The New Superconducting RF Photoinjector a High-Average Current & High-Brightness Gun The New Superconducting RF Photoinjector a High-Average Current & High-Brightness Gun Jochen Teichert for the BESSY-DESY-FZD-MBI collaboration and the ELBE crew High-Power Workshop, UCLA, Los Angeles 14

More information

Compton Scattering Effect and Physics of Compton Photon Beams. Compton Photon Sources around the World, Present and Future

Compton Scattering Effect and Physics of Compton Photon Beams. Compton Photon Sources around the World, Present and Future !!! #! ! # Compton Scattering Effect and Physics of Compton Photon Beams Compton Photon Sources around the World, Present and Future Compton X-ray Sources: Facilities, Projects and Experiments Compton

More information

Diagnostic Systems for Characterizing Electron Sources at the Photo Injector Test Facility at DESY, Zeuthen site

Diagnostic Systems for Characterizing Electron Sources at the Photo Injector Test Facility at DESY, Zeuthen site 1 Diagnostic Systems for Characterizing Electron Sources at the Photo Injector Test Facility at DESY, Zeuthen site Sakhorn Rimjaem (on behalf of the PITZ team) Motivation Photo Injector Test Facility at

More information

SLAC Summer School on Electron and Photon Beams. Tor Raubenheimer Lecture #2: Inverse Compton and FEL s

SLAC Summer School on Electron and Photon Beams. Tor Raubenheimer Lecture #2: Inverse Compton and FEL s SLAC Summer School on Electron and Photon Beams Tor Raubenheimer Lecture #: Inverse Compton and FEL s Outline Synchrotron radiation Bending magnets Wigglers and undulators Inverse Compton scattering Free

More information

1 BROOKHAVEN SCIENCE ASSOCIATES

1 BROOKHAVEN SCIENCE ASSOCIATES The Storage Ring Control Network of NSLS-II C. Yu, F. Karl, M. Ilardo, M. Ke, C. Spataro, S. Sharma 1 BROOKHAVEN SCIENCE ASSOCIATES Outline Project Overview Survey Networks Overview Error Estimate Measurement

More information

Overview of Energy Recovery Linacs

Overview of Energy Recovery Linacs Overview of Energy Recovery Linacs Ivan Bazarov Cornell High Energy Synchrotron Source Talk Outline: Historical Perspective Parameter Space Operational ERLs & Funded Projects Challenges ERL Concept: conventional

More information

ThomX Machine Advisory Committee. (LAL Orsay, March ) Ring Beam Dynamics

ThomX Machine Advisory Committee. (LAL Orsay, March ) Ring Beam Dynamics ThomX Machine Advisory Committee (LAL Orsay, March 20-21 2017) Ring Beam Dynamics A. Loulergue, M. Biagini, C. Bruni, I. Chaikovska I. Debrot, N. Delerue, A. Gamelin, H. Guler, J. Zang Programme Investissements

More information

SRF GUN CHARACTERIZATION - PHASE SPACE AND DARK CURRENT MEASUREMENTS AT ELBE*

SRF GUN CHARACTERIZATION - PHASE SPACE AND DARK CURRENT MEASUREMENTS AT ELBE* SRF GUN CHARACTERIZATION - PHASE SPACE AND DARK CURRENT MEASUREMENTS AT ELBE* E. Panofski #, A. Jankowiak, T. Kamps, Helmholtz-Zentrum Berlin, Berlin, Germany P.N. Lu, J. Teichert, Helmholtz-Zentrum Dresden-Rossendorf,

More information

Photon Regeneration at Optical Frequencies

Photon Regeneration at Optical Frequencies Photon Regeneration at Optical Frequencies Andrei Afanasev Hampton University/Jefferson Lab 3 rd rd Joint ILIAS-CERN CERN-WIMPs Training workshop Patras,, Greece, June 22, 2007 Motivation for Axion Search

More information

Compressor and Chicane Radiation Studies at the ATF. Gerard Andonian, UCLA High Power Workshop January 14-16, 2009 UCLA

Compressor and Chicane Radiation Studies at the ATF. Gerard Andonian, UCLA High Power Workshop January 14-16, 2009 UCLA Compressor and Chicane Radiation Studies at the ATF Gerard Andonian, UCLA High Power Workshop January 14-16, 2009 UCLA Collaboration UCLA PBPL G. Andonian, A. Cook, M. Dunning, E. Hemsing, A. Murokh, S.

More information

Coherent Synchrotron Radiation and Short Bunches in Electron Storage Rings. G. Wüstefeld, BESSY, Berlin (Germany)

Coherent Synchrotron Radiation and Short Bunches in Electron Storage Rings. G. Wüstefeld, BESSY, Berlin (Germany) Coherent Synchrotron Radiation and Short Bunches in Electron Storage Rings G. Wüstefeld, BESSY, Berlin (Germany) Content content 1. Introduction 2. Low alpha optics for short bunches 3. Coherent radiation

More information

Liverpool Physics Teachers Conference July

Liverpool Physics Teachers Conference July Elements of a Laser Pump Optics Ex-Director STFC Accelerator Science and Technology Centre (ASTeC) Daresbury Laboratory Gain medium All lasers contain a medium in which optical gain can be induced and

More information

THz experiments at the UCSB FELs and the THz Science and Technology Network.

THz experiments at the UCSB FELs and the THz Science and Technology Network. THz experiments at the UCSB FELs and the THz Science and Technology Network. Mark Sherwin UCSB Physics Department and Institute for Quantum and Complex Dynamics UCSB Center for Terahertz Science and Technology

More information

Accelerator Physics NMI and Synchrotron Radiation. G. A. Krafft Old Dominion University Jefferson Lab Lecture 16

Accelerator Physics NMI and Synchrotron Radiation. G. A. Krafft Old Dominion University Jefferson Lab Lecture 16 Accelerator Physics NMI and Synchrotron Radiation G. A. Krafft Old Dominion University Jefferson Lab Lecture 16 Graduate Accelerator Physics Fall 17 Oscillation Frequency nq I n i Z c E Re Z 1 mode has

More information

FLASH overview. Nikola Stojanovic. PIDID collaboration meeting, Hamburg,

FLASH overview. Nikola Stojanovic. PIDID collaboration meeting, Hamburg, FLASH overview Nikola Stojanovic PIDID collaboration meeting, Hamburg, 16.12.2011 Outline Overview of the FLASH facility Examples of research at FLASH Nikola Stojanovic PIDID: FLASH overview Hamburg, December

More information

Part V Undulators for Free Electron Lasers

Part V Undulators for Free Electron Lasers Part V Undulators for Free Electron Lasers Pascal ELLEAUME European Synchrotron Radiation Facility, Grenoble V, 1/22, P. Elleaume, CAS, Brunnen July 2-9, 2003. Oscillator-type Free Electron Laser V, 2/22,

More information

Energy Recovery Linac (ERL) Science Workshop

Energy Recovery Linac (ERL) Science Workshop Energy Recovery Linac (ERL) Science Workshop Sol M. Gruner, CHESS & Physics Dept. Objective: Examine science possible with an ERL x-ray source. Ques.: Ans.: Why do this? Need for more and better SR machines.

More information

Characteristics and Properties of Synchrotron Radiation

Characteristics and Properties of Synchrotron Radiation Characteristics and Properties of Synchrotron Radiation Giorgio Margaritondo Vice-président pour les affaires académiques Ecole Polytechnique Fédérale de Lausanne (EPFL) Outline: How to build an excellent

More information

OBSERVATION OF TRANSVERSE- LONGITUDINAL COUPLING EFFECT AT UVSOR-II

OBSERVATION OF TRANSVERSE- LONGITUDINAL COUPLING EFFECT AT UVSOR-II OBSERVATION OF TRANSVERSE- LONGITUDINAL COUPLING EFFECT AT UVSOR-II The 1st International Particle Accelerator Conference, IPAC 10 Kyoto International Conference Center, May 23-28, 2010 M. Shimada (KEK),

More information

Low alpha mode for SPEAR3 and a potential THz beamline

Low alpha mode for SPEAR3 and a potential THz beamline Low alpha mode for SPEAR3 and a potential THz beamline X. Huang For the SSRL Accelerator Team 3/4/00 Future Light Source Workshop 00 --- X. Huang Outline The low-alpha mode for SPEAR3 Potential for a THz

More information

Infrared Synchrotrons Radiation, Review of Properties and Prospective

Infrared Synchrotrons Radiation, Review of Properties and Prospective BNL - 67187 Infrared Synchrotrons Radiation, Review of Properties and Prospective G.P. Williams National Synchrotrons Light Source Brookhaven National Laboratory Upton, New York 11973, USA July 1999 National

More information

Linac Based Photon Sources: XFELS. Coherence Properties. J. B. Hastings. Stanford Linear Accelerator Center

Linac Based Photon Sources: XFELS. Coherence Properties. J. B. Hastings. Stanford Linear Accelerator Center Linac Based Photon Sources: XFELS Coherence Properties J. B. Hastings Stanford Linear Accelerator Center Coherent Synchrotron Radiation Coherent Synchrotron Radiation coherent power N 6 10 9 incoherent

More information

Two-Stage Chirped-Beam SASE-FEL for High Power Femtosecond X-Ray Pulse Generation

Two-Stage Chirped-Beam SASE-FEL for High Power Femtosecond X-Ray Pulse Generation Two-Stage Chirped-Beam SASE-FEL for High ower Femtosecond X-Ray ulse Generation C. Schroeder*, J. Arthur^,. Emma^, S. Reiche*, and C. ellegrini* ^ Stanford Linear Accelerator Center * UCLA 12-10-2001 LCLS-TAC

More information

Simple strategy for enhancing terahertz emission from coherent longitudinal optical phonons using undoped GaAs/n-type GaAs epitaxial layer structures

Simple strategy for enhancing terahertz emission from coherent longitudinal optical phonons using undoped GaAs/n-type GaAs epitaxial layer structures Presented at ISCS21 June 4, 21 Session # FrP3 Simple strategy for enhancing terahertz emission from coherent longitudinal optical phonons using undoped GaAs/n-type GaAs epitaxial layer structures Hideo

More information

Laser-driven undulator source

Laser-driven undulator source Laser-driven undulator source Matthias Fuchs, R. Weingartner, A.Maier, B. Zeitler, S. Becker, D. Habs and F. Grüner Ludwig-Maximilians-Universität München A.Popp, Zs. Major, J. Osterhoff, R. Hörlein, G.

More information

Free-electron laser SACLA and its basic. Yuji Otake, on behalf of the members of XFEL R&D division RIKEN SPring-8 Center

Free-electron laser SACLA and its basic. Yuji Otake, on behalf of the members of XFEL R&D division RIKEN SPring-8 Center Free-electron laser SACLA and its basic Yuji Otake, on behalf of the members of XFEL R&D division RIKEN SPring-8 Center Light and Its Wavelength, Sizes of Material Virus Mosquito Protein Bacteria Atom

More information

Femto second X ray Pulse Generation by Electron Beam Slicing. F. Willeke, L.H. Yu, NSLSII, BNL, Upton, NY 11973, USA

Femto second X ray Pulse Generation by Electron Beam Slicing. F. Willeke, L.H. Yu, NSLSII, BNL, Upton, NY 11973, USA Femto second X ray Pulse Generation by Electron Beam Slicing F. Willeke, L.H. Yu, NSLSII, BNL, Upton, NY 11973, USA r 2 r 1 y d x z v Basic Idea: When short electron bunch from linac (5MeV, 50pC,100fs)

More information

Polarimetry in Hall A

Polarimetry in Hall A Outline E.Chudakov Moller-12 Workshop, Aug 2008 Polarimetry in Hall A 1 Polarimetry in Hall A E.Chudakov 1 1 Hall A, JLab Moller-12 Workshop, Aug 2008 Outline E.Chudakov Moller-12 Workshop, Aug 2008 Polarimetry

More information

SPARCLAB. Source For Plasma Accelerators and Radiation Compton. On behalf of SPARCLAB collaboration

SPARCLAB. Source For Plasma Accelerators and Radiation Compton. On behalf of SPARCLAB collaboration SPARCLAB Source For Plasma Accelerators and Radiation Compton with Laser And Beam On behalf of SPARCLAB collaboration EMITTANCE X X X X X X X X 2 BRIGHTNESS (electrons) B n 2I nx ny A m 2 rad 2 The current

More information

7th IPAC, May 8-13, 2016, Busan, Korea

7th IPAC, May 8-13, 2016, Busan, Korea 7th IPAC, May 8-13, 2016, Busan, Korea ER@CEBAF A High-Energy, Multiple-Pass, Energy Recovery Experiment at CEBAF On behalf of the JLab-BNL ER@CEBAF collaboration : I. Ben-Zvi, Y. Hao, P. Korysko, C. Liu,

More information

Coherent Cherenkov radiation from ultra-short electron bunch passing through vacuum channel in conical target

Coherent Cherenkov radiation from ultra-short electron bunch passing through vacuum channel in conical target Coherent Cherenkov radiation from ultra-short electron bunch passing through vacuum channel in conical target A.P. Potylitsyn, S.Yu. Gogolev RREPS_11, London, 2011, Sept.12-16 Motivation Existing experimental

More information

Abstract. 1. Introduction

Abstract. 1. Introduction The New Upgrade of SESAME D.Einfeld1, R.H.Sarraf2, M.Attal3, H.Hashemi4, A.Elsisi5, A.Amro6, H.Hassanzadegan4, K.Tavakoli3, B.Kalantari7, S. Varnasery8, E. Al-Dmour8, D. Foudeh6, H.Tarawneh9, A.Aladwan7

More information

Performance Metrics of Future Light Sources. Robert Hettel, SLAC ICFA FLS 2010 March 1, 2010

Performance Metrics of Future Light Sources. Robert Hettel, SLAC ICFA FLS 2010 March 1, 2010 Performance Metrics of Future Light Sources Robert Hettel, SLAC ICFA FLS 2010 March 1, 2010 http://www-ssrl.slac.stanford.edu/aboutssrl/documents/future-x-rays-09.pdf special acknowledgment to John Corlett,

More information

Potential use of erhic s ERL for FELs and light sources ERL: Main-stream GeV e - Up-gradable to 20 + GeV e -

Potential use of erhic s ERL for FELs and light sources ERL: Main-stream GeV e - Up-gradable to 20 + GeV e - Potential use of erhic s ERL for FELs and light sources Place for doubling energy linac ERL: Main-stream - 5-10 GeV e - Up-gradable to 20 + GeV e - RHIC Electron cooling Vladimir N. Litvinenko and Ilan

More information

Pushing the limits of laser synchrotron light sources

Pushing the limits of laser synchrotron light sources Pushing the limits of laser synchrotron light sources Igor Pogorelsky National Synchrotron Light Source 2 Synchrotron light source With λ w ~ several centimeters, attaining XUV region requires electron

More information

First propositions of a lattice for the future upgrade of SOLEIL. A. Nadji On behalf of the Accelerators and Engineering Division

First propositions of a lattice for the future upgrade of SOLEIL. A. Nadji On behalf of the Accelerators and Engineering Division First propositions of a lattice for the future upgrade of SOLEIL A. Nadji On behalf of the Accelerators and Engineering Division 1 SOLEIL : A 3 rd generation synchrotron light source 29 beamlines operational

More information

Optical Spectroscopy of Advanced Materials

Optical Spectroscopy of Advanced Materials Phys 590B Condensed Matter Physics: Experimental Methods Optical Spectroscopy of Advanced Materials Basic optics, nonlinear and ultrafast optics Jigang Wang Department of Physics, Iowa State University

More information

Accelerator Physics. Lecture 13. Synchrotron Radiation Basics Free Electron Laser Applications + Facilities. Accelerator Physics WS 2012/13

Accelerator Physics. Lecture 13. Synchrotron Radiation Basics Free Electron Laser Applications + Facilities. Accelerator Physics WS 2012/13 Accelerator Physics Lecture 13 Synchrotron Radiation Basics Free Electron Laser Applications + Facilities 1 Synchrotron Radiation Atomic Physics Chemistry (Micro-)Biology Solid State Physics Medical Research

More information

Diagnostics Needs for Energy Recovery Linacs

Diagnostics Needs for Energy Recovery Linacs Diagnostics Needs for Energy Recovery Linacs Georg H. Hoffstaetter Cornell Laboratory for Accelerator-based Sciences and Education & Physics Department Cornell University, Ithaca New York 14853-2501 gh77@cornell.edu

More information

ELIC: A High Luminosity And Efficient Spin Manipulation Electron-Light Ion Collider Based At CEBAF

ELIC: A High Luminosity And Efficient Spin Manipulation Electron-Light Ion Collider Based At CEBAF ELIC: A High Luminosity And Efficient Spin Manipulation Electron-Light Ion Collider Based At CEBAF Lia Merminga and Yaroslav Derbenev Center for Advanced Studies of Accelerators, Jefferson Laboratory,

More information

Characterizations and Diagnostics of Compton Light Source

Characterizations and Diagnostics of Compton Light Source Characterizations and Diagnostics of Compton Light Source Advance Light Source (ALS) (LBNL) Ying K. Wu Duke Free Electron Laser Laboratory (DFELL) Acknowledgments: DFELL: B. Jia, G. Swift, H. Hao, J. Li,

More information

BUNCH LENGTH MEASUREMENT AT THE FERMILAB A0 PHOTOINJECTOR USING A MARTIN-PUPLETT INTERFEROMETER *

BUNCH LENGTH MEASUREMENT AT THE FERMILAB A0 PHOTOINJECTOR USING A MARTIN-PUPLETT INTERFEROMETER * BUNCH LENGTH MEASUREMENT AT THE FERMILAB A0 PHOTOINJECTOR USING A MARTIN-PUPLETT INTERFEROMETER * Randy Thurman-Keup #, Raymond Patrick Fliller, Grigory Kazakevich (Fermilab, P.O. Box 500, Batavia, Illinois

More information

SYNCHROTRON RADIATION

SYNCHROTRON RADIATION SYNCHROTRON RADIATION Lenny Rivkin Ecole Polythechnique Federale de Lausanne (EPFL) and Paul Scherrer Institute (PSI), Switzerland Introduction to Accelerator Physics Course CERN Accelerator School, Zakopane,

More information

Swapan Chattopadhyay Associate Director, Jefferson Lab

Swapan Chattopadhyay Associate Director, Jefferson Lab From Quark Confinement to Protein Dynamics via Nanobeams and Attosecond Pulses A Theme with Variations on Microwave Superconductivity and Energy Recovery Swapan Chattopadhyay Associate Director, Jefferson

More information

EO single-shot temporal measurements of electron bunches

EO single-shot temporal measurements of electron bunches EO single-shot temporal measurements of electron bunches and of terahertz CSR and FEL pulses. Steven Jamison, Giel Berden, Allan MacLeod Allan Gillespie, Dino Jaroszynski, Britta Redlich, Lex van der Meer

More information

The MAX IV Project. Background The Machine(s) The Beamlines. 32nd International Free Electron Laser Conference, Aug 23-27, 2010, Malmö

The MAX IV Project. Background The Machine(s) The Beamlines. 32nd International Free Electron Laser Conference, Aug 23-27, 2010, Malmö The MAX IV Project Background The Machine(s) The Beamlines MAX-lab - A laboratory under continuous development MAX II 1500 MeV MAX III 700 MeV MAX I 550 MeV LINAC injektor MAX FEL History: 1985 MAX I 1997

More information

FURTHER UNDERSTANDING THE LCLS INJECTOR EMITTANCE*

FURTHER UNDERSTANDING THE LCLS INJECTOR EMITTANCE* Proceedings of FEL014, Basel, Switzerland FURTHER UNDERSTANDING THE LCLS INJECTOR EMITTANCE* F. Zhou, K. Bane, Y. Ding, Z. Huang, and H. Loos, SLAC, Menlo Park, CA 9405, USA Abstract Coherent optical transition

More information

Georg Hoffstaetter Cornell Physics Dept. / CLASSE Cornell s ERL team

Georg Hoffstaetter Cornell Physics Dept. / CLASSE Cornell s ERL team 1 R&D toward an ERL Georg Hoffstaetter Cornell Physics Dept. / Cornell s ERL team DC-gun R&D CW linac R&D SRF injector R&D Undulator R&D 2 Cornell history: The ERL principle Energy recovery needs continuously

More information

The X-ray FEL Oscillator: Parameters, Physics, and Performance

The X-ray FEL Oscillator: Parameters, Physics, and Performance The X-ray FEL Oscillator: Parameters, Physics, and Performance Ryan Lindberg Future Light Source Workshop Monday March 4, 1 "#$!%&'()**$+!(,-&%./)*!#,%!'$$-!./$,*$+!'1!3#).,45!6/45--$7!8837!9$/,*5/!5:!6/45--$!;,*)5-,

More information

Applications of High Brightness Beams: Energy Recovered Linacs

Applications of High Brightness Beams: Energy Recovered Linacs Applications of High Brightness Beams: Energy Recovered Linacs G. A. Krafft Jefferson Lab Schematic Representation of Accelerator Types RF Installation Beam injector and dump Beamline Ring Linac Recirculating

More information

Radiative processes from energetic particles II: Gyromagnetic radiation

Radiative processes from energetic particles II: Gyromagnetic radiation Hale COLLAGE 2017 Lecture 21 Radiative processes from energetic particles II: Gyromagnetic radiation Bin Chen (New Jersey Institute of Technology) e - Shibata et al. 1995 e - magnetic reconnection Previous

More information

Studies on Coherent Synchrotron Radiation at SOLEIL

Studies on Coherent Synchrotron Radiation at SOLEIL Studies on Coherent Synchrotron Radiation at SOLEIL C. Evain, M.-E. Couprie, M.-A. Tordeux, A. Loulergue, A. Nadji, M. Labat, L. Cassinari, J.-C. Denard, R. Nagaoka, J.-M. Filhol 1 J. Barros, P. Roy, G.

More information

Introduction to Synchrotron Radiation

Introduction to Synchrotron Radiation Introduction to Synchrotron Radiation Frederico Alves Lima Centro Nacional de Pesquisa em Energia e Materiais - CNPEM Laboratório Nacional de Luz Síncrotron - LNLS International School on Laser-Beam Interactions

More information

R&D experiments at BNL to address the associated issues in the Cascading HGHG scheme

R&D experiments at BNL to address the associated issues in the Cascading HGHG scheme R&D experiments at BNL to address the associated issues in the Cascading HGHG scheme Li Hua Yu for DUV-FEL Team National Synchrotron Light Source Brookhaven National Laboratory FEL2004 Outline The DUVFEL

More information

FLASH/DESY, Hamburg. Jörg Rossbach University of Hamburg & DESY, Germany - For the FLASH Team -

FLASH/DESY, Hamburg. Jörg Rossbach University of Hamburg & DESY, Germany - For the FLASH Team - First Lasing below 7nm Wavelength at FLASH/DESY, Hamburg Jörg Rossbach University of Hamburg & DESY, Germany - For the FLASH Team - email: joerg.rossbach@desy.de FLASH: The first FEL user facility for

More information

CONCEPTUAL STUDY OF A SELF-SEEDING SCHEME AT FLASH2

CONCEPTUAL STUDY OF A SELF-SEEDING SCHEME AT FLASH2 CONCEPTUAL STUDY OF A SELF-SEEDING SCHEME AT FLASH2 T. Plath, L. L. Lazzarino, Universität Hamburg, Hamburg, Germany K. E. Hacker, T.U. Dortmund, Dortmund, Germany Abstract We present a conceptual study

More information

Electro-optic techniques for temporal profile characterisation of relativistic Coulomb fields and Coherent Synchrotron Radiation.

Electro-optic techniques for temporal profile characterisation of relativistic Coulomb fields and Coherent Synchrotron Radiation. Electro-optic techniques for temporal profile characterisation of relativistic Coulomb fields and Coherent Synchrotron Radiation. S.. Jamison a,c, G. Berden b A.M. MacLeod a D.A. Jaroszynski c B. Redlich

More information

Low Emittance Machines

Low Emittance Machines Advanced Accelerator Physics Course RHUL, Egham, UK September 2017 Low Emittance Machines Part 1: Beam Dynamics with Synchrotron Radiation Andy Wolski The Cockcroft Institute, and the University of Liverpool,

More information

Approximations for large angle synchrotron radiation

Approximations for large angle synchrotron radiation Approximations for large angle synchrotron radiation G. Bonvicini Wayne State University, Detroit MI 48201 June 2, 1998 Introduction A large-angle beamstrahlung detector at CESR appears feasible[1] except

More information

Linacs. Susan Smith. Daresbury Laboratory Mami and Beyond

Linacs. Susan Smith. Daresbury Laboratory Mami and Beyond Energy Recovery Linacs Susan Smith ASTeC/Cockcroft Daresbury Laboratory Mami and Beyond Introduction to ERLs Contents Operational ERLs Applications Challenges ERL Prototypes and R&D Summary 2 Introduction

More information

Toward 0.5% Electron Beam Polarimetry. Kent Paschke University of Virginia

Toward 0.5% Electron Beam Polarimetry. Kent Paschke University of Virginia Toward 0.5% Electron Beam Polarimetry Kent Paschke University of Virginia Needs for 0.5% The proposed PV-DIS experiments may be systematics limited, with fractional errors approaching 0.5%. No

More information

2. X-ray Sources 2.1 Electron Impact X-ray Sources - Types of X-ray Source - Bremsstrahlung Emission - Characteristic Emission

2. X-ray Sources 2.1 Electron Impact X-ray Sources - Types of X-ray Source - Bremsstrahlung Emission - Characteristic Emission . X-ray Sources.1 Electron Impact X-ray Sources - Types of X-ray Source - Bremsstrahlung Emission - Characteristic Emission. Synchrotron Radiation Sources - Introduction - Characteristics of Bending Magnet

More information

Skoog Chapter 6 Introduction to Spectrometric Methods

Skoog Chapter 6 Introduction to Spectrometric Methods Skoog Chapter 6 Introduction to Spectrometric Methods General Properties of Electromagnetic Radiation (EM) Wave Properties of EM Quantum Mechanical Properties of EM Quantitative Aspects of Spectrochemical

More information

Simo Huotari University of Helsinki, Finland TDDFT school, Benasque, Spain, January 2012

Simo Huotari University of Helsinki, Finland TDDFT school, Benasque, Spain, January 2012 Overview of spectroscopies III Simo Huotari University of Helsinki, Finland TDDFT school, Benasque, Spain, January 2012 Motivation: why we need theory Spectroscopy (electron dynamics) Theory of electronic

More information