Photon Regeneration at Optical Frequencies

Size: px
Start display at page:

Download "Photon Regeneration at Optical Frequencies"

Transcription

1 Photon Regeneration at Optical Frequencies Andrei Afanasev Hampton University/Jefferson Lab 3 rd rd Joint ILIAS-CERN CERN-WIMPs Training workshop Patras,, Greece, June 22, 2007

2 Motivation for Axion Search Dark Matter problem Strong CP problem Axion hypothesis Low-energy physics Beyond Standard model PVLAS effect

3 Motivation for low energy studies Unsolved problem of mass hierarchy What is behind the mass values of leptons and quarks? Neutrino masses at sub-ev scale Strategy Increase energy (new accelerators) Explore low energies at sub-ev scales with high precision and sensitivity

4 matter/energy budget of universe Stars and galaxies are only ~0.5% Neutrinos are ~0.3 10% Rest of ordinary matter (electrons and protons) are ~5% Dark Matter ~30% Dark Energy ~65% Anti-Matter 0% axion a dark matter candidate

5

6 Original papers proposing a new pseudoscalar boson

7 PVLAS results Science, 17 March 2006 based upon experimental idea of L. Maiani,, R. Petronzio,, and E. Zavattini,, PLB 175, 359 (1986)

8 Dichroism rotation of polarization plane PVLAS Collab,, PRL 96, (2006) [hep-ex/ ]; ex/ ]; CAST Collab, Phys Rev D47, 3707 (1993)

9 Dichroism rotation of polarization plane Maiani et.al.,., Phy. Lett.. B175 (1986); M: inverse coupling K m :inverse compton wavelength k: light wavenumber ε = BextL 4M 2 sin kl k K m 2 2 N LK 4k 2 m 2 L: magnetic field region length N: number of traversals

10 Ellipticity dispersion: photon-axion mixing hep-ex/ ex/ (2005); Phys Rev D47, 3707 (1993)

11 ellipticity dispersion; photon-axion mixing M: inverse coupling K m :inverse compton wavelength k: light wavenumber ψ = B 4 M 2 ext 2 kl K 2 m 1 sin kl 1 1 LK 2k 2 m k K m 2 L: magnetic field region length N: number of traversals

12 Open mass range for axions the combination of accelerator searches, astrophysical, and cosmological arguments leaves open a search window 10-6 < m a < 10-3 ev

13 Volume 47, Number 2 (March 2007) A workshop at the Institute for Advanced Study paid much attention to a small-scale scale experiment that might have found the first direct indication of a new particle

14 Planned `Light-Shining Shining-Through-The-Wall Experiments to detect Axion-Like Particles

15 LIPSS collaboration A. Afanasev,, K. McFarlane, R.Ramdon, H.Brown,, C. Long Hampton University K. Beard, G. Biallas,, J. Boyce, M. Shinn Jefferson Lab O.K. Baker (*), M. Minarni Yale University (*) Spokesman

16 Photon Regeneration light shining through a wall couple polarized laser light with magnetic field Sikivie (1983); Ansel m (1985); Van Bibber et al (1987) P γ ϕ 1 4 ( gbl) 2 2 mϕ L sin 4ω 2 mϕ L 4ω 2 lnb photon (or photon-lnb) conversion probability photon-ps coherence; {} ~ 1 m φ2 < 4ω/L

17 boson coupling to photons pseudoscalar particle or Light, neutral boson coupling to photons pseudoscalar interaction L ϕγγ = 1 ) g v µν ϕ ϕfµν F = E 4M 4 v B in present case, use FEL laser light and magnetic field light polarization in direction of magnetic field we want to test PVLAS in a completely independent way

18 Rate estimates P = g 2 B 2 L 2 sin 2 (m 2 L/ω)/(4m 2 L/ω) 2 γ-a a prod prob g = coupling constant (1/M) B = magnetic field L = magnet length ω = light wavelength Y = n P 1 P 2 ε ( Ω/Ω)) (N r +2)/2 n = photon flux (#/s) P1 (P2) = production (regeneration) probability ε = detection efficiency Ω/Ω = solid angle N r = number of reflections +2)/2 yield (#/s)

19 parameters: initial run B-field: 1.7 T magnet length: 1.0 m IR FEL power 0.2 kw IR FEL wavelength 935 nm (1.3 ev) quantum efficiency 0.4 linear polarization 100% acceptance 90% expt l efficiency ~ 90% expected signal rate > 0.01 Hz at g aγγ = 1.7 x 10-6 GeV -1

20 rate estimate, as example... P = = g B L ; 12 ( B = 1.7 Tesla ; L = 1.0 meters) axion-photon conversion probability, P n r i s = = = = 200 watts (935 nm) γ ' s / s 2 Ω ni P ε q Ω Hz ( Ω Ω = 0.9 ; ε q = 0.4) photon rate, n (200 W) photon regeneration rate, r 1.7 T; 1 m magnet ε~ 0.4; Ω/Ω ~ 0.9

21 LIPSS sensitivity range JLAB in ~1 day with IR FEL

22 Jefferson Lab and the Free Electron Laser

23 JLAB facility spectroscopic range LIPSS IR run at 900 nm

24 JLAB FEL: regeneration experiment current planned

25 infrared FEL operational at 10 kw extracted power 800 nm; tuneable up to 75 MHz rep rate

26 The experiment is mounted in Laboratory 1 in the FEL Building. There are two GW magnets used for PS generation, and two for photon regeneration. (0.5 m long; 1.8 T each) Lab 1 in FEL Building 2 GW magnets (4 total) optical tables 32 ft 8 in LIPSS exp laser light 39 ft

27 LIPSS today

28 LIPSS detector

29 Princeton Instruments ACTON 10:400BR-LN q.e. high at 935 nm quantum efficiency (%) 50% wavelength (nm) LN2 cooled: 1.3 e/pix/hour dark noise!!! used 100 khz readout rate

30 Importance of vacuum Signal suppressed for air present in gen/regen magnets suppression factor mev mev pressure, Atm

31 Destructive interference in photon regeneration vs magnet length suppression L 2m suppression L 1.1m m, mev suppression L 3m m, mev LIPSS Present Configuration m, mev Longer magnets: less sensitivity in PVLAS region

32 not sensitive enough yet to cover full parameter space of PVLAS result, however did reach the sensitive region for scalar coupling LIPSS initial (IR) run light polarized perpendicular to B field preliminary preliminary

33 Periodic Magnetic Field: Opportunity at Optical Frequencies Removes q l<<1 constraint K. Van Bibber et al, PRL 59 (1987) 759 Can be used to measure mass m b AA, Baker, McFarlane et al, hep-ph/ ph/ Requires magnet length ~ m in IR; -Not practical for X-rays: X need ~ km-long magnets Similar effect from `phase shift plates Jaekel&Ringwald,, hep-ph/ ph/

34 Periodic magnetic field effect P γ φ P γ φ = g B L for m = g B tan ( 2 q 2 φ ql N = 0 )[1 ( 1) n cos( ql)]/ m, n 8 Suppression m, n Mass, ev

35 Periodic field for LIPSS in present configuration Each 1.1m magnet consists of 2 segments Polarity of the segments can be flipped 1 1 seg seg Mass, ev

36 Enhancement by Interference with reference beam (PSE) Van Bibber 87;AA, Baker, McFarlane et al. 06 S beam dump beam E1 magnet 1 E2 W magnet 2 B1 B2 B3 B4 D1 D2 D3 E3 detector

37 summary LIPSS has begun to test axion interpretation of PVLAS result data in scalar configuration uses JLAB FEL and its facilities use dipole magnets that are on-hand (~1.8 T) used ultra-low low noise CCD array 200 watts average power; light polarized perpendicular to B ran in Spring hours, 935 nm some reach into sensitive region of parameter space continue experiment in ~winter 2008 upgrade optics to get higher power additional diagnostic monitoring equipment get pseudoscalar data

38 Thank you!

Laser-Based Search for Dark Matter Particles

Laser-Based Search for Dark Matter Particles Laser-Based Search for Dark Matter Particles Andrei Afanasev Hampton University/Jefferson Lab Jlab Accelerator Division Seminar February 5, 2009 Motivation for Dark Matter Search Evidence for Dark Matter

More information

Axion Searches Overview. Andrei Afanasev The George Washington University Washington, DC

Axion Searches Overview. Andrei Afanasev The George Washington University Washington, DC Axion Searches Overview Andrei Afanasev The George Washington University Washington, DC Andrei Afanasev, Intense Electron Beams Workshop, Cornell University, 6/17/2015 Introduction to a Dark Matter problem

More information

Low-Energy Photons as a Probe of Weakly Interacting Sub-eV Particles

Low-Energy Photons as a Probe of Weakly Interacting Sub-eV Particles Low-Energy Photons as a Probe of Weakly Interacting Sub-eV Particles Andreas Ringwald DESY 3rd ILIAS-CERN-DESY Axion-WIMP Workshop June 21, 2007 Patras, GR Low-Energy Photons as a Probe of WISPs 1 0. Introduction

More information

Constraints on chameleons and axion-like particles from the GammeV experiment

Constraints on chameleons and axion-like particles from the GammeV experiment Constraints on chameleons and axion-like particles from the GammeV experiment Fermilab Center for Particle Astrophysics E-mail: jsteffenatfnaldotgov For the GammeV Collaboration We present the most recent

More information

New Experimental limit on Optical Photon Coupling to Neutral, Scalar Bosons

New Experimental limit on Optical Photon Coupling to Neutral, Scalar Bosons New Experimental limit on Optical Photon Coupling to Neutral, Scalar Bosons A. Afanasev, 1 O.K. Baker, 2 K.B. Beard, 3 G. Biallas, 4 J. Boyce, 4 M. Minarni, 5 R. Ramdon, 1 M. Shinn, 4 P. Slocum 2 1 Department

More information

Signatures with Electron Beams

Signatures with Electron Beams Laboratory Searches for Dark Matter Signatures with Electron Beams at JLab Andrei Afanasev Hampton University/Jefferson Lab Theory Center IDM 2010, Montpellier, France July 26-30, 2010 Laser-based laboratory

More information

University of Trieste INFN section of Trieste. ALP signatures in low background photon measurements

University of Trieste INFN section of Trieste. ALP signatures in low background photon measurements University of Trieste INFN section of Trieste ALP signatures in low background photon measurements Valentina Lozza March 5 th 2010 Summary Axion Like Particles: a brief introduction Experimental searches

More information

New Experiments at the Intensity Frontier

New Experiments at the Intensity Frontier New Experiments at the Intensity Frontier Andreas Ringwald DESY Perspektiven der Teilchenphysik: Strategie-Workshop des KET 25-26 October 2010, Harenberg City-Center, Dortmund, D New Experiments at the

More information

high luminosity searches at JLab: mixing, Compton, and beam dump OK Baker (for the LIPSS collaboracon) JLAB Workshop September 20, 2010

high luminosity searches at JLab: mixing, Compton, and beam dump OK Baker (for the LIPSS collaboracon) JLAB Workshop September 20, 2010 high luminosity searches at JLab: mixing, Compton, and beam dump OK Baker (for the LIPSS collaboracon) JLAB Workshop September 20, 2010 overview Recent and near term LIPSS DM searches at FEL hidden sector

More information

Opportunities for Subdominant Dark Matter Candidates

Opportunities for Subdominant Dark Matter Candidates Opportunities for Subdominant Dark Matter Candidates A. Ringwald http://www.desy.de/ ringwald DESY Seminar, Institut de Física d Altes Energies, Universitat Autònoma de Barcelona, June 17, 2004, Barcelona,

More information

Photoregeneration Experiment Axion search

Photoregeneration Experiment Axion search Laboratoire pour l Utilisation des Lasers Intenses, Palaiseau A.-M. Sautivet, F. Amiranoff Photoregeneration Experiment Axion search Laboratoire Collisions Agrégats Réactivité, Toulouse C. Robilliard,

More information

Laser Searches for New Particles at Fermilab. William Wester Fermilab

Laser Searches for New Particles at Fermilab. William Wester Fermilab Laser Searches for New Particles at Fermilab William Wester Fermilab Motivation Outline Experimental evidence Theoretical interest Experimental Implementation GammeV and GammeV-CHASE Results Outline x

More information

Preliminary Results from the Yale Microwave Cavity Experiment

Preliminary Results from the Yale Microwave Cavity Experiment Preliminary Results from the Yale Microwave Cavity Experiment A. J. Martin 1, O. K. Baker 1, J L Hirshfield 1, Y. Jiang 1, S Kazakov 1, M. A. LaPointe 1, A Malagon 1, S Shchelkunov 1, P. L. Slocum 1, A.

More information

Hidden Sector particles at SNS

Hidden Sector particles at SNS Hidden Sector particles at SNS 1 S E N S I T I V I T Y T O A X I O N S A N D A X I O N - L I K E P A R T I C L E S. A T H A N S H A T Z I K O U T E L I S Y U R I E F R E M E N K O U N I V E R S I T Y O

More information

Any Light Particle Search II

Any Light Particle Search II Any Light Particle Search II 79. Physics Research Committee Christoph Weinsheimer Johannes Gutenberg-University Mainz Spring 2015 Hidden Sector PRC Report ALPS II Physics Case 2 / 16 Weakly Interacting

More information

Reminder : scenarios of light new physics

Reminder : scenarios of light new physics Reminder : scenarios of light new physics No new particle EW scale postulated Heavy neutral lepton AND well motivated! Neutrino masses Matter-antimatter asymmetry Dark matter Dark photon Muon g-2 anomaly

More information

Axion Detection With NMR

Axion Detection With NMR PRD 84 (2011) arxiv:1101.2691 + to appear Axion Detection With NMR Peter Graham Stanford with Dmitry Budker Micah Ledbetter Surjeet Rajendran Alex Sushkov Dark Matter Motivation two of the best candidates:

More information

AXIONS AND AXION-LIKE PARTICLES

AXIONS AND AXION-LIKE PARTICLES AXIONS AND AXION-LIKE PARTICLES FRANK AVIGNONE th UNIVERSITY OF SOUTH CAROLINA COLUMBIA, SOUTH CAROLINA, USA 7 INTERNATIONAL WORKSHOP ON ULTRACOLD AND COLD NEUTRONS:PHYSICS AND SOURCES St. PETERSBURG,

More information

Axion Dark Matter : Motivation and Search Techniques

Axion Dark Matter : Motivation and Search Techniques Axion Dark Matter : Motivation and Search Techniques Pierre Sikivie UCLA DM Conference February 17, 2016 Motivation Axions solve the strong CP problem Axions are present in many models of beyond-the-standard

More information

Axions and X-ray astronomy

Axions and X-ray astronomy Axions and X-ray astronomy Francesca Day University of Cambridge Alsatian Workshop on X-ray Polarimetry November 2017 1605.01043: M Berg, J Conlon, FD, N Jennings, S Krippendorf, A Powell & M Rummel 1704.05256:

More information

AXION theory motivation

AXION theory motivation CERN Axion Solar Telescope (CAST) Igor G. Irastorza, CEA/Saclay (for the CAST collaboration) Symposium on Detector Developments for Particle, Astroparticle and Synchrotron Radiation Experiments SLAC, Stanford,

More information

New experiment for axion dark matter

New experiment for axion dark matter New experiment for axion dark matter J. Redondo and J. Jaeckel Feb 27th 2014 Outline - x-summary of Axion and ALP DM - Axion DM waves in Magnetic fields - Dish experiment - Understanding cavity experiments

More information

Search for New Low Energies

Search for New Low Energies Search for New Physics @ Low Energies Joerg Jaeckel The participants of the Brainstorming&Calculationshop + The 5 th Patras Workshop IPPP Durham Hints for new Physics Uglyness of old models The Standard

More information

LOW ENERGY SOLAR AXIONS

LOW ENERGY SOLAR AXIONS 3rd Joint ILIAS-CERN CERN-DESY AXION-WIMPS TRAINING WORKSHOP Patras,, 19-25 June 2007 LOW ENERGY SOLAR AXIONS ALESSANDRO MIRIZZI Max Planck Institut für Physik (Munich, Germany) OUTILINE Primakoff axion

More information

Outline of my talk 1) Axion BEC: a model beyond CDM. 2) Production and Detection of Axion-like Particles by Interferometry.

Outline of my talk 1) Axion BEC: a model beyond CDM. 2) Production and Detection of Axion-like Particles by Interferometry. Outline of my talk 1) Axion BEC: a model beyond CDM. 2) Production and Detection of Axion-like Particles by Interferometry. Axion BEC: a model beyond CDM Based on: Bose-Einstein Condensation of Dark Matter

More information

First Results from the CAST Experiment

First Results from the CAST Experiment First Results from the CAST Experiment IKP/Technische Universität-Darmstadt CEA, Saclay Outline The CAST experiment: Motivation Description The first results of CAST 2003 2004 What follows The CERN Axion

More information

The SHiP experiment. Colloquia: IFAE A. Paoloni( ) on behalf of the SHiP Collaboration. 1. Introduction

The SHiP experiment. Colloquia: IFAE A. Paoloni( ) on behalf of the SHiP Collaboration. 1. Introduction IL NUOVO CIMENTO 40 C (2017) 54 DOI 10.1393/ncc/i2017-17054-1 Colloquia: IFAE 2016 The SHiP experiment A. Paoloni( ) on behalf of the SHiP Collaboration INFN, Laboratori Nazionali di Frascati - Frascati

More information

Production and Searches for Cascade Baryons with CLAS

Production and Searches for Cascade Baryons with CLAS Production and Searches for Cascade Baryons with CLAS Photoproduction Cross sections Ground State Ξ (1320) Excited State Ξ 0 (1530) Search for Cascade Pentaquarks Elton S. Smith CLAS Collaboration Jefferson

More information

On the track of the dark forces. A.J. Krasznahorkay Inst. for Nucl. Res., Hung. Acad. of Sci. (ATOMKI)

On the track of the dark forces. A.J. Krasznahorkay Inst. for Nucl. Res., Hung. Acad. of Sci. (ATOMKI) On the track of the dark forces A.J. Krasznahorkay Inst. for Nucl. Res., Hung. Acad. of Sci. (ATOMKI) Outline Introduction: the light dark matter Previous results and new plans The internal pair creation

More information

Testing axion physics in a Josephson junction environment

Testing axion physics in a Josephson junction environment Testing axion physics in a Josephson junction environment Christian Beck Queen Mary, University of London 1 Testing axion physics in a Josephson junction environment Christian Beck Queen Mary, University

More information

High energy X-ray vortex generation using inverse Compton scattering

High energy X-ray vortex generation using inverse Compton scattering 22nd International Spin Symposium 9/28/216 High energy X-ray vortex generation using inverse Compton scattering Yoshitaka Taira National Institute of Advanced Industrial Science and Technology (AIST),

More information

ADMX: Searching for Axions and Other Light Hidden Particles

ADMX: Searching for Axions and Other Light Hidden Particles ADMX: Searching for Axions and Other Light Hidden Particles University of Washington SLAC Dark Forces Workshop, Sept. 2009 1 ADMX Axion Dark Matter experiment University of Washington LLNL University of

More information

Thermalization of axion dark matter

Thermalization of axion dark matter Thermalization of axion dark matter Ken ichi Saikawa ICRR, The University of Tokyo Collaborate with M. Yamaguchi (Tokyo Institute of Technology) Reference: KS and M. Yamaguchi, arxiv:1210.7080 [hep-ph]

More information

ERL FACILITY AT CERN FOR APPLICATIONS

ERL FACILITY AT CERN FOR APPLICATIONS ERL FACILITY AT CERN FOR APPLICATIONS Erk Jensen (CERN) Big thanks to contributors: A. Bogacz (JLAB), O. Brüning, R. Calaga, V. Chetvertkova, E. Cormier (CELIA), R. Jones, M. Klein, A. Valloni, D. Pellegrini,

More information

Manifestations of Low-Mass Dark Bosons

Manifestations of Low-Mass Dark Bosons Manifestations of Low-Mass Dark Bosons Yevgeny Stadnik Humboldt Fellow Johannes Gutenberg University, Mainz, Germany Collaborators (Theory): Victor Flambaum (UNSW) Collaborators (Experiment): CASPEr collaboration

More information

Compton Scattering Effect and Physics of Compton Photon Beams. Compton Photon Sources around the World, Present and Future

Compton Scattering Effect and Physics of Compton Photon Beams. Compton Photon Sources around the World, Present and Future !!! #! ! # Compton Scattering Effect and Physics of Compton Photon Beams Compton Photon Sources around the World, Present and Future Compton X-ray Sources: Facilities, Projects and Experiments Compton

More information

SEARCHING FOR DARK PHOTONS WITH POSITRONS AT JEFFERSON LAB

SEARCHING FOR DARK PHOTONS WITH POSITRONS AT JEFFERSON LAB SEARCHING FOR DARK PHOTONS WITH POSITRONS AT JEFFERSON LAB Luca Marsicano INFN Genova,Università Di Genova International Workshop on Physics with Positrons at Jefferson Lab September 12-15, 2017 Thomas

More information

Fundamental Physics with Atomic Interferometry

Fundamental Physics with Atomic Interferometry Fundamental Physics with Atomic Interferometry Peter Graham Stanford with Savas Dimopoulos Jason Hogan Mark Kasevich Surjeet Rajendran PRL 98 (2007) PRD 78 (2008) PRD 78 (2008) PLB 678 (2009) arxiv:1009.2702

More information

PVLAS : probing vacuum with polarized light

PVLAS : probing vacuum with polarized light 1 PVLAS : probing vacuum with polarized light E. Zavattini 1, G. Zavattini 2, G. Ruoso 3, E. Polacco 4, E. Milotti 5, M. Karuza 1, U.Gastaldi 3*, G. Di Domenico 2, F. Della Valle 1, R. Cimino 6, S. Carusotto

More information

EVIDENCE FOR A PROTOPHOBIC FIFTH FORCE

EVIDENCE FOR A PROTOPHOBIC FIFTH FORCE EVIDENCE FOR A PROTOPHOBIC FIFTH FORCE Mitchell Workshop on Collider, Dark Matter, and Neutrino Physics Texas A&M Jonathan Feng, UC Irvine 23 May 2016 23 May 2016 Feng 1 COLLABORATORS Jonathan Feng Bart

More information

Diagnostic Systems for Characterizing Electron Sources at the Photo Injector Test Facility at DESY, Zeuthen site

Diagnostic Systems for Characterizing Electron Sources at the Photo Injector Test Facility at DESY, Zeuthen site 1 Diagnostic Systems for Characterizing Electron Sources at the Photo Injector Test Facility at DESY, Zeuthen site Sakhorn Rimjaem (on behalf of the PITZ team) Motivation Photo Injector Test Facility at

More information

Density Gradients and Absorption Effects in Gas-filled Magnetic Axion Helioscopes. South Carolina, 29208, USA 1. INTRODUCTION.

Density Gradients and Absorption Effects in Gas-filled Magnetic Axion Helioscopes. South Carolina, 29208, USA 1. INTRODUCTION. Density Gradients and Absorption Effects in Gas-filled Magnetic Axion Helioscopes R.J. Creswick 1, S. Nussinov 1,, and F.T. Avignone III 1 1 Department of Physics and Astronomy, University of South Carolina,

More information

The axion-photon interaction and gamma ray signals of dark matter

The axion-photon interaction and gamma ray signals of dark matter The axion-photon interaction and gamma ray signals of dark matter Juan Barranco Monarca DCI Universidad de Guanajuato In collaboration with A.Bernal, D. Delepine and A. Carrillo Essential Cosmology for

More information

Lecture 23. November 16, Developing the SM s electroweak theory. Fermion mass generation using a Higgs weak doublet

Lecture 23. November 16, Developing the SM s electroweak theory. Fermion mass generation using a Higgs weak doublet Lecture 23 November 16, 2017 Developing the SM s electroweak theory Research News: Higgs boson properties and use as a dark matter probe Fermion mass generation using a Higgs weak doublet Summary of the

More information

Parity-Violating Measurements of the Weak Charge of. Pb (PREX) & Ca (CREX) . and possible future measurements. R. Michaels, ICNT / MSU, Aug /26

Parity-Violating Measurements of the Weak Charge of. Pb (PREX) & Ca (CREX) . and possible future measurements. R. Michaels, ICNT / MSU, Aug /26 Parity-Violating Measurements of the Weak Charge of 208 Pb (PREX) & 48 Ca (CREX) 208 Pb 48 Ca. and possible future measurements R. Michaels, ICNT / MSU, Aug 2013 1/26 Hall A at Jefferson Lab Hall A High

More information

ATHENA / AD-1. First production and detection of cold antihydrogen atoms. ATHENA Collaboration. Rolf Landua CERN

ATHENA / AD-1. First production and detection of cold antihydrogen atoms. ATHENA Collaboration. Rolf Landua CERN ATHENA / AD-1 First production and detection of cold antihydrogen atoms ATHENA Collaboration Rolf Landua CERN 1 LONG TERM PHYSICS GOALS Antihydrogen = Hydrogen? CPT Gravity But... 2 FIRST GOAL PRODUCTION

More information

Low-Energy Accelerators for High Precision Measurements Sebastian Baunack

Low-Energy Accelerators for High Precision Measurements Sebastian Baunack Low-Energy Accelerators for High Precision Measurements Sebastian Baunack Johannes Gutenberg-Universität Mainz EINN 2017, Oct. 31 - Nov 4, 2017 Paphos, Cyprus 1 Outline New type of accelerators: ERL High

More information

{ 1{ (by C. Hagmann, K. van Bibber, and L.J. Rosenberg) In this section we review the experimental methodology

{ 1{ (by C. Hagmann, K. van Bibber, and L.J. Rosenberg) In this section we review the experimental methodology { 1{ AXIONS AND OTHER VERY LIGHT BOSONS, PART III (EXPERIMENTAL LIMITS) (by C. Hagmann, K. van Bibber, and L.J. Rosenberg) In this section we review the experimental methodology and limits on light axions

More information

EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH Laboratory for Particle Physics

EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH Laboratory for Particle Physics EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH Laboratory for Particle Physics Departmental Report CERN/AT 2005-9 (MTM) FEASIBILITY STUDY OF AN EXPERIMENT TO MEASURE THE VACUUM MAGNETIC BIREFRINGENCE L. Duvillaret

More information

Status Report * Progress in the Photon Regeneration Experiment

Status Report * Progress in the Photon Regeneration Experiment 16 th November 2010 DRAFT Status Report * Progress in the Photon Regeneration Experiment Abstract - The status of the OSQAR experiments is presented highlighting the progress achieved in 2010. For the

More information

The BMV project : (Biréfringence Magnétique du Vide) Optical detection of axions? Carlo RIZZO LCAR-IRSAMC Université Paul Sabatier et CNRS Toulouse

The BMV project : (Biréfringence Magnétique du Vide) Optical detection of axions? Carlo RIZZO LCAR-IRSAMC Université Paul Sabatier et CNRS Toulouse The project : (Biréfringence Magnétique du Vide) Optical detection of axions? Carlo RIZZO LCAR-IRSAMC Université Paul Sabatier et CNRS Toulouse 1 Outline Introduction Historical overview Recent results

More information

Clock based on nuclear spin precession spin-clock

Clock based on nuclear spin precession spin-clock Clock based on nuclear spin precession spin-clock signal (a.u.) detector t exp - T (G. D. Cates, et al., Phys. Rev. A 37, 877) T T T, field T, field 4 4R 75D B, z B, y B, x R 4 p B (ms ) T 00h Long T :

More information

The Axion Dark Matter experiment (ADMX) Phase 0

The Axion Dark Matter experiment (ADMX) Phase 0 3rd Joint ILIAS CERN DESY Axion WIMPs The Axion Dark Matter experiment (ADMX) Phase 0 Steve Asztalos, LLNL June, 2007 Collaboration ADMX is a five institution collaboration Lawrence Livermore National

More information

BNL Very Long Baseline Neutrino Oscillation Expt.

BNL Very Long Baseline Neutrino Oscillation Expt. Mary Bishai, BNL 1 p.1/14 BNL Very Long Baseline Neutrino Oscillation Expt. Next Generation of Nucleon Decay and Neutrino Detectors 8/4/25 Mary Bishai mbishai@bnl.gov Brookhaven National Lab. Mary Bishai,

More information

on behalf of CAST Collaboration

on behalf of CAST Collaboration S. Cenk YILDIZ Dogus University/Istanbul on behalf of CAST Collaboration 13th Topical Seminar on Innovative Particle and Radiation Detectors (IPRD13) 7-10 October 2013 Siena, Italy Axions and CAST Experiment

More information

Coherent THz Pulses: Source and Science at the NSLS

Coherent THz Pulses: Source and Science at the NSLS Coherent THz Pulses: Source and Science at the NSLS H. Loos, B. Sheehy, D. Arena, J.B. Murphy, X.-J. Wang and G. L. Carr Brookhaven National Laboratory carr@bnl.gov http://www.nsls.bnl.gov http://infrared.nsls.bnl.gov

More information

Pushing the limits of laser synchrotron light sources

Pushing the limits of laser synchrotron light sources Pushing the limits of laser synchrotron light sources Igor Pogorelsky National Synchrotron Light Source 2 Synchrotron light source With λ w ~ several centimeters, attaining XUV region requires electron

More information

Search for sterile neutrino mixing in the muon neutrino to tau neutrino appearance channel with the OPERA detector

Search for sterile neutrino mixing in the muon neutrino to tau neutrino appearance channel with the OPERA detector Search for sterile neutrino mixing in the muon neutrino to tau neutrino appearance channel with the OPERA detector INFN - Sezione di Bologna, I-4017 Bologna, Italy E-mail: matteo.tenti@bo.infn.it The OPERA

More information

2.24 Simulation Study of K L Beam: K L Rates and Background Ilya Larin Department of Physics Old Dominion University Norfolk, VA 23529, U.S.A.

2.24 Simulation Study of K L Beam: K L Rates and Background Ilya Larin Department of Physics Old Dominion University Norfolk, VA 23529, U.S.A. 2.24 Simulation Study of K L Beam: K L Rates and Background Ilya Larin Department of Physics Old Dominion University Norfolk, VA 23529, U.S.A. Abstract We report our simulation results for K L -beam and

More information

COSMOLOGY AND GRAVITATIONAL WAVES. Chiara Caprini (APC)

COSMOLOGY AND GRAVITATIONAL WAVES. Chiara Caprini (APC) COSMOLOGY AND GRAVITATIONAL WAVES Chiara Caprini (APC) the direct detection of GW by the LIGO interferometers has opened a new era in Astronomy - we now have a new messenger bringing complementary informations

More information

Beam Dump Experiments with Photon and Electron Beams

Beam Dump Experiments with Photon and Electron Beams Beam Dump Experiments with Photon and Electron Beams Electron beams BDX at Jefferson Lab Signal and backgrounds Muon flux measurements Status Elton S. Smith, Jefferson Lab On behalf of the BDX Collaboration

More information

Detecting Dark Energy in the Laboratory

Detecting Dark Energy in the Laboratory Detecting Dark Energy in the Laboratory Collaboration with C. van de Bruck, A. C. Davis, D.Mota and D. Shaw. Astroparticle Toulouse 2007 hep-ph/0703243 arxiv:0707/2801, 0709.2075 Outline Chameleon fields

More information

Undulator Commissioning Spectrometer for the European XFEL

Undulator Commissioning Spectrometer for the European XFEL Undulator Commissioning Spectrometer for the European XFEL FEL Beam Dynamics Group meeting DESY, Hamburg, Nov. 9 th 010 Wolfgang Freund, WP74 European XFEL wolfgang.freund@xfel.eu Contents Undulator commissioning

More information

No signal yet: The elusive birefringence of the vacuum, and whether gravitational wave detectors may help

No signal yet: The elusive birefringence of the vacuum, and whether gravitational wave detectors may help Nosignalyet: Theelusivebirefringenceofthe vacuum,andwhether gravitationalwavedetectors mayhelp HartmutGrote AEIHannover CaJAGWR, Caltech 24.Feb.2015 Horror Vacui? Otto Von Guerrike 1654/1656 Vacuum The

More information

Progress Report on the A4 Compton Backscattering Polarimeter

Progress Report on the A4 Compton Backscattering Polarimeter A4 Progress Report on the A4 Compton Backscattering Polarimeter Yoshio Imai, Institut für Kernphysik, Universität Mainz 8.6.24 International Workshop on Parity Violation and Hadronic Structure, LPSC Grenoble

More information

Outline. (1) Physics motivations. (2) Project status

Outline. (1) Physics motivations. (2) Project status Yu-Feng Li Institute of High Energy Physics, Beijing On behalf of the JUNO collaboration 2014-10-10, Hsinchu/Fo-Guang-Shan 2nd International Workshop on Particle Physics and Cosmology after Higgs and Planck

More information

The Heavy Photon Search experiment at Jefferson Laboratory. A. Celentano (INFN Genova) on behalf of the HPS collaboration

The Heavy Photon Search experiment at Jefferson Laboratory. A. Celentano (INFN Genova) on behalf of the HPS collaboration The Heavy Photon Search experiment at Jefferson Laboratory A. Celentano (INFN Genova) on behalf of the HPS collaboration Outline Dark photons: introduction Dark photons searches with fixed-target experiments

More information

Aspects of The Standard Model and Beyond

Aspects of The Standard Model and Beyond Aspects of The Standard Model and Beyond Hadronic Physics Town Meeting at DNP2012 October 25, 2012 Mark Pitt Virginia Tech Parity violating electron scattering at JLab Proton s weak charge: Qweak Electron

More information

Search for Weakly Interacting Undiscovered Particles using Sub-THz Gyrotron

Search for Weakly Interacting Undiscovered Particles using Sub-THz Gyrotron Search for Weakly Interacting Undiscovered Particles using Sub-THz Gyrotron Taikan Suehara K. Owada, A. Miyazaki, T. Yamazaki, T. Namba, S. Asai, T. Kobayashi, T. Sakai* International Center for Elementary

More information

Accelerators. Lecture V. Oliver Brüning. school/lecture5

Accelerators. Lecture V. Oliver Brüning.  school/lecture5 Accelerators Lecture V Oliver Brüning AB/ABP http://bruening.home.cern.ch/bruening/summer school/lecture5 V) LEP, LHC + more LEP LHC Other HEP Projects Future Projects What else? LEP Precision Experiment:

More information

PREX and CREX. R N from Electroweak Asymmetry in Elastic Electron-Nucleus Scattering. Neutron Skin.

PREX and CREX.   R N from Electroweak Asymmetry in Elastic Electron-Nucleus Scattering. Neutron Skin. http://hallaweb.jlab.org/parity/prex PREX and CREX 08 Pb Horowitz 48 Ca Neutron Skin R N from Electroweak Asymmetry in Elastic Electron-Nucleus Scattering R L 4 6 A ~ 10 PV Q ~ 10 R L PRL 108 (01) 1150

More information

The IAXO (International Axion Observatory) Helioscope. Esther Ferrer Ribas, IRFU/SEDI

The IAXO (International Axion Observatory) Helioscope. Esther Ferrer Ribas, IRFU/SEDI The IAXO (International Axion Observatory) Helioscope Esther Ferrer Ribas, IRFU/SEDI Axion Mini Workshop, IPHT, 10-12 Juin 2015 Outline Axion searches, bounds Helioscope principle CAST IAXO concept and

More information

Davison E. Soper Institute of Theoretical Science, University of Oregon, Eugene, OR 97403, USA

Davison E. Soper Institute of Theoretical Science, University of Oregon, Eugene, OR 97403, USA Frascati Physics Series Vol. LVI (2012) Dark Forces at Accelerators October 16-19, 2012 DEEPLY INELASTIC DARK MATTER: BEAM DUMPS AS WIMP CANNONS Chris J. Wallace Institute for Particle Physics Phenomenology,

More information

Dark Energy and Where to find it

Dark Energy and Where to find it Dark Energy and Where to find it Amanda Weltman Cosmology at the Beach January 2012 University of Cape Town Chameleon Dark Energy What is a chameleon? Why are chameleons compelling? Where to find chameleons?

More information

arxiv: v1 [hep-ex] 25 Aug 2015

arxiv: v1 [hep-ex] 25 Aug 2015 Anti-neutrino oscillations with TK arxiv:508.05v [hep-ex] 5 Aug 05 Université de Genève (H E-mail: melody.ravonel@cern.ch TK is a long-baseline neutrino oscillation experiment, in which a muon neutrino

More information

Neutrino Mass Hierarchy and Mixing Parameters: Long-baseline Measurements with IceCube Laura Bodine

Neutrino Mass Hierarchy and Mixing Parameters: Long-baseline Measurements with IceCube Laura Bodine Neutrino Mass Hierarchy and Mixing Parameters: Long-baseline Measurements with IceCube Laura Bodine Mass Hierarchy Observables Matter Effects Feasibility University of Washington Neutrino Mass: Current

More information

CAST: "Blind" telescope looks at the Sun. Marin Karuza, University of Rijeka Imperial College, London,

CAST: Blind telescope looks at the Sun. Marin Karuza, University of Rijeka Imperial College, London, CAST: "Blind" telescope looks at the Sun CAST: "Blind" telescope looks at the Sun Introduction Looking for axions and not only Outlook Introduction CAST Cern Axion Solar Telescope Why blind? Not sensitive

More information

The Physics of Particles and Forces David Wilson

The Physics of Particles and Forces David Wilson The Physics of Particles and Forces David Wilson Particle Physics Masterclass 21st March 2018 Overview David Wilson (TCD) Particles & Forces 2/30 Overview of Hadron Spectrum Collaboration (HadSpec) scattering

More information

Recent results from Super-Kamiokande

Recent results from Super-Kamiokande Recent results from Super-Kamiokande ~ atmospheric neutrino ~ Yoshinari Hayato ( Kamioka, ICRR, U-Tokyo ) for the Super-Kamiokande collaboration 1 41.4m Super-Kamiokande detector 50000 tons Ring imaging

More information

Status of the PREX Experiment R n through PVeS at JLab

Status of the PREX Experiment R n through PVeS at JLab Status of the PREX Experiment R n through PVeS at JLab Seamus Riordan University of Massachusetts, Amherst sriordan@physics.umass.edu for the PREX Collaboration June 18, 2011 Seamus Riordan NuSym11 PREX

More information

Axion and ALP Dark Matter Search with the International Axion Observatory (IAXO)

Axion and ALP Dark Matter Search with the International Axion Observatory (IAXO) Axion and ALP Dark Matter Search with the International Axion Observatory (IAXO) TeVPA 2017, Columbus, Ohio Julia K. Vogel (Lawrence Livermore National Laboratory) for the IAXO Collaboration August 7-11,

More information

An Astrophysical Plasma Wakefield Accelerator. Alfven Wave Induced Plasma Wakefield Acceleration

An Astrophysical Plasma Wakefield Accelerator. Alfven Wave Induced Plasma Wakefield Acceleration An Astrophysical Plasma Wakefield Accelerator Alfven Wave Induced Plasma Wakefield Acceleration Laboratory Astrophysics at SLAC Study in a Laboratory setting: Fundamental physics Astrophysical Dynamics

More information

Few-Body HIgS

Few-Body HIgS Few-Body Physics @ HIgS Werner Tornow Duke University & Triangle Universities Nuclear Laboratory Outline High-Intensity Gamma-ray Source (HIgS) A=3 g- 3 He three-body breakup with double polarization Outlook

More information

Detecting Dipolar Dark Matter in Beam Dump Experiments

Detecting Dipolar Dark Matter in Beam Dump Experiments Detecting Dipolar Dark Matter in Beam Dump Experiments Soumya Rao ARC CoEPP, School of Physical Sciences, University of Adelaide, Adelaide. September 9, 2015 Beam Dump Experiments Direct and indirect searches

More information

Neutrino oscillation physics potential of Hyper-Kamiokande

Neutrino oscillation physics potential of Hyper-Kamiokande Neutrino oscillation physics potential of Hyper-Kamiokande on behalf of the Hyper-Kamiokande Collaboration Queen Mary University of London E-mail: l.cremonesi@qmul.ac.uk Hyper-Kamiokande (Hyper-K) is a

More information

Parity Violation Experiments & Beam Requirements

Parity Violation Experiments & Beam Requirements Parity Violation Experiments & Beam Requirements Riad Suleiman Center for Injectors and Sources MCC Ops Training August 05, 2009 Outline Fundamental Interactions and Conservation Rules Parity Reversal

More information

DARK MATTER. Martti Raidal NICPB & University of Helsinki Tvärminne summer school 1

DARK MATTER. Martti Raidal NICPB & University of Helsinki Tvärminne summer school 1 DARK MATTER Martti Raidal NICPB & University of Helsinki 28.05.2010 Tvärminne summer school 1 Energy budget of the Universe 73,4% - Dark Energy WMAP fits to the ΛCDM model Distant supernova 23% - Dark

More information

Search for Gluonic Excitations with GlueX at Jefferson Lab

Search for Gluonic Excitations with GlueX at Jefferson Lab Search for Gluonic Excitations with GlueX at Jefferson Lab Volker Credé Florida State University Tallahassee, FL The Structure and Dynamics of Hadrons Hirschegg, 01/19/2007 Outline 1 2 3 4 Outline 1 2

More information

The Broadband High Power THz User Facility at the Jefferson Lab - FEL

The Broadband High Power THz User Facility at the Jefferson Lab - FEL The Broadband High Power THz User Facility at the Jefferson Lab - FEL J. Michael Klopf Jefferson Lab Core Managers Meeting June 8, 2006 Jefferson Lab Site Free Electron Laser Facility / THz Lab What is

More information

Neutrino Experiments: Lecture 2 M. Shaevitz Columbia University

Neutrino Experiments: Lecture 2 M. Shaevitz Columbia University Neutrino Experiments: Lecture 2 M. Shaevitz Columbia University 1 Outline 2 Lecture 1: Experimental Neutrino Physics Neutrino Physics and Interactions Neutrino Mass Experiments Neutrino Sources/Beams and

More information

Threshold photoproduction of J/y with the GlueX experiment. Lubomir Pentchev Jefferson Lab for the GlueX collaboration

Threshold photoproduction of J/y with the GlueX experiment. Lubomir Pentchev Jefferson Lab for the GlueX collaboration Threshold photoproduction of J/y with the GlueX experiment Lubomir Pentchev Jefferson Lab for the GlueX collaboration 7 th Workshop of the APS Topical Group on Hadron Physics, Washington, DC February 1-3

More information

Overview of the LEPS facility Recent Results

Overview of the LEPS facility Recent Results SPring-8 Masaru Yosoi RCNP, Osaka University Overview of the LEPS facility Recent Results K* 0 Σ + photoproduction with evidence for κ meson exchange New result on Θ + LEPS2 project Characteristics of

More information

arxiv:hep-ph/ v2 26 Aug 2006

arxiv:hep-ph/ v2 26 Aug 2006 hep-ph/688 arxiv:hep-ph/688v 6 Aug 6 Axion and PVLAS data in a Little Higgs model Takeshi Fukuyama a, 1 and Tatsuru Kikuchi b, a Department o Physics, Ritsumeikan University, Kusatsu, Shiga, 55-8577, Japan

More information

arxiv: v1 [hep-ex] 1 Oct 2015

arxiv: v1 [hep-ex] 1 Oct 2015 CIPANP2015-Galati October 2, 2015 OPERA neutrino oscillation search: status and perspectives arxiv:1510.00343v1 [hep-ex] 1 Oct 2015 Giuliana Galati 1 Università degli Studi di Napoli Federico II and INFN

More information

Modern Accelerators for High Energy Physics

Modern Accelerators for High Energy Physics Modern Accelerators for High Energy Physics 1. Types of collider beams 2. The Tevatron 3. HERA electron proton collider 4. The physics from colliders 5. Large Hadron Collider 6. Electron Colliders A.V.

More information

Science advances by a combination of normal science and discovery of anomalies.

Science advances by a combination of normal science and discovery of anomalies. Science advances by a combination of normal science and discovery of anomalies. Many revolutions come from long periods of normal science reinforced by exceptional science. example: accelerating universe

More information

Kaon Identification at NA62. Institute of Physics Particle, Astroparticle, and Nuclear Physics groups Conference 2015

Kaon Identification at NA62. Institute of Physics Particle, Astroparticle, and Nuclear Physics groups Conference 2015 Kaon Identification at NA62 Institute of Physics Particle, Astroparticle, and Nuclear Physics groups Conference 2015 Francis Newson April 2015 Kaon Identification at NA62 K πνν NA48 and NA62 K + π + νν

More information

A Radio For Hidden Photon Dark Matter

A Radio For Hidden Photon Dark Matter A Radio For Hidden Photon Dark Matter Saptarshi Chaudhuri Stanford University LTD-16 July 22, 2015 Co-Authors: Kent Irwin, Peter Graham, Harvey Moseley, Betty Young, Dale Li, Hsiao-Mei Cho, Surjeet Rajendran,

More information

arxiv:hep-ph/ v1 11 Feb 2007

arxiv:hep-ph/ v1 11 Feb 2007 Effective field theory approach to light propagation in an external magnetic field Xue-Peng Hu, Yi Liao 1 Department of Physics, Nankai University, Tianjin 300071, China Abstract arxiv:hep-ph/070111v1

More information

Project Paper May 13, A Selection of Dark Matter Candidates

Project Paper May 13, A Selection of Dark Matter Candidates A688R Holly Sheets Project Paper May 13, 2008 A Selection of Dark Matter Candidates Dark matter was first introduced as a solution to the unexpected shape of our galactic rotation curve; instead of showing

More information