Testing axion physics in a Josephson junction environment

Size: px
Start display at page:

Download "Testing axion physics in a Josephson junction environment"

Transcription

1 Testing axion physics in a Josephson junction environment Christian Beck Queen Mary, University of London 1

2 Testing axion physics in a Josephson junction environment Christian Beck Queen Mary, University of London 1

3 Contents 1 Introduction: What is a Josephson junction? 2 Analogy between eqs. of motions of axions and Josphson junctions C. Beck, Physica C 473, 21 (2012) [arxiv: ] 3 Josephson junctions as detectors for axions: Phase synchronization effects C. Beck, Mod. Phys. Lett. A 26, 2841 (2011) [arxiv: ] 4 Axions tunneling a junction (ATJ): Complement of the Light shining through wall (LSW) experimental setup 5 An observed axion candidate signal in S/N/S Josephson junctions C. Beck, arxiv: Summary 2

4 1 Introduction: What is a Josephson junction? Josephson junction (JJ) consists of two superconductors separated by a weak-link region (yellow) weak link-region is an insulator for tunnel junctions and a normal metal for S/N/S junctions distance between superconducting plates: d 1nm for tunnel junctions, d 1µm for S/N/S junctions If voltage V is applied then JJ emits Josephson radiation of frequency hω J = 2eV 3

5 Important technical device: Two Josephson junctions can form a bounded state, a SQUID (Superconducting Quantum Interference Device) Used e.g. for high-precision magnetic flux measurements See any textbook on superconductivity (e.g. Introduction to Superconductivity by M. Tinkham) how this works 4

6 2 Analogy between equations of motions of axions and Josephson junctions Axion field a = f a θ. Classical eq. of motion of the axion misalignement angle θ: θ + Γ θ + m2 a c4 h 2 sin θ = g γ π 1 f 2 a c 3 e 2 E B (1) f a axion coupling, m a axion mass, g γ = 0.97 for KSVZ axions, or g γ = 0.36 for DFSZ axions. In the early universe, Γ = 3H, where H is the Hubble parameter. E, B: external electric and magnetic field. 5

7 2 Analogy between equations of motions of axions and Josephson junctions Axion field a = f a θ. Classical eq. of motion of the axion misalignement angle θ: θ + Γ θ + m2 a c4 h 2 sin θ = g γ π 1 f 2 a c 3 e 2 E B (1) f a axion coupling, m a axion mass, g γ = 0.97 for KSVZ axions, or g γ = 0.36 for DFSZ axions. In the early universe, Γ = 3H, where H is the Hubble parameter. E, B: external electric and magnetic field. Compare this with the eq. of motion of a Josephson junction (JJ). The phase difference δ of a JJ driven by a bias current I satisfies δ + 1 δ + 2eI c 2e sin δ = RC hc hc I (2) I c : critical current of the junction, R: normal resistance, C: capacity of the junction. 5

8 2 Analogy between equations of motions of axions and Josephson junctions Axion field a = f a θ. Classical eq. of motion of the axion misalignement angle θ: θ + Γ θ + m2 a c4 h 2 sin θ = g γ π 1 f 2 a c 3 e 2 E B (1) f a axion coupling, m a axion mass, g γ = 0.97 for KSVZ axions, or g γ = 0.36 for DFSZ axions. In the early universe, Γ = 3H, where H is the Hubble parameter. E, B: external electric and magnetic field. Compare this with the eq. of motion of a Josephson junction (JJ). The phase difference δ of a JJ driven by a bias current I satisfies δ + 1 δ + 2eI c 2e sin δ = RC hc hc I (2) I c : critical current of the junction, R: normal resistance, C: capacity of the junction. Equations of motion are basically the same. 5

9 2 Analogy between equations of motions of axions and Josephson junctions Axion field a = f a θ. Classical eq. of motion of the axion misalignement angle θ: θ + Γ θ + m2 a c4 h 2 sin θ = g γ π 1 f 2 a c 3 e 2 E B (1) f a axion coupling, m a axion mass, g γ = 0.97 for KSVZ axions, or g γ = 0.36 for DFSZ axions. In the early universe, Γ = 3H, where H is the Hubble parameter. E, B: external electric and magnetic field. Compare this with the eq. of motion of a Josephson junction (JJ). The phase difference δ of a JJ driven by a bias current I satisfies δ + 1 δ + 2eI c 2e sin δ = RC hc hc I (2) I c : critical current of the junction, R: normal resistance, C: capacity of the junction. Equations of motion are basically the same. The numerical values of the coefficients for typical QCD axion physics and typical JJ physics are also quite similar (see C. Beck, Mod. Phys. Lett. 26, 2841 (2011) for examples). 5

10 3 Josephson junctions as detectors for axions: phase synchronization effects Consider an axion with misalignment angle θ that enters the weak link region of a Josephson junction with phase difference δ: Joint axion Josephson wave function Ψ = Ψ e iϕ must be single-valued. This means that for a given closed integration curve (dashed line above) one has ϕ d s + δ + θ = 0 mod 2π (3) SC = δ, θ are no longer independent of each other but influence each other. 6

11 In the presence of a vector potential A define gauge-invariant phase differences γ i by γ 1 := δ 2π A d s (4) Φ 0 weak link 1 γ 2 := θ 2π A d s. (5) Φ 0 weak link 2 7

12 In the presence of a vector potential A define gauge-invariant phase differences γ i by γ 1 := δ 2π A d s (4) Φ 0 weak link 1 γ 2 := θ 2π A d s. (5) Φ 0 weak link 2 Standard formalism exploiting uniqueness of axion-josephson wave function then yields ˆγ 1 γ 2 = 2π Φ Φ 0 mod 2π, (6) Φ: magnetic flux through the area enclosed by the chosen closed line of integration, Φ 0 = h 2e : flux quantum, ˆγ 1 := γ 1. 7

13 In the presence of a vector potential A define gauge-invariant phase differences γ i by γ 1 := δ 2π A d s (4) Φ 0 weak link 1 γ 2 := θ 2π A d s. (5) Φ 0 weak link 2 Standard formalism exploiting uniqueness of axion-josephson wave function then yields ˆγ 1 γ 2 = 2π Φ Φ 0 mod 2π, (6) Φ: magnetic flux through the area enclosed by the chosen closed line of integration, Φ 0 = h 2e : flux quantum, ˆγ 1 := γ 1. If Φ << Φ 0 or if Φ is an integer multiple of Φ 0 then γ 2 = ˆγ 1 (7) meaning the axion phase θ synchronizes with the Josephson phase δ. 7

14 Now consider JJ with a bias current I driven by voltage V. Josephson radiation of frequency 2eV / h is emmitted. The phase-synchronization condition θ = δ together with the original equation of motion of the axion imply that effectively the axion misalignment angle behaves as if there is a huge magnetic field (colinear with E) given by B = 2πΓf 2 a d g γ hc 3 e. (8) This formal B-field is huge! B T. It means phase-synchronized axions immediately decay into 2 microwave photons when entering the weak-link region. Primakoff effect: P a γ = 1 4β a (g Bec L) 2 ( ) sin ql 2 2 h = P ql γ a (9) 2 h 8

15 4 Axions tunneling a junction (ATJ): Complement of Light Shining Through Walls (LSW) Microscopic model of what happens in an S/N/S junction. Axion tunnels through junction (ATJ) and triggers (by multiple Andreev reflection) the transport of n Cooper pairs (n = 3 in the example plotted) 9

16 Some relevant formulas (C. Beck, arxiv: ): Signal shape in RSJ approximation (Shapiro step without externally applied microwave radiation) I s (V ) = P s 4 (RI c) 2 1 V 2 2eV s = m a c 2 (V s : signal voltage) Expected signal power from axions: [ V + V s (V + V s ) 2 + ( δv 2 )2 + V V s (V V s ) 2 + ( δv 2 )2 ]. (10) P s = ρ a va. (11) ρ a : axionic dark matter density near the earth, v = m, A: Area of weak-link s region of JJ. Total signal current produced by axions in S/N/S junction: I s = G s dv = N a τ n 2e = ρ a m a c2va n 2e (12) where N a /τ is the number of axions hitting the normal metal region per time unit τ. Axion density from ρ a = I sv s van. (13) This can be used to experimentally estimate the axion mass m a and dark matter density ρ a from an experimental measurement of V s and I s. 10

17 5 An observed candidate signal in S/N/S Josephson junctions C. Hoffmann, F. Lefloch, M. Sanquer, B. Pannetier, Phys. Rev. B 70, (R) (2004) 11

18 5 An observed candidate signal in S/N/S Josephson junctions C. Hoffmann, F. Lefloch, M. Sanquer, B. Pannetier, Phys. Rev. B 70, (R) (2004) They measured differential conductivity G(V ) = di/dv and observed signal peak of unknown origin at V s = ±0.055mV. 11

19 Hoffmann et al. (2004) observe a signal of unknown origin that is consistent with our theoretical expectations. Independent of the temperature (which is varied from 0.1K to 0.9K) they consistently observe a small peak in their measured differential conductivity G(V ) at the voltage V s = ±0.055mV Their measurements provide evidence for a signal current feature of size I s = (8.1 ± 1.0) 10 8 A obtained by integrating the area under the observed signal peak of the differential conductivity. Their noise measurements also indicate that every quasi-particle performs n = 7 Andreev reflections. Area A of the metal plate of their junction is A = 0.85µm 0.4µm = m 2. From 2eV s = ma 2 c we thus obtain an axion mass prediction of m ac 2 = 110µeV (equivalent to f a GeV ), and ρ a = I sv s van yields the prediction ρ a = (0.051 ± 0.006)GeV /cm 3. 12

20 Is this value of axionic dark matter density (ρ a = (0.051 ± 0.006)GeV /cm 3 ) as predicted by our theory based on Hoffmann et al. s measurements reasonable? 13

21 Is this value of axionic dark matter density (ρ a = (0.051 ± 0.006)GeV /cm 3 ) as predicted by our theory based on Hoffmann et al. s measurements reasonable? Yes, it is. Astrophysical observations suggest that the galactic dark matter density ρ d near the earth is about ρ d = (0.3±0.1)GeV /cm 3 (Weber, de Boer 2010). But this includes all kinds of dark matter particles, including WIMPS. Generally, axions of high mass will make up only a fraction of the total dark matter density of the universe: ρ a /ρ d (24µeV /m a c 2 ) 7/6 (Duffy, van Bibber (2009)) For m a c 2 = 110µeV we thus expect an axionic dark matter density that is a fraction (24/110) 7/ of the total dark matter density, giving ρ a 0.17 ρ d = (0.051 ± 0.017)GeV /cm 3. The intensity of the JJ signal is thus in perfect agreement with what is expected from astrophysical observations. 13

22 Need further measurements to confirm (or refute) dark matter nature of the observed candidate signal: Does the signal survive careful shielding of the junction from any external microwave radiation? A signal produced by axions cannot be shielded. Should look for a possible small dependence of the measured signal intensity on the spatial orientation of the metal plate relative to the galactic axion flow (a precise directional measurement would be extremely helpful). The velocity v by which the earth moves through the axionic BEC (Sikivie et al. 2009) of the galactic halo exhibits a yearly modulation of about 10%, with a maximum in June and a minimum in December. Hence JJ signal intensity should exhibit the same yearly modulation. Independent experiments (such as upgraded versions of ADMX) would need to confirm the suggested value of m a c 2 = 110µeV. 14

23 6 Summary We have described a macroscopic quantum effect in Josephson junctions that may help to prove the existence of axionic dark matter in future experiments. Phase-synchronized axions cannot exist in the weak-link region of JJs due to a (formal) huge magnetic field that is simulated to them by the driven JJ environment in the voltage stage. C.Beck, Mod. Phys. Lett. A 26, 2841 (2011); C. Beck, Physica C 473, 21 (2012) Axions hitting the weak-link region trigger the transport of additional Cooper pairs. Leads to a small measurable signal for the differential conductivity if axion mass resonates with Josephson frequency. Effect is particularly strong in S/N/S junctions which have a much larger weak-link region than tunnel junctions. Candidate signal of unknown origin has been observed in measurements of Hoffmann et al. Can be interpreted in terms of an axion mass of 0.11 mev and a local axionic dark matter density of 0.05 GeV/cm 3. C. Beck, arxiv:

Possible resonance effect of dark matter axions in SNS Josephson junctions

Possible resonance effect of dark matter axions in SNS Josephson junctions Possible resonance effect of dark matter axions in SNS Josephson junctions School of Mathematical Sciences, Queen Mary University of London, London E1 4NS, UK E-mail: c.beck@qmul.ac.uk Dark matter axions

More information

Supercondcting Qubits

Supercondcting Qubits Supercondcting Qubits Patricia Thrasher University of Washington, Seattle, Washington 98195 Superconducting qubits are electrical circuits based on the Josephson tunnel junctions and have the ability to

More information

New experiment for axion dark matter

New experiment for axion dark matter New experiment for axion dark matter J. Redondo and J. Jaeckel Feb 27th 2014 Outline - x-summary of Axion and ALP DM - Axion DM waves in Magnetic fields - Dish experiment - Understanding cavity experiments

More information

The Axion Dark Matter experiment (ADMX) Phase 0

The Axion Dark Matter experiment (ADMX) Phase 0 3rd Joint ILIAS CERN DESY Axion WIMPs The Axion Dark Matter experiment (ADMX) Phase 0 Steve Asztalos, LLNL June, 2007 Collaboration ADMX is a five institution collaboration Lawrence Livermore National

More information

Superconductivity at nanoscale

Superconductivity at nanoscale Superconductivity at nanoscale Superconductivity is the result of the formation of a quantum condensate of paired electrons (Cooper pairs). In small particles, the allowed energy levels are quantized and

More information

Outline of my talk 1) Axion BEC: a model beyond CDM. 2) Production and Detection of Axion-like Particles by Interferometry.

Outline of my talk 1) Axion BEC: a model beyond CDM. 2) Production and Detection of Axion-like Particles by Interferometry. Outline of my talk 1) Axion BEC: a model beyond CDM. 2) Production and Detection of Axion-like Particles by Interferometry. Axion BEC: a model beyond CDM Based on: Bose-Einstein Condensation of Dark Matter

More information

Search for Weakly Interacting Undiscovered Particles using Sub-THz Gyrotron

Search for Weakly Interacting Undiscovered Particles using Sub-THz Gyrotron Search for Weakly Interacting Undiscovered Particles using Sub-THz Gyrotron Taikan Suehara K. Owada, A. Miyazaki, T. Yamazaki, T. Namba, S. Asai, T. Kobayashi, T. Sakai* International Center for Elementary

More information

Searching for the Axion

Searching for the Axion Searching for the Axion Leslie J Rosenberg Lawrence Livermore National Laboratory August 2, 2004 Outline What is the axion? Axion properties. The window of allowed axion masses and couplings. Selected

More information

AXIONS AND AXION-LIKE PARTICLES

AXIONS AND AXION-LIKE PARTICLES AXIONS AND AXION-LIKE PARTICLES FRANK AVIGNONE th UNIVERSITY OF SOUTH CAROLINA COLUMBIA, SOUTH CAROLINA, USA 7 INTERNATIONAL WORKSHOP ON ULTRACOLD AND COLD NEUTRONS:PHYSICS AND SOURCES St. PETERSBURG,

More information

Axion Detection With NMR

Axion Detection With NMR PRD 84 (2011) arxiv:1101.2691 + to appear Axion Detection With NMR Peter Graham Stanford with Dmitry Budker Micah Ledbetter Surjeet Rajendran Alex Sushkov Dark Matter Motivation two of the best candidates:

More information

M.C. Escher. Angels and devils (detail), 1941

M.C. Escher. Angels and devils (detail), 1941 M.C. Escher Angels and devils (detail), 1941 1 Coherent Quantum Phase Slip: Exact quantum dual to Josephson Tunneling (Coulomb blockade is a partial dual) Degree of freedom in superconductor: Phase and

More information

Superconducting qubits (Phase qubit) Quantum informatics (FKA 172)

Superconducting qubits (Phase qubit) Quantum informatics (FKA 172) Superconducting qubits (Phase qubit) Quantum informatics (FKA 172) Thilo Bauch (bauch@chalmers.se) Quantum Device Physics Laboratory, MC2, Chalmers University of Technology Qubit proposals for implementing

More information

STAX. Paolo SPAGNOLO. INFN - Pisa

STAX. Paolo SPAGNOLO. INFN - Pisa + STAX Paolo SPAGNOLO INFN - Pisa + Phys. Dark Univ. 12, 37 (2016) Physics of the Dark Universe 12 (2016) 37 44 Contents lists available at ScienceDirect Physics of the Dark Universe journal homepage:

More information

Opportunities for Subdominant Dark Matter Candidates

Opportunities for Subdominant Dark Matter Candidates Opportunities for Subdominant Dark Matter Candidates A. Ringwald http://www.desy.de/ ringwald DESY Seminar, Institut de Física d Altes Energies, Universitat Autònoma de Barcelona, June 17, 2004, Barcelona,

More information

Final Report. Superconducting Qubits for Quantum Computation Contract MDA C-A821/0000

Final Report. Superconducting Qubits for Quantum Computation Contract MDA C-A821/0000 Final Report Superconducting Qubits for Quantum Computation Contract MDA904-98-C-A821/0000 Project Director: Prof. J. Lukens Co-project Director: Prof. D. Averin Co-project Director: Prof. K. Likharev

More information

Transport through Andreev Bound States in a Superconductor-Quantum Dot-Graphene System

Transport through Andreev Bound States in a Superconductor-Quantum Dot-Graphene System Transport through Andreev Bound States in a Superconductor-Quantum Dot-Graphene System Nadya Mason Travis Dirk, Yung-Fu Chen, Cesar Chialvo Taylor Hughes, Siddhartha Lal, Bruno Uchoa Paul Goldbart University

More information

Vortices in superconductors& low temperature STM

Vortices in superconductors& low temperature STM Vortices in superconductors& low temperature STM José Gabriel Rodrigo Low Temperature Laboratory Universidad Autónoma de Madrid, Spain (LBT-UAM) Cryocourse, 2011 Outline -Vortices in superconductors -Vortices

More information

A Radio For Hidden Photon Dark Matter

A Radio For Hidden Photon Dark Matter A Radio For Hidden Photon Dark Matter Saptarshi Chaudhuri Stanford University LTD-16 July 22, 2015 Co-Authors: Kent Irwin, Peter Graham, Harvey Moseley, Betty Young, Dale Li, Hsiao-Mei Cho, Surjeet Rajendran,

More information

The IBS/CAPP research plan

The IBS/CAPP research plan The IBS/CAPP research plan YkS, March 018 The axion is a consequence of the most elegant solution, suggested by Alberto Peccei and Helen Quinn in the 1970 s, to the strong CP problem, i.e., why the experimental

More information

Photon Regeneration at Optical Frequencies

Photon Regeneration at Optical Frequencies Photon Regeneration at Optical Frequencies Andrei Afanasev Hampton University/Jefferson Lab 3 rd rd Joint ILIAS-CERN CERN-WIMPs Training workshop Patras,, Greece, June 22, 2007 Motivation for Axion Search

More information

Chapter 1. Macroscopic Quantum Phenomena

Chapter 1. Macroscopic Quantum Phenomena Chapter 1 Macroscopic Quantum Phenomena Chap. 1-2 I. Foundations of the Josephson Effect 1. Macroscopic Quantum Phenomena 1.1 The Macroscopic Quantum Model of Superconductivity Macroscopic systems Quantum

More information

Unit V Superconductivity Engineering Physics

Unit V Superconductivity Engineering Physics 1. Superconductivity ertain metals and alloys exhibit almost zero resistivity (i.e. infinite conductivity), when they are cooled to sufficiently low temperatures. This effect is called superconductivity.

More information

Chapter 1. Macroscopic Quantum Phenomena

Chapter 1. Macroscopic Quantum Phenomena Chapter 1 Macroscopic Quantum Phenomena Chap. 1-2 I. Foundations of the Josephson Effect 1. Macroscopic Quantum Phenomena 1.1 The Macroscopic Quantum Model of Superconductivity quantum mechanics: - physical

More information

The Nanotube SQUID. uhu,, M. Monthioux,, V. Bouchiat, W. Wernsdorfer, CEMES-Toulouse, CRTBT & LLN Grenoble

The Nanotube SQUID. uhu,, M. Monthioux,, V. Bouchiat, W. Wernsdorfer, CEMES-Toulouse, CRTBT & LLN Grenoble The Nanotube SQUID J.-P. Cleuziou,, Th. Ondarçuhu uhu,, M. Monthioux,, V. Bouchiat, W. Wernsdorfer, CEMES-Toulouse, CRTBT & LLN Grenoble Outline Sample fabrication Proximity effect in CNT The CNT superconducting

More information

Introduction to Superconductivity. Superconductivity was discovered in 1911 by Kamerlingh Onnes. Zero electrical resistance

Introduction to Superconductivity. Superconductivity was discovered in 1911 by Kamerlingh Onnes. Zero electrical resistance Introduction to Superconductivity Superconductivity was discovered in 1911 by Kamerlingh Onnes. Zero electrical resistance Meissner Effect Magnetic field expelled. Superconducting surface current ensures

More information

6.763 Applied Superconductivity Lecture 1

6.763 Applied Superconductivity Lecture 1 6.763 Applied Superconductivity Lecture 1 Terry P. Orlando Dept. of Electrical Engineering MIT September 4, 2003 Outline What is a Superconductor? Discovery of Superconductivity Meissner Effect Type I

More information

Axions as Dark matter candidates. Javier Redondo Ramón y Cajal fellow Universidad de Zaragoza (Spain)

Axions as Dark matter candidates. Javier Redondo Ramón y Cajal fellow Universidad de Zaragoza (Spain) Axions as Dark matter candidates Javier Redondo Ramón y Cajal fellow Universidad de Zaragoza (Spain) The strong CP problem Flavor conserving CP-violation in the SM, one phase L SM ū d... L 0 @ m u e i

More information

Collective Effects. Equilibrium and Nonequilibrium Physics

Collective Effects. Equilibrium and Nonequilibrium Physics Collective Effects in Equilibrium and Nonequilibrium Physics: Lecture 4, April 7, 2006 1 Collective Effects in Equilibrium and Nonequilibrium Physics Website: http://cncs.bnu.edu.cn/mccross/course/ Caltech

More information

Chapter 5 Nanomanipulation. Chapter 5 Nanomanipulation. 5.1: With a nanotube. Cutting a nanotube. Moving a nanotube

Chapter 5 Nanomanipulation. Chapter 5 Nanomanipulation. 5.1: With a nanotube. Cutting a nanotube. Moving a nanotube Objective: learn about nano-manipulation techniques with a STM or an AFM. 5.1: With a nanotube Moving a nanotube Cutting a nanotube Images at large distance At small distance : push the NT Voltage pulse

More information

Topology in QCD and Axion Dark Matter. Andreas Ringwald (DESY)

Topology in QCD and Axion Dark Matter. Andreas Ringwald (DESY) Topology in QCD and Axion Dark Matter. Andreas Ringwald (DESY) Symposium on Advances in Semi-Classical Methods in Mathematics and Physics Groningen, NL, 19-21 October 2016 Topological Theta Term and Strong

More information

Superconductivity. S2634: Physique de la matière condensée & nano-objets. Miguel Anía Asenjo Alexandre Le Boité Christine Lingblom

Superconductivity. S2634: Physique de la matière condensée & nano-objets. Miguel Anía Asenjo Alexandre Le Boité Christine Lingblom Superconductivity S2634: Physique de la matière condensée & nano-objets Miguel Anía Asenjo Alexandre Le Boité Christine Lingblom 1 What is superconductivity? 2 Superconductivity Superconductivity generally

More information

ADMX: Searching for Axions and Other Light Hidden Particles

ADMX: Searching for Axions and Other Light Hidden Particles ADMX: Searching for Axions and Other Light Hidden Particles University of Washington SLAC Dark Forces Workshop, Sept. 2009 1 ADMX Axion Dark Matter experiment University of Washington LLNL University of

More information

Micro & nano-cooling: electronic cooling and thermometry based on superconducting tunnel junctions

Micro & nano-cooling: electronic cooling and thermometry based on superconducting tunnel junctions Micro & nano-cooling: electronic cooling and thermometry based on superconducting tunnel junctions Hervé Courtois Néel Institute, CNRS and Université Joseph Fourier, Grenoble, France with L. Pascal, H.

More information

arxiv:hep-ph/ v1 18 Jan 2001

arxiv:hep-ph/ v1 18 Jan 2001 The Rydberg-Atom-Cavity Axion Search K. Yamamoto 1, M. Tada 2, Y. Kishimoto 2, M. Shibata 2, K. Kominato 2, T. Ooishi 2, S. Yamada 3, T. Saida 2, H. Funahashi 3, A. Masaike 4, and S. Matsuki 2 arxiv:hep-ph/0101200v1

More information

Closing in on axion dark matter

Closing in on axion dark matter Closing in on axion dark matter PONT 2014 14 Apr, Avignon, France Javier Redondo (LMU/MPP Munich) Outline - Axions and strong CP problem - Axion DM (and BICEP) - Detecting Axion DM - Solar axions The strong

More information

Principles and Applications of Superconducting Quantum Interference Devices (SQUIDs)

Principles and Applications of Superconducting Quantum Interference Devices (SQUIDs) Principles and Applications of Superconducting Quantum Interference Devices (SQUIDs) PHY 300 - Junior Phyics Laboratory Syed Ali Raza Roll no: 2012-10-0124 LUMS School of Science and Engineering Thursday,

More information

University of Trieste INFN section of Trieste. ALP signatures in low background photon measurements

University of Trieste INFN section of Trieste. ALP signatures in low background photon measurements University of Trieste INFN section of Trieste ALP signatures in low background photon measurements Valentina Lozza March 5 th 2010 Summary Axion Like Particles: a brief introduction Experimental searches

More information

Superconductivity. Alexey Ustinov Universität Karlsruhe WS Alexey Ustinov WS2008/2009 Superconductivity: Lecture 1 1

Superconductivity. Alexey Ustinov Universität Karlsruhe WS Alexey Ustinov WS2008/2009 Superconductivity: Lecture 1 1 Superconductivity Alexey Ustinov Universität Karlsruhe WS 2008-2009 Alexey Ustinov WS2008/2009 Superconductivity: Lecture 1 1 Lectures October 20 Phenomenon of superconductivity October 27 Magnetic properties

More information

C. C. Tsuei IBM T.J. Watson Research Center Yorktown Heights, NY 10598

C. C. Tsuei IBM T.J. Watson Research Center Yorktown Heights, NY 10598 Origin of High-Temperature Superconductivity Nature s great puzzle C. C. Tsuei IBM T.J. Watson Research Center Yorktown Heights, NY 10598 Basic characteristics of superconductors: Perfect electrical conduction

More information

Reminder : scenarios of light new physics

Reminder : scenarios of light new physics Reminder : scenarios of light new physics No new particle EW scale postulated Heavy neutral lepton AND well motivated! Neutrino masses Matter-antimatter asymmetry Dark matter Dark photon Muon g-2 anomaly

More information

MAD MAX. Javier Redondo Universidad de Zaragoza (Spain) Max Planck Institute für Physik

MAD MAX. Javier Redondo Universidad de Zaragoza (Spain) Max Planck Institute für Physik MAD MAX Javier Redondo Universidad de Zaragoza (Spain) Max Planck Institute für Physik Axions are necessarily dark matter - is it a dynamical field? (t, x) Energy generated by QCD! time 0 (t) = 0 cos(m

More information

Dark Matter Caustics

Dark Matter Caustics Dark Matter Caustics Dark Side of the Universe 2007 Minneapolis, June 5-10 Pierre Sikivie (U of Florida) Elucidating the structure of galactic halos is important for - understanding galactic dynamics -

More information

Dynamical Casimir effect in superconducting circuits

Dynamical Casimir effect in superconducting circuits Dynamical Casimir effect in superconducting circuits Dynamical Casimir effect in a superconducting coplanar waveguide Phys. Rev. Lett. 103, 147003 (2009) Dynamical Casimir effect in superconducting microwave

More information

Quantum transport in nanoscale solids

Quantum transport in nanoscale solids Quantum transport in nanoscale solids The Landauer approach Dietmar Weinmann Institut de Physique et Chimie des Matériaux de Strasbourg Strasbourg, ESC 2012 p. 1 Quantum effects in electron transport R.

More information

Preliminary Results from the Yale Microwave Cavity Experiment

Preliminary Results from the Yale Microwave Cavity Experiment Preliminary Results from the Yale Microwave Cavity Experiment A. J. Martin 1, O. K. Baker 1, J L Hirshfield 1, Y. Jiang 1, S Kazakov 1, M. A. LaPointe 1, A Malagon 1, S Shchelkunov 1, P. L. Slocum 1, A.

More information

Superconducting QUantum Interference Device (SQUID) and applications. Massoud Akhtari PhD

Superconducting QUantum Interference Device (SQUID) and applications. Massoud Akhtari PhD Superconducting QUantum Interference Device (SQUID) and applications Massoud Akhtari PhD Topics Superconductivity Definitions SQUID Principles Applications Superconductivity Conduction lattice has zero

More information

Last lecture (#4): J vortex. J tr

Last lecture (#4): J vortex. J tr Last lecture (#4): We completed te discussion of te B-T pase diagram of type- and type- superconductors. n contrast to type-, te type- state as finite resistance unless vortices are pinned by defects.

More information

High-Temperature Superconductors: Playgrounds for Broken Symmetries

High-Temperature Superconductors: Playgrounds for Broken Symmetries High-Temperature Superconductors: Playgrounds for Broken Symmetries Gauge / Phase Reflection Time Laura H. Greene Department of Physics Frederick Seitz Materials Research Laboratory Center for Nanoscale

More information

ELECTROMAGNETIC DARK ENERGY

ELECTROMAGNETIC DARK ENERGY International Journal of Modern Physics D Vol. 17, No. 1 (28) 71 8 c World Scientific Publishing Company ELECTROMAGNETIC DARK ENERGY CHRISTIAN BECK School of Mathematical Sciences, Queen Mary, University

More information

The Ramsauer-Townsend Effect

The Ramsauer-Townsend Effect The Ramsauer-Townsend Effect David-Alexander Robinson; Jack Denning; 08332461 25th March 2010 Contents 1 Abstract 2 2 Introduction & Theory 2 2.1 The Ramsauer-Townsend Effect................. 2 2.2 Contact

More information

AXIONS. 1. Introduction

AXIONS. 1. Introduction AXIONS GEORG RAFFELT Max-Planck-Institut für Physik (Werner-Heisenberg-Institut), Föhringer Ring 6, 80805 München, Germany (e-mail: raffelt@mppmu.mpg.de) (Received 7 August 2001; accepted 29 August 2001)

More information

Axions and X-ray astronomy

Axions and X-ray astronomy Axions and X-ray astronomy Francesca Day University of Cambridge Alsatian Workshop on X-ray Polarimetry November 2017 1605.01043: M Berg, J Conlon, FD, N Jennings, S Krippendorf, A Powell & M Rummel 1704.05256:

More information

New Experiments at the Intensity Frontier

New Experiments at the Intensity Frontier New Experiments at the Intensity Frontier Andreas Ringwald DESY Perspektiven der Teilchenphysik: Strategie-Workshop des KET 25-26 October 2010, Harenberg City-Center, Dortmund, D New Experiments at the

More information

Constraints on chameleons and axion-like particles from the GammeV experiment

Constraints on chameleons and axion-like particles from the GammeV experiment Constraints on chameleons and axion-like particles from the GammeV experiment Fermilab Center for Particle Astrophysics E-mail: jsteffenatfnaldotgov For the GammeV Collaboration We present the most recent

More information

Axion Dark Matter : Motivation and Search Techniques

Axion Dark Matter : Motivation and Search Techniques Axion Dark Matter : Motivation and Search Techniques Pierre Sikivie UCLA DM Conference February 17, 2016 Motivation Axions solve the strong CP problem Axions are present in many models of beyond-the-standard

More information

Status of the U.S. Dark Matter Axion Search

Status of the U.S. Dark Matter Axion Search Preprint UCRL-JC-140695 Status of the U.S. Dark Matter Axion Search C. Hagmann, S. Asztalos, E. Daw, N.A. Golubev, D. Kinion, D.M. Moltz, F. Nezrick, H. Peng, J. Powell, L.J. Rosenberg, P. Sikivie, W.

More information

SQUIDs Then and Now: From SLUGs to Axions

SQUIDs Then and Now: From SLUGs to Axions SQUIDs Then and Now: From SLUGs to Axions SQUIDs Then SQUIDs Now Cold Dark Matter: The Hunt for the Axion Josephson 50 th Anniversary Applied Superconductivity Conference Portland, OR 9 October 2012 SQUIDs

More information

Splitting of a Cooper pair by a pair of Majorana bound states

Splitting of a Cooper pair by a pair of Majorana bound states Chapter 7 Splitting of a Cooper pair by a pair of Majorana bound states 7.1 Introduction Majorana bound states are coherent superpositions of electron and hole excitations of zero energy, trapped in the

More information

Astrophysical and Cosmological Axion Limits

Astrophysical and Cosmological Axion Limits Sun Globular Cluster Supernova 1987A Dark Matter Astrophysical and Cosmological Axion Limits Georg G. Raffelt, Max-Planck-Institut für Physik, München Globular Cluster Supernova 1987A Dark Matter Sun Solar

More information

Lecture 9 Superconducting qubits Ref: Clarke and Wilhelm, Nature 453, 1031 (2008).

Lecture 9 Superconducting qubits Ref: Clarke and Wilhelm, Nature 453, 1031 (2008). Lecture 9 Superconducting qubits Ref: Clarke and Wilhelm, Nature 453, 1031 (2008). Newcomer in the quantum computation area ( 2000, following experimental demonstration of coherence in charge + flux qubits).

More information

Superconductivity. Introduction. Final project. Statistical Mechanics Fall Mehr Un Nisa Shahid

Superconductivity. Introduction. Final project. Statistical Mechanics Fall Mehr Un Nisa Shahid 1 Final project Statistical Mechanics Fall 2010 Mehr Un Nisa Shahid 12100120 Superconductivity Introduction Superconductivity refers to the phenomenon of near-zero electric resistance exhibited by conductors

More information

{ 1{ (by C. Hagmann, K. van Bibber, and L.J. Rosenberg) In this section we review the experimental methodology

{ 1{ (by C. Hagmann, K. van Bibber, and L.J. Rosenberg) In this section we review the experimental methodology { 1{ AXIONS AND OTHER VERY LIGHT BOSONS, PART III (EXPERIMENTAL LIMITS) (by C. Hagmann, K. van Bibber, and L.J. Rosenberg) In this section we review the experimental methodology and limits on light axions

More information

LECTURE 2: Thermometry

LECTURE 2: Thermometry LECTURE 2: Thermometry Tunnel barrier Examples of aluminium-oxide tunnel barriers Basics of tunnel junctions E 1 2 Tunneling from occupied states to empty states V Metal Insulator Metal (NIN) tunnel junction

More information

single-electron electron tunneling (SET)

single-electron electron tunneling (SET) single-electron electron tunneling (SET) classical dots (SET islands): level spacing is NOT important; only the charging energy (=classical effect, many electrons on the island) quantum dots: : level spacing

More information

Photoregeneration Experiment Axion search

Photoregeneration Experiment Axion search Laboratoire pour l Utilisation des Lasers Intenses, Palaiseau A.-M. Sautivet, F. Amiranoff Photoregeneration Experiment Axion search Laboratoire Collisions Agrégats Réactivité, Toulouse C. Robilliard,

More information

Testing Loop Quantum Gravity and Electromagnetic Dark Energy in Superconductors

Testing Loop Quantum Gravity and Electromagnetic Dark Energy in Superconductors Testing Loop Quantum Gravity and Electromagnetic Dark Energy in Superconductors arxiv:0812.4993v2 [gr-qc] 6 Aug 2009 Clovis Jacinto de Matos October 10, 2018 Abstract In 1989 Cabrera and Tate reported

More information

Quantum Phase Slip Junctions

Quantum Phase Slip Junctions Quantum Phase Slip Junctions Joël Peguiron Insitute of Physics, University of Basel Monday Morning Meeting, 24 April 2006 1 Goal Monday Morning Meeting, 24 April 2006 2 Evidence for Thermodynamic Fluctuations

More information

From Last Time. Partially full bands = metal Bands completely full or empty = insulator / seminconductor

From Last Time. Partially full bands = metal Bands completely full or empty = insulator / seminconductor From Last Time Solids are large numbers of atoms arranged in a regular crystal structure. Each atom has electron quantum states, but interactions shift the energies. End result is each type atomic electron

More information

CONDENSED MATTER: towards Absolute Zero

CONDENSED MATTER: towards Absolute Zero CONDENSED MATTER: towards Absolute Zero The lowest temperatures reached for bulk matter between 1970-2000 AD. We have seen the voyages to inner & outer space in physics. There is also a voyage to the ultra-cold,

More information

Any Light Particle Search II

Any Light Particle Search II Any Light Particle Search II 79. Physics Research Committee Christoph Weinsheimer Johannes Gutenberg-University Mainz Spring 2015 Hidden Sector PRC Report ALPS II Physics Case 2 / 16 Weakly Interacting

More information

Superconducting Qubits. Nathan Kurz PHYS January 2007

Superconducting Qubits. Nathan Kurz PHYS January 2007 Superconducting Qubits Nathan Kurz PHYS 576 19 January 2007 Outline How do we get macroscopic quantum behavior out of a many-electron system? The basic building block the Josephson junction, how do we

More information

Modern Physics for Scientists and Engineers International Edition, 4th Edition

Modern Physics for Scientists and Engineers International Edition, 4th Edition Modern Physics for Scientists and Engineers International Edition, 4th Edition http://optics.hanyang.ac.kr/~shsong 1. THE BIRTH OF MODERN PHYSICS 2. SPECIAL THEORY OF RELATIVITY 3. THE EXPERIMENTAL BASIS

More information

Modeling Schottky barrier SINIS junctions

Modeling Schottky barrier SINIS junctions Modeling Schottky barrier SINIS junctions J. K. Freericks, B. Nikolić, and P. Miller * Department of Physics, Georgetown University, Washington, DC 20057 * Department of Physics, Brandeis University, Waltham,

More information

Old problems and New directions on axion DM

Old problems and New directions on axion DM Old problems and New directions on axion DM Frontiers of New Physics: Colliders and Bey nd ICTP, Trieste, 26 Jun 2014 Javier Redondo (LMU/MPP Munich) The strong CP hint and axions - U(1)A is color anomalous,

More information

Single Electron Transistor (SET)

Single Electron Transistor (SET) Single Electron Transistor (SET) e - e - dot C g V g A single electron transistor is similar to a normal transistor (below), except 1) the channel is replaced by a small dot. 2) the dot is separated from

More information

Tuning a short coherence length Josephson junction through a metal-insulator transition

Tuning a short coherence length Josephson junction through a metal-insulator transition Tuning a short coherence length Josephson junction through a metal-insulator transition J. K. Freericks, B. Nikolić, and P. Miller * Department of Physics, Georgetown University, Washington, DC 20057 *

More information

Search for New Low Energies

Search for New Low Energies Search for New Physics @ Low Energies Joerg Jaeckel The participants of the Brainstorming&Calculationshop + The 5 th Patras Workshop IPPP Durham Hints for new Physics Uglyness of old models The Standard

More information

Electronic transport in low dimensional systems

Electronic transport in low dimensional systems Electronic transport in low dimensional systems For example: 2D system l

More information

phys4.20 Page 1 - the ac Josephson effect relates the voltage V across a Junction to the temporal change of the phase difference

phys4.20 Page 1 - the ac Josephson effect relates the voltage V across a Junction to the temporal change of the phase difference Josephson Effect - the Josephson effect describes tunneling of Cooper pairs through a barrier - a Josephson junction is a contact between two superconductors separated from each other by a thin (< 2 nm)

More information

Comparison of UHECR spectra from necklaces and vortons

Comparison of UHECR spectra from necklaces and vortons arxiv:astro-ph/0008525v1 31 Aug 2000 Comparison of UHECR spectra from necklaces and vortons Luis Masperi and Milva Orsaria Centro Latinoamericano de Física, Av. Vencenslau Bráz 71 Fundos, 22290-140 Rio

More information

InAs/GaSb A New Quantum Spin Hall Insulator

InAs/GaSb A New Quantum Spin Hall Insulator InAs/GaSb A New Quantum Spin Hall Insulator Rui-Rui Du Rice University 1. Old Material for New Physics 2. Quantized Edge Modes 3. Andreev Reflection 4. Summary KITP Workshop on Topological Insulator/Superconductor

More information

Kilogram, Planck Units, and Quantum Hall Effect

Kilogram, Planck Units, and Quantum Hall Effect Kilogram, Planck Units, and Quantum Hall Effect Alexander Penin University of Alberta & TTP Karlsruhe DESY Hamburg, May 2012 Topics Discussed Systems of units and fundamental constants Planck system of

More information

Thermalization of axion dark matter

Thermalization of axion dark matter Thermalization of axion dark matter Ken ichi Saikawa ICRR, The University of Tokyo Collaborate with M. Yamaguchi (Tokyo Institute of Technology) Reference: KS and M. Yamaguchi, arxiv:1210.7080 [hep-ph]

More information

Superconductivity. Superconductivity. Superconductivity was first observed by HK Onnes in 1911 in mercury at T ~ 4.2 K (Fig. 1).

Superconductivity. Superconductivity. Superconductivity was first observed by HK Onnes in 1911 in mercury at T ~ 4.2 K (Fig. 1). Superconductivity Superconductivity was first observed by HK Onnes in 9 in mercury at T ~ 4. K (Fig. ). The temperature at which the resistivity falls to zero is the critical temperature, T c. Superconductivity

More information

PHY326/426 Dark Matter and the Universe. Dr. Vitaly Kudryavtsev F9b, Tel.:

PHY326/426 Dark Matter and the Universe. Dr. Vitaly Kudryavtsev F9b, Tel.: PHY326/426 Dark Matter and the Universe Dr. Vitaly Kudryavtsev F9b, Tel.: 0114 2224531 v.kudryavtsev@sheffield.ac.uk Indirect searches for dark matter WIMPs Dr. Vitaly Kudryavtsev Dark Matter and the Universe

More information

Temperature dependence of Andreev spectra in a superconducting carbon nanotube quantum dot

Temperature dependence of Andreev spectra in a superconducting carbon nanotube quantum dot Temperature dependence of Andreev spectra in a superconducting carbon nanotube quantum dot A. Kumar, M. Gaim, D. Steininger, A. Levy Yeyati, A. Martín-Rodero, A. K. Hüttel, and C. Strunk Phys. Rev. B 89,

More information

Floquet formulation for the investigation of multiphoton quantum interference in a superconducting qubit driven by a strong field

Floquet formulation for the investigation of multiphoton quantum interference in a superconducting qubit driven by a strong field Floquet formulation for the investigation of multiphoton quantum interference in a superconducting qubit driven by a strong field Son, Sang-Kil and Chu, Shih-I Department of Chemistry, University of Kansas

More information

Superconducting Qubits

Superconducting Qubits Superconducting Qubits Fabio Chiarello Institute for Photonics and Nanotechnologies IFN CNR Rome Lego bricks The Josephson s Lego bricks box Josephson junction Phase difference Josephson equations Insulating

More information

SM*A*S*H. Standard Model * Axion * See-saw * Hidden PQ scalar inflation. Andreas Ringwald (DESY)

SM*A*S*H. Standard Model * Axion * See-saw * Hidden PQ scalar inflation. Andreas Ringwald (DESY) SM*A*S*H Standard Model * Axion * See-saw * Hidden PQ scalar inflation Andreas Ringwald (DESY) From the Vacuum to the Universe Kitzbühel, Austria 26 June 1 July 2016 [Guillermo Ballesteros, Javier Redondo,

More information

Axion Like Particle Dark Matter Search using Microwave Cavities

Axion Like Particle Dark Matter Search using Microwave Cavities Axion Like Particle Dark Matter Search using Microwave Cavities Yale Microwave Cavity Experiment (YMCE) Ana Malagon Mar 25, 2014 / WIDG Seminar Weakly Interacting Sub-eV Particles Axion-Like Particles

More information

Observational Prospects for Quark Nugget Dark Matter

Observational Prospects for Quark Nugget Dark Matter Observational Prospects for Quark Nugget Dark Matter Kyle Lawson University of British Columbia Partially based on material reviewed in http://arxiv.org/abs/1305.6318 Outline Baryogenesis (matter/antimatter

More information

Self-Induced Resonances in Asymmetric Superconducting Quantum Interference Devices

Self-Induced Resonances in Asymmetric Superconducting Quantum Interference Devices Vol. 114 (2008) ACTA PHYSICA POLONICA A No. 1 Proceedings of the XIII National School of Superconductivity, L adek Zdrój 2007 Self-Induced Resonances in Asymmetric Superconducting Quantum Interference

More information

Hidden Sector particles at SNS

Hidden Sector particles at SNS Hidden Sector particles at SNS 1 S E N S I T I V I T Y T O A X I O N S A N D A X I O N - L I K E P A R T I C L E S. A T H A N S H A T Z I K O U T E L I S Y U R I E F R E M E N K O U N I V E R S I T Y O

More information

INTRODUCTION TO SUPERCONDUCTING QUBITS AND QUANTUM EXPERIENCE: A 5-QUBIT QUANTUM PROCESSOR IN THE CLOUD

INTRODUCTION TO SUPERCONDUCTING QUBITS AND QUANTUM EXPERIENCE: A 5-QUBIT QUANTUM PROCESSOR IN THE CLOUD INTRODUCTION TO SUPERCONDUCTING QUBITS AND QUANTUM EXPERIENCE: A 5-QUBIT QUANTUM PROCESSOR IN THE CLOUD Hanhee Paik IBM Quantum Computing Group IBM T. J. Watson Research Center, Yorktown Heights, NY USA

More information

TDGL Simulation on Dynamics of Helical Vortices in Thin Superconducting Wires in the Force-Free Configuration

TDGL Simulation on Dynamics of Helical Vortices in Thin Superconducting Wires in the Force-Free Configuration 5th International Workshop on Numerical Modelling of High-Temperature Superconductors, 6/15-17/2016, Bologna, Italy TDGL Simulation on Dynamics of Helical Vortices in Thin Superconducting Wires in the

More information

Axion Searches Overview. Andrei Afanasev The George Washington University Washington, DC

Axion Searches Overview. Andrei Afanasev The George Washington University Washington, DC Axion Searches Overview Andrei Afanasev The George Washington University Washington, DC Andrei Afanasev, Intense Electron Beams Workshop, Cornell University, 6/17/2015 Introduction to a Dark Matter problem

More information

Supplementary figures

Supplementary figures Supplementary figures Supplementary Figure 1. A, Schematic of a Au/SRO113/SRO214 junction. A 15-nm thick SRO113 layer was etched along with 30-nm thick SRO214 substrate layer. To isolate the top Au electrodes

More information

arxiv: v1 [astro-ph.co] 7 Nov 2012

arxiv: v1 [astro-ph.co] 7 Nov 2012 arxiv:1211.15v1 [astro-ph.co] 7 Nov 212 Mirror dark matter explanation of the DAMA, CoGeNT and CRESST-II data ARC Centre of Excellence for Particle Physics at the Terascale, School of Physics, University

More information

Experimental WISP searches

Experimental WISP searches Experimental WISP searches Dark matter and dark matter candidate searches for Axions, ALPs and other WISPs Axel Lindner DESY Challenges in the Dark Sector, Laboratori Nazionali di Frascati, 16 December

More information

SOLID STATE PHYSICS. Second Edition. John Wiley & Sons. J. R. Hook H. E. Hall. Department of Physics, University of Manchester

SOLID STATE PHYSICS. Second Edition. John Wiley & Sons. J. R. Hook H. E. Hall. Department of Physics, University of Manchester SOLID STATE PHYSICS Second Edition J. R. Hook H. E. Hall Department of Physics, University of Manchester John Wiley & Sons CHICHESTER NEW YORK BRISBANE TORONTO SINGAPORE Contents Flow diagram Inside front

More information