arxiv:hep-ph/ v2 26 Aug 2006

Size: px
Start display at page:

Download "arxiv:hep-ph/ v2 26 Aug 2006"

Transcription

1 hep-ph/688 arxiv:hep-ph/688v 6 Aug 6 Axion and PVLAS data in a Little Higgs model Takeshi Fukuyama a, 1 and Tatsuru Kikuchi b, a Department o Physics, Ritsumeikan University, Kusatsu, Shiga, , Japan b Theory Division, KEK, Oho 1-1, Tsukuba, Ibaraki, 35-81, Japan Abstract Little Higgs models may provide a solution to the gauge hierarchy problem in the mass o the Higgs boson. In this ramework the Higgs boson is arisen as the pseudo- Nambu-Goldstone (PNG) boson. We show that the lepton triplet introduced in a little Higgs model explains a small mass parameter in the double see-saw mechanism or neutrino masses, and it can also gives an explanation or the axion like particle recently reported by PVLAS collaboration. 1 ukuyama@se.ritsumei.ac.jp tatsuru@post.kek.jp

2 Despite a lot o phenomenological successes in the standard model (SM), it has a undamental problem associated with the Higgs mass parameter. The Higgs mass squared parameter receives radiative corrections o order the cuto scale squared, implying the existence o some new physics at a scale not much larger than the scale o electroweak symmetry breaking. On the other hand, since experiments have not ound any convincing sign o such physics so ar, it has been stimulated a lot o models o the electroweak symmetry breaking. Little Higgs models [1] represent a new attempt to solve the gauge hierarchy problem in the mass o the Higgs boson responsible or the electroweak symmetry breaking. This approach treats the Higgs boson as part o an assortment o the pseudo-nambu-goldstone (PNG) bosons, arising rom a spontaneously broken global symmetry at a cuto scale Λ, typically on the order o several TeV. On the other hand, one and the most likely solution to the strong CP problem, Peccei- Quinn (PQ) solution gives us another interesting inormation to the physics beyond the SM [] that also predicts the existence o a PNG, the so called axion. Axion particle φ has an interaction with photon as L = 1 4 g φγγφf µν F µν = g φγγ φ E B. (1) The Primakov-like process allows φ γ conversion process to occur in the external B-ield background. The conversion rate or φ γ ater traveling a distance L is given by P(φ γ) = 1 4 g φγγ B L. () The converted axion is reconverted to the photons when it go across an optical barrier. The detection rate or such photons in a second magnetic ield is given by [3] ( ) P R = P ǫ, (3) ω where P is the laser power, ω is the photon energy and ǫ is the eiciency or the detector. This setup would be used in inding out the axion signal at laser experiments. The direct search or the production process e + e γ φγ is given by the LEP experiment. The total cross section or such process is and the decay rate or φ γγ is given by The LEP data shows the ollowing constraint: α(s m σ = gφγγ φ ) (4) 4s Γ(φ γγ) = 1 64π g φγγ m3 φ. (5) M φ = g 1 φγγ 15 GeV. (6) 1

3 In the usual PQ solution to the strong CP problem, we assume an invisible axion with a decay constant a that is severely constrained rom astrophysics to be 1 9±1 [GeV] a 1 1±1 [GeV]. (7) Note the similarity o this scale and the right-handed neutrino mass scale in the standard see-saw mechanism has been studied in [4]. Recently, PVLAS collabolation [5] reported the ollowing range o parameters or the axion-like particle, that is completely dierent rom the above range o parameters or the axion: GeV < M φ < GeV,.7 mev < m φ < mev. (8) Note that the PVLAS data corresponds to the scale o symmetry breaking o order m φ M φ 1 kev unlike the QCD axion case: m a a Λ QCD m π π 1 MeV. In this letter, we propose a little Higgs model, which can it with the PVLAS axion-like event though there have already been several attempts to explain this data [6] and there is a study on pseudo-axion properties in the little Higgs models in detail [7]. The key ingredient or explaining the scale o U(1) PQ, which is ound to be o order 1 kev, is to relate the scale with a mass parameter or the singlet in the double see-saw mechanism [8] or the type-iii see-saw mechanism [9] that gives an explanation or the smallness o neutrino masses. We consider the simplest little Higgs model [1] and extend the model to include the Peccei-Quinn symmetry. The model is constructed to have Yukawa couplings and gauge interactions without introducing quadratic divergences. It can be achieved by using the idea o collective symmetry breaking. In order to realize this idea, we introduce SU(3) SU(3) global symmetry which are spontaneously broken to SU() SU() by vacuum expectation values or two scalar triplets Φ 1 and Φ. Φ 1 = 1, Φ = 1. (9) For the collective symmetry breaking, the diagonal subgroup SU(3) V = SU(3) SU(3) SU(3) SU(3) is gauged and the subgroup SU() SU(3) V will become the weak gauge symmetry. Using the residual SU(3) A SU(3) V symmetry, Φ 1 and Φ are parametrized as Φ 1 = 1 [ i exp { ( h η + h Φ = 1 [ { ( i h exp η + h )}] )}],. (1)

4 In the little Higgs models, the Higgs mass parameters are protected by global symmetries which include the Standard Model electroweak gauge symmetry. The tree level Lagrangian or the Higgs ields are only given by the gauge interaction: L = ( µ + iga a µ λa )Φ 1 + ( µ + iga a µ λa )Φ, (11) where λ a (a = 1,, 8) is the Gell-Mann matrix. Ater developing the VEVs or Φ 1,, there appear extra gauge bosons W and Z whose masses are given by M W = g g, M Z =. (1) 3 tan θ W The lower bound on is estimated to be 4.5 TeV [11]. The leading mass term or the Higgs boson is irstly generated at the one-loop level ( ) MHiggs g4 Λ 16π log g4 8π log (4π), (13) where we have used a relation Λ 4π. This M Higgs is o the right order o magnitude to generate the correct electroweak scale or 1 TeV and an order one quartic coupling g is generated. The Yukawa interactions or the matter multiplets should also be extended in the little Higgs models. Here ( we ) consider the lepton sector. The lepton doublet L is enlarged to a L triplet 3 Ψ = by introducing a singlet S, and we also introduce a singlet 1 N S under any SU(3) symmetries, which is necessary to have a Yukawa coupling or L and a triplet Higgs scalar Φ 1 [1]: L Y = y ν NΨΦ 1 + h.c. = iy ν NLh + y ν NS ( ) h h + h.c. (14) Under this Lagrangian, we can assign the PQ charges as listed in the Table below. ields PQ charges Φ 1 +1 Φ 1 Ψ 1 N Since S is a complete singlet under the SM, we can write down the Majorana mass term or it: L mass = µ s S T C 1 S. (15) 3

5 This term explicitly breaks PQ symmetry. Then the total mass terms in the model can be written in a matrix orm in the base with {ν, N, S} as ollows: m M = m M. (16) M µ s Here the mass parameter m and M are given by ( ) m = iy ν v, M = y ν v with v = 174 GeV represents the weak scale. Hence, we obtain the light Majorana neutrino mass as ( m ) ( ) v m ν = µ s µs. (18) M For m ν 1 ev and 1 TeV, we have µ s 1 kev. In summary, we have shown in this letter that the double see-saw mechanism has its natural setup in the simplest little Higgs model. The little Higgs model indicates a Peccei-Quinn symmetry breaking around 1 kev. It is very suggestive that this scale is the same order as that o the scale or the axion-like particle recently reported by the PVLAS collaboration. Acknowledgments This work is supported in part by the Grant-in-Aid or Scientiic Research rom the Ministry o Education, Science and Culture o Japan (#165469). We thank to the Theory Division at KEK or hospitality. We are grateul to N. Gaur or his useul comments and discussions and grateul to J. Reuter or his useul comments on pseudo-axions in little Higgs models. Reerences [1] N. Arkani-Hamed, A. G. Cohen and H. Georgi, Phys. Lett. B 513, 3 (1) [arxiv:hep-ph/1539]; N. Arkani-Hamed, A. G. Cohen, E. Katz and A. E. Nelson, JHEP 7, 34 () [arxiv:hep-ph/61]; N. Arkani-Hamed, A. G. Cohen, E. Katz, A. E. Nelson, T. Gregoire and J. G. Wacker, JHEP 8, 1 () [arxiv:hep-ph/6]; T. Gregoire and J. G. Wacker, JHEP 8, 19 () [arxiv:hep-ph/63]; I. Low, W. Skiba and D. Smith, Phys. Rev. D 66, 71 () [arxiv:hep-ph/743]; D. E. Kaplan and M. Schmaltz, JHEP 31, 39 (3) [arxiv:hep-ph/349]; S. Chang and J. G. Wacker, Phys. Rev. D 69, 35 (4) [arxiv:hep-ph/331]; W. Skiba and J. Terning, Phys. Rev. D 68, 751 (3) [arxiv:hep-ph/353]; S. Chang, JHEP 31, 57 (3) [arxiv:hep-ph/3634]; H. C. Cheng and I. Low, JHEP 39, 51 (3) [arxiv:hep-ph/38199]; JHEP 48, 61 (4) [arxiv:hep-ph/4543]; M. Schmaltz, JHEP 48, 56 (4) [arxiv:hepph/47143]. 4 (17)

6 [] R. D. Peccei, H. R. Quinn, Phys. Rev. Lett. 38, 144 (1977); Phys. Rev. D 16, 1791 (1977). [3] K. Van Bibber, N. R. Dagdeviren, S. E. Koonin, A. Kerman and H. N. Nelson, Phys. Rev. Lett. 59, 759 (1987); G. Ruoso et al., Z. Phys. C 56, 55 (199); R. Cameron et al., Phys. Rev. D 47, 377 (1993). [4] T. Fukuyama and T. Kikuchi, JHEP 55, 17 (5) [arxiv:hep-ph/41373]. [5] E. Zavattini et al. [PVLAS Collaboration], Phys. Rev. Lett. 96, 1146 (6) [arxiv:hep-ex/5717]. [6] E. Masso and J. Redondo, JCAP 59, 15 (5) [arxiv:hep-ph/54]; M. Kleban and R. Rabadan, arxiv:hep-ph/51183; A. Ringwald, J. Phys. Con. Ser. 39, 197 (6) [arxiv:hep-ph/511184]; E. Gabrielli, K. Huitu and S. Roy, arxiv:hepph/64143; I. Antoniadis, A. Boyarsky and O. Ruchayskiy, arxiv:hep-ph/6636; C. Biggio, E. Masso and J. Redondo, arxiv:hep-ph/646; J. Jaeckel, E. Masso, J. Redondo, A. Ringwald and F. Takahashi, arxiv:hep-ph/65313; E. Masso and J. Redondo, arxiv:hep-ph/66163; arxiv:hep-ph/66164; J. P. Conlon, arxiv:hepph/67138; E. Masso, arxiv:hep-ph/6715. [7] W. Kilian, D. Rainwater and J. Reuter, Phys. Rev. D 71, 158 (5) [arxiv:hepph/41113]. [8] R. N. Mohapatra, Phys. Rev. Lett. 56 (1986) 561; R. N. Mohapatra and J. W. F. Valle, Phys. Rev. D 34, 164 (1986); T. Fukuyama, A. Ilakovac, T. Kikuchi and K. Matsuda, JHEP 56, 16 (5) [arxiv:hep-ph/53114]. [9] S. M. Barr, Phys. Rev. Lett. 9, 1161 (4) [arxiv:hep-ph/3915]. [1] M. Schmaltz, Nucl. Phys. Proc. Suppl. 117, 4 (3) [arxiv:hep-ph/1415]; D. E. Kaplan and M. Schmaltz, JHEP 31, 39 (3) [arxiv:hep-ph/349]. [11] W. Kilian and J. Reuter, Phys. Rev. D 7, 154 (4) [arxiv:hep-ph/31195]; J. A. Casas, J. R. Espinosa and I. Hidalgo, JHEP 53, 38 (5) [arxiv:hepph/566]; G. Marandella, C. Schappacher and A. Strumia, Phys. Rev. D 7, 3514 (5) [arxiv:hep-ph/596]; Z. Han and W. Skiba, Phys. Rev. D 7, 355 (5) [arxiv:hep-ph/566]. [1] F. del Aguila, M. Masip and J. L. Padilla, Phys. Lett. B 67, 131 (5) [arxiv:hepph/5663]; A. Abada, G. Bhattacharyya and M. Losada, Phys. Rev. D 73, 336 (6) [arxiv:hep-ph/51175]. 5

arxiv:hep-ph/ v1 5 Oct 2005

arxiv:hep-ph/ v1 5 Oct 2005 Preprint typeset in JHEP style - HYPER VERSION RITS-PP-003 arxiv:hep-ph/0510054v1 5 Oct 2005 Constraint on the heavy sterile neutrino mixing angles in the SO10) model with double see-saw mechanism Takeshi

More information

The Super-little Higgs

The Super-little Higgs The Super-little Higgs Csaba Csaki (Cornell) with Guido Marandella (UC Davis) Yuri Shirman (Los Alamos) Alessandro Strumia (Pisa) hep-ph/0510294, Phys.Rev.D73:035006,2006 Padua University, July 4, 2006

More information

T -Parity in Little Higgs Models a

T -Parity in Little Higgs Models a T -Parity in Little Higgs Models a David Krohn a Based on arxiv:0803.4202 [hep-ph] with Itay Yavin, and work in progress with I.Y., Lian-Tao Wang, and Hsin-Chia Cheng Outline Review of little Higgs models

More information

Twin Higgs Theories. Z. Chacko, University of Arizona. H.S Goh & R. Harnik; Y. Nomura, M. Papucci & G. Perez

Twin Higgs Theories. Z. Chacko, University of Arizona. H.S Goh & R. Harnik; Y. Nomura, M. Papucci & G. Perez Twin Higgs Theories Z. Chacko, University of Arizona H.S Goh & R. Harnik; Y. Nomura, M. Papucci & G. Perez Precision electroweak data are in excellent agreement with the Standard Model with a Higgs mass

More information

Gauge-Higgs Unification on Flat Space Revised

Gauge-Higgs Unification on Flat Space Revised Outline Gauge-Higgs Unification on Flat Space Revised Giuliano Panico ISAS-SISSA Trieste, Italy The 14th International Conference on Supersymmetry and the Unification of Fundamental Interactions Irvine,

More information

Little Higgs Models Theory & Phenomenology

Little Higgs Models Theory & Phenomenology Little Higgs Models Theory Phenomenology Wolfgang Kilian (Karlsruhe) Karlsruhe January 2003 How to make a light Higgs (without SUSY) Minimal models The Littlest Higgs and the Minimal Moose Phenomenology

More information

Littlest Higgs model and associated ZH production at high energy e + e collider

Littlest Higgs model and associated ZH production at high energy e + e collider Littlest Higgs model and associated ZH production at high energy e + e collider Chongxing Yue a, Shunzhi Wang b, Dongqi Yu a arxiv:hep-ph/0309113v 17 Oct 003 a Department of Physics, Liaoning Normal University,

More information

Physics at TeV Energy Scale

Physics at TeV Energy Scale Physics at TeV Energy Scale Yu-Ping Kuang (Tsinghua University) HEP Society Conference, April 26, 2008, Nanjing I. Why TeV Scale Is Specially Important? SM is SU(3) c SU(2) U(1) gauge theory. M g, M γ

More information

arxiv: v1 [hep-ph] 3 Aug 2016

arxiv: v1 [hep-ph] 3 Aug 2016 ACFI-T-19 The Radiative Z Breaking Twin Higgs arxiv:.131v1 hep-ph 3 Aug Jiang-Hao Yu 1 1 Amherst Center for Fundamental Interactions, Department of Physics, University of Massachusetts-Amherst, Amherst,

More information

+ µ 2 ) H (m 2 H 2

+ µ 2 ) H (m 2 H 2 I. THE HIGGS POTENTIAL AND THE LIGHT HIGGS BOSON In the previous chapter, it was demonstrated that a negative mass squared in the Higgs potential is generated radiatively for a large range of boundary

More information

Axions and other (Super-)WISPs

Axions and other (Super-)WISPs Axions and other (Super-)WISPs Markus Ahlers 1,2 1 Rudolf Peierls Centre for Theoretical Physics, University of Oxford, Oxford OX1 3NP, UK 2 Now at the C.N. Yang Institute for Theoretical Physics, SUNY,

More information

Solar and atmospheric neutrino mass splitting with SMASH model

Solar and atmospheric neutrino mass splitting with SMASH model Solar and atmospheric neutrino mass splitting with SMASH model C.R. Das 1, Katri Huitu, Timo Kärkkäinen 3 1 Bogoliubov Laboratory of Theoretical Physics, Joint Institute for Nuclear Research, Joliot-Curie

More information

Non-Abelian SU(2) H and Two-Higgs Doublets

Non-Abelian SU(2) H and Two-Higgs Doublets Non-Abelian SU(2) H and Two-Higgs Doublets Technische Universität Dortmund Wei- Chih Huang 25 Sept 2015 Kavli IPMU arxiv:1510.xxxx(?) with Yue-Lin Sming Tsai, Tzu-Chiang Yuan Plea Please do not take any

More information

Deconstructing six dimensional gauge theories with strongly coupled moose meshes

Deconstructing six dimensional gauge theories with strongly coupled moose meshes HUTP-02/A031 hep-ph/0207164 Deconstructing six dimensional gauge theories with strongly coupled moose meshes Thomas Gregoire and Jay G. Wacker Department of Physics, University of California Berkeley,

More information

Decay width Z 1 l l: effects of the little Higgs model

Decay width Z 1 l l: effects of the little Higgs model INVESTIGACIÓN REVISTA MEXICANA DE FÍSICA 57 4) 322 329 AGOSTO 2011 Decay width 1 l l: effects of the little Higgs model A. Gutiérrez-Rodríguez Facultad de Física, Universidad Autónoma de acatecas Apartado

More information

Invisible Sterile Neutrinos

Invisible Sterile Neutrinos Invisible Sterile Neutrinos March 25, 2010 Outline Overview of Sterile Neutrino Dark Matter The Inert Doublet Model with 3 Singlet Fermions Non-thermal Dark Matter Conclusion Work done in collaboration

More information

New Phenomenology of Littlest Higgs Model with T-parity

New Phenomenology of Littlest Higgs Model with T-parity New Phenomenology of Littlest Higgs Model with T-parity Alexander Belyaev Michigan State University A.B., C.-R. Chen, K. Tobe, C.-P. Yuan hep-ph/0609179 A.B., A. Pukhov, C.-P. Yuan hep-ph/07xxxxx UW-Madison,

More information

Axion-Like Particles from Strings. Andreas Ringwald (DESY)

Axion-Like Particles from Strings. Andreas Ringwald (DESY) Axion-Like Particles from Strings. Andreas Ringwald (DESY) Origin of Mass 2014, Odense, Denmark, May 19-22, 2014 Hints for intermediate scale axion-like particles > Number of astro and cosmo hints pointing

More information

November 24, Scalar Dark Matter from Grand Unified Theories. T. Daniel Brennan. Standard Model. Dark Matter. GUTs. Babu- Mohapatra Model

November 24, Scalar Dark Matter from Grand Unified Theories. T. Daniel Brennan. Standard Model. Dark Matter. GUTs. Babu- Mohapatra Model Scalar from November 24, 2014 1 2 3 4 5 What is the? Gauge theory that explains strong weak, and electromagnetic forces SU(3) C SU(2) W U(1) Y Each generation (3) has 2 quark flavors (each comes in one

More information

Axions. Kerstin Helfrich. Seminar on Theoretical Particle Physics, / 31

Axions. Kerstin Helfrich. Seminar on Theoretical Particle Physics, / 31 1 / 31 Axions Kerstin Helfrich Seminar on Theoretical Particle Physics, 06.07.06 2 / 31 Structure 1 Introduction 2 Repetition: Instantons Formulae The θ-vacuum 3 The U(1) and the strong CP problem The

More information

Left-Right Symmetric Models with Peccei-Quinn Symmetry

Left-Right Symmetric Models with Peccei-Quinn Symmetry Left-Right Symmetric Models with Peccei-Quinn Symmetry Pei-Hong Gu Max-Planck-Institut für Kernphysik, Heidelberg PHG, 0.2380; PHG, Manfred Lindner, 0.4905. Institute of Theoretical Physics, Chinese Academy

More information

A model of the basic interactions between elementary particles is defined by the following three ingredients:

A model of the basic interactions between elementary particles is defined by the following three ingredients: I. THE STANDARD MODEL A model of the basic interactions between elementary particles is defined by the following three ingredients:. The symmetries of the Lagrangian; 2. The representations of fermions

More information

Grand unification and heavy axion

Grand unification and heavy axion Grand unification and heavy axion V. A. Rubakov arxiv:hep-ph/9703409v2 7 May 1997 Institute for Nuclear Research of the Russian Academy of Sciences, 60th October Anniversary prospect 7a, Moscow 117312

More information

Higgs Mass Bounds in the Light of Neutrino Oscillation

Higgs Mass Bounds in the Light of Neutrino Oscillation Higgs Mass Bounds in the Light of Neutrino Oscillation Qaisar Shafi in collaboration with Ilia Gogoladze and Nobuchika Okada Bartol Research Institute Department of Physics and Astronomy University of

More information

The Twin Higgs. with Zackaria Chacko and Hock-Seng Goh hep-ph/

The Twin Higgs. with Zackaria Chacko and Hock-Seng Goh hep-ph/ with Zackaria Chacko and Hock-Seng Goh hep-ph/0506256 Naturalness and LHC LHC is going to be exciting from the start (first 10 fb -1 ). t L +? = Natural SMt R NP Naturalness and LHC LHC is going to be

More information

COLLIDER STUDIES OF HIGGS TRIPLET MODEL

COLLIDER STUDIES OF HIGGS TRIPLET MODEL LHC Symposium @ 2011 PSROC Annual Meeting January 26, 2011 COLLIDER STUDIES OF HIGGS TRIPLET MODEL Cheng-Wei Chiang ( ) National Central Univ. and Academia Sinica A. G. Akeroyd and CC: PRD 80, 113010 (2009)

More information

Supersymmetry Breaking

Supersymmetry Breaking Supersymmetry Breaking LHC Search of SUSY: Part II Kai Wang Phenomenology Institute Department of Physics University of Wisconsin Madison Collider Phemonology Gauge Hierarchy and Low Energy SUSY Gauge

More information

COLLIDER STUDIES OF HIGGS TRIPLET MODEL

COLLIDER STUDIES OF HIGGS TRIPLET MODEL Miami 2010 December 16, 2010 COLLIDER STUDIES OF HIGGS TRIPLET MODEL Cheng-Wei Chiang National Central Univ. and Academia Sinica (on leave at Univ. of Wisconsin - Madison) A. G. Akeroyd and CC: PRD 80,

More information

Pati-Salam GUT-Flavour Models with Three Higgs Generations

Pati-Salam GUT-Flavour Models with Three Higgs Generations Pati-Salam GUT-Flavour Models with Three Higgs Generations Florian Hartmann in collaboration with Wolfgang Kilian and Karsten Schnitter based on: JHEP 1405 (2014) 064 and arxiv:1405.1901 Universität Siegen

More information

Kaluza-Klein Dark Matter

Kaluza-Klein Dark Matter Kaluza-Klein Dark Matter Hsin-Chia Cheng UC Davis Pre-SUSY06 Workshop Complementary between Dark Matter Searches and Collider Experiments Introduction Dark matter is the best evidence for physics beyond

More information

The Higgs Boson and Electroweak Symmetry Breaking

The Higgs Boson and Electroweak Symmetry Breaking The Higgs Boson and Electroweak Symmetry Breaking 1. Minimal Standard Model M. E. Peskin Chiemsee School September 2014 The Higgs boson has an odd position in the Standard Model of particle physics. On

More information

Models of Neutrino Masses

Models of Neutrino Masses Models of Neutrino Masses Fernando Romero López 13.05.2016 1 Introduction and Motivation 3 2 Dirac and Majorana Spinors 4 3 SU(2) L U(1) Y Extensions 11 4 Neutrino masses in R-Parity Violating Supersymmetry

More information

Gauge U(1) Dark Symmetry and Radiative Light Fermion Masses

Gauge U(1) Dark Symmetry and Radiative Light Fermion Masses UCRHEP-T565 April 2016 arxiv:1604.01148v1 [hep-ph] 5 Apr 2016 Gauge U(1) Dark Symmetry and Radiative Light Fermion Masses Corey Kownacki 1 and Ernest Ma 1,2,3 1 Department of Physics and Astronomy, University

More information

Majoron as the QCD axion in a radiative seesaw model

Majoron as the QCD axion in a radiative seesaw model Majoron as the QCD axion in a radiative seesaw model 1 2 How to explain small neutrino mass ex) Type I Seesaw Heavy right-hand neutrino is added. After integrating out, neutrino Majorana mass is created.

More information

arxiv:hep-ph/ v2 3 Oct 2005

arxiv:hep-ph/ v2 3 Oct 2005 Double Higgs Production and Quadratic Divergence Cancellation in Little Higgs Models with T-Parity Claudio O. Dib Department of Physics, Universidad Técnica Federico Santa María, Valparaíso, Chile Rogerio

More information

Radiative corrections to the Higgs boson couplings in the Higgs triplet model

Radiative corrections to the Higgs boson couplings in the Higgs triplet model Radiative corrections to the Higgs boson couplings in the Higgs triplet model Mariko Kikuchi Department of Physics, University of Toyama, 319 Gofuku, Toyama 9-8555, JAPAN We calculate Higgs coupling constants

More information

Right-Handed Neutrinos as the Origin of the Electroweak Scale

Right-Handed Neutrinos as the Origin of the Electroweak Scale Right-Handed Neutrinos as the Origin of the Electroweak Scale Hooman Davoudiasl HET Group, Brookhaven National Laboratory Based on: H. D., I. Lewis, arxiv:1404.6260 [hep-ph] Origin of Mass 2014, CP 3 Origins,

More information

Making Neutrinos Massive with an Axion in Supersymmetry

Making Neutrinos Massive with an Axion in Supersymmetry UCRHEP-T300 February 2001 arxiv:hep-ph/0102008v1 1 Feb 2001 Making Neutrinos Massive with an Axion in Supersymmetry Ernest Ma Physics Department, University of California, Riverside, California 92521 Abstract

More information

Constraining New Models with Precision Electroweak Data

Constraining New Models with Precision Electroweak Data Constraining New Models with Precision Electroweak Data Tadas Krupovnickas, BNL in collaboration with Mu-Chun Chen and Sally Dawson LoopFest IV, Snowmass, 005 EW Sector of the Standard Model 3 parameters

More information

arxiv:hep-ph/ v1 6 Feb 2004

arxiv:hep-ph/ v1 6 Feb 2004 arxiv:hep-ph/0402064v1 6 Feb 2004 AN NMSSM WITHOUT DOMAIN WALLS TAO HAN Department of Physics University of Wisconsin Madison, WI 53706 USA E-mail: than@pheno.physics.wisc.edu PAUL LANGACKER Department

More information

Buried Higgs Csaba Csáki (Cornell) with Brando Bellazzini (Cornell) Adam Falkowski (Rutgers) Andi Weiler (CERN)

Buried Higgs Csaba Csáki (Cornell) with Brando Bellazzini (Cornell) Adam Falkowski (Rutgers) Andi Weiler (CERN) Buried Higgs Csaba Csáki (Cornell) with Brando Bellazzini (Cornell) Adam Falkowski (Rutgers) Andi Weiler (CERN) Rutgers University, December 8, 2009 Preview Found a SUSY model, where: Weird higgs decays

More information

Neutrino masses respecting string constraints

Neutrino masses respecting string constraints Neutrino masses respecting string constraints Introduction Neutrino preliminaries The GUT seesaw Neutrinos in string constructions The triplet model (Work in progress, in collaboration with J. Giedt, G.

More information

For Review Only. General Structure of Democratic Mass Matrix of Lepton Sector in E 6 Model. Canadian Journal of Physics

For Review Only. General Structure of Democratic Mass Matrix of Lepton Sector in E 6 Model. Canadian Journal of Physics General Structure of Democratic Mass Matrix of Lepton Sector in E 6 Model Journal: Canadian Journal of Physics Manuscript ID cjp-2017-0783.r1 Manuscript Type: Article Date Submitted by the Author: 08-Jan-2018

More information

arxiv:hep-ph/ v2 17 Jun 2002

arxiv:hep-ph/ v2 17 Jun 2002 Preprint typeset in JHEP style. - HYPER VERSION BUHEP-02-24 UW/PT-01/09 HUTP-02/A016 The Minimal Moose for a Little Higgs arxiv:hep-ph/0206020v2 17 Jun 2002 N. Arkani-Hamed Jefferson Laboratory of Physics,

More information

The bestest little Higgs

The bestest little Higgs The bestest little Higgs The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters. Citation As Published Publisher Schmaltz, Martin, Daniel

More information

Automatic CP Invariance and Flavor Symmetry

Automatic CP Invariance and Flavor Symmetry PRL-TH-95/21 Automatic CP Invariance and Flavor Symmetry arxiv:hep-ph/9602228v1 6 Feb 1996 Gautam Dutta and Anjan S. Joshipura Theory Group, Physical Research Laboratory Navrangpura, Ahmedabad 380 009,

More information

Is there a new physics between electroweak and Planck scale?

Is there a new physics between electroweak and Planck scale? Is there a new physics between electroweak and Planck scale? Mikhail Shaposhnikov LAUNCH 09 - Heidelberg, MPIK Heidelberg, 12 November 2009 p. 1 Yes proton decay yes (?) new physics at LHC yes (?) searches

More information

Radiative corrections to the Higgs potential in the Littlest Higgs model

Radiative corrections to the Higgs potential in the Littlest Higgs model Little. results a Little. Radiative corrections to the potential in the Littlest model Cheluci In collaboration with Dr. Antonio Dobado González and Dra. Siannah Peñaranda Rivas Departamento de Física

More information

arxiv: v1 [hep-ph] 16 Mar 2017

arxiv: v1 [hep-ph] 16 Mar 2017 Flavon-induced lepton flavour violation arxiv:1703.05579v1 hep-ph] 16 Mar 017 Venus Keus Department of Physics and Helsinki Institute of Physics, Gustaf Hällströmin katu, FIN-00014 University of Helsinki,

More information

DETECTING MAJORANA NATURE OF NEUTRINOS IN MUON AND TAU DECAY

DETECTING MAJORANA NATURE OF NEUTRINOS IN MUON AND TAU DECAY Available at: http://publications.ictp.it IC/008/08 United Nations Educational, Scientific and Cultural Organization and International Atomic Energy Agency THE ABDUS SALAM INTERNATIONAL CENTRE FOR THEORETICAL

More information

arxiv: v1 [hep-ph] 18 Jul 2013

arxiv: v1 [hep-ph] 18 Jul 2013 DESY 13-114 Little Higgs Model Limits from LHC Input for Snowmass 2013 arxiv:1307.5010v1 [hep-ph] 18 Jul 2013 Jürgen Reuter 1a, Marco Tonini 2a, Maikel de Vries 3a a DESY Theory Group, D 22603 Hamburg,

More information

SU(3)-Flavons and Pati-Salam-GUTs

SU(3)-Flavons and Pati-Salam-GUTs SU(3)-Flavons and Pati-Salam-GUTs Florian Hartmann in collaboration with Wolfgang Kilian and Karsten Schnitter Universität Siegen Theoretische Physik I Dortmund, 03.07.2012 Outline 1 Running couplings

More information

Where is SUSY? Institut für Experimentelle Kernphysik

Where is SUSY?   Institut für Experimentelle Kernphysik Where is SUSY? Institut ür Experimentelle Kernphysik KIT Universität des Landes Baden-Württemberg und nationales Forschungszentrum in der Helmholtz-Gemeinschat www.kit.edu I supersymmetric particles exist,

More information

Family Replicated Gauge Group Models

Family Replicated Gauge Group Models Proceedings of Institute of Mathematics of NAS of Ukraine 2004, Vol. 50, Part 2, 77 74 Family Replicated Gauge Group Models C.D. FROGGATT, L.V. LAPERASHVILI, H.B. NIELSEN and Y. TAKANISHI Department of

More information

arxiv: v2 [hep-ph] 10 Jun 2013

arxiv: v2 [hep-ph] 10 Jun 2013 March 2013 Generalized Inverse Seesaws Sandy S. C. Law 1 and Kristian L. McDonald 2 arxiv:1303.4887v2 [hep-ph] 10 Jun 2013 * Department of Physics, National Cheng-Kung University, Tainan 701, Taiwan ARC

More information

Solutions to gauge hierarchy problem. SS 10, Uli Haisch

Solutions to gauge hierarchy problem. SS 10, Uli Haisch Solutions to gauge hierarchy problem SS 10, Uli Haisch 1 Quantum instability of Higgs mass So far we considered only at RGE of Higgs quartic coupling (dimensionless parameter). Higgs mass has a totally

More information

Axion and axion-like particle searches in LUX and LZ. Maria Francesca Marzioni

Axion and axion-like particle searches in LUX and LZ. Maria Francesca Marzioni Axion and axion-like particle searches in LUX and LZ Maria Francesca Marzioni PPE All Group meeting 06/06/2016 Outline Why are we interested in axions How can we detect axions with a xenon TPC Axion signal

More information

Mirror World and Improved Naturalness

Mirror World and Improved Naturalness Mirror World and Improved Naturalness Thomas Grégoire Boston University Based on hep-ph/0509242 R. Barbieri, T.G., L. Hall Mirror Worlds Motivations Originally introduced to restore parity Dark Matter

More information

arxiv:hep-ph/ v2 19 Sep 2005

arxiv:hep-ph/ v2 19 Sep 2005 BNL-HET-04/10 Seesaw induced electroweak scale, the hierarchy problem and sub-ev neutrino masses arxiv:hep-ph/0408191v2 19 Sep 2005 David Atwood Dept. of Physics and Astronomy, Iowa State University, Ames,IA

More information

Neutrino Mass in Strings

Neutrino Mass in Strings Neutrino Mass in Strings Introduction Neutrino preliminaries Models String embeddings Intersecting brane The Z 3 heterotic orbifold Embedding the Higgs triplet Outlook Neutrino mass Nonzero mass may be

More information

Discovery potential of toppartners in a realistic composite Higgs model with early LHC data

Discovery potential of toppartners in a realistic composite Higgs model with early LHC data Discovery potential of toppartners in a realistic composite Higgs model with early LHC data Günther Dissertori, Elisabetta Furlan, Filip Moortgat, JHEP09(20)019 Kick-off Meeting Of The LHCPhenoNet Initial

More information

Outlook Post-Higgs. Fermilab. UCLA Higgs Workshop March 22, 2013

Outlook Post-Higgs. Fermilab. UCLA Higgs Workshop March 22, 2013 Outlook Post-Higgs Christopher T. Hill Fermilab UCLA Higgs Workshop March 22, 2013 A dynamical Higgs mechanism was supposed to explain the origin of electroweak mass A dynamical Higgs mechanism was supposed

More information

Higgs Boson Phenomenology Lecture I

Higgs Boson Phenomenology Lecture I iggs Boson Phenomenology Lecture I Laura Reina TASI 2011, CU-Boulder, June 2011 Outline of Lecture I Understanding the Electroweak Symmetry Breaking as a first step towards a more fundamental theory of

More information

May 7, Physics Beyond the Standard Model. Francesco Fucito. Introduction. Standard. Model- Boson Sector. Standard. Model- Fermion Sector

May 7, Physics Beyond the Standard Model. Francesco Fucito. Introduction. Standard. Model- Boson Sector. Standard. Model- Fermion Sector - Boson - May 7, 2017 - Boson - The standard model of particle physics is the state of the art in quantum field theory All the knowledge we have developed so far in this field enters in its definition:

More information

Updated S 3 Model of Quarks

Updated S 3 Model of Quarks UCRHEP-T56 March 013 Updated S 3 Model of Quarks arxiv:1303.698v1 [hep-ph] 7 Mar 013 Ernest Ma 1 and Blaženka Melić 1, 1 Department of Physics and Astronomy, University of California, Riverside, California

More information

Neutrino Mass Models

Neutrino Mass Models Neutrino Mass Models S Uma Sankar Department of Physics Indian Institute of Technology Bombay Mumbai, India S. Uma Sankar (IITB) IWAAP-17, BARC (Mumbai) 01 December 2017 1 / 15 Neutrino Masses LEP experiments

More information

Neutrino masses : beyond d=5 tree-level operators

Neutrino masses : beyond d=5 tree-level operators Neutrino masses : beyond d=5 tree-level operators Florian Bonnet Würzburg University based on arxiv:0907.3143, JEP 10 (2009) 076 and arxiv:1205.5140 to appear in JEP In collaboration with Daniel ernandez,

More information

h γγ and h Zγ in the Inert Doublet Higgs Model and type II seesaw Model

h γγ and h Zγ in the Inert Doublet Higgs Model and type II seesaw Model h γγ and h Zγ in the Inert Doublet Higgs Model and type II seesaw Model Abdesslam Arhrib Université AbdelMalek Essaadi, Faculté des sciences et techniques, B.P 416 Tangier, Morocco In this talk we discuss

More information

Light KK modes in Custodially Symmetric Randall-Sundrum

Light KK modes in Custodially Symmetric Randall-Sundrum Light KK modes in Custodially Symmetric Randall-Sundrum José Santiago Theory Group (FNAL) hep-ph/0607106, with M. Carena (FNAL), E. Pontón (Columbia) and C. Wagner (ANL) Motivation Randall-Sundrum like

More information

arxiv:hep-ph/ v1 19 Nov 2004

arxiv:hep-ph/ v1 19 Nov 2004 KUNS-1945 OU-HET-502/2004 Higgs mass in the gauge-higgs unification arxiv:hep-ph/0411250v1 19 Nov 2004 Naoyuki Haba (a), Kazunori Takenaga (b), Toshifumi Yamashita (c),, (a) Institute of Theoretical Physics,

More information

arxiv:hep-ph/ v1 27 Oct 1997

arxiv:hep-ph/ v1 27 Oct 1997 YUMS 97 17 Implications of the recent CERN LEP data on nonuniversal interactions with the precision electroweak tests arxiv:hep-ph/9710478v1 27 Oct 1997 Kang Young Lee Department of Physics, Yonsei University,

More information

arxiv:hep-ph/ v3 20 Nov 2003

arxiv:hep-ph/ v3 20 Nov 2003 SLAC PUB 10185 November, 2003 hep-ph/0310039 Top Quarks and Electroweak Symmetry Breaking in Little Higgs Models arxiv:hep-ph/0310039v3 20 Nov 2003 Maxim Perelstein 1 Newman Laboratory for Elementary Particle

More information

Composite Higgs, Quarks and Leptons, a contemporary view

Composite Higgs, Quarks and Leptons, a contemporary view Composite Higgs, Quarks and Leptons, a contemporary view 1 Thanks to Sid Drell Always be positive, curious, constructive Α others will think your questions are dumb 2 3 Brodsky-Drell anomalous magnetic

More information

12.2 Problem Set 2 Solutions

12.2 Problem Set 2 Solutions 78 CHAPTER. PROBLEM SET SOLUTIONS. Problem Set Solutions. I will use a basis m, which ψ C = iγ ψ = Cγ ψ (.47) We can define left (light) handed Majorana fields as, so that ω = ψ L + (ψ L ) C (.48) χ =

More information

Hunting for the top partner in the littlest Higgs model with T parity at the CERN LHC

Hunting for the top partner in the littlest Higgs model with T parity at the CERN LHC PHYSICAL REVIEW D 75, 556 (27) Hunting for the top partner in the littlest Higgs model with T parity at the CERN LHC Shigeki Matsumoto,* Mihoko M. Nojiri, and Daisuke Nomura Theory Group, KEK, 1-1 Oho,

More information

Phenomenological Aspects of LARGE Volume Models

Phenomenological Aspects of LARGE Volume Models Phenomenological Aspects of LARGE Volume Models Joseph P. Conlon (Cavendish Laboratory & DAMTP, Cambridge) 15th Irish Quantum Field Theory Meeting May(nooth) 2008 Phenomenological Aspects of LARGE Volume

More information

A Domino Theory of Flavor

A Domino Theory of Flavor A Domino Theory of Flavor Peter Graham Stanford with Surjeet Rajendran arxiv:0906.4657 Outline 1. General Domino Framework 2. Yukawa Predictions 3. Experimental Signatures General Domino Framework Inspiration

More information

S 3 Symmetry as the Origin of CKM Matrix

S 3 Symmetry as the Origin of CKM Matrix S 3 Symmetry as the Origin of CKM Matrix Ujjal Kumar Dey Physical Research Laboratory October 25, 2015 Based on: PRD 89, 095025 and arxiv:1507.06509 Collaborators: D. Das and P. B. Pal 1 / 25 Outline 1

More information

P, C and Strong CP in Left-Right Supersymmetric Models

P, C and Strong CP in Left-Right Supersymmetric Models P, C and Strong CP in Left-Right Supersymmetric Models Rabindra N. Mohapatra a, Andrija Rašin b and Goran Senjanović b a Department of Physics, University of Maryland, College Park, MD 21218, USA b International

More information

h - h - h - e - (ν e ) (ν e )

h - h - h - e - (ν e ) (ν e ) Chapter 8 Higgs triplet eects in purely leptonic processes We consider the eect of complex Higgs triplets on purely leptonic processes and survey the experimental constraints on the mass and couplings

More information

The Yang and Yin of Neutrinos

The Yang and Yin of Neutrinos The Yang and Yin of Neutrinos Ernest Ma Physics and Astronomy Department University of California Riverside, CA 92521, USA The Yang and Yin of Neutrinos (2018) back to start 1 Contents Introduction The

More information

TeV Scale Seesaw with Loop Induced

TeV Scale Seesaw with Loop Induced TeV Scale Seesaw with Loop Induced Dirac Mass Term and Dark kmtt Matter from U(1) B L Gauge Symmetry Breaking Takehiro Nabeshima University of Toyama S. Kanemura, T.N., H. Sugiyama, Phys. Lett. B703:66-70

More information

Axion-Higgs Unification

Axion-Higgs Unification CERN-PH-TH/0- Axion-Higgs Unification arxiv:08.60v [hep-ph] 7 Dec 0 Michele Redi, and Alessandro Strumia,4 CERN, Theory Division, CH-, Geneva, Switzerland INFN, 5009 Sesto Fiorentino, Firenze, Italy Dipartimento

More information

Axions Theory SLAC Summer Institute 2007

Axions Theory SLAC Summer Institute 2007 Axions Theory p. 1/? Axions Theory SLAC Summer Institute 2007 Helen Quinn Stanford Linear Accelerator Center Axions Theory p. 2/? Lectures from an Axion Workshop Strong CP Problem and Axions Roberto Peccei

More information

How does neutrino confine GUT and Cosmology? July T. Fukuyama Center of Quantum Universe, Okayama-U

How does neutrino confine GUT and Cosmology? July T. Fukuyama Center of Quantum Universe, Okayama-U How does neutrino confine GUT and Cosmology? July 11 08 T. Fukuyama (Rits) @ Center of Quantum Universe, Okayama-U 1. Introduction Neutrino oscillation breaks SM. Then is OK? does not predict 1. Gauge

More information

2 The Equation Of Energy-Momentum And Five Solutions. Factoring E 2 3

2 The Equation Of Energy-Momentum And Five Solutions. Factoring E 2 3 Contents 1 Introduction 2 2 The Equation Of Energy-Momentum And Five Solutions. Factoring E 2 3 3 Model Higgs Vacuum: Virtual Vacuum With Contribution To The Total Mass, Zero; Of Particles With Zero Rest

More information

Supersymmetry, Dark Matter, and Neutrinos

Supersymmetry, Dark Matter, and Neutrinos Supersymmetry, Dark Matter, and Neutrinos The Standard Model and Supersymmetry Dark Matter Neutrino Physics and Astrophysics The Physics of Supersymmetry Gauge Theories Gauge symmetry requires existence

More information

Higgs effective potential in the littlest Higgs model at the one-loop level

Higgs effective potential in the littlest Higgs model at the one-loop level PYSICAL REVIEW D 75, 8357 (7) iggs effective potential in the littlest iggs model at the one-loop level Antonio Dobado and Lourdes Tabares-Cheluci Departamento de Física Teórica, Universidad Complutense

More information

arxiv: v1 [hep-ex] 5 Sep 2014

arxiv: v1 [hep-ex] 5 Sep 2014 Proceedings of the Second Annual LHCP CMS CR-2014/199 September 8, 2014 Future prospects of Higgs Physics at CMS arxiv:1409.1711v1 [hep-ex] 5 Sep 2014 Miguel Vidal On behalf of the CMS Experiment, Centre

More information

PHYSICS BEYOND SM AND LHC. (Corfu 2010)

PHYSICS BEYOND SM AND LHC. (Corfu 2010) PHYSICS BEYOND SM AND LHC (Corfu 2010) We all expect physics beyond SM Fantastic success of SM (LEP!) But it has its limits reflected by the following questions: What is the origin of electroweak symmetry

More information

A short review of axion and axino parameters

A short review of axion and axino parameters A short review of axion and axino parameters Jihn E. Kim Seoul National University Gwangju Institute of Science and Technology Seattle, 25 April 2012 What can be there beyond SM? New CP? Axions? SUSY?

More information

arxiv:astro-ph/ v1 28 Apr 2005 MIRROR WORLD AND AXION: RELAXING COSMOLOGICAL BOUNDS

arxiv:astro-ph/ v1 28 Apr 2005 MIRROR WORLD AND AXION: RELAXING COSMOLOGICAL BOUNDS International Journal of Modern Physics A c World Scientific Publishing Company arxiv:astro-ph/0504636v1 28 Apr 2005 MIRROR WORLD AND AXION: RELAXING COSMOLOGICAL BOUNDS MAURIZIO GIANNOTTI Dipartimento

More information

What can we learn from the 126 GeV Higgs boson for the Planck scale physics? - Hierarchy problem and the stability of the vacuum -

What can we learn from the 126 GeV Higgs boson for the Planck scale physics? - Hierarchy problem and the stability of the vacuum - What can we learn from the 126 GeV Higgs boson for the Planck scale physics? - Hierarchy problem and the stability of the vacuum - Satoshi Iso Theory Center, Institute of Particles and Nuclear Studies

More information

Associated production of the charged Higgs boson and single top quark at the LHC

Associated production of the charged Higgs boson and single top quark at the LHC Associated production of the charged Higgs boson and single top quark at the LHC arxiv:0704.0840v2 [hep-ph] 8 Mar 2008 Yao-Bei Liu 1, Jie-Fen Shen 2 1: Henan Institute of Science and Technology, Xinxiang

More information

Type I Seesaw Mechanism, Lepton Flavour Violation and Higgs Decays

Type I Seesaw Mechanism, Lepton Flavour Violation and Higgs Decays Journal of Physics: Conference Series OPEN ACCESS Type I Seesaw Mechanism, Lepton Flavour Violation and Higgs Decays To cite this article: Emiliano Molinaro 013 J. Phys.: Conf. Ser. 447 0105 View the article

More information

Split Supersymmetry A Model Building Approach

Split Supersymmetry A Model Building Approach Split Supersymmetry A Model Building Approach Kai Wang Phenomenology Institute Department of Physics the University of Wisconsin Madison UC Riverside HEP Seminar In Collaboration with Ilia Gogoladze (Notre

More information

Two models with extra Higgs doublets and Axions

Two models with extra Higgs doublets and Axions Two models with extra Higgs doublets and Axions H Serôdio (KAIST) 4 th KIAS Workshop Particle Physics and Cosmology, 30 October 2014 In collaboration with: Alejandro Celis, Javier Fuentes-Martin Works:

More information

E 6 inspired composite Higgs model and 750 GeV diphoton excess

E 6 inspired composite Higgs model and 750 GeV diphoton excess E 6 inspired composite Higgs model and 750 GeV diphoton excess Roman Nevzorov 1,2, and Anthony Thomas 1 1 ARC Centre of Excellence for Particle Physics at the Terascale and CSSM, Department of Physics,

More information

The Higgs discovery - a portal to new physics

The Higgs discovery - a portal to new physics The Higgs discovery - a portal to new physics Department of astronomy and theoretical physics, 2012-10-17 1 / 1 The Higgs discovery 2 / 1 July 4th 2012 - a historic day in many ways... 3 / 1 July 4th 2012

More information

Spontaneous CP violation and Higgs spectra

Spontaneous CP violation and Higgs spectra PROCEEDINGS Spontaneous CP violation and Higgs spectra CERN-TH, CH-111 Geneva 3 E-mail: ulrich.nierste@cern.ch Abstract: A general theorem relating Higgs spectra to spontaneous CP phases is presented.

More information