Waves Sine Waves Energy Transfer Interference Reflection and Transmission

Size: px
Start display at page:

Download "Waves Sine Waves Energy Transfer Interference Reflection and Transmission"

Transcription

1 Waves Sine Waves Energy Transfer Interference Reflection and Transmission Lana Sheridan De Anza College May 22, 2017

2 Last time kinds of waves wave speed on a string pulse propagation the wave equation

3 Overview solutions to the wave equation sine waves transverse speed and acceleration energy transfer by a sine wave interference boundary conditions reflection and transmission

4 The Wave Equation The wave equation: 2 y x 2 = 1 2 y v 2 t 2 We derived this for a case of transverse waves (wave on a string) and a case of longitudinal waves (spring with mass). It applies generally!

5 Solutions to the Wave Equation Earlier we reasoned that a function of the form: y(x, t) = f (x vt) should describe a propagating wave pulse. Does it satisfy the wave equation? 2 y x 2 = 1 2 y v 2 t 2

6 Solutions to the Wave Equation Earlier we reasoned that a function of the form: y(x, t) = f (x vt) should describe a propagating wave pulse. Does it satisfy the wave equation? 2 y x 2 = 1 2 y v 2 t 2 Let u = x vt, so we can use the chain rule: and y x = u y x u = (1) y u y t = u y t u = v y u

7 Solutions to the Wave Equation Replacing 2 y x 2 and 2 y t 2 in the wave equation: 2 y u 2 = 1 v 2 (v 2 ) 2 y u 2 1 = 1 The LHS does equal the RHS! y(x, t) = f (x vt) is a solution to the wave equation for any (well-behaved) function f.

8 Sine Waves he new expression represents a pulse with An important form of the function f is a sine or cosine wave. (All called sine waves ). y(x, t) = A sin ( B(x vt) + C ) This is the simplest periodic, continuous wave. It is the wave that is formed by a (driven) simple harmonic oscillator connected to the medium. y shown in e because inusoidal f the rope wave and curve in t 0 t vt S v x

9 Wave Quantities

10 Wave Quantities wavelength, λ the distance from one crest of the wave to the next, or the distance covered by one cycle. units: length (m) time period, T the time for one complete oscillation. units: time (s)

11 Sine Waves Recall, the definition of frequency, from period T : f = 1 T and ω = 2π T = 2πf We also define a new quantity. Wave number, k units: m 1 k = 2π λ

12 Wave speed How fast does a wave travel? speed = distance time It travels the distance of one complete cycle in the time for one complete cycle. v = λ T But since frequency is the inverse of the time period, we can relate speed to frequency and wavelength: v = f λ

13 Wave speed v = f λ Since ω = 2πf and k = 2π λ : v = ω k

14 Sine Waves hown in because nusoidal the rope y vt S v x ave and curve in and the wo types s to the ches the t 0 Figure 16.7 A one-dimensional ) ( 2π sinusoidal y(x, t) = wave A sin traveling (x vt) to + the φ λ right with a speed v. The brown This is usually curve written represents in a slightlya different snapshot form... of the t

15 Sine Waves hown in because nusoidal the rope y vt S v x ave and curve in and the wo types s to the ches the t 0 Figure 16.7 A one-dimensional sinusoidal y(x, t) wave = A sin traveling (kx ωt + to φ) the right with a speed v. The brown where φ is a curve phase constant. represents a snapshot of the t

16 Question Quick Quiz A sinusoidal wave of frequency f is traveling along a stretched string. The string is brought to rest, and a second traveling wave of frequency 2f is established on the string. What is the wave speed of the second wave? (A) twice that of the first wave (B) half that of the first wave (C) the same as that of the first wave (D) impossible to determine 1 Serway & Jewett, page 489.

17 Question Quick Quiz A sinusoidal wave of frequency f is traveling along a stretched string. The string is brought to rest, and a second traveling wave of frequency 2f is established on the string. What is the wave speed of the second wave? (A) twice that of the first wave (B) half that of the first wave (C) the same as that of the first wave (D) impossible to determine 1 Serway & Jewett, page 489.

18 Question Quick Quiz A sinusoidal wave of frequency f is traveling along a stretched string. The string is brought to rest, and a second traveling wave of frequency 2f is established on the string. What is the wavelength of the second wave? (A) twice that of the first wave (B) half that of the first wave (C) the same as that of the first wave (D) impossible to determine 1 Serway & Jewett, page 489.

19 Question Quick Quiz A sinusoidal wave of frequency f is traveling along a stretched string. The string is brought to rest, and a second traveling wave of frequency 2f is established on the string. What is the wavelength of the second wave? (A) twice that of the first wave (B) half that of the first wave (C) the same as that of the first wave (D) impossible to determine 1 Serway & Jewett, page 489.

20 Question Quick Quiz A sinusoidal wave of frequency f is traveling along a stretched string. The string is brought to rest, and a second traveling wave of frequency 2f is established on the string. What is the amplitude of the second wave? (A) twice that of the first wave (B) half that of the first wave (C) the same as that of the first wave (D) impossible to determine 1 Serway & Jewett, page 489.

21 Question Quick Quiz A sinusoidal wave of frequency f is traveling along a stretched string. The string is brought to rest, and a second traveling wave of frequency 2f is established on the string. What is the amplitude of the second wave? (A) twice that of the first wave (B) half that of the first wave (C) the same as that of the first wave (D) impossible to determine 1 Serway & Jewett, page 489.

22 Sine waves Consider a point, P, on a string carrying a sine wave. Suppose that point is at a fixed horizontal position x = 5λ/4, a constant. The y coordinate of P varies as: ( ) 5λ y 4, t = A sin( ωt + 5π/2) = A cos(ωt) y a b c x l P P P A t = 0 1 t = T 4 t = 1 T 2 Sinuso In Figu and dow with an sents sn of the b as that a element frequen element with a sp If we shown i We can ment at coordin with the The point is in simple harmonic motion! d P t = 3 T 4 Figure One method for

23 Sine waves: Transverse Speed and Transverse Acceleration The transverse speed v y is the speed at which a single point on the medium (string) travels perpendicular to the propagation direction of the wave. We can find this from the wave function y(x, t) = A sin(kx ωt)

24 Sine waves: Transverse Speed and Transverse Acceleration The transverse speed v y is the speed at which a single point on the medium (string) travels perpendicular to the propagation direction of the wave. We can find this from the wave function y(x, t) = A sin(kx ωt) v y = y t = ωa cos(kx ωt) For the transverse acceleration, we just take the derivative again: a y = 2 y t 2 = ω2 A sin(kx ωt)

25 Sine waves: Transverse Speed and Transverse Acceleration v y = ωa cos(kx ωt) a y = ω 2 A sin(kx ωt) = ω 2 y If we fix x =const. these are exactly the equations we had for SHM! The maximum transverse speed of a point P on the string is when it passes through its equilibrium position. v y,max = ωa The maximum acceleration occurs when y = A. a y = ω 2 A

26 Questions Can a wave on a string move with a wave speed that is greater than the maximum transverse speed v y,max of an element of the string? (A) yes (B) no

27 Questions Can a wave on a string move with a wave speed that is greater than the maximum transverse speed v y,max of an element of the string? (A) yes (B) no

28 Questions Can the wave speed be much greater than the maximum element speed? (A) yes (B) no

29 Questions Can the wave speed be much greater than the maximum element speed? (A) yes (B) no

30 Questions Can the wave speed be equal to the maximum element speed? (A) yes (B) no

31 Questions Can the wave speed be equal to the maximum element speed? (A) yes (B) no

32 Questions Can the wave speed be less than v y,max? (A) yes (B) no

33 Questions Can the wave speed be less than v y,max? (A) yes (B) no

34 Sine waves: Transverse Speed and Transverse Acceleration v y = ωa cos(kx ωt) a y = ω 2 A sin(kx ωt) = ω 2 y

35 Rate of Energy Transfer in Sine Wave Waves do transmit energy. A wave pulse causes the mass at each point of the string to displace from its equilibrium point. At what rate does this transfer happen?

36 Rate of Energy Transfer in Sine Wave Waves do transmit energy. A wave pulse causes the mass at each point of the string to displace from its equilibrium point. At what rate does this transfer happen? Consider the kinetic and potential energies in a small length of string. Kinetic: Replacing v y : dk = 1 2 (dm)v 2 y dk = 1 2 (dm)a2 ω 2 cos 2 (kx ωt)

37 Rate of Energy Transfer in Sine Wave Potential: du = F dl = T (ds dx) where dl = ds dx is the amount by which a small element of the string is stretched, ds is the stretched length and dx is the unstretched length. ds = dx 2 + dy 2 = 1 + ( ) [ y 2 dx x 2 ( ) ] y 2 dx x 1 1 Diagram from James Miller.

38 Rate of Energy Transfer in Sine Wave ds dx = 1 2 ( ) y 2 dx x du = 1 ( ) y 2 2 T dx x = 1 2 T (Ak cos(kx ωt))2 dx = 1 2 µω2 A 2 cos 2 (kx ωt) dx having used v = ω/k and v = T /µ in the last line.

39 Rate of Energy Transfer in Sine Wave dk = 1 2 µ dx A2 ω 2 cos 2 (kx ωt) du = 1 2 µω2 A 2 cos 2 (kx ωt) dx Adding du + dk gives de = µω 2 A 2 cos 2 (kx ωt) dx Integrating over one wavelength gives the energy per wavelength: E λ = µω 2 A 2 λ 0 cos 2 (kx ωt) dx = µω 2 A 2 λ 2

40 Rate of Energy Transfer in Sine Wave For one wavelength: E λ = 1 2 µω2 A 2 λ Power averaged over one wavelength: P = E λ T = 1 2 µω2 A 2 λ T Average power of a wave on a string: P = 1 2 µω2 A 2 v

41 Question Quick Quiz Which of the following, taken by itself, would be most effective in increasing the rate at which energy is transferred by a wave traveling along a string? (A) reducing the linear mass density of the string by one half (B) doubling the wavelength of the wave (C) doubling the tension in the string (D) doubling the amplitude of the wave 2 Serway & Jewett, page 496.

42 Question Quick Quiz Which of the following, taken by itself, would be most effective in increasing the rate at which energy is transferred by a wave traveling along a string? (A) reducing the linear mass density of the string by one half (B) doubling the wavelength of the wave (C) doubling the tension in the string (D) doubling the amplitude of the wave 2 Serway & Jewett, page 496.

43 Interference of Waves When two wave disturbances interact with one another they can amplify or cancel out. Waves of the same frequency that are in phase will reinforce, amplitude will increase; waves that are out of phase will cancel out.

44 Interference of Waves

45 Interference of Waves Waves that exist at the same time in the same position in space add together. superposition principle If two or more traveling waves are moving through a medium, the resultant value of the wave function at any point is the algebraic sum of the values of the wave functions of the individual waves. This works because the wave equation we are studying is linear. This means solutions to the wave equations can be added: y is the resultant wave function. y(x, t) = y 1 (x, t) + y 2 (x, t)

46 y 1 the amplitude y2 pulses align, is Interference the of Waves: Interference sum of theconstructive individual amplitudes. When the pulses overlap, the b y 1! y 2 wave function is the sum of the individual wave functions. a When the y 1 crests of the y 2 two pulses align, the amplitude is c sum of the individual the y 1! overlap, y2 When the pulses the amplitudes. b wave function isy 1the sum of! y2 When the pulses nofunctions. longer the individual wave overlap, they have When the crests of not the been two permanently affected by theis pulses align, the amplitude cthe interference. sum of they individual 1! y 2 b amplitudes. y 1! y 2 When the pulses no longer When the crests ofnot the been two overlap, they have d pulses align,ythe amplitude y 1theis permanently 2affected by the sum of the individual cinterference. W pu th bw in wa ath cw pu W th bwa in W th ov pe cw in pu bth ind W dov W pe c pu in

47 When the crests of the two align, the amplitude is Interference pulses of Waves: Destructive Interference the difference between the bwhen the pulses overlap, the 1! y 2 individual yamplitudes. wave function is the sum y 2 of athe individual wave functions. y1 cwhen the crests of the two pulses align, the is y 1!amplitude y2 the difference between thethe When the pulses overlap, individual amplitudes. bwhen wave function of the pulses no sum longer y 1!isy 2the the individual wavenot functions. overlap, they have been permanently affected by the c interference. When the crests y 1! yof 2 the two bpulses align, the amplitude is y 1! y 2between the the difference When the pulses no longer y 2 have not been amplitudes. overlap, they dindividual y the permanently affected When the crests of the1bytwo interference. pulses align, the amplitude is

48 Superposition of Sine Waves Consider two sine waves with the same wavelength and amplitude, but different phases, that interfere. y 1 (x, t) = A sin(kx ωt) y 2 (x, t) = A sin(kx ωt + φ) Add them together to find the resultant wave function, using the identity: ( ) ( ) θ ψ θ + ψ sin θ + sin ψ = 2 cos sin 2 2 Then [ ( )] φ y(x, t) = 2A cos 2 New amplitude sin(kx ωt + φ 2 ) Sine oscillation

49 y y Interference of Two Sine Waves (equal wavelength) b x y y(x, t) = f 180 y [ ( )] φ 2A cos sin(kx ωt + φ 2 2 ) y 1 y 2 c x f 60

50 Dependence on Phase Difference ( ) The amplitude of the resultant wave is A = 2A cos φ 2, where φ is the phase difference. For what value of φ is A maximized?

51 Dependence on Phase Difference ( ) The amplitude of the resultant wave is A = 2A cos φ 2, where φ is the phase difference. For what value of φ is A maximized? φ = 0 or φ = 2π, 2π, 4π, etc. The waves are in phase and constructively interfere. position and Standing Waves y y The individual waves are in phase and therefore indistinguishable. a f 0 x Constructive interference: the amplitudes add. y y 1 y 2 y The individual waves are 180 out of phase. b x

52 Dependence on Phase Difference position and Standing Waves y y The individual waves are in phase and therefore indistinguishable. a If φ = π, π, 3π, 3π, etc. A = 0. x Destructive interference. f 0 Constructive interference: the amplitudes add. b c y y y 1 y 2 y f 180 y y 1 y2 x x The individual waves are 180 out of phase. Destructive interference: the waves cancel. This intermediate result is neither constructive nor destructive. f 60

53 Phase Differences We can count phase differences in terms of wavelengths also. If two waves have a phase difference of 1 wavelength then φ = 2π. Constructive interference. If two waves have a phase difference of half a wavelength then φ = π. Destructive interference.

54 Question Here are four possible phase differences between two identical waves, expressed in wavelengths: 0.20, 0.45, 0.60, and Rank them according to the amplitude of the resultant wave, greatest first. (A) 0.20, 0.45, 0.60, 0.80 (B) 0.80, 0.60, 0.45, 0.20 (C) (0.20 and 0.80), 0.60, 0.45 (D) 0.45, 0.60, (0.20 and 0.80) 1 Halliday, Resnick, Walker, page 427.

55 Question Here are four possible phase differences between two identical waves, expressed in wavelengths: 0.20, 0.45, 0.60, and Rank them according to the amplitude of the resultant wave, greatest first. (A) 0.20, 0.45, 0.60, 0.80 (B) 0.80, 0.60, 0.45, 0.20 (C) (0.20 and 0.80), 0.60, 0.45 (D) 0.45, 0.60, (0.20 and 0.80) 1 Halliday, Resnick, Walker, page 427.

56 Phasors We can represent this addition 3 with a phasor diagram. Each wave function at point (x, t) is represented by a vector PHASORS PHA 42 This projection This matches projection thismatches this displacement displacement of the dot asof the dot as the wave moves the wave through moves it. through it. y y Zero projection, Zero projection, zero displacement zero displacement y y ω ω y 1 y m1 y 1 y m1 x x y 1 = 0 y 1 = 0 ω ω x (a) (b) (b) 3 of sine waves with equal wavelengths

57 Phasors x y m1 y 1 x ot of the r two waves. 2 y m1 ω Add the vectors to find the sum. Wave 2, delayed by φ radians Wave 1 (d) This is a snapshot of the two phasors for two waves. Wave 2, delayed by φ radians Addin gives result These are the ω y y 2 m2 This is the projections of projection of y φ y' the two phasors. Adding 1 the two ym1 phasors as vectors the resultant Wave 1 gives the resultant phasor of the phasor. (e) resultant wave. (f ) Fig (a) (d) A phasor of magnitude y m1 rotating ω about an origin at angular s sents a sinusoidal wave.the phasor s projection y 1 on the vertical axis represents the d y of a point This through is the which the wave passes. (e) A m2 second phasor, also of angular speed v y nitude y m2 and rotating at a 2 constant y' projection of m angle fφ from the first phasor, represents a second y' phase constant the resultant f.(f) The resultant wave is represented by the vector sum y m of the tw phasor. β y 1 y m1 magnitude y m1 rotating about an origin at angular speed v reprer s projection y 1 on the vertical axis represents the displacement passes. (e) A second phasor, also of angular speed v but of magnt angle f from the first phasor, represents a second wave, with a t wave is represented by the vector sum y m of the two phasors. (f ) In the diagram A = y m is the amplitude of the resulting wave.

58 Example Two sinusoidal waves y 1 (x, t) and y 2 (x, t) have the same wavelength and travel together in the same direction along a string. Their amplitudes are A 1 = 4.0 mm and A 2 = 3.0 mm, and their phase constants are 0 and π/3 rad, respectively. What are the amplitude A and phase constant φ of the resultant wave? Also give resultant wave function.

59 Example Two sinusoidal waves y 1 (x, t) and y 2 (x, t) have the same wavelength and travel together in the same direction along a string. Their amplitudes are A 1 = 4.0 mm and A 2 = 3.0 mm, and their phase constants are 0 and π/3 rad, respectively. What are the amplitude A and phase constant φ of the resultant wave? Also give resultant wave function. A = 6.1 mm ; φ = 0.44 rad

60 Example Two sinusoidal waves y 1 (x, t) and y 2 (x, t) have the same wavelength and travel together in the same direction along a string. Their amplitudes are A 1 = 4.0 mm and A 2 = 3.0 mm, and their phase constants are 0 and π/3 rad, respectively. What are the amplitude A and phase constant φ of the resultant wave? Also give resultant wave function. A = 6.1 mm ; φ = 0.44 rad y(x, t) = (6.1 mm) sin(kx ωt )

61 Wave Reflection

62 Boundaries and Wave Reflection and Transmission When waves reach the end of their medium, or move from one medium to another, they can be reflected. The behavior is different in difference circumstances. We can describe the different circumstances mathematically using boundary conditions on our wave function. These will help us to correctly predict how a wave will reflect or be transmitted.

63 Wave Reflection from a fixed end point a b c Incident pulse Reflected pulse The reflected pulse Figure is inverted How The does reflection this happen? of a traveling pulse at the fixed 16.4 Re The travelin without inte wave is affec a pulse trave Figure occurs: the pulse moves Notice th follows. Whe an upward f equal-magn This downw Now cons that is free

64 Wave Reflection from a fixed end point The boundary condition for a fixed end point at position x = 0 is: y(x = 0, t) = 0 At any time, the point of the string at x = 0 cannot have any vertical displacement. It is tied to a wall! The wave function for single pulse on the string does not satisfy this boundary condition. y 1 (x, t) = f (x vt) This pulse will continue in the +x direction forever, past the end of the string. Makes no sense.

65 Wave Reflection from a fixed end point The boundary condition for a fixed end point at position x = 0 is: y(x = 0, t) = 0 At any time, the point of the string at x = 0 cannot have any vertical displacement. It is tied to a wall! The wave function for single pulse on the string does not satisfy this boundary condition. y 1 (x, t) = f (x vt) This pulse will continue in the +x direction forever, past the end of the string. Makes no sense. What if we imagine the string continues inside the wall, and there is a pulse traveling behind the wall in the x direction?

66 1 Wall at x = 2.5. Digrams by Michal Fowler

67 Wave Reflection from a fixed end point If we allow another wave function: y 2 (x, t) = f ( x vt) the total wave function will satisfy the boundary condition! y(x, t) = y 1 (x, t) + y 2 (x, t) y(x, t) = f (x vt) + [ f ( x vt)] y(x = 0, t) = 0 However, f ( x vt) corresponds to an inverted wave pulse. The reflected pulse is inverted.

68 Wave Reflection from a fixed end point The reflected pulse is inverted. a b c Incident pulse Reflected pulse Figure The reflection 16.4 Re The travelin without inte wave is affec a pulse trave Figure occurs: the pulse moves Notice th follows. Whe an upward f equal-magn This downw Now cons

69 reflected pulse is inverted, but its Wave Reflection shape from is otherwise a freely unchanged. movable end point In this case, reflected pulse is not inverted. a b c Incident pulse Reflected pulse Figure The reflection of a traveling pulse at the free end of vertically on a sm time it is not inve end of the string the incoming pu the ring back do not inverted and Finally, consid two extremes. In part undergoes t ary. For instance When a pu two strings, part the heavier strin earlier in the cas The reflected 16.5, we show th ing to the princ reflected pulse a

70 Wave Reflection from a freely movable end point Now we have a different boundary condition. The slope of the string at the boundary must be zero. y x = 0 x=0 This ensures that the string will stay attached to the wall and there will not be an infinite force on the last tiny bit of string. To satisfy this boundary condition, imagine there is another pulse that is upright but moving in the x direction.

71 Wave Reflection from a freely movable end point Imagine the free end of the string at x = 2.5. The slope there is zero at all times.

72 Wave Reflection from a freely movable end point The new boundary condition is satisfied if y 2 = f ( x vt): y(x, t) = f (x vt) + f ( x vt) y(x, t) x = f (x vt) x y(x, t) f (x vt) = x x y x = 0 x=0 f ( x vt) + x ( + f (x vt) x ) The pulse f ( x vt) is not inverted.

73 Transmitted and Reflected Waves at a Boundary If two ropes of different linear mass densities, µ 1 and µ 2 are attached together (under the same tension), an incoming pulse will be partially transmitted and partially reflected. The boundary conditions here are different again. Now the slope of the string at the boundary should be zero and the displacements to at the boundary must be the same (otherwise the string breaks).

74 Transmitted and Reflected Waves at a Boundary From those boundary conditions it is possible to deduce the behavior: µ 1 < µ 2 µ 1 > µ Rate of Energy Transfer by Sinusoidal Waves on Strings Incident pulse Incident pulse The reflected pulse is inverted and a non-inverted transmitted pulse moves on the heavier string. a The reflected pulse is not inverted and a transmitted pulse moves on the lighter string. a b Figure (a) A pulse traveling to the right on a light string approaches the junction with a heavier string. (b) The situation after the pulse reaches the junction. b Figure (a) A pulse traveling to the right on a heavy string approaches the junction with a lighter string. (b) The situation after the pulse reaches the junction. According 1 Serway to & Equation Jewett, 16.18, pagethe 495. speed of a wave on a string increases as the

75 Summary energy transfer by a sine wave interference reflection and transmission Homework Serway & Jewett: (set at end of last lecture) Ch 16, onward from page 499. OQs: 3, 5, 9; CQs: 1, 5, 9; Probs: 1, 3, 5, 9, 11, 19, 23, 29, 41, 43, 53, 59, 60 Ch 16, onward from page 499. Probs: 33, 35, 61 Ch 18, onward from page 555. OQs: 9; CQs: 9; Probs: 1, 3, 7, 9, 11

Waves Solutions to the Wave Equation Sine Waves Transverse Speed and Acceleration

Waves Solutions to the Wave Equation Sine Waves Transverse Speed and Acceleration Waves Solutions to the Wave Equation Sine Waves Transverse Speed and Acceleration Lana Sheridan De Anza College May 17, 2018 Last time pulse propagation the wave equation Overview solutions to the wave

More information

Chapter 16 Waves. Types of waves Mechanical waves. Electromagnetic waves. Matter waves

Chapter 16 Waves. Types of waves Mechanical waves. Electromagnetic waves. Matter waves Chapter 16 Waves Types of waves Mechanical waves exist only within a material medium. e.g. water waves, sound waves, etc. Electromagnetic waves require no material medium to exist. e.g. light, radio, microwaves,

More information

Chapter 15 Mechanical Waves

Chapter 15 Mechanical Waves Chapter 15 Mechanical Waves 1 Types of Mechanical Waves This chapter and the next are about mechanical waves waves that travel within some material called a medium. Waves play an important role in how

More information

No Lecture on Wed. But, there is a lecture on Thursday, at your normal recitation time, so please be sure to come!

No Lecture on Wed. But, there is a lecture on Thursday, at your normal recitation time, so please be sure to come! Announcements Quiz 6 tomorrow Driscoll Auditorium Covers: Chapter 15 (lecture and homework, look at Questions, Checkpoint, and Summary) Chapter 16 (Lecture material covered, associated Checkpoints and

More information

Chapter 16 Waves in One Dimension

Chapter 16 Waves in One Dimension Chapter 16 Waves in One Dimension Slide 16-1 Reading Quiz 16.05 f = c Slide 16-2 Reading Quiz 16.06 Slide 16-3 Reading Quiz 16.07 Heavier portion looks like a fixed end, pulse is inverted on reflection.

More information

Waves Wave Speed on a String Pulse Propagation The Wave Equation

Waves Wave Speed on a String Pulse Propagation The Wave Equation Waves Wave Speed on a String Pulse Propagation The Wave Equation Lana Sheridan De Anza College May 16, 2018 Last time oscillations simple harmonic motion (SHM) spring systems energy in SHM introducing

More information

Lecture 17. Mechanical waves. Transverse waves. Sound waves. Standing Waves.

Lecture 17. Mechanical waves. Transverse waves. Sound waves. Standing Waves. Lecture 17 Mechanical waves. Transverse waves. Sound waves. Standing Waves. What is a wave? A wave is a traveling disturbance that transports energy but not matter. Examples: Sound waves (air moves back

More information

Waves Standing Waves Sound Waves

Waves Standing Waves Sound Waves Waves Standing Waves Sound Waves Lana Sheridan De Anza College May 23, 2018 Last time finish up reflection and transmission standing waves Warm Up Question: Standing Waves and Resonance In the following

More information

Chapter 9. Electromagnetic Waves

Chapter 9. Electromagnetic Waves Chapter 9. Electromagnetic Waves 9.1 Waves in One Dimension 9.1.1 The Wave Equation What is a "wave?" Let's start with the simple case: fixed shape, constant speed: How would you represent such a string

More information

1. Types of Waves. There are three main types of waves:

1. Types of Waves. There are three main types of waves: Chapter 16 WAVES I 1. Types of Waves There are three main types of waves: https://youtu.be/kvc7obkzq9u?t=3m49s 1. Mechanical waves: These are the most familiar waves. Examples include water waves, sound

More information

Waves Standing Waves and Sound Beats Nonsinusoidal Wave Patterns

Waves Standing Waves and Sound Beats Nonsinusoidal Wave Patterns Waves Standing Waves and Sound Beats Nonsinusoidal Wave Patterns Lana Sheridan De Anza College May 24, 2018 Last time interference and sound standing waves and sound musical instruments Reminder: Speed

More information

Waves 2006 Physics 23. Armen Kocharian Lecture 3: Sep

Waves 2006 Physics 23. Armen Kocharian Lecture 3: Sep Waves 2006 Physics 23 Armen Kocharian Lecture 3: Sep 12. 2006 Last Time What is a wave? A "disturbance" that moves through space. Mechanical waves through a medium. Transverse vs. Longitudinal e.g., string

More information

Chapter 16 Waves in One Dimension

Chapter 16 Waves in One Dimension Lecture Outline Chapter 16 Waves in One Dimension Slide 16-1 Chapter 16: Waves in One Dimension Chapter Goal: To study the kinematic and dynamics of wave motion, i.e., the transport of energy through a

More information

CHAPTER 11 VIBRATIONS AND WAVES

CHAPTER 11 VIBRATIONS AND WAVES CHAPTER 11 VIBRATIONS AND WAVES http://www.physicsclassroom.com/class/waves/u10l1a.html UNITS Simple Harmonic Motion Energy in the Simple Harmonic Oscillator The Period and Sinusoidal Nature of SHM The

More information

Mechanics Oscillations Simple Harmonic Motion

Mechanics Oscillations Simple Harmonic Motion Mechanics Oscillations Simple Harmonic Motion Lana Sheridan De Anza College Dec 3, 2018 Last time gravity Newton s universal law of gravitation gravitational field gravitational potential energy Overview

More information

Chapter 16 - Waves. I m surfing the giant life wave. -William Shatner. David J. Starling Penn State Hazleton PHYS 213. Chapter 16 - Waves

Chapter 16 - Waves. I m surfing the giant life wave. -William Shatner. David J. Starling Penn State Hazleton PHYS 213. Chapter 16 - Waves I m surfing the giant life wave. -William Shatner David J. Starling Penn State Hazleton PHYS 213 There are three main types of waves in physics: (a) Mechanical waves: described by Newton s laws and propagate

More information

Oscillatory Motion and Wave Motion

Oscillatory Motion and Wave Motion Oscillatory Motion and Wave Motion Oscillatory Motion Simple Harmonic Motion Wave Motion Waves Motion of an Object Attached to a Spring The Pendulum Transverse and Longitudinal Waves Sinusoidal Wave Function

More information

Faculty of Computers and Information Fayoum University 2017/ 2018 Physics 2 (Waves)

Faculty of Computers and Information Fayoum University 2017/ 2018 Physics 2 (Waves) Faculty of Computers and Information Fayoum University 2017/ 2018 Physics 2 (Waves) 3/10/2018 1 Using these definitions, we see that Example : A sinusoidal wave traveling in the positive x direction has

More information

Chapter 16 Mechanical Waves

Chapter 16 Mechanical Waves Chapter 6 Mechanical Waves A wave is a disturbance that travels, or propagates, without the transport of matter. Examples: sound/ultrasonic wave, EM waves, and earthquake wave. Mechanical waves, such as

More information

PHYSICS 149: Lecture 24

PHYSICS 149: Lecture 24 PHYSICS 149: Lecture 24 Chapter 11: Waves 11.8 Reflection and Refraction 11.10 Standing Waves Chapter 12: Sound 12.1 Sound Waves 12.4 Standing Sound Waves Lecture 24 Purdue University, Physics 149 1 ILQ

More information

Waves Pulse Propagation The Wave Equation

Waves Pulse Propagation The Wave Equation Waves Pulse Propagation The Wave Equation Lana Sheridan De Anza College May 16, 2018 Last time oscillations simple harmonic motion (SHM) spring systems energy in SHM introducing waves kinds of waves wave

More information

Raymond A. Serway Chris Vuille. Chapter Thirteen. Vibrations and Waves

Raymond A. Serway Chris Vuille. Chapter Thirteen. Vibrations and Waves Raymond A. Serway Chris Vuille Chapter Thirteen Vibrations and Waves Periodic Motion and Waves Periodic motion is one of the most important kinds of physical behavior Will include a closer look at Hooke

More information

Lecture 4 Notes: 06 / 30. Energy carried by a wave

Lecture 4 Notes: 06 / 30. Energy carried by a wave Lecture 4 Notes: 06 / 30 Energy carried by a wave We want to find the total energy (kinetic and potential) in a sine wave on a string. A small segment of a string at a fixed point x 0 behaves as a harmonic

More information

1 f. result from periodic disturbance same period (frequency) as source Longitudinal or Transverse Waves Characterized by

1 f. result from periodic disturbance same period (frequency) as source Longitudinal or Transverse Waves Characterized by result from periodic disturbance same period (frequency) as source Longitudinal or Transverse Waves Characterized by amplitude (how far do the bits move from their equilibrium positions? Amplitude of MEDIUM)

More information

Traveling Harmonic Waves

Traveling Harmonic Waves Traveling Harmonic Waves 6 January 2016 PHYC 1290 Department of Physics and Atmospheric Science Functional Form for Traveling Waves We can show that traveling waves whose shape does not change with time

More information

Outline. Hook s law. Mass spring system Simple harmonic motion Travelling waves Waves in string Sound waves

Outline. Hook s law. Mass spring system Simple harmonic motion Travelling waves Waves in string Sound waves Outline Hook s law. Mass spring system Simple harmonic motion Travelling waves Waves in string Sound waves Hooke s Law Force is directly proportional to the displacement of the object from the equilibrium

More information

Physics 1C. Lecture 12C

Physics 1C. Lecture 12C Physics 1C Lecture 12C Simple Pendulum The simple pendulum is another example of simple harmonic motion. Making a quick force diagram of the situation, we find:! The tension in the string cancels out with

More information

kg meter ii) Note the dimensions of ρ τ are kg 2 velocity 2 meter = 1 sec 2 We will interpret this velocity in upcoming slides.

kg meter ii) Note the dimensions of ρ τ are kg 2 velocity 2 meter = 1 sec 2 We will interpret this velocity in upcoming slides. II. Generalizing the 1-dimensional wave equation First generalize the notation. i) "q" has meant transverse deflection of the string. Replace q Ψ, where Ψ may indicate other properties of the medium that

More information

Chapter 15. Mechanical Waves

Chapter 15. Mechanical Waves Chapter 15 Mechanical Waves A wave is any disturbance from an equilibrium condition, which travels or propagates with time from one region of space to another. A harmonic wave is a periodic wave in which

More information

Oscillations Simple Harmonic Motion

Oscillations Simple Harmonic Motion Oscillations Simple Harmonic Motion Lana Sheridan De Anza College Dec 1, 2017 Overview oscillations simple harmonic motion (SHM) spring systems energy in SHM pendula damped oscillations Oscillations and

More information

Old Exams - Questions Ch-16

Old Exams - Questions Ch-16 Old Exams - Questions Ch-16 T081 : Q1. The displacement of a string carrying a traveling sinusoidal wave is given by: y( x, t) = y sin( kx ω t + ϕ). At time t = 0 the point at x = 0 m has a displacement

More information

Chapter 16. Wave Motion

Chapter 16. Wave Motion Chapter 16 Wave Motion CHAPER OULINE 16.1 Propagation of a Disturbance 16.2 Sinusoidal Waves 16.3 he Speed of Waves on Strings 16.4 Reflection and ransmission 16.5 Rate of Energy ransfer by Sinusoidal

More information

is a What you Hear The Pressure Wave sets the Ear Drum into Vibration.

is a What you Hear The Pressure Wave sets the Ear Drum into Vibration. is a What you Hear The ear converts sound energy to mechanical energy to a nerve impulse which is transmitted to the brain. The Pressure Wave sets the Ear Drum into Vibration. electroencephalogram v S

More information

Waves Part 1: Travelling Waves

Waves Part 1: Travelling Waves Waves Part 1: Travelling Waves Last modified: 15/05/2018 Links Contents Travelling Waves Harmonic Waves Wavelength Period & Frequency Summary Example 1 Example 2 Example 3 Example 4 Transverse & Longitudinal

More information

Chapter 11 Vibrations and Waves

Chapter 11 Vibrations and Waves Chapter 11 Vibrations and Waves 11-1 Simple Harmonic Motion If an object vibrates or oscillates back and forth over the same path, each cycle taking the same amount of time, the motion is called periodic.

More information

Exam tomorrow on Chapter 15, 16, and 17 (Oscilla;ons and Waves 1 &2)

Exam tomorrow on Chapter 15, 16, and 17 (Oscilla;ons and Waves 1 &2) Exam tomorrow on Chapter 15, 16, and 17 (Oscilla;ons and Waves 1 &2) What to study: Quiz 6 Homework problems for Chapters 15 & 16 Material indicated in the following review slides Other Specific things:

More information

Physics 142 Mechanical Waves Page 1. Mechanical Waves

Physics 142 Mechanical Waves Page 1. Mechanical Waves Physics 142 Mechanical Waves Page 1 Mechanical Waves This set of notes contains a review of wave motion in mechanics, emphasizing the mathematical formulation that will be used in our discussion of electromagnetic

More information

α(t) = ω 2 θ (t) κ I ω = g L L g T = 2π mgh rot com I rot

α(t) = ω 2 θ (t) κ I ω = g L L g T = 2π mgh rot com I rot α(t) = ω 2 θ (t) ω = κ I ω = g L T = 2π L g ω = mgh rot com I rot T = 2π I rot mgh rot com Chapter 16: Waves Mechanical Waves Waves and particles Vibration = waves - Sound - medium vibrates - Surface ocean

More information

Traveling Waves: Energy Transport

Traveling Waves: Energy Transport Traveling Waves: Energ Transport wave is a traveling disturbance that transports energ but not matter. Intensit: I P power rea Intensit I power per unit area (measured in Watts/m 2 ) Intensit is proportional

More information

(Total 1 mark) IB Questionbank Physics 1

(Total 1 mark) IB Questionbank Physics 1 1. A transverse wave travels from left to right. The diagram below shows how, at a particular instant of time, the displacement of particles in the medium varies with position. Which arrow represents the

More information

Wave Motion: v=λf [m/s=m 1/s] Example 1: A person on a pier observes a set of incoming waves that have a sinusoidal form with a distance of 1.

Wave Motion: v=λf [m/s=m 1/s] Example 1: A person on a pier observes a set of incoming waves that have a sinusoidal form with a distance of 1. Wave Motion: v=λf [m/s=m 1/s] Example 1: A person on a pier observes a set of incoming waves that have a sinusoidal form with a distance of 1.6 m between the crests. If a wave laps against the pier every

More information

Mechanical Waves. 3: Mechanical Waves (Chapter 16) Waves: Space and Time

Mechanical Waves. 3: Mechanical Waves (Chapter 16) Waves: Space and Time 3: Mechanical Waves (Chapter 6) Phys3, A Dr. Robert MacDonald Mechanical Waves A mechanical wave is a travelling disturbance in a medium (like water, string, earth, Slinky, etc). Move some part of the

More information

Exam 3 Review. Chapter 10: Elasticity and Oscillations A stress will deform a body and that body can be set into periodic oscillations.

Exam 3 Review. Chapter 10: Elasticity and Oscillations A stress will deform a body and that body can be set into periodic oscillations. Exam 3 Review Chapter 10: Elasticity and Oscillations stress will deform a body and that body can be set into periodic oscillations. Elastic Deformations of Solids Elastic objects return to their original

More information

LECTURE 5 WAVES ON STRINGS & HARMONIC WAVES. Instructor: Kazumi Tolich

LECTURE 5 WAVES ON STRINGS & HARMONIC WAVES. Instructor: Kazumi Tolich LECTURE 5 WAVES ON STRINGS & HARMONIC WAVES Instructor: Kazumi Tolich Lecture 5 2 Reading chapter 14.2 14.3 Waves on a string Speed of waves on a string Reflections Harmonic waves Speed of waves 3 The

More information

Section 1 Simple Harmonic Motion. Chapter 11. Preview. Objectives Hooke s Law Sample Problem Simple Harmonic Motion The Simple Pendulum

Section 1 Simple Harmonic Motion. Chapter 11. Preview. Objectives Hooke s Law Sample Problem Simple Harmonic Motion The Simple Pendulum Section 1 Simple Harmonic Motion Preview Objectives Hooke s Law Sample Problem Simple Harmonic Motion The Simple Pendulum Section 1 Simple Harmonic Motion Objectives Identify the conditions of simple harmonic

More information

Chapter 13. Hooke s Law: F = - kx Periodic & Simple Harmonic Motion Springs & Pendula Waves Superposition. Next Week!

Chapter 13. Hooke s Law: F = - kx Periodic & Simple Harmonic Motion Springs & Pendula Waves Superposition. Next Week! Chapter 13 Hooke s Law: F = - kx Periodic & Simple Harmonic Motion Springs & Pendula Waves Superposition Next Week! Review Physics 2A: Springs, Pendula & Circular Motion Elastic Systems F = kx Small Vibrations

More information

spring mass equilibrium position +v max

spring mass equilibrium position +v max Lecture 20 Oscillations (Chapter 11) Review of Simple Harmonic Motion Parameters Graphical Representation of SHM Review of mass-spring pendulum periods Let s review Simple Harmonic Motion. Recall we used

More information

Section 1 Simple Harmonic Motion. The student is expected to:

Section 1 Simple Harmonic Motion. The student is expected to: Section 1 Simple Harmonic Motion TEKS The student is expected to: 7A examine and describe oscillatory motion and wave propagation in various types of media Section 1 Simple Harmonic Motion Preview Objectives

More information

Waves Standing Waves and Sound

Waves Standing Waves and Sound Waves Standing Waves and Sound Lana Sheridan De Anza College May 24, 2018 Last time sound Overview interference and sound standing waves and sound musical instruments Speed of Sound waves v = B ρ Compare

More information

Chap 11. Vibration and Waves. The impressed force on an object is proportional to its displacement from it equilibrium position.

Chap 11. Vibration and Waves. The impressed force on an object is proportional to its displacement from it equilibrium position. Chap 11. Vibration and Waves Sec. 11.1 - Simple Harmonic Motion The impressed force on an object is proportional to its displacement from it equilibrium position. F x This restoring force opposes the change

More information

Physics 101 Lecture 18 Vibrations, SHM, Waves (II)

Physics 101 Lecture 18 Vibrations, SHM, Waves (II) Physics 101 Lecture 18 Vibrations, SHM, Waves (II) Reminder: simple harmonic motion is the result if we have a restoring force that is linear with the displacement: F = -k x What would happen if you could

More information

EXAM 1. WAVES, OPTICS AND MODERN PHYSICS 15% of the final mark

EXAM 1. WAVES, OPTICS AND MODERN PHYSICS 15% of the final mark EXAM 1 WAVES, OPTICS AND MODERN PHYSICS 15% of the final mark Autumn 2018 Name: Each multiple-choice question is worth 3 marks. 1. A light beam is deflected by two mirrors, as shown. The incident beam

More information

Physics General Physics. Lecture 25 Waves. Fall 2016 Semester Prof. Matthew Jones

Physics General Physics. Lecture 25 Waves. Fall 2016 Semester Prof. Matthew Jones Physics 22000 General Physics Lecture 25 Waves Fall 2016 Semester Prof. Matthew Jones 1 Final Exam 2 3 Mechanical Waves Waves and wave fronts: 4 Wave Motion 5 Two Kinds of Waves 6 Reflection of Waves When

More information

Transverse wave - the disturbance is perpendicular to the propagation direction (e.g., wave on a string)

Transverse wave - the disturbance is perpendicular to the propagation direction (e.g., wave on a string) 1 Part 5: Waves 5.1: Harmonic Waves Wave a disturbance in a medium that propagates Transverse wave - the disturbance is perpendicular to the propagation direction (e.g., wave on a string) Longitudinal

More information

Chapter 16: Oscillatory Motion and Waves. Simple Harmonic Motion (SHM)

Chapter 16: Oscillatory Motion and Waves. Simple Harmonic Motion (SHM) Chapter 6: Oscillatory Motion and Waves Hooke s Law (revisited) F = - k x Tthe elastic potential energy of a stretched or compressed spring is PE elastic = kx / Spring-block Note: To consider the potential

More information

Oscillation the vibration of an object. Wave a transfer of energy without a transfer of matter

Oscillation the vibration of an object. Wave a transfer of energy without a transfer of matter Oscillation the vibration of an object Wave a transfer of energy without a transfer of matter Equilibrium Position position of object at rest (mean position) Displacement (x) distance in a particular direction

More information

16 WAVES. Introduction. Chapter Outline

16 WAVES. Introduction. Chapter Outline Chapter 16 Waves 795 16 WAVES Figure 16.1 From the world of renewable energy sources comes the electric power-generating buoy. Although there are many versions, this one converts the up-and-down motion,

More information

Physics 1C. Lecture 12B

Physics 1C. Lecture 12B Physics 1C Lecture 12B SHM: Mathematical Model! Equations of motion for SHM:! Remember, simple harmonic motion is not uniformly accelerated motion SHM: Mathematical Model! The maximum values of velocity

More information

Apr 29, 2013 PHYSICS I Lecture 22

Apr 29, 2013 PHYSICS I Lecture 22 95.141 Apr 29, 2013 PHYSICS I Lecture 22 Course website: faculty.uml.edu/pchowdhury/95.141/ www.masteringphysics.com Course: UML95141SPRING2013 Lecture Capture h"p://echo360.uml.edu/chowdhury2013/physics1spring.html

More information

Oscillations - AP Physics B 1984

Oscillations - AP Physics B 1984 Oscillations - AP Physics B 1984 1. If the mass of a simple pendulum is doubled but its length remains constant, its period is multiplied by a factor of (A) 1 2 (B) (C) 1 1 2 (D) 2 (E) 2 A block oscillates

More information

Content of the course 3NAB0 (see study guide)

Content of the course 3NAB0 (see study guide) Content of the course 3NAB0 (see study guide) 17 November diagnostic test! Week 1 : 14 November Week 2 : 21 November Introduction, units (Ch1), Circuits (Ch25,26) Heat (Ch17), Kinematics (Ch2 3) Week 3:

More information

16 SUPERPOSITION & STANDING WAVES

16 SUPERPOSITION & STANDING WAVES Chapter 6 SUPERPOSITION & STANDING WAVES 6. Superposition of waves Principle of superposition: When two or more waves overlap, the resultant wave is the algebraic sum of the individual waves. Illustration:

More information

single uniform density, but has a step change in density at x = 0, with the string essentially y(x, t) =A sin(!t k 1 x), (5.1)

single uniform density, but has a step change in density at x = 0, with the string essentially y(x, t) =A sin(!t k 1 x), (5.1) Chapter 5 Waves II 5.1 Reflection & Transmission of waves et us now consider what happens to a wave travelling along a string which no longer has a single uniform density, but has a step change in density

More information

BASIC WAVE CONCEPTS. Reading: Main 9.0, 9.1, 9.3 GEM 9.1.1, Giancoli?

BASIC WAVE CONCEPTS. Reading: Main 9.0, 9.1, 9.3 GEM 9.1.1, Giancoli? 1 BASIC WAVE CONCEPTS Reading: Main 9.0, 9.1, 9.3 GEM 9.1.1, 9.1.2 Giancoli? REVIEW SINGLE OSCILLATOR: The oscillation functions you re used to describe how one quantity (position, charge, electric field,

More information

Oscillations. PHYS 101 Previous Exam Problems CHAPTER. Simple harmonic motion Mass-spring system Energy in SHM Pendulums

Oscillations. PHYS 101 Previous Exam Problems CHAPTER. Simple harmonic motion Mass-spring system Energy in SHM Pendulums PHYS 101 Previous Exam Problems CHAPTER 15 Oscillations Simple harmonic motion Mass-spring system Energy in SHM Pendulums 1. The displacement of a particle oscillating along the x axis is given as a function

More information

Schedule for the remainder of class

Schedule for the remainder of class Schedule for the remainder of class 04/25 (today): Regular class - Sound and the Doppler Effect 04/27: Cover any remaining new material, then Problem Solving/Review (ALL chapters) 04/29: Problem Solving/Review

More information

CHAPTER 15 Wave Motion. 1. The speed of the wave is

CHAPTER 15 Wave Motion. 1. The speed of the wave is CHAPTER 15 Wave Motion 1. The speed of the wave is v = fλ = λ/t = (9.0 m)/(4.0 s) = 2.3 m/s. 7. We find the tension from the speed of the wave: v = [F T /(m/l)] 1/2 ; (4.8 m)/(0.85 s) = {F T /[(0.40 kg)/(4.8

More information

Electricity and Magnetism Electric Potential Energy Electric Potential

Electricity and Magnetism Electric Potential Energy Electric Potential Electricity and Magnetism Electric Potential Energy Electric Potential Lana Sheridan De Anza College Jan 23, 2018 Last time implications of Gauss s law introduced electric potential energy in which the

More information

Solution Derivations for Capa #12

Solution Derivations for Capa #12 Solution Derivations for Capa #12 1) A hoop of radius 0.200 m and mass 0.460 kg, is suspended by a point on it s perimeter as shown in the figure. If the hoop is allowed to oscillate side to side as a

More information

NARAYANA JUNIOR COLLEGE

NARAYANA JUNIOR COLLEGE SR IIT ALL STREAMS ADV MODEL DPT-6 Date: 18/04/2016 One (or) More Than One Answer Type: PHYSICS 31. A particle is executing SHM between points -X m and X m, as shown in figure-i. The velocity V(t) of the

More information

The maximum value of the acceleration occurs when sin=1 with magnitude

The maximum value of the acceleration occurs when sin=1 with magnitude SOLUTIONS 1231 T1 Q1. SHM Vibrating Strip (a)(i) For SHM, y = Asin(ωt + φ ) for amplitude A and angular frequency ω. Set φ = 0. (ii) The velocity is given by v = dy dx = ωa cosωt The maximum speed vm occurs

More information

!T = 2# T = 2! " The velocity and acceleration of the object are found by taking the first and second derivative of the position:

!T = 2# T = 2!  The velocity and acceleration of the object are found by taking the first and second derivative of the position: A pendulum swinging back and forth or a mass oscillating on a spring are two examples of (SHM.) SHM occurs any time the position of an object as a function of time can be represented by a sine wave. We

More information

Module P5.6 Introducing waves

Module P5.6 Introducing waves F L E X I B L E L E A R N I N G A P P R O A C H T O P H Y S I C S Module P5.6 1 Opening items 1.1 Module introduction 1.2 Fast track questions 1.3 Ready to study? 2 Travelling transverse waves 2.1 Physical

More information

AP Physics 1 Waves and Simple Harmonic Motion Practice Test

AP Physics 1 Waves and Simple Harmonic Motion Practice Test AP Physics 1 Waves and Simple Harmonic Motion Practice Test MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) An object is attached to a vertical

More information

Phys101 Lectures 28, 29. Wave Motion

Phys101 Lectures 28, 29. Wave Motion Phys101 Lectures 8, 9 Wave Motion Key points: Types of Waves: Transverse and Longitudinal Mathematical Representation of a Traveling Wave The Principle of Superposition Standing Waves; Resonance Ref: 11-7,8,9,10,11,16,1,13,16.

More information

Chapter 5 Oscillatory Motion

Chapter 5 Oscillatory Motion Chapter 5 Oscillatory Motion Simple Harmonic Motion An object moves with simple harmonic motion whenever its acceleration is proportional to its displacement from some equilibrium position and is oppositely

More information

Standing waves. The interference of two sinusoidal waves of the same frequency and amplitude, travel in opposite direction, produce a standing wave.

Standing waves. The interference of two sinusoidal waves of the same frequency and amplitude, travel in opposite direction, produce a standing wave. Standing waves The interference of two sinusoidal waves of the same frequency and amplitude, travel in opposite direction, produce a standing wave. y 1 (x, t) = y m sin(kx ωt), y 2 (x, t) = y m sin(kx

More information

AP Physics 1 Multiple Choice Questions - Chapter 9

AP Physics 1 Multiple Choice Questions - Chapter 9 1 If an object of mass m attached to a light spring is replaced by one of mass 9m, the frequency of the vibrating system changes by what multiplicative factor? a 1/9 b 1/3 c 3 d 9 e 6 2 A mass of 0.40

More information

2016 AP Physics Unit 6 Oscillations and Waves.notebook December 09, 2016

2016 AP Physics Unit 6 Oscillations and Waves.notebook December 09, 2016 AP Physics Unit Six Oscillations and Waves 1 2 A. Dynamics of SHM 1. Force a. since the block is accelerating, there must be a force acting on it b. Hooke's Law F = kx F = force k = spring constant x =

More information

Mass on a Horizontal Spring

Mass on a Horizontal Spring Course- B.Sc. Applied Physical Science (Computer Science) Year- IInd, Sem- IVth Subject Physics Paper- XIVth, Electromagnetic Theory Lecture No. 22, Simple Harmonic Motion Introduction Hello friends in

More information

Standing waves [49 marks]

Standing waves [49 marks] Standing waves [49 marks] 1. The graph shows the variation with time t of the velocity v of an object undergoing simple harmonic motion (SHM). At which velocity does the displacement from the mean position

More information

PREMED COURSE, 14/08/2015 OSCILLATIONS

PREMED COURSE, 14/08/2015 OSCILLATIONS PREMED COURSE, 14/08/2015 OSCILLATIONS PERIODIC MOTIONS Mechanical Metronom Laser Optical Bunjee jumping Electrical Astronomical Pulsar Biological ECG AC 50 Hz Another biological exampe PERIODIC MOTIONS

More information

Lecture Sound Waves Review. Physics Help Q&A: tutor.leiacademy.org. Force on a Charge Moving in a Magnetic Field

Lecture Sound Waves Review. Physics Help Q&A: tutor.leiacademy.org. Force on a Charge Moving in a Magnetic Field Lecture 1101 Sound Waves Review Physics Help Q&A: tutor.leiacademy.org Force on a Charge Moving in a Magnetic Field A charge moving in a magnetic field can have a magnetic force exerted by the B-field.

More information

Maxwell s equations and EM waves. From previous Lecture Time dependent fields and Faraday s Law

Maxwell s equations and EM waves. From previous Lecture Time dependent fields and Faraday s Law Maxwell s equations and EM waves This Lecture More on Motional EMF and Faraday s law Displacement currents Maxwell s equations EM Waves From previous Lecture Time dependent fields and Faraday s Law 1 Radar

More information

Class Average = 71. Counts Scores

Class Average = 71. Counts Scores 30 Class Average = 71 25 20 Counts 15 10 5 0 0 20 10 30 40 50 60 70 80 90 100 Scores Chapter 12 Mechanical Waves and Sound To describe mechanical waves. To study superposition, standing waves, and interference.

More information

Physics 1C. Lecture 13A

Physics 1C. Lecture 13A Physics 1C Lecture 13A Quiz 1 Info! It will be a Scantron test that covers Chapter 12 & 13 up to and including the material to be covered on Today.! You are to write the version of your test on the Scantron

More information

WAVES & SIMPLE HARMONIC MOTION

WAVES & SIMPLE HARMONIC MOTION PROJECT WAVES & SIMPLE HARMONIC MOTION EVERY WAVE, REGARDLESS OF HOW HIGH AND FORCEFUL IT CRESTS, MUST EVENTUALLY COLLAPSE WITHIN ITSELF. - STEFAN ZWEIG What s a Wave? A wave is a wiggle in time and space

More information

Chapter 16: Oscillations

Chapter 16: Oscillations Chapter 16: Oscillations Brent Royuk Phys-111 Concordia University Periodic Motion Periodic Motion is any motion that repeats itself. The Period (T) is the time it takes for one complete cycle of motion.

More information

Standing Waves If the same type of waves move through a common region and their frequencies, f, are the same then so are their wavelengths, λ.

Standing Waves If the same type of waves move through a common region and their frequencies, f, are the same then so are their wavelengths, λ. Standing Waves I the same type o waves move through a common region and their requencies,, are the same then so are their wavelengths,. This ollows rom: v=. Since the waves move through a common region,

More information

Electromagnetic Waves

Electromagnetic Waves Electromagnetic Waves As the chart shows, the electromagnetic spectrum covers an extremely wide range of wavelengths and frequencies. Though the names indicate that these waves have a number of sources,

More information

Partial differentiation

Partial differentiation Partial differentiation Wave equation 1 = Example: Show that the following functions are solutions of the wave equation. In fact, we can show that any functions with the form, for any differentiable functions

More information

Periodic functions: simple harmonic oscillator

Periodic functions: simple harmonic oscillator Periodic functions: simple harmonic oscillator Recall the simple harmonic oscillator (e.g. mass-spring system) d 2 y dt 2 + ω2 0y = 0 Solution can be written in various ways: y(t) = Ae iω 0t y(t) = A cos

More information

= y(x, t) =A cos (!t + kx)

= y(x, t) =A cos (!t + kx) A harmonic wave propagates horizontally along a taut string of length L = 8.0 m and mass M = 0.23 kg. The vertical displacement of the string along its length is given by y(x, t) = 0. m cos(.5 t + 0.8

More information

PHYS 102 Previous Exam Problems

PHYS 102 Previous Exam Problems PHYS 102 Previous Exa Probles CHAPTER 16 Waves Transverse waves on a string Power Interference of waves Standing waves Resonance on a string 1. The displaceent of a string carrying a traveling sinusoidal

More information

In this chapter we will start the discussion on wave phenomena. We will study the following topics:

In this chapter we will start the discussion on wave phenomena. We will study the following topics: Chapter 16 Waves I In this chapter we will start the discussion on wave phenoena. We will study the following topics: Types of waves Aplitude, phase, frequency, period, propagation speed of a wave Mechanical

More information

The object of this experiment is to study systems undergoing simple harmonic motion.

The object of this experiment is to study systems undergoing simple harmonic motion. Chapter 9 Simple Harmonic Motion 9.1 Purpose The object of this experiment is to study systems undergoing simple harmonic motion. 9.2 Introduction This experiment will develop your ability to perform calculations

More information

Chapter 14: Wave Motion Tuesday April 7 th

Chapter 14: Wave Motion Tuesday April 7 th Chapter 14: Wave Motion Tuesday April 7 th Wave superposition Spatial interference Temporal interference (beating) Standing waves and resonance Sources of musical sound Doppler effect Sonic boom Examples,

More information

Chapter 13, Vibrations and Waves. 1. A large spring requires a force of 150 N to compress it only m. What is the spring constant of the spring?

Chapter 13, Vibrations and Waves. 1. A large spring requires a force of 150 N to compress it only m. What is the spring constant of the spring? CHAPTER 13 1. A large spring requires a force of 150 N to compress it only 0.010 m. What is the spring constant of the spring? a. 125 000 N/m b. 15 000 N/m c. 15 N/m d. 1.5 N/m 2. A 0.20-kg object is attached

More information

Important because SHM is a good model to describe vibrations of a guitar string, vibrations of atoms in molecules, etc.

Important because SHM is a good model to describe vibrations of a guitar string, vibrations of atoms in molecules, etc. Simple Harmonic Motion Oscillatory motion under a restoring force proportional to the amount of displacement from equilibrium A restoring force is a force that tries to move the system back to equilibrium

More information

AP physics B - Webreview ch 13 Waves

AP physics B - Webreview ch 13 Waves Name: Class: _ Date: _ AP physics B - Webreview ch 13 Waves Multiple Choice Identify the choice that best completes the statement or answers the question. 1. A large spring requires a force of 150 N to

More information