Waves Standing Waves and Sound Beats Nonsinusoidal Wave Patterns

Size: px
Start display at page:

Download "Waves Standing Waves and Sound Beats Nonsinusoidal Wave Patterns"

Transcription

1 Waves Standing Waves and Sound Beats Nonsinusoidal Wave Patterns Lana Sheridan De Anza College May 24, 2018

2 Last time interference and sound standing waves and sound musical instruments

3 Reminder: Speed of Sound in Air The speed of sound in air at 20 C v = 343 m/s Since the density of air varies a lot with temperature, the speed of sound varies also. For temperatures near room temperature: v = (331 m/s) where T Cel is the temperature in Celsius. 1 + T Cel 273

4 Warm Up Question Quick Quiz Balboa Park in San Diego has an outdoor organ. When the air temperature increases, the fundamental frequency of one of the organ pipes (A) stays the same, (B) goes down, (C) goes up, (D) is impossible to determine. 1 Serway & Jewett, page 548.

5 Warm Up Question Quick Quiz Balboa Park in San Diego has an outdoor organ. When the air temperature increases, the fundamental frequency of one of the organ pipes (A) stays the same, (B) goes down, (C) goes up, (D) is impossible to determine. 1 Serway & Jewett, page 548.

6 Overview standing waves in rods and membranes beats nonsinusoidal waves

7 Standing waves in rods Both longitudinal and transverse standing waves can be created in rods. 550 Chapter 18 Superposition and Standing Waves Illustration of a longitudinal standing oscillation in a rod, free at the ends, and clamped in the middle: L A N A l 1 2L v f 1 l 1 v 2L 18.6 Standing Waves in Standing waves can also be set up in middle and stroked parallel to the rod 18.15a. The oscillations of the element brown The curves brownin curve Figure represents represen of the left-right rod. For displacement clarity, the displaceme of the tion particles as they were in the for rod. air columns. The is fixed by the clamp, whereas the en are free to oscillate. The oscillations i open at both ends. The red-brown line mode, for which the wavelength is 2L speed of longitudinal waves in the ro a Some musical instruments make use clamping of transverse the rod standing at different waves, points. eg. triangle, L glockenspiel, chimes b) is excited by clamping the rod

8 CHAPTER 16 WAVES Standing waves in membranes I to b they four cont each mor the d wav 1 Dust on a kettledrum, Halliday, Resnick, Walker, page 434. The

9 Standing waves in membranes The standing solutions are called Bessel functions, specifically, cylindrical functions.

10 nce phenomena we have studied so far involve the superposition of aves having the same frequency. Because the amplitude of the oscil- Standing waves in membranes tern ich f the than ode. s of ot ic hese Elements of the medium moving out of the page at an instant of time. Elements of the medium moving into the page at an instant of time. 1 Serway & Jewett, page 550.

11 Beats We already considered interference of sine waves when both waves had the same frequency. But what if they do not? Consider two waves with the same amplitude but different frequencies, f, and therefore different angular frequencies, ω: y 1 (x, t) = A sin(k 1 x ω 1 t + φ 1 ) y 2 (x, t) = A sin(k 2 x ω 2 t + φ 2 )

12 Beats We already considered interference of sine waves when both waves had the same frequency. But what if they do not? Consider two waves with the same amplitude but different frequencies, f, and therefore different angular frequencies, ω: y 1 (x, t) = A sin(k 1 x ω 1 t + φ 1 ) y 2 (x, t) = A sin(k 2 x ω 2 t + φ 2 ) Now let s consider the effect of these waves at the point x = 0, and suppose φ 1 = φ 2 = π 2. (This choice is arbitrary, but we must pick a point in space.)

13 Beats The wave functions at this point are: y 1 (0, t) = A sin( π 2 ω 1t) = A cos(2πf 1 t) y 2 (0, t) = A sin( π 2 ω 2t) = A cos(2πf 2 t) Using the trig identity: ( ) ( ) θ ψ θ + ψ cos θ + cos ψ = 2 cos cos 2 2 y(x, t) = y 1 + y 2 [ = 2A cos ( 2π f 1 f 2 2 time-varying amplitude )] ( t cos 2π f ) 1 + f 2 t 2 fast oscillation

14 Beats allows us to write the expression for y as [ ( y(x, t) = 2π f )] ( 1 f 2 t cos 2π f ) 1 + f 2 y 5 c2a cos 2pa f 1 2 f 2 btd cos 2pa f 1 1 f 2 bt t (18.10) Graphs of the individual waves and the resultant wave are shown in Figure From y vs the t factors (position, in Equation x fixed): 18.10, we see that the resultant wave has an effective y cos a 1 cos b 5 2 cos a a 2 b 1 b b cos aa 2 2 b a t y b t t = 1 2(f 1 f 2 ) t = 3 2(f 1 f 2 ) t = 5 2(f 1 f 2 )

15 Beats The time difference between minima is t = 1 f 1 f 2. Thus the frequency of the beats is f beat = f 1 f 2 If f 1 and f 2 are similar the beat frequency is much smaller than either f 1 or f 2.

16 Beats The time difference between minima is t = 1 f 1 f 2. Thus the frequency of the beats is f beat = f 1 f 2 If f 1 and f 2 are similar the beat frequency is much smaller than either f 1 or f 2. Humans cannot hear beats if f beat 30 Hz. If the two frequencies are very different we hear a chord. If the two frequencies are very close, we hear periodic variations in the sound level. This is used to tune musical instruments. When instruments are coming into tune with each other the beats get less and less frequent, and vanish entirely when they are perfectly in tune.

17 Question A tuning fork is known to vibrate with frequency 262 Hz. When it is sounded along with a mandolin string, four beats are heard every second. Next, a bit of tape is put onto each tine of the tuning fork, and the tuning fork now produces five beats per second with the same mandolin string. What is the frequency of the string? (A) 257 Hz (B) 258 Hz (C) 266 Hz (D) 267 Hz 1 Serway & Jewett, objective question 7.

18 Question A tuning fork is known to vibrate with frequency 262 Hz. When it is sounded along with a mandolin string, four beats are heard every second. Next, a bit of tape is put onto each tine of the tuning fork, and the tuning fork now produces five beats per second with the same mandolin string. What is the frequency of the string? (A) 257 Hz (B) 258 Hz (C) 266 Hz (D) 267 Hz 1 Serway & Jewett, objective question 7.

19 Nonsinusoidal Periodic Waves Not all periodic wave functions are pure, single-frequency sinusoidal functions.

20 rect because pitch is not a physical property of the sound. Nonsinusoidal Periodic Waves Not all periodic wave functions are pure, single-frequency sinusoidal functions. a t b Tuning fork t For example this is why a flute and a clarinet playing the same note still sound a bit different. Flute Other harmonics in addition to the fundamental are sounded. c t Clarinet

21 Summary, Announcements, and HW standing waves in rods and membranes beats introducing non-sine oscillations Collected Homework, due Tuesday, May 29. Drop Deadline Friday, June 1. 3rd Test Friday, June 1. No Class on Monday May 28. (Memorial day) Homework Serway & Jewett: Ch 18, onward from page 555. OQs: 3, 5; CQs: 1, 3; Probs: 55, 57, 69

Waves Standing Waves Sound Waves

Waves Standing Waves Sound Waves Waves Standing Waves Sound Waves Lana Sheridan De Anza College May 23, 2018 Last time finish up reflection and transmission standing waves Warm Up Question: Standing Waves and Resonance In the following

More information

Waves Standing Waves and Sound Beats Nonsinusoidal Wave Patterns

Waves Standing Waves and Sound Beats Nonsinusoidal Wave Patterns Waves Standing Waves and Sound Beats Nonsinusoidal Wave Patterns Lana Sheridan De Anza College May 31, 2017 Last time finish up reflection and transmission standing waves sound interference and sound Overview

More information

Waves Standing Waves and Sound

Waves Standing Waves and Sound Waves Standing Waves and Sound Lana Sheridan De Anza College May 24, 2018 Last time sound Overview interference and sound standing waves and sound musical instruments Speed of Sound waves v = B ρ Compare

More information

Waves Solutions to the Wave Equation Sine Waves Transverse Speed and Acceleration

Waves Solutions to the Wave Equation Sine Waves Transverse Speed and Acceleration Waves Solutions to the Wave Equation Sine Waves Transverse Speed and Acceleration Lana Sheridan De Anza College May 17, 2018 Last time pulse propagation the wave equation Overview solutions to the wave

More information

Waves Sine Waves Energy Transfer Interference Reflection and Transmission

Waves Sine Waves Energy Transfer Interference Reflection and Transmission Waves Sine Waves Energy Transfer Interference Reflection and Transmission Lana Sheridan De Anza College May 22, 2017 Last time kinds of waves wave speed on a string pulse propagation the wave equation

More information

Doppler E ect Bow and Shock Waves

Doppler E ect Bow and Shock Waves Doppler E ect Bow and Shock Waves Lana Sheridan De Anza College May 30, 2018 Last time nonsinusoidal waves intensity of a wave sound level Overview sound level & perception of sound with frequency the

More information

Superposition and Standing Waves

Superposition and Standing Waves Physics 1051 Lecture 9 Superposition and Standing Waves Lecture 09 - Contents 14.5 Standing Waves in Air Columns 14.6 Beats: Interference in Time 14.7 Non-sinusoidal Waves Trivia Questions 1 How many wavelengths

More information

Sound Waves. Sound waves are longitudinal waves traveling through a medium Sound waves are produced from vibrating objects.

Sound Waves. Sound waves are longitudinal waves traveling through a medium Sound waves are produced from vibrating objects. Sound Waves Sound waves are longitudinal waves traveling through a medium Sound waves are produced from vibrating objects Introduction Sound Waves: Molecular View When sound travels through a medium, there

More information

Waves Wave Speed on a String Pulse Propagation The Wave Equation

Waves Wave Speed on a String Pulse Propagation The Wave Equation Waves Wave Speed on a String Pulse Propagation The Wave Equation Lana Sheridan De Anza College May 16, 2018 Last time oscillations simple harmonic motion (SHM) spring systems energy in SHM introducing

More information

Producing a Sound Wave. Chapter 14. Using a Tuning Fork to Produce a Sound Wave. Using a Tuning Fork, cont.

Producing a Sound Wave. Chapter 14. Using a Tuning Fork to Produce a Sound Wave. Using a Tuning Fork, cont. Producing a Sound Wave Chapter 14 Sound Sound waves are longitudinal waves traveling through a medium A tuning fork can be used as an example of producing a sound wave Using a Tuning Fork to Produce a

More information

Waves Pulse Propagation The Wave Equation

Waves Pulse Propagation The Wave Equation Waves Pulse Propagation The Wave Equation Lana Sheridan De Anza College May 16, 2018 Last time oscillations simple harmonic motion (SHM) spring systems energy in SHM introducing waves kinds of waves wave

More information

16 SUPERPOSITION & STANDING WAVES

16 SUPERPOSITION & STANDING WAVES Chapter 6 SUPERPOSITION & STANDING WAVES 6. Superposition of waves Principle of superposition: When two or more waves overlap, the resultant wave is the algebraic sum of the individual waves. Illustration:

More information

Waves Wave Behaviors Sound

Waves Wave Behaviors Sound Waves Wave Behaviors Sound Lana Sheridan De Anza College Dec 5, 2018 Last time pendula and SHM waves kinds of waves sine waves Overview refraction diffraction standing waves sound and musical instruments

More information

Mechanics Oscillations Simple Harmonic Motion

Mechanics Oscillations Simple Harmonic Motion Mechanics Oscillations Simple Harmonic Motion Lana Sheridan De Anza College Dec 3, 2018 Last time gravity Newton s universal law of gravitation gravitational field gravitational potential energy Overview

More information

1 f. result from periodic disturbance same period (frequency) as source Longitudinal or Transverse Waves Characterized by

1 f. result from periodic disturbance same period (frequency) as source Longitudinal or Transverse Waves Characterized by result from periodic disturbance same period (frequency) as source Longitudinal or Transverse Waves Characterized by amplitude (how far do the bits move from their equilibrium positions? Amplitude of MEDIUM)

More information

Chapter 15 Mechanical Waves

Chapter 15 Mechanical Waves Chapter 15 Mechanical Waves 1 Types of Mechanical Waves This chapter and the next are about mechanical waves waves that travel within some material called a medium. Waves play an important role in how

More information

Oscillation the vibration of an object. Wave a transfer of energy without a transfer of matter

Oscillation the vibration of an object. Wave a transfer of energy without a transfer of matter Oscillation the vibration of an object Wave a transfer of energy without a transfer of matter Equilibrium Position position of object at rest (mean position) Displacement (x) distance in a particular direction

More information

Chapter 14: Wave Motion Tuesday April 7 th

Chapter 14: Wave Motion Tuesday April 7 th Chapter 14: Wave Motion Tuesday April 7 th Wave superposition Spatial interference Temporal interference (beating) Standing waves and resonance Sources of musical sound Doppler effect Sonic boom Examples,

More information

CLASS 2 CLASS 2. Section 13.5

CLASS 2 CLASS 2. Section 13.5 CLASS 2 CLASS 2 Section 13.5 Simple Pendulum The simple pendulum is another example of a system that exhibits simple harmonic motion The force is the component of the weight tangent to the path of motion

More information

Dynamics Energy and Work

Dynamics Energy and Work Dynamics Energy and Work Lana Sheridan De Anza College Oct 24, 2017 Last Time resistive forces: Drag Equation Drag Equation, One more point What if the object is not dropped from rest? (See Ch 6, prob

More information

Chapter 17. Superposition & Standing Waves

Chapter 17. Superposition & Standing Waves Chapter 17 Superposition & Standing Waves Superposition & Standing Waves Superposition of Waves Standing Waves MFMcGraw-PHY 2425 Chap 17Ha - Superposition - Revised: 10/13/2012 2 Wave Interference MFMcGraw-PHY

More information

Exam tomorrow on Chapter 15, 16, and 17 (Oscilla;ons and Waves 1 &2)

Exam tomorrow on Chapter 15, 16, and 17 (Oscilla;ons and Waves 1 &2) Exam tomorrow on Chapter 15, 16, and 17 (Oscilla;ons and Waves 1 &2) What to study: Quiz 6 Homework problems for Chapters 15 & 16 Material indicated in the following review slides Other Specific things:

More information

Thermodynamics Molecular Model of a Gas Molar Heat Capacities

Thermodynamics Molecular Model of a Gas Molar Heat Capacities Thermodynamics Molecular Model of a Gas Molar Heat Capacities Lana Sheridan De Anza College May 3, 2018 Last time modeling an ideal gas at the microscopic level rms speed of molecules equipartition of

More information

Thermodynamics Heat Transfer

Thermodynamics Heat Transfer Thermodynamics Heat Transfer Lana Sheridan De Anza College April 30, 2018 Last time heat transfer conduction Newton s law of cooling Overview continue heat transfer mechanisms conduction over a distance

More information

is a What you Hear The Pressure Wave sets the Ear Drum into Vibration.

is a What you Hear The Pressure Wave sets the Ear Drum into Vibration. is a What you Hear The ear converts sound energy to mechanical energy to a nerve impulse which is transmitted to the brain. The Pressure Wave sets the Ear Drum into Vibration. electroencephalogram v S

More information

Homework Book. Wave Properties. Huijia Physics Homework Book 1 Semester 2. Name: Homeroom: Physics Class:

Homework Book. Wave Properties. Huijia Physics Homework Book 1 Semester 2. Name: Homeroom: Physics Class: Homework Book Wave Properties Huijia Physics Homework Book 1 Semester 2 Name: Homeroom: Physics Class: Week 1 Reflection, Refraction, wave equations 1. If the wavelength of an incident wave is 1.5cm and

More information

No Lecture on Wed. But, there is a lecture on Thursday, at your normal recitation time, so please be sure to come!

No Lecture on Wed. But, there is a lecture on Thursday, at your normal recitation time, so please be sure to come! Announcements Quiz 6 tomorrow Driscoll Auditorium Covers: Chapter 15 (lecture and homework, look at Questions, Checkpoint, and Summary) Chapter 16 (Lecture material covered, associated Checkpoints and

More information

Downloaded from

Downloaded from Chapter 15 (Waves) Multiple Choice Questions Single Correct Answer Type Q1. Water waves produced by a motorboat sailing in water are (a) neither longitudinal nor transverse (b) both longitudinal and transverse

More information

Extended or Composite Systems Systems of Many Particles Deformation

Extended or Composite Systems Systems of Many Particles Deformation Extended or Composite Systems Systems of Many Particles Deformation Lana Sheridan De Anza College Nov 15, 2017 Overview last center of mass example systems of many particles deforming systems Continuous

More information

CH 17. Waves II (Sound)

CH 17. Waves II (Sound) CH 17 Waves II (Sound) [SHIVOK SP211] November 1, 2015 I. Sound Waves A. Wavefronts are surfaces over which the oscillations due to the sound wave have the same value; such surfaces are represented by

More information

Rotation Angular Momentum

Rotation Angular Momentum Rotation Angular Momentum Lana Sheridan De Anza College Nov 28, 2017 Last time rolling motion Overview Definition of angular momentum relation to Newton s 2nd law angular impulse angular momentum of rigid

More information

SIMPLE HARMONIC MOTION

SIMPLE HARMONIC MOTION WAVES SIMPLE HARMONIC MOTION Simple Harmonic Motion (SHM) Vibration about an equilibrium position in which a restoring force is proportional to the displacement from equilibrium TYPES OF SHM THE PENDULUM

More information

Chapter 18 Solutions

Chapter 18 Solutions Chapter 18 Solutions 18.1 he resultant wave function has the form y A 0 cos φ sin kx ω t + φ (a) A A 0 cos φ (5.00) cos (π /4) 9.4 m f ω π 100π π 600 Hz *18. We write the second wave function as hen y

More information

Homework #4 Reminder Due Wed. 10/6

Homework #4 Reminder Due Wed. 10/6 Homework #4 Reminder Chap. 6 Concept: 36 Problems 14, 18 Chap. 8 Concept: 8, 12, 30, 34 Problems 2, 10 Due Wed. 10/6 Chapter 8: Wave Motion A wave is a sort of motion But unlike motion of particles A propagating

More information

Schedule for the remainder of class

Schedule for the remainder of class Schedule for the remainder of class 04/25 (today): Regular class - Sound and the Doppler Effect 04/27: Cover any remaining new material, then Problem Solving/Review (ALL chapters) 04/29: Problem Solving/Review

More information

Lecture 30. Chapter 21 Examine two wave superposition (-ωt and +ωt) Examine two wave superposition (-ω 1 t and -ω 2 t)

Lecture 30. Chapter 21 Examine two wave superposition (-ωt and +ωt) Examine two wave superposition (-ω 1 t and -ω 2 t) To do : Lecture 30 Chapter 21 Examine two wave superposition (-ωt and +ωt) Examine two wave superposition (-ω 1 t and -ω 2 t) Review for final (Location: CHEM 1351, 7:45 am ) Tomorrow: Review session,

More information

Physics 1C Lecture 14B. Today: End of Chapter 14 Start of Chapter 27

Physics 1C Lecture 14B. Today: End of Chapter 14 Start of Chapter 27 Physics 1C Lecture 14B Today: End of Chapter 14 Start of Chapter 27 ! Example Wave Interference! Two strings with linear densities of 5.0g/m are stretched over pulleys, adjusted to have vibrating lengths

More information

Class Average = 71. Counts Scores

Class Average = 71. Counts Scores 30 Class Average = 71 25 20 Counts 15 10 5 0 0 20 10 30 40 50 60 70 80 90 100 Scores Chapter 12 Mechanical Waves and Sound To describe mechanical waves. To study superposition, standing waves, and interference.

More information

Chapter 16 Waves. Types of waves Mechanical waves. Electromagnetic waves. Matter waves

Chapter 16 Waves. Types of waves Mechanical waves. Electromagnetic waves. Matter waves Chapter 16 Waves Types of waves Mechanical waves exist only within a material medium. e.g. water waves, sound waves, etc. Electromagnetic waves require no material medium to exist. e.g. light, radio, microwaves,

More information

Einstein Classes, Unit No. 102, 103, Vardhman Ring Road Plaza, Vikas Puri Extn., Outer Ring Road New Delhi , Ph. : ,

Einstein Classes, Unit No. 102, 103, Vardhman Ring Road Plaza, Vikas Puri Extn., Outer Ring Road New Delhi , Ph. : , PW W A V E S PW CONCEPTS C C Equation of a Travelling Wave The equation of a wave traveling along the positive x-ax given by y = f(x vt) If the wave travelling along the negative x-ax, the wave funcion

More information

Chapter 8: Wave Motion. Homework #4 Reminder. But what moves? Wave properties. Waves can reflect. Waves can pass through each other

Chapter 8: Wave Motion. Homework #4 Reminder. But what moves? Wave properties. Waves can reflect. Waves can pass through each other Homework #4 Reminder Chap. 6 Concept: 36 Problems 14, 18 Chap. 8 Concept: 8, 12, 30, 34 Problems 2, 10 Chapter 8: Wave Motion A wave is a sort of motion But unlike motion of particles A propagating disturbance

More information

Linear Momentum Center of Mass

Linear Momentum Center of Mass Linear Momentum Center of Mass Lana Sheridan De Anza College Nov 14, 2017 Last time the ballistic pendulum 2D collisions center of mass finding the center of mass Overview center of mass examples center

More information

Waves Encountering Barriers

Waves Encountering Barriers Waves Encountering Barriers Reflection and Refraction: When a wave is incident on a boundary that separates two regions of different wave speed, part of the wave is reflected and part is transmitted. Figure

More information

Phys101 Lectures 28, 29. Wave Motion

Phys101 Lectures 28, 29. Wave Motion Phys101 Lectures 8, 9 Wave Motion Key points: Types of Waves: Transverse and Longitudinal Mathematical Representation of a Traveling Wave The Principle of Superposition Standing Waves; Resonance Ref: 11-7,8,9,10,11,16,1,13,16.

More information

Physics General Physics. Lecture 25 Waves. Fall 2016 Semester Prof. Matthew Jones

Physics General Physics. Lecture 25 Waves. Fall 2016 Semester Prof. Matthew Jones Physics 22000 General Physics Lecture 25 Waves Fall 2016 Semester Prof. Matthew Jones 1 Final Exam 2 3 Mechanical Waves Waves and wave fronts: 4 Wave Motion 5 Two Kinds of Waves 6 Reflection of Waves When

More information

Oscillations Simple Harmonic Motion

Oscillations Simple Harmonic Motion Oscillations Simple Harmonic Motion Lana Sheridan De Anza College Dec 1, 2017 Overview oscillations simple harmonic motion (SHM) spring systems energy in SHM pendula damped oscillations Oscillations and

More information

42 TRAVELING WAVES (A) (B) (C) (D) (E) (F) (G)

42 TRAVELING WAVES (A) (B) (C) (D) (E) (F) (G) 42 TRAVELING WAVES 1. Wave progagation Source Disturbance Medium (D) Speed (E) Traveling waves (F) Mechanical waves (G) Electromagnetic waves (D) (E) (F) (G) 2. Transverse Waves have the classic sinusoidal

More information

Einstein Classes, Unit No. 102, 103, Vardhman Ring Road Plaza, Vikas Puri Extn., Outer Ring Road New Delhi , Ph. : ,

Einstein Classes, Unit No. 102, 103, Vardhman Ring Road Plaza, Vikas Puri Extn., Outer Ring Road New Delhi , Ph. : , PW W A V E S Syllabus : Wave motion. Longitudinal and transverse waves, speed of wave. Dplacement relation for a progressive wave. Principle of superposition of waves, reflection of waves, Standing waves

More information

Nicholas J. Giordano. Chapter 13 Sound

Nicholas J. Giordano.  Chapter 13 Sound Nicholas J. Giordano www.cengage.com/physics/giordano Chapter 13 Sound Sound Sounds waves are an important example of wave motion Sound is central to hearing, speech, music and many other daily activities

More information

Chapter 16 Waves in One Dimension

Chapter 16 Waves in One Dimension Chapter 16 Waves in One Dimension Slide 16-1 Reading Quiz 16.05 f = c Slide 16-2 Reading Quiz 16.06 Slide 16-3 Reading Quiz 16.07 Heavier portion looks like a fixed end, pulse is inverted on reflection.

More information

(Total 1 mark) IB Questionbank Physics 1

(Total 1 mark) IB Questionbank Physics 1 1. A transverse wave travels from left to right. The diagram below shows how, at a particular instant of time, the displacement of particles in the medium varies with position. Which arrow represents the

More information

Page # Physics 103: Lecture 26 Sound. Lecture 26, Preflight 2. Lecture 26, Preflight 1. Producing a Sound Wave. Sound from a Tuning Fork

Page # Physics 103: Lecture 26 Sound. Lecture 26, Preflight 2. Lecture 26, Preflight 1. Producing a Sound Wave. Sound from a Tuning Fork Physics 103: Lecture 6 Sound Producing a Sound Wave Sound waves are longitudinal waves traveling through a medium A tuning fork can be used as an example of producing a sound wave A tuning fork will produce

More information

Lorik educatinal academy vidya nagar

Lorik educatinal academy vidya nagar Lorik educatinal academy vidya nagar ========================================================== PHYSICS-Wave Motion & Sound Assignment. A parachutist jumps from the top of a very high tower with a siren

More information

Chapter 16: Oscillations

Chapter 16: Oscillations Chapter 16: Oscillations Brent Royuk Phys-111 Concordia University Periodic Motion Periodic Motion is any motion that repeats itself. The Period (T) is the time it takes for one complete cycle of motion.

More information

General Physics I. Lecture 14: Sinusoidal Waves. Prof. WAN, Xin ( 万歆 )

General Physics I. Lecture 14: Sinusoidal Waves. Prof. WAN, Xin ( 万歆 ) General Physics I Lecture 14: Sinusoidal Waves Prof. WAN, Xin ( 万歆 ) xinwan@zju.edu.cn http://zimp.zju.edu.cn/~xinwan/ Motivation When analyzing a linear medium that is, one in which the restoring force

More information

PHYSICS I1 EXAM 3 FALL 2005

PHYSICS I1 EXAM 3 FALL 2005 PHYSCS 1 EXAM 3 FALL 2005 37. A 0.02 kg mass is attached to a massless spring as shown to the right and vibrates with simple harmonic motion with an amplitude of 5.0 cm. The spring constant is 300 Nlm.

More information

Waves Part 3A: Standing Waves

Waves Part 3A: Standing Waves Waves Part 3A: Standing Waves Last modified: 24/01/2018 Contents Links Contents Superposition Standing Waves Definition Nodes Anti-Nodes Standing Waves Summary Standing Waves on a String Standing Waves

More information

Exam 3 Review. Chapter 10: Elasticity and Oscillations A stress will deform a body and that body can be set into periodic oscillations.

Exam 3 Review. Chapter 10: Elasticity and Oscillations A stress will deform a body and that body can be set into periodic oscillations. Exam 3 Review Chapter 10: Elasticity and Oscillations stress will deform a body and that body can be set into periodic oscillations. Elastic Deformations of Solids Elastic objects return to their original

More information

Oscillations - AP Physics B 1984

Oscillations - AP Physics B 1984 Oscillations - AP Physics B 1984 1. If the mass of a simple pendulum is doubled but its length remains constant, its period is multiplied by a factor of (A) 1 2 (B) (C) 1 1 2 (D) 2 (E) 2 A block oscillates

More information

Unit 4 Waves and Sound Waves and Their Properties

Unit 4 Waves and Sound Waves and Their Properties Lesson35.notebook May 27, 2013 Unit 4 Waves and Sound Waves and Their Properties Today's goal: I can explain the difference between transverse and longitudinal waves and their properties. Waves are a disturbances

More information

Electricity and Magnetism Electric Potential Energy Electric Potential

Electricity and Magnetism Electric Potential Energy Electric Potential Electricity and Magnetism Electric Potential Energy Electric Potential Lana Sheridan De Anza College Jan 23, 2018 Last time implications of Gauss s law introduced electric potential energy in which the

More information

Announcements 12 Dec 2013

Announcements 12 Dec 2013 Announcements 12 Dec 2013 1. Tutorial lab info: I think it will be open during reading days and finals, but the TAs have their own exams to worry about so staffing may vary significantly from normal. 2.

More information

LECTURE 5 WAVES ON STRINGS & HARMONIC WAVES. Instructor: Kazumi Tolich

LECTURE 5 WAVES ON STRINGS & HARMONIC WAVES. Instructor: Kazumi Tolich LECTURE 5 WAVES ON STRINGS & HARMONIC WAVES Instructor: Kazumi Tolich Lecture 5 2 Reading chapter 14.2 14.3 Waves on a string Speed of waves on a string Reflections Harmonic waves Speed of waves 3 The

More information

Physics 231 Lecture 28

Physics 231 Lecture 28 Physics 231 Lecture 28 Main points of today s lecture: Reflection of waes. rigid end inerted wae free end non-inerted wae Standing waes on string: n 2L f n λn n 1, 2, 3,,, 2L n Standing wae in air columns:

More information

Rotation Work and Power of Rotation Rolling Motion Examples and Review

Rotation Work and Power of Rotation Rolling Motion Examples and Review Rotation Work and Power of Rotation Rolling Motion Examples and Review Lana Sheridan De Anza College Nov 22, 2017 Last time applications of moments of inertia Atwood machine with massive pulley kinetic

More information

Final Exam Concept Map

Final Exam Concept Map Final Exam Concept Map Rule of thumb to study for any comprehensive final exam - start with what you know - look at the quiz problems. If you did not do well on the quizzes, you should certainly learn

More information

Kinematics Motion in 1-Dimension

Kinematics Motion in 1-Dimension Kinematics Motion in 1-Dimension Lana Sheridan De Anza College Jan 16, 2018 Last time unit conversions (non-si units) order of magnitude calculations how to solve problems Overview 1-D kinematics quantities

More information

Partial differentiation

Partial differentiation Partial differentiation Wave equation 1 = Example: Show that the following functions are solutions of the wave equation. In fact, we can show that any functions with the form, for any differentiable functions

More information

CHAPTERS WAVES SOUND STATIONARY WAVES ACOUSTICSOF BUILDINGS

CHAPTERS WAVES SOUND STATIONARY WAVES ACOUSTICSOF BUILDINGS CET -IPUC: PHYSICS Unit VI : WAVES and SOUND CHAPTERS OSCILLATIONS WAVES SOUND STATIONARY WAVES ACOUSTICSOF BUILDINGS Particle acceleration: a = Aω 2 sinωt= ω 2 y Maximum acceleration: a max = A ω 2 The

More information

Linear Momentum 2D Collisions Extended or Composite Systems Center of Mass

Linear Momentum 2D Collisions Extended or Composite Systems Center of Mass Linear Momentum 2D Collisions Extended or Composite Systems Center of Mass Lana Sheridan De Anza College Nov 13, 2017 Last time inelastic collisions perfectly inelastic collisions the ballistic pendulum

More information

Physics 1C. Lecture 13A

Physics 1C. Lecture 13A Physics 1C Lecture 13A Quiz 1 Info! It will be a Scantron test that covers Chapter 12 & 13 up to and including the material to be covered on Today.! You are to write the version of your test on the Scantron

More information

Raymond A. Serway Chris Vuille. Chapter Thirteen. Vibrations and Waves

Raymond A. Serway Chris Vuille. Chapter Thirteen. Vibrations and Waves Raymond A. Serway Chris Vuille Chapter Thirteen Vibrations and Waves Periodic Motion and Waves Periodic motion is one of the most important kinds of physical behavior Will include a closer look at Hooke

More information

Superposition & Interference

Superposition & Interference Lecture 29, Dec. 10 To do : Chapter 21 Understand beats as the superposition of two waves of unequal frequency. Prep for exam. Room 2103 Chamberlain Hall Sections: 602, 604, 605, 606, 610, 611, 612, 614

More information

Physics 25 Section 2 Exam #1 February 1, 2012 Dr. Alward

Physics 25 Section 2 Exam #1 February 1, 2012 Dr. Alward 1.The tension in a taut rope is increased by a factor of 9, and the mass per length is reduced to one-fourth of its former value.. How does the speed of wave pulses on the rope change, if at all? A) The

More information

Final Exam Notes 8am WednesdayDecember 16, 2015 Physics 1320 Music & Physics Prof. Tunks & Olness

Final Exam Notes 8am WednesdayDecember 16, 2015 Physics 1320 Music & Physics Prof. Tunks & Olness Final Exam Notes 8am WednesdayDecember 16, 2015 Physics 1320 Music & Physics Prof. Tunks & Olness 1)This contains review material for the Final exam. It consists of review sheets for exams 1 and 2, as

More information

A longitudinal wave travels through a medium from left to right.

A longitudinal wave travels through a medium from left to right. 1. This question is about simple harmonic oscillations. A longitudinal wave travels through a medium from left to right. Graph 1 shows the variation with time t of the displacement x of a particle P in

More information

UNIVERSITY OF SASKATCHEWAN Department of Physics and Engineering Physics

UNIVERSITY OF SASKATCHEWAN Department of Physics and Engineering Physics UNIVERSITY OF SASKATCHEWAN Department of Physics and Engineering Physics Physics 111.6 MIDTERM TEST #3 January 25, 2007 Time: 90 minutes NAME: (Last) Please Print (Given) STUDENT NO.: LECTURE SECTION (please

More information

Linear Momentum Inelastic Collisions

Linear Momentum Inelastic Collisions Linear Momentum Inelastic Collisions Lana Sheridan De Anza College Nov 9, 2017 Last time collisions elastic collisions Overview inelastic collisions the ballistic pendulum Linear Momentum and Collisions

More information

Chapter 16 Waves in One Dimension

Chapter 16 Waves in One Dimension Lecture Outline Chapter 16 Waves in One Dimension Slide 16-1 Chapter 16: Waves in One Dimension Chapter Goal: To study the kinematic and dynamics of wave motion, i.e., the transport of energy through a

More information

-Electromagnetic. Waves - disturbance that propagates through space & time - usually with transfer of energy -Mechanical.

-Electromagnetic. Waves - disturbance that propagates through space & time - usually with transfer of energy -Mechanical. Waves Waves - disturbance that propagates through space & time - usually with transfer of energy -Mechanical requires a medium -Electromagnetic no medium required Mechanical waves: sound, water, seismic.

More information

Chapter 16 Mechanical Waves

Chapter 16 Mechanical Waves Chapter 6 Mechanical Waves A wave is a disturbance that travels, or propagates, without the transport of matter. Examples: sound/ultrasonic wave, EM waves, and earthquake wave. Mechanical waves, such as

More information

Mechanics Units, Dimensional Analysis, and Unit Conversion

Mechanics Units, Dimensional Analysis, and Unit Conversion Mechanics Units, Dimensional Analysis, and Unit Conversion Lana Sheridan De Anza College Sept 25, 2018 Last time introduced the course basic ideas about science and physics Overview introduce SI units

More information

PHYSICS 220. Lecture 21. Textbook Sections Lecture 21 Purdue University, Physics 220 1

PHYSICS 220. Lecture 21. Textbook Sections Lecture 21 Purdue University, Physics 220 1 PHYSICS 220 Lecture 21 Sound Textbook Sections 13.1 13.7 Lecture 21 Purdue University, Physics 220 1 Overview Last Lecture Interference and Diffraction Constructive, destructive Diffraction: bending of

More information

Sound. Measure the speed of sound in air by means of resonance in a tube; Measure the speed of sound in a metal rod using Kundt s tube.

Sound. Measure the speed of sound in air by means of resonance in a tube; Measure the speed of sound in a metal rod using Kundt s tube. Sound Purpose Problem 1 Problem 2 Measure the speed of sound in air by means of resonance in a tube; Measure the speed of sound in a metal rod using Kundt s tube. Introduction and Theory When a vibrating

More information

Old Exams - Questions Ch-16

Old Exams - Questions Ch-16 Old Exams - Questions Ch-16 T081 : Q1. The displacement of a string carrying a traveling sinusoidal wave is given by: y( x, t) = y sin( kx ω t + ϕ). At time t = 0 the point at x = 0 m has a displacement

More information

Physics 121H Fall Homework #15 23-November-2015 Due Date : 2-December-2015

Physics 121H Fall Homework #15 23-November-2015 Due Date : 2-December-2015 Reading : Chapters 16 and 17 Note: Reminder: Physics 121H Fall 2015 Homework #15 23-November-2015 Due Date : 2-December-2015 This is a two-week homework assignment that will be worth 2 homework grades

More information

Electricity and Magnetism Coulomb s Law

Electricity and Magnetism Coulomb s Law Electricity and Magnetism Coulomb s Law Lana Sheridan De Anza College Jan 10, 2018 Last time introduced charge conductors insulators induced charge Warm Up. Do both balloons A and B have a charge? ntry

More information

Kinematics Kinematic Equations and Falling Objects

Kinematics Kinematic Equations and Falling Objects Kinematics Kinematic Equations and Falling Objects Lana Sheridan De Anza College Sept 28, 2017 Last time kinematic quantities relating graphs Overview derivation of kinematics equations using kinematics

More information

Optics Polarization. Lana Sheridan. June 20, De Anza College

Optics Polarization. Lana Sheridan. June 20, De Anza College Optics Polarization Lana Sheridan De Anza College June 20, 2018 Last time interference from thin films Newton s rings Overview the interferometer and gravitational waves polarization birefringence 7 Michelson

More information

Physics 111. Lecture 31 (Walker: ) Wave Superposition Wave Interference Standing Waves Physics of Musical Instruments Temperature

Physics 111. Lecture 31 (Walker: ) Wave Superposition Wave Interference Standing Waves Physics of Musical Instruments Temperature Physics 111 Lecture 31 (Walker: 14.7-8) Wave Superposition Wave Interference Physics of Musical Instruments Temperature Superposition and Interference Waves of small amplitude traveling through the same

More information

Transverse wave - the disturbance is perpendicular to the propagation direction (e.g., wave on a string)

Transverse wave - the disturbance is perpendicular to the propagation direction (e.g., wave on a string) 1 Part 5: Waves 5.1: Harmonic Waves Wave a disturbance in a medium that propagates Transverse wave - the disturbance is perpendicular to the propagation direction (e.g., wave on a string) Longitudinal

More information

Test 3 Preparation Questions

Test 3 Preparation Questions Test 3 Preparation Questions A1. Which statement is true concerning an object executing simple harmonic motion? (A) Its velocity is never zero. (B) Its acceleration is never zero. (C) Its velocity and

More information

Thermodynamics Heat Capacity Phase Changes

Thermodynamics Heat Capacity Phase Changes Thermodynamics Heat Capacity Phase Changes Lana Sheridan De Anza College April 24, 2018 Last time finish applying the ideal gas equation thermal energy introduced heat capacity Overview heat capacity phase

More information

Chapter 11 Vibrations and Waves

Chapter 11 Vibrations and Waves Chapter 11 Vibrations and Waves 11-1 Simple Harmonic Motion If an object vibrates or oscillates back and forth over the same path, each cycle taking the same amount of time, the motion is called periodic.

More information

Physics 142 Mechanical Waves Page 1. Mechanical Waves

Physics 142 Mechanical Waves Page 1. Mechanical Waves Physics 142 Mechanical Waves Page 1 Mechanical Waves This set of notes contains a review of wave motion in mechanics, emphasizing the mathematical formulation that will be used in our discussion of electromagnetic

More information

-Electromagnetic. Waves - disturbance that propagates through space & time - usually with transfer of energy -Mechanical.

-Electromagnetic. Waves - disturbance that propagates through space & time - usually with transfer of energy -Mechanical. Waves Waves - disturbance that propagates through space & time - usually with transfer of energy -Mechanical requires a medium -Electromagnetic no medium required Mechanical waves: sound, water, seismic.

More information

Quiz on Chapters 13-15

Quiz on Chapters 13-15 Quiz on Chapters 13-15 Final Exam, Thursday May 3, 8:00 10:00PM ANH 1281 (Anthony Hall). Seat assignments TBD RCPD students: Thursday May 3, 5:00 9:00PM, BPS 3239. Email will be sent. Alternate Final Exam,

More information

Electricity and Magnetism Electric Field

Electricity and Magnetism Electric Field Electricity and Magnetism Electric Field Lana Sheridan De Anza College Jan 11, 2018 Last time Coulomb s Law force from many charges R/2 +8Q Warm Up Question (c) articles. p Fig. 21-19 Question 9. 10 In

More information

The velocity (v) of the transverse wave in the string is given by the relation: Time taken by the disturbance to reach the other end, t =

The velocity (v) of the transverse wave in the string is given by the relation: Time taken by the disturbance to reach the other end, t = Question 15.1: A string of mass 2.50 kg is under a tension of 200 N. The length of the stretched string is 20.0 m. If the transverse jerk is struck at one end of the string, how long does the disturbance

More information

Transverse Wave - Only in solids (having rigidity), in liquids possible only on the surface. Longitudinal Wave

Transverse Wave - Only in solids (having rigidity), in liquids possible only on the surface. Longitudinal Wave Wave is when one particle passes its motion to its neighbour. The Elasticity and Inertia of the medium play important role in the propagation of wave. The elasticity brings the particle momentarily at

More information