Traveling Waves: Energy Transport

Size: px
Start display at page:

Download "Traveling Waves: Energy Transport"

Transcription

1 Traveling Waves: Energ Transport wave is a traveling disturbance that transports energ but not matter. Intensit: I P power rea Intensit I power per unit area (measured in Watts/m 2 ) Intensit is proportional to the square of the amplitude! v Variation with Distance: If sound is emitted isotropicall (i.e. equal intensit in all directions) from a point source with power P source and if the mechanical energ of the wave is conserved then I P 4πr source 2 (intensit from isotropic point source) Source P S r Sphere with radius r Speed of Propagation: The speed of an mechanical wave depends on both the inertial propert of the medium (stores kinetic energ) and the elastic propert (stores potential energ). v elastic inertial (wave speed) v F T µ Transverse wave on a string: F T string tension µ M/L linear mass densit Universit of Florida PHY 2053 Page 1

2 Constructing Traveling Waves f(x) at time t0 f(x-v v x 0 Constructing Traveling Waves: To construct a wave with shape f(x) at time t 0 traveling to the right with speed v simpl make the replacement: Traveling Harmonic Waves: Harmonic waves have the form sin(kx + ) at time t 0, where k is the "wave number, k 2π/λ, λ is the "wave length". and is the "amplitude". To construct a harmonic wave traveling to the right with speed v, replace x b x-vt as follows: sin( k( x v + ) sin( kx ωt + ) ( x, ( x, sin( kx ωt + ) sin( kx + ωt + ) where ω kv. The phase angle determines at x t 0, (xt0) sin. If (xt0) 0 then 0. PHY 2053 Page 2 Universit of Florida x vt λ sin(kx) kx (radians) Speed of propagation! Harmonic wave traveling to the right Harmonic wave traveling to the left v ω k

3 Waves: Mathematical Description -axis ( x, sin( sin( kx ω wave traveling to the right (x, Φ kx-ωt Φ Vector with length undergoing uniform circular motion with phase Φ kx ωt. The projection onto the -axis gives sin(kx ω. If t 0 then -axis ( x, t 0) sin( kx) λ (x) Φ kx x One circular revolution corresponds to Φ 2π kλ, and hence k 2π/λ ( wave number ). Universit of Florida PHY 2053 Page 3

4 Waves: Mathematical Description -axis ( x, sin( sin( kx ω wave traveling to the right (x, Φ kx-ωt Φ Vector with length undergoing uniform circular motion with phase Φ kx ωt. The projection onto the -axis gives sin(kx ω. If x 0 then -axis T ( x 0, sin( ω ( Φ -ωt t One circular revolution corresponds to Φ 2π ωt and hence T 2π/ω ( period ). Universit of Florida PHY 2053 Page 4

5 Waves: Mathematical Description In General -axis ( x, sin( sin( kx ω t + ) wave traveling to the right (x, Φ kx-ωt+ Φ Overall phase Φ kx ωt +. (x, -axis Φ kx+ωt+ ( x, sin( sin( kx +ω t + ) wave traveling to the left Φ Period (in s) T 2π ω Universit of Florida Frequenc (in Hz) f 1 T ngular Frequenc (in rad/s) ω 2πf Wave Number (in rad/m) k 2π λ Wave Speed (in m/s) ω v λf k PHY 2053 Page 5

6 Waves: Mathematical Description ( x, sin( sin( kx ω t + ) wave traveling to the right v node x point on string n th node Waves Propagation: node is a point on the wave where (x, vanishes: Φ kx ωt + nπ n 0,1,2,L kx1 ωt1 + nπ k( x2 x2) ω ( t2 t1) dx ω v node kx2 ωt2 + nπ k x ω t dt k (wave speed) Transverse Speed & cceleration: For transverse waves the points on the string move up and down while the wave moves to the right. transverse speed of a point on the string d u ω cos( kx ωt + ) dt u ω max Universit of Florida transverse acceleration of a point on the string du 2 a ω sin( kx ωt + ) dt a ω 2 max SHM PHY 2053 Page 6 a 2 ω

7 Waves: Example Problems transverse wave on a taught string has amplitude, wavelength λ and speed v. point on the string onl moves in the transverse direction. If its maximum transverse speed is u max, what is the ratio u max /v? nswer: 2π/λ The function (x, cos(kx - ω describes a wave on a taut string with the x-axis parallel to the string. The wavelength is λ 3.14 cm and the amplitude is 0.1 cm. If the maximum transverse speed of an point on the string is 10 m/s, what is the speed of propagation of the travelling wave in the x-direction? nswer: 50 m/s umax ω umax ω ω ωλ v k 2π v ω k u ω 2π max k v ω / k λ λumax (3.14cm)(10m / s) _ v 50m / s 2π 2π (0.1cm) Universit of Florida PHY 2053 Page 7

8 Waves: Example Problems sinusoidal wave moving along a string is shown twice in the figure. Crest travels in the positive direction along the x-axis and moves a distance d 12 cm in 3 ms. If the tick marks along the x-axis are 10 cm apart, what is the frequenc of the traveling wave? nswer: 100 Hz v d 12cm 40m s t 3ms / v 40m / s f 100Hz λ 0.4m λ 4 x 4(10 cm) 0. 4m Universit of Florida PHY 2053 Page 8

α(t) = ω 2 θ (t) κ I ω = g L L g T = 2π mgh rot com I rot

α(t) = ω 2 θ (t) κ I ω = g L L g T = 2π mgh rot com I rot α(t) = ω 2 θ (t) ω = κ I ω = g L T = 2π L g ω = mgh rot com I rot T = 2π I rot mgh rot com Chapter 16: Waves Mechanical Waves Waves and particles Vibration = waves - Sound - medium vibrates - Surface ocean

More information

Chapter 16 Waves. Types of waves Mechanical waves. Electromagnetic waves. Matter waves

Chapter 16 Waves. Types of waves Mechanical waves. Electromagnetic waves. Matter waves Chapter 16 Waves Types of waves Mechanical waves exist only within a material medium. e.g. water waves, sound waves, etc. Electromagnetic waves require no material medium to exist. e.g. light, radio, microwaves,

More information

Chapter 15 Mechanical Waves

Chapter 15 Mechanical Waves Chapter 15 Mechanical Waves 1 Types of Mechanical Waves This chapter and the next are about mechanical waves waves that travel within some material called a medium. Waves play an important role in how

More information

Traveling Harmonic Waves

Traveling Harmonic Waves Traveling Harmonic Waves 6 January 2016 PHYC 1290 Department of Physics and Atmospheric Science Functional Form for Traveling Waves We can show that traveling waves whose shape does not change with time

More information

1. Types of Waves. There are three main types of waves:

1. Types of Waves. There are three main types of waves: Chapter 16 WAVES I 1. Types of Waves There are three main types of waves: https://youtu.be/kvc7obkzq9u?t=3m49s 1. Mechanical waves: These are the most familiar waves. Examples include water waves, sound

More information

No Lecture on Wed. But, there is a lecture on Thursday, at your normal recitation time, so please be sure to come!

No Lecture on Wed. But, there is a lecture on Thursday, at your normal recitation time, so please be sure to come! Announcements Quiz 6 tomorrow Driscoll Auditorium Covers: Chapter 15 (lecture and homework, look at Questions, Checkpoint, and Summary) Chapter 16 (Lecture material covered, associated Checkpoints and

More information

1 f. result from periodic disturbance same period (frequency) as source Longitudinal or Transverse Waves Characterized by

1 f. result from periodic disturbance same period (frequency) as source Longitudinal or Transverse Waves Characterized by result from periodic disturbance same period (frequency) as source Longitudinal or Transverse Waves Characterized by amplitude (how far do the bits move from their equilibrium positions? Amplitude of MEDIUM)

More information

Chapter 16 - Waves. I m surfing the giant life wave. -William Shatner. David J. Starling Penn State Hazleton PHYS 213. Chapter 16 - Waves

Chapter 16 - Waves. I m surfing the giant life wave. -William Shatner. David J. Starling Penn State Hazleton PHYS 213. Chapter 16 - Waves I m surfing the giant life wave. -William Shatner David J. Starling Penn State Hazleton PHYS 213 There are three main types of waves in physics: (a) Mechanical waves: described by Newton s laws and propagate

More information

Transverse wave - the disturbance is perpendicular to the propagation direction (e.g., wave on a string)

Transverse wave - the disturbance is perpendicular to the propagation direction (e.g., wave on a string) 1 Part 5: Waves 5.1: Harmonic Waves Wave a disturbance in a medium that propagates Transverse wave - the disturbance is perpendicular to the propagation direction (e.g., wave on a string) Longitudinal

More information

Chapter 16 Mechanical Waves

Chapter 16 Mechanical Waves Chapter 6 Mechanical Waves A wave is a disturbance that travels, or propagates, without the transport of matter. Examples: sound/ultrasonic wave, EM waves, and earthquake wave. Mechanical waves, such as

More information

Waves 2006 Physics 23. Armen Kocharian Lecture 3: Sep

Waves 2006 Physics 23. Armen Kocharian Lecture 3: Sep Waves 2006 Physics 23 Armen Kocharian Lecture 3: Sep 12. 2006 Last Time What is a wave? A "disturbance" that moves through space. Mechanical waves through a medium. Transverse vs. Longitudinal e.g., string

More information

CHAPTER 17 HINT FOR EXERCISE 4

CHAPTER 17 HINT FOR EXERCISE 4 CHAPTER 17 HINT FOR EXERCISE 4 Use ω =2πf to find the angular frequency and v = ω/k to find the angular wave number. The position and time dependent terms in the expression for the displacement must have

More information

Chapter 16 Waves in One Dimension

Chapter 16 Waves in One Dimension Chapter 16 Waves in One Dimension Slide 16-1 Reading Quiz 16.05 f = c Slide 16-2 Reading Quiz 16.06 Slide 16-3 Reading Quiz 16.07 Heavier portion looks like a fixed end, pulse is inverted on reflection.

More information

Waves Part 1: Travelling Waves

Waves Part 1: Travelling Waves Waves Part 1: Travelling Waves Last modified: 15/05/2018 Links Contents Travelling Waves Harmonic Waves Wavelength Period & Frequency Summary Example 1 Example 2 Example 3 Example 4 Transverse & Longitudinal

More information

Oscillatory Motion and Wave Motion

Oscillatory Motion and Wave Motion Oscillatory Motion and Wave Motion Oscillatory Motion Simple Harmonic Motion Wave Motion Waves Motion of an Object Attached to a Spring The Pendulum Transverse and Longitudinal Waves Sinusoidal Wave Function

More information

is a What you Hear The Pressure Wave sets the Ear Drum into Vibration.

is a What you Hear The Pressure Wave sets the Ear Drum into Vibration. is a What you Hear The ear converts sound energy to mechanical energy to a nerve impulse which is transmitted to the brain. The Pressure Wave sets the Ear Drum into Vibration. electroencephalogram v S

More information

Chapter 16 Waves in One Dimension

Chapter 16 Waves in One Dimension Lecture Outline Chapter 16 Waves in One Dimension Slide 16-1 Chapter 16: Waves in One Dimension Chapter Goal: To study the kinematic and dynamics of wave motion, i.e., the transport of energy through a

More information

Class Average = 71. Counts Scores

Class Average = 71. Counts Scores 30 Class Average = 71 25 20 Counts 15 10 5 0 0 20 10 30 40 50 60 70 80 90 100 Scores Chapter 12 Mechanical Waves and Sound To describe mechanical waves. To study superposition, standing waves, and interference.

More information

Waves Part 3A: Standing Waves

Waves Part 3A: Standing Waves Waves Part 3A: Standing Waves Last modified: 24/01/2018 Contents Links Contents Superposition Standing Waves Definition Nodes Anti-Nodes Standing Waves Summary Standing Waves on a String Standing Waves

More information

Phys101 Lectures 28, 29. Wave Motion

Phys101 Lectures 28, 29. Wave Motion Phys101 Lectures 8, 9 Wave Motion Key points: Types of Waves: Transverse and Longitudinal Mathematical Representation of a Traveling Wave The Principle of Superposition Standing Waves; Resonance Ref: 11-7,8,9,10,11,16,1,13,16.

More information

Waves Solutions to the Wave Equation Sine Waves Transverse Speed and Acceleration

Waves Solutions to the Wave Equation Sine Waves Transverse Speed and Acceleration Waves Solutions to the Wave Equation Sine Waves Transverse Speed and Acceleration Lana Sheridan De Anza College May 17, 2018 Last time pulse propagation the wave equation Overview solutions to the wave

More information

y y m y t 0 t > 3 t 0 x y t y m Harmonic waves Only pattern travels, not medium. Travelling wave f(x vt) is a wave travelling at v in +x dir n :

y y m y t 0 t > 3 t 0 x y t y m Harmonic waves Only pattern travels, not medium. Travelling wave f(x vt) is a wave travelling at v in +x dir n : Waves and Sound for PHYS1169. Joe Wolfe, UNSW Waves are moving pattern of displacements. Ma transmit energ and signals. 1169 Sllabus Travelling waves, superposition and interference, velocit, reflection

More information

KEELE UNIVERSITY PHYSICS/ASTROPHYSICS MODULE PHY OSCILLATIONS AND WAVES PRACTICE EXAM

KEELE UNIVERSITY PHYSICS/ASTROPHYSICS MODULE PHY OSCILLATIONS AND WAVES PRACTICE EXAM KEELE UNIVERSITY PHYSICS/ASTROPHYSICS MODULE PHY-10012 OSCILLATIONS AND WAVES PRACTICE EXAM Candidates should attempt ALL of PARTS A and B, and TWO questions from PART C. PARTS A and B should be answered

More information

Oscillations. PHYS 101 Previous Exam Problems CHAPTER. Simple harmonic motion Mass-spring system Energy in SHM Pendulums

Oscillations. PHYS 101 Previous Exam Problems CHAPTER. Simple harmonic motion Mass-spring system Energy in SHM Pendulums PHYS 101 Previous Exam Problems CHAPTER 15 Oscillations Simple harmonic motion Mass-spring system Energy in SHM Pendulums 1. The displacement of a particle oscillating along the x axis is given as a function

More information

Chapter 15. Mechanical Waves

Chapter 15. Mechanical Waves Chapter 15 Mechanical Waves A wave is any disturbance from an equilibrium condition, which travels or propagates with time from one region of space to another. A harmonic wave is a periodic wave in which

More information

Important because SHM is a good model to describe vibrations of a guitar string, vibrations of atoms in molecules, etc.

Important because SHM is a good model to describe vibrations of a guitar string, vibrations of atoms in molecules, etc. Simple Harmonic Motion Oscillatory motion under a restoring force proportional to the amount of displacement from equilibrium A restoring force is a force that tries to move the system back to equilibrium

More information

Old Exams - Questions Ch-16

Old Exams - Questions Ch-16 Old Exams - Questions Ch-16 T081 : Q1. The displacement of a string carrying a traveling sinusoidal wave is given by: y( x, t) = y sin( kx ω t + ϕ). At time t = 0 the point at x = 0 m has a displacement

More information

1.47 Hz. T. (c) A sinusoidal wave travels one wavelength in one period: 1.40m 2.06m s. T

1.47 Hz. T. (c) A sinusoidal wave travels one wavelength in one period: 1.40m 2.06m s. T 1. (a) The motion from maximum displacement to zero is one-fourth of a cycle so 0.170 s is one-fourth of a period. The period is T = 4(0.170 s) = 0.680 s. (b) The frequency is the reciprocal of the period:

More information

Lecture 17. Mechanical waves. Transverse waves. Sound waves. Standing Waves.

Lecture 17. Mechanical waves. Transverse waves. Sound waves. Standing Waves. Lecture 17 Mechanical waves. Transverse waves. Sound waves. Standing Waves. What is a wave? A wave is a traveling disturbance that transports energy but not matter. Examples: Sound waves (air moves back

More information

Oscillation the vibration of an object. Wave a transfer of energy without a transfer of matter

Oscillation the vibration of an object. Wave a transfer of energy without a transfer of matter Oscillation the vibration of an object Wave a transfer of energy without a transfer of matter Equilibrium Position position of object at rest (mean position) Displacement (x) distance in a particular direction

More information

(TRAVELLING) 1D WAVES. 1. Transversal & Longitudinal Waves

(TRAVELLING) 1D WAVES. 1. Transversal & Longitudinal Waves (TRAVELLING) 1D WAVES 1. Transversal & Longitudinal Waves Objectives After studying this chapter you should be able to: Derive 1D wave equation for transversal and longitudinal Relate propagation speed

More information

Faculty of Computers and Information Fayoum University 2017/ 2018 Physics 2 (Waves)

Faculty of Computers and Information Fayoum University 2017/ 2018 Physics 2 (Waves) Faculty of Computers and Information Fayoum University 2017/ 2018 Physics 2 (Waves) 3/10/2018 1 Using these definitions, we see that Example : A sinusoidal wave traveling in the positive x direction has

More information

1D Wave PDE. Introduction to Partial Differential Equations part of EM, Scalar and Vector Fields module (PHY2064) Richard Sear.

1D Wave PDE. Introduction to Partial Differential Equations part of EM, Scalar and Vector Fields module (PHY2064) Richard Sear. Introduction to Partial Differential Equations part of EM, Scalar and Vector Fields module (PHY2064) November 12, 2018 Wave equation in one dimension This lecture Wave PDE in 1D Method of Separation of

More information

CHAPTER 15 Wave Motion. 1. The speed of the wave is

CHAPTER 15 Wave Motion. 1. The speed of the wave is CHAPTER 15 Wave Motion 1. The speed of the wave is v = fλ = λ/t = (9.0 m)/(4.0 s) = 2.3 m/s. 7. We find the tension from the speed of the wave: v = [F T /(m/l)] 1/2 ; (4.8 m)/(0.85 s) = {F T /[(0.40 kg)/(4.8

More information

Oscillations. Simple Harmonic Motion of a Mass on a Spring The equation of motion for a mass m is attached to a spring of constant k is

Oscillations. Simple Harmonic Motion of a Mass on a Spring The equation of motion for a mass m is attached to a spring of constant k is Dr. Alain Brizard College Physics I (PY 10) Oscillations Textbook Reference: Chapter 14 sections 1-8. Simple Harmonic Motion of a Mass on a Spring The equation of motion for a mass m is attached to a spring

More information

PHYSICS 149: Lecture 22

PHYSICS 149: Lecture 22 PHYSICS 149: Lecture 22 Chapter 11: Waves 11.1 Waves and Energy Transport 11.2 Transverse and Longitudinal Waves 11.3 Speed of Transverse Waves on a String 11.4 Periodic Waves Lecture 22 Purdue University,

More information

Mechanical Waves. 3: Mechanical Waves (Chapter 16) Waves: Space and Time

Mechanical Waves. 3: Mechanical Waves (Chapter 16) Waves: Space and Time 3: Mechanical Waves (Chapter 6) Phys3, A Dr. Robert MacDonald Mechanical Waves A mechanical wave is a travelling disturbance in a medium (like water, string, earth, Slinky, etc). Move some part of the

More information

Einstein Classes, Unit No. 102, 103, Vardhman Ring Road Plaza, Vikas Puri Extn., Outer Ring Road New Delhi , Ph. : ,

Einstein Classes, Unit No. 102, 103, Vardhman Ring Road Plaza, Vikas Puri Extn., Outer Ring Road New Delhi , Ph. : , PW W A V E S PW CONCEPTS C C Equation of a Travelling Wave The equation of a wave traveling along the positive x-ax given by y = f(x vt) If the wave travelling along the negative x-ax, the wave funcion

More information

Oscillations. Oscillations and Simple Harmonic Motion

Oscillations. Oscillations and Simple Harmonic Motion Oscillations AP Physics C Oscillations and Simple Harmonic Motion 1 Equilibrium and Oscillations A marble that is free to roll inside a spherical bowl has an equilibrium position at the bottom of the bowl

More information

Physics 1C. Lecture 12C

Physics 1C. Lecture 12C Physics 1C Lecture 12C Simple Pendulum The simple pendulum is another example of simple harmonic motion. Making a quick force diagram of the situation, we find:! The tension in the string cancels out with

More information

What is a Wave. Why are Waves Important? Power PHYSICS 220. Lecture 19. Waves

What is a Wave. Why are Waves Important? Power PHYSICS 220. Lecture 19. Waves PHYSICS 220 Lecture 19 Waves What is a Wave A wave is a disturbance that travels away from its source and carries energy. A wave can transmit energy from one point to another without transporting any matter

More information

Physics 2101 S c e t c i cti n o 3 n 3 March 31st Announcements: Quiz today about Ch. 14 Class Website:

Physics 2101 S c e t c i cti n o 3 n 3 March 31st Announcements: Quiz today about Ch. 14 Class Website: Physics 2101 Section 3 March 31 st Announcements: Quiz today about Ch. 14 Class Website: http://www.phys.lsu.edu/classes/spring2010/phys2101 3/ http://www.phys.lsu.edu/~jzhang/teaching.html Simple Harmonic

More information

Chapter 14 (Oscillations) Key concept: Downloaded from

Chapter 14 (Oscillations) Key concept: Downloaded from Chapter 14 (Oscillations) Multiple Choice Questions Single Correct Answer Type Q1. The displacement of a particle is represented by the equation. The motion of the particle is (a) simple harmonic with

More information

Physics 121H Fall Homework #15 23-November-2015 Due Date : 2-December-2015

Physics 121H Fall Homework #15 23-November-2015 Due Date : 2-December-2015 Reading : Chapters 16 and 17 Note: Reminder: Physics 121H Fall 2015 Homework #15 23-November-2015 Due Date : 2-December-2015 This is a two-week homework assignment that will be worth 2 homework grades

More information

Born of the Wave Equation

Born of the Wave Equation Corso di Laurea in Fisica - UNITS ISTITUZIONI DI FISICA PER IL SISTEMA TERRA Born of the Wave Equation FABIO ROMANELLI Department of Mathematics & Geosciences Universit of Trieste romanel@units.it http://moodle.units.it/course/view.php?id=887

More information

Chapter 13. Hooke s Law: F = - kx Periodic & Simple Harmonic Motion Springs & Pendula Waves Superposition. Next Week!

Chapter 13. Hooke s Law: F = - kx Periodic & Simple Harmonic Motion Springs & Pendula Waves Superposition. Next Week! Chapter 13 Hooke s Law: F = - kx Periodic & Simple Harmonic Motion Springs & Pendula Waves Superposition Next Week! Review Physics 2A: Springs, Pendula & Circular Motion Elastic Systems F = kx Small Vibrations

More information

Chapter 18 Solutions

Chapter 18 Solutions Chapter 18 Solutions 18.1 he resultant wave function has the form y A 0 cos φ sin kx ω t + φ (a) A A 0 cos φ (5.00) cos (π /4) 9.4 m f ω π 100π π 600 Hz *18. We write the second wave function as hen y

More information

Traveling Waves. Wave variables are λ v 1) Wavelength, λ y 2) Period, T 3) Frequency, f=1/t 4) Amplitude, A x 5) Velocity, v T

Traveling Waves. Wave variables are λ v 1) Wavelength, λ y 2) Period, T 3) Frequency, f=1/t 4) Amplitude, A x 5) Velocity, v T 1 Traveling Waves Having discussed simple harmonic motion, we have learned many of the concepts associated with waves. Particles which participate in waves often undergo simple harmonic motion. Section

More information

Chap 11. Vibration and Waves. The impressed force on an object is proportional to its displacement from it equilibrium position.

Chap 11. Vibration and Waves. The impressed force on an object is proportional to its displacement from it equilibrium position. Chap 11. Vibration and Waves Sec. 11.1 - Simple Harmonic Motion The impressed force on an object is proportional to its displacement from it equilibrium position. F x This restoring force opposes the change

More information

Standing waves. The interference of two sinusoidal waves of the same frequency and amplitude, travel in opposite direction, produce a standing wave.

Standing waves. The interference of two sinusoidal waves of the same frequency and amplitude, travel in opposite direction, produce a standing wave. Standing waves The interference of two sinusoidal waves of the same frequency and amplitude, travel in opposite direction, produce a standing wave. y 1 (x, t) = y m sin(kx ωt), y 2 (x, t) = y m sin(kx

More information

frequency, 20.0 Hz, and the short-wavelength sound has the highest frequency, 20.0 khz. SET UP: For sound in air, v = 344 m/s. 17.

frequency, 20.0 Hz, and the short-wavelength sound has the highest frequency, 20.0 khz. SET UP: For sound in air, v = 344 m/s. 17. MECHANICAL WAVES 5 5 IDENTIFY: v= fλ T = / f is the time for one complete vibration SET UP: The frequenc of the note one octave higher is 568 Hz 344 m/s EXECUTE: (a) λ = v 0439 m f = 784 Hz = T = = 8 ms

More information

Section 1 Simple Harmonic Motion. Chapter 11. Preview. Objectives Hooke s Law Sample Problem Simple Harmonic Motion The Simple Pendulum

Section 1 Simple Harmonic Motion. Chapter 11. Preview. Objectives Hooke s Law Sample Problem Simple Harmonic Motion The Simple Pendulum Section 1 Simple Harmonic Motion Preview Objectives Hooke s Law Sample Problem Simple Harmonic Motion The Simple Pendulum Section 1 Simple Harmonic Motion Objectives Identify the conditions of simple harmonic

More information

Section 1 Simple Harmonic Motion. The student is expected to:

Section 1 Simple Harmonic Motion. The student is expected to: Section 1 Simple Harmonic Motion TEKS The student is expected to: 7A examine and describe oscillatory motion and wave propagation in various types of media Section 1 Simple Harmonic Motion Preview Objectives

More information

Physics 142 Mechanical Waves Page 1. Mechanical Waves

Physics 142 Mechanical Waves Page 1. Mechanical Waves Physics 142 Mechanical Waves Page 1 Mechanical Waves This set of notes contains a review of wave motion in mechanics, emphasizing the mathematical formulation that will be used in our discussion of electromagnetic

More information

1 Maxwell s Equations

1 Maxwell s Equations PHYS 280 Lecture problems outline Spring 2015 Electricity and Magnetism We previously hinted a links between electricity and magnetism, finding that one can induce electric fields by changing the flux

More information

Physics 2101 Section 6 November 8 th : finish Ch.16

Physics 2101 Section 6 November 8 th : finish Ch.16 Physics 2101 Section 6 November 8 th : finish Ch.16 Announcement: Exam # 3 (November 13 th ) Lockett 10 (6 7 pm) Nicholson 109, 119 (extra time 5:30 7:30 pm) Covers Chs. 11.7-15 Lecture Notes: http://www.phys.lsu.edu/classes/fall2012/phys2101-6/

More information

Waves Sine Waves Energy Transfer Interference Reflection and Transmission

Waves Sine Waves Energy Transfer Interference Reflection and Transmission Waves Sine Waves Energy Transfer Interference Reflection and Transmission Lana Sheridan De Anza College May 22, 2017 Last time kinds of waves wave speed on a string pulse propagation the wave equation

More information

PHYS 102 Previous Exam Problems

PHYS 102 Previous Exam Problems PHYS 102 Previous Exa Probles CHAPTER 16 Waves Transverse waves on a string Power Interference of waves Standing waves Resonance on a string 1. The displaceent of a string carrying a traveling sinusoidal

More information

One-Dimensional Wave Propagation (without distortion or attenuation)

One-Dimensional Wave Propagation (without distortion or attenuation) Phsics 306: Waves Lecture 1 1//008 Phsics 306 Spring, 008 Waves and Optics Sllabus To get a good grade: Stud hard Come to class Email: satapal@phsics.gmu.edu Surve of waves One-Dimensional Wave Propagation

More information

Apr 29, 2013 PHYSICS I Lecture 22

Apr 29, 2013 PHYSICS I Lecture 22 95.141 Apr 29, 2013 PHYSICS I Lecture 22 Course website: faculty.uml.edu/pchowdhury/95.141/ www.masteringphysics.com Course: UML95141SPRING2013 Lecture Capture h"p://echo360.uml.edu/chowdhury2013/physics1spring.html

More information

Mechanics Oscillations Simple Harmonic Motion

Mechanics Oscillations Simple Harmonic Motion Mechanics Oscillations Simple Harmonic Motion Lana Sheridan De Anza College Dec 3, 2018 Last time gravity Newton s universal law of gravitation gravitational field gravitational potential energy Overview

More information

Einstein Classes, Unit No. 102, 103, Vardhman Ring Road Plaza, Vikas Puri Extn., Outer Ring Road New Delhi , Ph. : ,

Einstein Classes, Unit No. 102, 103, Vardhman Ring Road Plaza, Vikas Puri Extn., Outer Ring Road New Delhi , Ph. : , PW W A V E S Syllabus : Wave motion. Longitudinal and transverse waves, speed of wave. Dplacement relation for a progressive wave. Principle of superposition of waves, reflection of waves, Standing waves

More information

PHYSICS 149: Lecture 24

PHYSICS 149: Lecture 24 PHYSICS 149: Lecture 24 Chapter 11: Waves 11.8 Reflection and Refraction 11.10 Standing Waves Chapter 12: Sound 12.1 Sound Waves 12.4 Standing Sound Waves Lecture 24 Purdue University, Physics 149 1 ILQ

More information

EXAM 1. WAVES, OPTICS AND MODERN PHYSICS 15% of the final mark

EXAM 1. WAVES, OPTICS AND MODERN PHYSICS 15% of the final mark EXAM 1 WAVES, OPTICS AND MODERN PHYSICS 15% of the final mark Autumn 2018 Name: Each multiple-choice question is worth 3 marks. 1. A light beam is deflected by two mirrors, as shown. The incident beam

More information

(Total 1 mark) IB Questionbank Physics 1

(Total 1 mark) IB Questionbank Physics 1 1. A transverse wave travels from left to right. The diagram below shows how, at a particular instant of time, the displacement of particles in the medium varies with position. Which arrow represents the

More information

Maxwell s equations and EM waves. From previous Lecture Time dependent fields and Faraday s Law

Maxwell s equations and EM waves. From previous Lecture Time dependent fields and Faraday s Law Maxwell s equations and EM waves This Lecture More on Motional EMF and Faraday s law Displacement currents Maxwell s equations EM Waves From previous Lecture Time dependent fields and Faraday s Law 1 Radar

More information

AP Physics 1 Waves and Simple Harmonic Motion Practice Test

AP Physics 1 Waves and Simple Harmonic Motion Practice Test AP Physics 1 Waves and Simple Harmonic Motion Practice Test MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) An object is attached to a vertical

More information

Class 15 : Electromagnetic Waves

Class 15 : Electromagnetic Waves Class 15 : Electromagnetic Waves Wave equations Why do electromagnetic waves arise? What are their properties? How do they transport energy from place to place? Recap (1) In a region of space containing

More information

WAVES & SIMPLE HARMONIC MOTION

WAVES & SIMPLE HARMONIC MOTION PROJECT WAVES & SIMPLE HARMONIC MOTION EVERY WAVE, REGARDLESS OF HOW HIGH AND FORCEFUL IT CRESTS, MUST EVENTUALLY COLLAPSE WITHIN ITSELF. - STEFAN ZWEIG What s a Wave? A wave is a wiggle in time and space

More information

Chapter 15 Periodic Motion

Chapter 15 Periodic Motion Chapter 15 Periodic Motion Slide 1-1 Chapter 15 Periodic Motion Concepts Slide 1-2 Section 15.1: Periodic motion and energy Section Goals You will learn to Define the concepts of periodic motion, vibration,

More information

16 WAVES. Introduction. Chapter Outline

16 WAVES. Introduction. Chapter Outline Chapter 16 Waves 795 16 WAVES Figure 16.1 From the world of renewable energy sources comes the electric power-generating buoy. Although there are many versions, this one converts the up-and-down motion,

More information

FOUNDATION STUDIES EXAMINATIONS June PHYSICS Semester One February Main

FOUNDATION STUDIES EXAMINATIONS June PHYSICS Semester One February Main 1 FOUNDATION STUDIES EXAMINATIONS June 2015 PHYSICS Semester One February Main Time allowed 2 hours for writing 10 minutes for reading This paper consists of 6 questions printed on 10 pages. PLEASE CHECK

More information

2016 AP Physics Unit 6 Oscillations and Waves.notebook December 09, 2016

2016 AP Physics Unit 6 Oscillations and Waves.notebook December 09, 2016 AP Physics Unit Six Oscillations and Waves 1 2 A. Dynamics of SHM 1. Force a. since the block is accelerating, there must be a force acting on it b. Hooke's Law F = kx F = force k = spring constant x =

More information

Question Mark Max

Question Mark Max PHYS 1021: FINAL EXAM Page 1 of 11 PHYS 1021: FINAL EXAM 12 December, 2013 Instructor: Ania Harlick Student Name: Total: / 100 ID Number: INSTRUCTIONS 1. There are nine questions each worth 12.5 marks.

More information

Lorik educatinal academy vidya nagar

Lorik educatinal academy vidya nagar Lorik educatinal academy vidya nagar ========================================================== PHYSICS-Wave Motion & Sound Assignment. A parachutist jumps from the top of a very high tower with a siren

More information

Chapter 15 - Oscillations

Chapter 15 - Oscillations The pendulum of the mind oscillates between sense and nonsense, not between right and wrong. -Carl Gustav Jung David J. Starling Penn State Hazleton PHYS 211 Oscillatory motion is motion that is periodic

More information

Differential equation of wave motion

Differential equation of wave motion Differential equation of wave motion Lecture-10 A plane progressive wave is one which travels onward through the medium in a given direction without attenuation, i.e., with its amplitude constant. y asin

More information

Slide 1 / 70. Simple Harmonic Motion

Slide 1 / 70. Simple Harmonic Motion Slide 1 / 70 Simple Harmonic Motion Slide 2 / 70 SHM and Circular Motion There is a deep connection between Simple Harmonic Motion (SHM) and Uniform Circular Motion (UCM). Simple Harmonic Motion can be

More information

CHAPTER 11 VIBRATIONS AND WAVES

CHAPTER 11 VIBRATIONS AND WAVES CHAPTER 11 VIBRATIONS AND WAVES http://www.physicsclassroom.com/class/waves/u10l1a.html UNITS Simple Harmonic Motion Energy in the Simple Harmonic Oscillator The Period and Sinusoidal Nature of SHM The

More information

Waves. 1. Types of waves. Mechanical Waves

Waves. 1. Types of waves. Mechanical Waves Waves 1. Types of waves 1. Mechanical Waves 2. Waves, a mathematical formulation 1. A basic wave 3. Speed of a traveling wave 1. Wave speed on a real string. 4. Energy 1. The wave equation 5. Sound waves

More information

Fundamentals Physics. Chapter 15 Oscillations

Fundamentals Physics. Chapter 15 Oscillations Fundamentals Physics Tenth Edition Halliday Chapter 15 Oscillations 15-1 Simple Harmonic Motion (1 of 20) Learning Objectives 15.01 Distinguish simple harmonic motion from other types of periodic motion.

More information

Exam tomorrow on Chapter 15, 16, and 17 (Oscilla;ons and Waves 1 &2)

Exam tomorrow on Chapter 15, 16, and 17 (Oscilla;ons and Waves 1 &2) Exam tomorrow on Chapter 15, 16, and 17 (Oscilla;ons and Waves 1 &2) What to study: Quiz 6 Homework problems for Chapters 15 & 16 Material indicated in the following review slides Other Specific things:

More information

Quiz 3 July 31, 2007 Chapters 16, 17, 18, 19, 20 Phys 631 Instructor R. A. Lindgren 9:00 am 12:00 am

Quiz 3 July 31, 2007 Chapters 16, 17, 18, 19, 20 Phys 631 Instructor R. A. Lindgren 9:00 am 12:00 am Quiz 3 July 31, 2007 Chapters 16, 17, 18, 19, 20 Phys 631 Instructor R. A. Lindgren 9:00 am 12:00 am No Books or Notes allowed Calculator without access to formulas allowed. The quiz has two parts. The

More information

PHYS Homework # 10 (Mendes, Fall 2015) due in class on Nov 20. 1) Exercise 15.4, p. 501, University Physics by Young & Freedman

PHYS Homework # 10 (Mendes, Fall 2015) due in class on Nov 20. 1) Exercise 15.4, p. 501, University Physics by Young & Freedman PHYS 98 - Homework # 10 (Mendes, Fall 015) due in class on Nov 0 1) Exercise 154, p 501, Universit Phsics b Young & Freedman IDENTIFY: f v SET UP: 10 mm 00010 m v 1500m/s 6 EXECUTE: f 15 10 Hz 00010 m

More information

Along with C1 the magnetic field is also observed at location C 2 though no current is threading through this loop.

Along with C1 the magnetic field is also observed at location C 2 though no current is threading through this loop. Displacement current British physicist James C. Maxwell gave final shape to all phenomenon connecting electricity and magnetism. He noticed an inconsistency in Ampere s Law connecting Electric current

More information

MEI STRUCTURED MATHEMATICS 4763

MEI STRUCTURED MATHEMATICS 4763 OXFORD CAMBRIDGE AND RSA EXAMINATIONS Advanced Subsidiary General Certificate of Education Advanced General Certificate of Education MEI STRUCTURED MATHEMATICS 76 Mechanics Monday MAY 006 Morning hour

More information

Lectures Chapter 16 (Cutnell & Johnson, Physics 7 th edition)

Lectures Chapter 16 (Cutnell & Johnson, Physics 7 th edition) PH 201-4A spring 2007 Waves and Sound Lectures 26-27 Chapter 16 (Cutnell & Johnson, Physics 7 th edition) 1 Waves A wave is a vibrational, trembling motion in an elastic, deformable body. The wave is initiated

More information

Raymond A. Serway Chris Vuille. Chapter Thirteen. Vibrations and Waves

Raymond A. Serway Chris Vuille. Chapter Thirteen. Vibrations and Waves Raymond A. Serway Chris Vuille Chapter Thirteen Vibrations and Waves Periodic Motion and Waves Periodic motion is one of the most important kinds of physical behavior Will include a closer look at Hooke

More information

(Total 1 mark) IB Questionbank Physics 1

(Total 1 mark) IB Questionbank Physics 1 1. A transverse wave travels from left to right. The diagram below shows how, at a particular instant of time, the displacement of particles in the medium varies with position. Which arrow represents the

More information

PREMED COURSE, 14/08/2015 OSCILLATIONS

PREMED COURSE, 14/08/2015 OSCILLATIONS PREMED COURSE, 14/08/2015 OSCILLATIONS PERIODIC MOTIONS Mechanical Metronom Laser Optical Bunjee jumping Electrical Astronomical Pulsar Biological ECG AC 50 Hz Another biological exampe PERIODIC MOTIONS

More information

Chapter 14 Oscillations. Copyright 2009 Pearson Education, Inc.

Chapter 14 Oscillations. Copyright 2009 Pearson Education, Inc. Chapter 14 Oscillations 14-1 Oscillations of a Spring If an object vibrates or oscillates back and forth over the same path, each cycle taking the same amount of time, the motion is called periodic. The

More information

The exam is closed book and closed notes. Choose the answer that is closest to the given answer. F = kx period: T spring = 2π ; T pend = 2π.

The exam is closed book and closed notes. Choose the answer that is closest to the given answer. F = kx period: T spring = 2π ; T pend = 2π. EXAM 1 PHYS 103 VERSION A FALL 2004 NAME: As a student at NJIT I, will conduct myself in a professional manner and will comply with the provisions of the NJIT Academic Honor Code. I also understand that

More information

Solution Derivations for Capa #12

Solution Derivations for Capa #12 Solution Derivations for Capa #12 1) A hoop of radius 0.200 m and mass 0.460 kg, is suspended by a point on it s perimeter as shown in the figure. If the hoop is allowed to oscillate side to side as a

More information

Travelling and Standing Waves

Travelling and Standing Waves Travelling and Standing Waves Many biological phenomena are cyclic. Heartbeats Circadian rhythms, Estrus cycles Many more e.g. s Such events are best described as waves. Therefore the study of waves is

More information

General Physics I. Lecture 14: Sinusoidal Waves. Prof. WAN, Xin ( 万歆 )

General Physics I. Lecture 14: Sinusoidal Waves. Prof. WAN, Xin ( 万歆 ) General Physics I Lecture 14: Sinusoidal Waves Prof. WAN, Xin ( 万歆 ) xinwan@zju.edu.cn http://zimp.zju.edu.cn/~xinwan/ Motivation When analyzing a linear medium that is, one in which the restoring force

More information

For more info:

For more info: Waves:- Wave motion:- Wave motion is the disturbance, set up in the medium, due to the repeated periodic motion of the particles of the medium and travels from the particle to particle, the particles themselves

More information

Chapter 14 Oscillations

Chapter 14 Oscillations Chapter 14 Oscillations If an object vibrates or oscillates back and forth over the same path, each cycle taking the same amount of time, the motion is called periodic. The mass and spring system is a

More information

FOUNDATION STUDIES EXAMINATIONS June PHYSICS Semester One February Main

FOUNDATION STUDIES EXAMINATIONS June PHYSICS Semester One February Main 1 FOUNDATION STUDIES EXAMINATIONS June 2013 PHYSICS Semester One February Main Time allowed 2 hours for writing 10 minutes for reading This paper consists of 4 questions printed on 10 pages. PLEASE CHECK

More information

Chapter 16: Oscillatory Motion and Waves. Simple Harmonic Motion (SHM)

Chapter 16: Oscillatory Motion and Waves. Simple Harmonic Motion (SHM) Chapter 6: Oscillatory Motion and Waves Hooke s Law (revisited) F = - k x Tthe elastic potential energy of a stretched or compressed spring is PE elastic = kx / Spring-block Note: To consider the potential

More information

BASIC WAVE CONCEPTS. Reading: Main 9.0, 9.1, 9.3 GEM 9.1.1, Giancoli?

BASIC WAVE CONCEPTS. Reading: Main 9.0, 9.1, 9.3 GEM 9.1.1, Giancoli? 1 BASIC WAVE CONCEPTS Reading: Main 9.0, 9.1, 9.3 GEM 9.1.1, 9.1.2 Giancoli? REVIEW SINGLE OSCILLATOR: The oscillation functions you re used to describe how one quantity (position, charge, electric field,

More information