Parity Conservation in the weak (beta decay) interaction

Size: px
Start display at page:

Download "Parity Conservation in the weak (beta decay) interaction"

Transcription

1 Paity Consevation in the weak (beta decay) inteaction

2 The paity opeation The paity opeation involves the tansfomation In ectangula coodinates -- x Æ -x y Æ -y z Æ -z In spheical pola coodinates -- Æ q Æ p -q ( ) f Æ f + p ( )

3 In quantum mechanics Fo states of definite (unique & constant) paity - P ˆ y( x,y,z) = ±1y (-x,-y,-z) If the paity opeato commutes with hamiltonian - [ P ˆ, H ˆ ] = 0 fi The paity is a constant of the motion Stationay states must be states of constant paity e.g., gound state of 2 H is s (l=0) + small d (l=2)

4 In quantum mechanics To test paity consevation - - Devise an expeiment that could be done: (a) In one configuation (b) In a paity eflected configuation - If both expeiments give the same esults, paity is conseved -- it is a good symmety.

5 P ˆ E = E Paity opeations -- Paity opeation on a scale quantity - P ˆ ( ) = ( ) Paity opeation on a pola vecto quantity - P ˆ = - P ˆ p = -p Paity opeation on a axial vecto quantity - P ˆ L = ˆ ( p ) = (- -p ) = -L P Paity opeation on a pseudoscale quantity - ( ) = -( ) P ˆ p L p L

6 If paity is a good symmety The decay should be the same whethe the pocess is paity-eflected o not. In the hamiltonian, V must not contain tems that ae pseudoscale. If a pseudoscale dependence is obseved - paity symmety is violated in that pocess - paity is theefoe not conseved. T.D. Lee and C. N. Yang, Phys. Rev. 104, 254 (1956). tq puzzle

7 Paity expeiments (Lee & Yang) I Oiginal p Paity eflected I p Look at the angula distibution of decay paticle (e.g., ed paticle). If this is symmetic above/below the mid-plane, then -- p I = 0

8 If paity is a good symmety The p I = 0 the decay intensity should not depend on ( p I ). If p I 0 thee is a dependence on p I and paity is not conseved in beta decay. ( )

9 Discovey of paity nonconsevation (Wu, et al.) Conside the decay of 60 Co Conclusion: G-T, allowed C. S. Wu, et al., Phys. Rev 105, 1413 (1957)

10 GT : DI =1 A :1-1 3 v c cosq F : I = 0 Æ I = 0 V :1+ v c cosq H b - = - v c H n = -1 H b - = - v c b - n b - n Measue T ecoil n Not obseved H n =1 n H n =1 H n = -1

11 Conclusions GT : DI =1 A :1-1 3 v c cosq F : I = 0 Æ I = 0 V :1+ v c cosq GT is an axial-vecto Violates paity F is a vecto Conseves paity H b - = - v c H n =1

12 Implications Inside the nucleus, the N-N inteaction is V N -N = V s + V w Conseves paity Can violate paity The nuclea state functions ae a supeposition y =y s + Fy w ; F ª10-7 \ Nuclea spectoscopy not affected by V w

13 Genealized b-decay The hamiltonian fo the vecto and axial-vecto weak inteaction is fomulated in Diac notation as -- ( )( y * ) e g m y n + h.c. = gv H = g y p * g m y n ( )( y * ) e g m g 5 y n + h.c. = ga H = g y p * g m g 5 y n O a linea combination of these two -- H ª g C V V + C A A ( )

14 Genealized b-decay The genealized hamiltonian fo the weak inteaction that includes paity violation and a two-component neutino theoy is -- H = g  i=a,v ( )[ y * e O i ( 1+ g 5 )y n ] C i y p * Oi y n O V = g m ; O V = g m g 5 + h.c. Empiically, we need to find -- g and C A C V Study: n Æ p (mixed F and GT), and: 14 O Æ 14 N* (I=0 Æ I=0; pue F)

15 Genealized b-decay 14 O Æ 14 N* (pue F) ft = 2p 3 h 7 log2 m 5 c 4 2 M ( F g 2 2 C ) V ( g 2 2 C ) V = ± eg cm 3 n Æ p (mixed F and GT) ft = 2p 3 h 7 log2 g 2 m 5 c 4 È 2 C Î Í V ( ) 2 M F + ( 2 CA ) 2 M GT

16 Genealized b-decay Assuming simple (easonable) values fo the squae of the matix elements, we can get (by taking the atio of the two ft values -- 2C V 2 2 C V + 2 = Æ C V 2 3CA C =1.53 A 2 Expeiment shows that C V and C A have opposite signs.

17 Univesal Femi Inteaction In geneal, the fundamental weak inteaction is of the fom -- H µ g V - A ( ) n Æ p + b - + n e m - Æ e - + n e + n m p - Æ m - + n m L o Æ p - + p semi-leptonic weak decay pue-leptonic weak decay semi-leptonic weak decay Pue hadonic weak decay All follow the (V-A) weak decay. (c.f. Feynman s CVC)

18 Univesal Femi Inteaction In geneal, the fundamental weak inteaction is of the fom -- H µ g V - A ( ) BUT -- is it eally that way - absolutely? How would you poceed to test it? m - Æ e - + n e + n m pue-leptonic weak decay The Tiumf Weak Inteaction Symmety Test - TWIST

19 Othe symmeties Chage symmety - C n Æ p + b - + n e C fi n Æ p + b + + n e All vectos unchanged Time symmety - T n Æ p + b - + n e n e + n Æ p + b - T fi n p + b - + n e (Invese b-decay) All time-vectos changed (opposite)

20 Symmeties in weak decay s p = 0 m - p + at est n m Note helicities of neutinos n m p - P p - C fi p + n m m - m +

21 Symmeties in weak decay s p = 0 p + at est Note helicities of neutinos n m m - m + p - P fi p - fi C p + m - n m n m

22 Conclusions 1. Paity is not a good symmety in the weak inteaction. (P) 2. Chage conjugation is not a good symmety in the weak inteaction. (C) 3. The poduct opeation is a good symmety in the weak inteaction. (CP) - except in the kaon system! 4. Time symmety is a good symmety in the weak inteaction. (T) 5. The tiple poduct opeation is also a good symmety in the weak inteaction. (CPT)

Doublet structure of Alkali spectra:

Doublet structure of Alkali spectra: Doublet stuctue of : Caeful examination of the specta of alkali metals shows that each membe of some of the seies ae closed doublets. Fo example, sodium yellow line, coesponding to 3p 3s tansition, is

More information

c n ψ n (r)e ient/ h (2) where E n = 1 mc 2 α 2 Z 2 ψ(r) = c n ψ n (r) = c n = ψn(r)ψ(r)d 3 x e 2r/a0 1 πa e 3r/a0 r 2 dr c 1 2 = 2 9 /3 6 = 0.

c n ψ n (r)e ient/ h (2) where E n = 1 mc 2 α 2 Z 2 ψ(r) = c n ψ n (r) = c n = ψn(r)ψ(r)d 3 x e 2r/a0 1 πa e 3r/a0 r 2 dr c 1 2 = 2 9 /3 6 = 0. Poblem {a} Fo t : Ψ(, t ψ(e iet/ h ( whee E mc α (α /7 ψ( e /a πa Hee we have used the gound state wavefunction fo Z. Fo t, Ψ(, t can be witten as a supeposition of Z hydogenic wavefunctions ψ n (: Ψ(,

More information

= e2. = 2e2. = 3e2. V = Ze2. where Z is the atomic numnber. Thus, we take as the Hamiltonian for a hydrogenic. H = p2 r. (19.4)

= e2. = 2e2. = 3e2. V = Ze2. where Z is the atomic numnber. Thus, we take as the Hamiltonian for a hydrogenic. H = p2 r. (19.4) Chapte 9 Hydogen Atom I What is H int? That depends on the physical system and the accuacy with which it is descibed. A natual stating point is the fom H int = p + V, (9.) µ which descibes a two-paticle

More information

Structure of Hadrons. quarks d (down) s (strange) c (charm)

Structure of Hadrons. quarks d (down) s (strange) c (charm) quaks Flavo A t t 0 S B T Q(e) Mc 2 (GeV) u (up) 1 3 1 2-1 2 0 0 0 0 2 3 0.002-0.008 d (down) 1 3 1 2 1 2 0 0 0 0-1 3 0.005-0.015 s (stange) 1 3 0 0-1 0 0 0-1 3 0.1-0.3 c (cham) 1 3 0 0 0 1 0 0 2 3 1.0-1.6

More information

Many Electron Atoms. Electrons can be put into approximate orbitals and the properties of the many electron systems can be catalogued

Many Electron Atoms. Electrons can be put into approximate orbitals and the properties of the many electron systems can be catalogued Many Electon Atoms The many body poblem cannot be solved analytically. We content ouselves with developing appoximate methods that can yield quite accuate esults (but usually equie a compute). The electons

More information

Quantum theory of angular momentum

Quantum theory of angular momentum Quantum theoy of angula momentum Igo Mazets igo.mazets+e141@tuwien.ac.at (Atominstitut TU Wien, Stadionallee 2, 1020 Wien Time: Fiday, 13:00 14:30 Place: Feihaus, Sem.R. DA gün 06B (exception date 18 Nov.:

More information

3. Electromagnetic Waves II

3. Electromagnetic Waves II Lectue 3 - Electomagnetic Waves II 9 3. Electomagnetic Waves II Last time, we discussed the following. 1. The popagation of an EM wave though a macoscopic media: We discussed how the wave inteacts with

More information

Lecture 4 Povh Krane Enge Williams

Lecture 4 Povh Krane Enge Williams Lectue 4 Povh Kane Enge Williams the Deuteon 6. Ch. 4 Ch. Ch 3 d-wave admixtue 4..6 3.5 tenso foce 4..6 3.5 missing S state 4.4.5 3.4 isospin.3 6.7 3.4 Poblems on Lectue 4 What is the minimum photon enegy

More information

Question 1: The dipole

Question 1: The dipole Septembe, 08 Conell Univesity, Depatment of Physics PHYS 337, Advance E&M, HW #, due: 9/5/08, :5 AM Question : The dipole Conside a system as discussed in class and shown in Fig.. in Heald & Maion.. Wite

More information

Introduction to Nuclear Forces

Introduction to Nuclear Forces Intoduction to Nuclea Foces One of the main poblems of nuclea physics is to find out the natue of nuclea foces. Nuclea foces diffe fom all othe known types of foces. They cannot be of electical oigin since

More information

Particle Physics. From Monday: Summary. Lecture 9: Quantum Chromodynamics (QCD) q 2 m 2 Z. !q q!q q scattering

Particle Physics. From Monday: Summary. Lecture 9: Quantum Chromodynamics (QCD) q 2 m 2 Z. !q q!q q scattering Paticle Physics Lectue 9: Quantum Chomodynamics (QCD)!Colou chage and symmety!gluons!qcd Feynman Rules!! scatteing!jets! 1 Fom Monday: Summay Weak Neutal Cuent Caied by the massive Z-boson: acts on all

More information

3D-Central Force Problems I

3D-Central Force Problems I 5.73 Lectue #1 1-1 Roadmap 1. define adial momentum 3D-Cental Foce Poblems I Read: C-TDL, pages 643-660 fo next lectue. All -Body, 3-D poblems can be educed to * a -D angula pat that is exactly and univesally

More information

EM Boundary Value Problems

EM Boundary Value Problems EM Bounday Value Poblems 10/ 9 11/ By Ilekta chistidi & Lee, Seung-Hyun A. Geneal Desciption : Maxwell Equations & Loentz Foce We want to find the equations of motion of chaged paticles. The way to do

More information

Nuclear models: Shell model

Nuclear models: Shell model Lectue 3 Nuclea models: Shell model WS0/3: Intoduction to Nuclea and Paticle Physics,, Pat I Nuclea models Nuclea models Models with stong inteaction between the nucleons Liquid dop model α-paticle model

More information

Physics 235 Chapter 5. Chapter 5 Gravitation

Physics 235 Chapter 5. Chapter 5 Gravitation Chapte 5 Gavitation In this Chapte we will eview the popeties of the gavitational foce. The gavitational foce has been discussed in geat detail in you intoductoy physics couses, and we will pimaily focus

More information

13.10 Worked Examples

13.10 Worked Examples 13.10 Woked Examples Example 13.11 Wok Done in a Constant Gavitation Field The wok done in a unifom gavitation field is a faily staightfowad calculation when the body moves in the diection of the field.

More information

Calculation of Quark-antiquark Potential Coefficient and Charge Radius of Light Mesons

Calculation of Quark-antiquark Potential Coefficient and Charge Radius of Light Mesons Applied Physics Reseach ISSN: 96-9639 Vol., No., May E-ISSN: 96-9647 Calculation of Quak-antiquak Potential Coefficient and Chage Radius of Light Mesons M.R. Shojaei (Coesponding autho ) Depatment of Physics

More information

11) A thin, uniform rod of mass M is supported by two vertical strings, as shown below.

11) A thin, uniform rod of mass M is supported by two vertical strings, as shown below. Fall 2007 Qualifie Pat II 12 minute questions 11) A thin, unifom od of mass M is suppoted by two vetical stings, as shown below. Find the tension in the emaining sting immediately afte one of the stings

More information

Symmetry Tests in Positronium Decay

Symmetry Tests in Positronium Decay Symmety Tests in Positonium Decay Paul Vette Univesity of Califonia, Bekeley Lawence Bekeley National Laboatoy e- γ1 γ2 γ3 e+ γ4 γ5 INT UW Seattle Novembe, 22 Positonium People Weak Inteactions People

More information

Chapter 4. Newton s Laws of Motion

Chapter 4. Newton s Laws of Motion Chapte 4 Newton s Laws of Motion 4.1 Foces and Inteactions A foce is a push o a pull. It is that which causes an object to acceleate. The unit of foce in the metic system is the Newton. Foce is a vecto

More information

ON THE TWO-BODY PROBLEM IN QUANTUM MECHANICS

ON THE TWO-BODY PROBLEM IN QUANTUM MECHANICS ON THE TWO-BODY PROBLEM IN QUANTUM MECHANICS L. MICU Hoia Hulubei National Institute fo Physics and Nuclea Engineeing, P.O. Box MG-6, RO-0775 Buchaest-Maguele, Romania, E-mail: lmicu@theoy.nipne.o (Received

More information

2. Plane Elasticity Problems

2. Plane Elasticity Problems S0 Solid Mechanics Fall 009. Plane lasticity Poblems Main Refeence: Theoy of lasticity by S.P. Timoshenko and J.N. Goodie McGaw-Hill New Yok. Chaptes 3..1 The plane-stess poblem A thin sheet of an isotopic

More information

Nuclear and Particle Physics - Lecture 20 The shell model

Nuclear and Particle Physics - Lecture 20 The shell model 1 Intoduction Nuclea and Paticle Physics - Lectue 0 The shell model It is appaent that the semi-empiical mass fomula does a good job of descibing tends but not the non-smooth behaviou of the binding enegy.

More information

7.2. Coulomb s Law. The Electric Force

7.2. Coulomb s Law. The Electric Force Coulomb s aw Recall that chaged objects attact some objects and epel othes at a distance, without making any contact with those objects Electic foce,, o the foce acting between two chaged objects, is somewhat

More information

AST 121S: The origin and evolution of the Universe. Introduction to Mathematical Handout 1

AST 121S: The origin and evolution of the Universe. Introduction to Mathematical Handout 1 Please ead this fist... AST S: The oigin and evolution of the Univese Intoduction to Mathematical Handout This is an unusually long hand-out and one which uses in places mathematics that you may not be

More information

POISSON S EQUATION 2 V 0

POISSON S EQUATION 2 V 0 POISSON S EQUATION We have seen how to solve the equation but geneally we have V V4k We now look at a vey geneal way of attacking this poblem though Geen s Functions. It tuns out that this poblem has applications

More information

Quantum Mechanics I - Session 5

Quantum Mechanics I - Session 5 Quantum Mechanics I - Session 5 Apil 7, 015 1 Commuting opeatos - an example Remine: You saw in class that Â, ˆB ae commuting opeatos iff they have a complete set of commuting obsevables. In aition you

More information

Appendix A. Appendices. A.1 ɛ ijk and cross products. Vector Operations: δ ij and ɛ ijk

Appendix A. Appendices. A.1 ɛ ijk and cross products. Vector Operations: δ ij and ɛ ijk Appendix A Appendices A1 ɛ and coss poducts A11 Vecto Opeations: δ ij and ɛ These ae some notes on the use of the antisymmetic symbol ɛ fo expessing coss poducts This is an extemely poweful tool fo manipulating

More information

PHYSICS 272H Electric & Magnetic Interactions

PHYSICS 272H Electric & Magnetic Interactions PHYSICS 7H Electic & Magnetic Inteactions Physics couse home page: http://www.physics.pudue.edu/academic-pogams/couses/all_couses.php Blackboad Lean: https://mycouses.pudue.edu/webapps/login/ Couse Content

More information

2. Electrostatics. Dr. Rakhesh Singh Kshetrimayum 8/11/ Electromagnetic Field Theory by R. S. Kshetrimayum

2. Electrostatics. Dr. Rakhesh Singh Kshetrimayum 8/11/ Electromagnetic Field Theory by R. S. Kshetrimayum 2. Electostatics D. Rakhesh Singh Kshetimayum 1 2.1 Intoduction In this chapte, we will study how to find the electostatic fields fo vaious cases? fo symmetic known chage distibution fo un-symmetic known

More information

A method for solving dynamic problems for cylindrical domains

A method for solving dynamic problems for cylindrical domains Tansactions of NAS of Azebaijan, Issue Mechanics, 35 (7), 68-75 (016). Seies of Physical-Technical and Mathematical Sciences. A method fo solving dynamic poblems fo cylindical domains N.B. Rassoulova G.R.

More information

Electrostatics (Electric Charges and Field) #2 2010

Electrostatics (Electric Charges and Field) #2 2010 Electic Field: The concept of electic field explains the action at a distance foce between two chaged paticles. Evey chage poduces a field aound it so that any othe chaged paticle expeiences a foce when

More information

Appendix B The Relativistic Transformation of Forces

Appendix B The Relativistic Transformation of Forces Appendix B The Relativistic Tansfomation of oces B. The ou-foce We intoduced the idea of foces in Chapte 3 whee we saw that the change in the fou-momentum pe unit time is given by the expession d d w x

More information

KEPLER S LAWS OF PLANETARY MOTION

KEPLER S LAWS OF PLANETARY MOTION EPER S AWS OF PANETARY MOTION 1. Intoduction We ae now in a position to apply what we have leaned about the coss poduct and vecto valued functions to deive eple s aws of planetay motion. These laws wee

More information

KEPLER S LAWS AND PLANETARY ORBITS

KEPLER S LAWS AND PLANETARY ORBITS KEPE S AWS AND PANETAY OBITS 1. Selected popeties of pola coodinates and ellipses Pola coodinates: I take a some what extended view of pola coodinates in that I allow fo a z diection (cylindical coodinates

More information

PHYSICS 272 Electric & Magnetic Interactions

PHYSICS 272 Electric & Magnetic Interactions PHYS 7: Matte and Inteactions II -- Electic And Magnetic Inteactions http://www.physics.pudue.edu/academic_pogams/couses/phys7/ PHYSICS 7 Electic & Magnetic Inteactions Lectue 3 Chaged Objects; Polaization

More information

A Relativistic Electron in a Coulomb Potential

A Relativistic Electron in a Coulomb Potential A Relativistic Electon in a Coulomb Potential Alfed Whitehead Physics 518, Fall 009 The Poblem Solve the Diac Equation fo an electon in a Coulomb potential. Identify the conseved quantum numbes. Specify

More information

Chapter Sixteen: Electric Charge and Electric Fields

Chapter Sixteen: Electric Charge and Electric Fields Chapte Sixteen: Electic Chage and Electic Fields Key Tems Chage Conducto The fundamental electical popety to which the mutual attactions o epulsions between electons and potons ae attibuted. Any mateial

More information

Physics 121 Hour Exam #5 Solution

Physics 121 Hour Exam #5 Solution Physics 2 Hou xam # Solution This exam consists of a five poblems on five pages. Point values ae given with each poblem. They add up to 99 points; you will get fee point to make a total of. In any given

More information

Physics 181. Assignment 4

Physics 181. Assignment 4 Physics 181 Assignment 4 Solutions 1. A sphee has within it a gavitational field given by g = g, whee g is constant and is the position vecto of the field point elative to the cente of the sphee. This

More information

Gravity Notes for PHYS Joe Wolfe, UNSW

Gravity Notes for PHYS Joe Wolfe, UNSW Gavity Notes fo PHYS 111-1131. Joe Wolfe, UNSW 1 Gavity: whee does it fit in? Gavity [geneal elativity] Electic foce* gavitons photons Weak nuclea foce intemediate vecto bosons Stong nuclea foce Colou

More information

Annihilation of Relativistic Positrons in Single Crystal with production of One Photon

Annihilation of Relativistic Positrons in Single Crystal with production of One Photon Annihilation of Relativistic Positons in Single Cystal with poduction of One Photon Kalashnikov N.P.,Mazu E.A.,Olczak A.S. National Reseach Nuclea Univesity MEPhI (Moscow Engineeing Physics Institute),

More information

Physics 862: Atoms, Nuclei, and Elementary Particles

Physics 862: Atoms, Nuclei, and Elementary Particles Physics 86: Atoms, Nuclei, and Elementay Paticles Bian Bockelman Septembe 11, 008 Contents 1 Cental Field Poblems 1.1 Classical Teatment......................... 1. Quantum Teatment.........................

More information

Chapter 13 Gravitation

Chapter 13 Gravitation Chapte 13 Gavitation In this chapte we will exploe the following topics: -Newton s law of gavitation, which descibes the attactive foce between two point masses and its application to extended objects

More information

Rigid Body Dynamics 2. CSE169: Computer Animation Instructor: Steve Rotenberg UCSD, Winter 2018

Rigid Body Dynamics 2. CSE169: Computer Animation Instructor: Steve Rotenberg UCSD, Winter 2018 Rigid Body Dynamics 2 CSE169: Compute Animation nstucto: Steve Rotenbeg UCSD, Winte 2018 Coss Poduct & Hat Opeato Deivative of a Rotating Vecto Let s say that vecto is otating aound the oigin, maintaining

More information

Electric Field. y s +q. Point charge: Uniformly charged sphere: Dipole: for r>>s :! ! E = 1. q 1 r 2 ˆr. E sphere. at <0,r,0> at <0,0,r>

Electric Field. y s +q. Point charge: Uniformly charged sphere: Dipole: for r>>s :! ! E = 1. q 1 r 2 ˆr. E sphere. at <0,r,0> at <0,0,r> Electic Field Point chage: E " ˆ Unifomly chaged sphee: E sphee E sphee " Q ˆ fo >R (outside) fo >s : E " s 3,, at z y s + x Dipole moment: p s E E s "#,, 3 s "#,, 3 at

More information

Easy. r p 2 f : r p 2i. r p 1i. r p 1 f. m blood g kg. P8.2 (a) The momentum is p = mv, so v = p/m and the kinetic energy is

Easy. r p 2 f : r p 2i. r p 1i. r p 1 f. m blood g kg. P8.2 (a) The momentum is p = mv, so v = p/m and the kinetic energy is Chapte 8 Homewok Solutions Easy P8. Assume the velocity of the blood is constant ove the 0.60 s. Then the patient s body and pallet will have a constant velocity of 6 0 5 m 3.75 0 4 m/ s 0.60 s in the

More information

Newton s Laws, Kepler s Laws, and Planetary Orbits

Newton s Laws, Kepler s Laws, and Planetary Orbits Newton s Laws, Keple s Laws, and Planetay Obits PROBLEM SET 4 DUE TUESDAY AT START OF LECTURE 28 Septembe 2017 ASTRONOMY 111 FALL 2017 1 Newton s & Keple s laws and planetay obits Unifom cicula motion

More information

1 Fundamental Solutions to the Wave Equation

1 Fundamental Solutions to the Wave Equation 1 Fundamental Solutions to the Wave Equation Physical insight in the sound geneation mechanism can be gained by consideing simple analytical solutions to the wave equation. One example is to conside acoustic

More information

A Strong Force Potential Formula and the Classification of the Strong Interaction

A Strong Force Potential Formula and the Classification of the Strong Interaction Open Access Libay Jounal 8, Volume 5, e487 ISSN Online: -97 ISSN Pint: -975 A Stong Foce Potential Fomula and the Classification of the Stong Inteaction Zhengdong Huang Hubei Zhouheiya Entepise Development

More information

F 12. = G m m 1 2 F 21 = F 12. = G m 1m 2. Review. Physics 201, Lecture 22. Newton s Law Of Universal Gravitation

F 12. = G m m 1 2 F 21 = F 12. = G m 1m 2. Review. Physics 201, Lecture 22. Newton s Law Of Universal Gravitation Physics 201, Lectue 22 Review Today s Topics n Univesal Gavitation (Chapte 13.1-13.3) n Newton s Law of Univesal Gavitation n Popeties of Gavitational Foce n Planet Obits; Keple s Laws by Newton s Law

More information

Physics 2020, Spring 2005 Lab 5 page 1 of 8. Lab 5. Magnetism

Physics 2020, Spring 2005 Lab 5 page 1 of 8. Lab 5. Magnetism Physics 2020, Sping 2005 Lab 5 page 1 of 8 Lab 5. Magnetism PART I: INTRODUCTION TO MAGNETS This week we will begin wok with magnets and the foces that they poduce. By now you ae an expet on setting up

More information

ENGI 4430 Non-Cartesian Coordinates Page xi Fy j Fzk from Cartesian coordinates z to another orthonormal coordinate system u, v, ˆ i ˆ ˆi

ENGI 4430 Non-Cartesian Coordinates Page xi Fy j Fzk from Cartesian coordinates z to another orthonormal coordinate system u, v, ˆ i ˆ ˆi ENGI 44 Non-Catesian Coodinates Page 7-7. Conesions between Coodinate Systems In geneal, the conesion of a ecto F F xi Fy j Fzk fom Catesian coodinates x, y, z to anothe othonomal coodinate system u,,

More information

COORDINATE TRANSFORMATIONS - THE JACOBIAN DETERMINANT

COORDINATE TRANSFORMATIONS - THE JACOBIAN DETERMINANT COORDINATE TRANSFORMATIONS - THE JACOBIAN DETERMINANT Link to: phsicspages home page. To leave a comment o epot an eo, please use the auilia blog. Refeence: d Inveno, Ra, Intoducing Einstein s Relativit

More information

Scattering in Three Dimensions

Scattering in Three Dimensions Scatteing in Thee Dimensions Scatteing expeiments ae an impotant souce of infomation about quantum systems, anging in enegy fom vey low enegy chemical eactions to the highest possible enegies at the LHC.

More information

The Poisson bracket and magnetic monopoles

The Poisson bracket and magnetic monopoles FYST420 Advanced electodynamics Olli Aleksante Koskivaaa Final poject ollikoskivaaa@gmail.com The Poisson backet and magnetic monopoles Abstact: In this wok magnetic monopoles ae studied using the Poisson

More information

LECTURER: DR. MAZLAN ABDUL WAHID HEAT TRANSFER

LECTURER: DR. MAZLAN ABDUL WAHID  HEAT TRANSFER SM 4463 LU: D. MZLN BDUL WID http://www.fm.utm.my/~mazlan FULY OF MNIL NGINING UNIVSII KNOLOGI MLYSI SKUDI, JOO, MLYSI Mazlan 006 NSF D MZLN hapte Fundamental oncepts of onduction ssoc. of. D. Mazlan bdul

More information

Lecture 8 - Gauss s Law

Lecture 8 - Gauss s Law Lectue 8 - Gauss s Law A Puzzle... Example Calculate the potential enegy, pe ion, fo an infinite 1D ionic cystal with sepaation a; that is, a ow of equally spaced chages of magnitude e and altenating sign.

More information

arxiv:gr-qc/ v2 8 Jun 2006

arxiv:gr-qc/ v2 8 Jun 2006 On Quantization of the Electical Chage Mass Dmitiy M Palatnik 1 6400 N Sheidan Rd 2605, Chicago, IL 60626 axiv:g-qc/060502v2 8 Jun 2006 Abstact Suggested a non-linea, non-gauge invaiant model of Maxwell

More information

A Hartree-Fock Example Using Helium

A Hartree-Fock Example Using Helium Univesity of Connecticut DigitalCommons@UConn Chemisty Education Mateials Depatment of Chemisty June 6 A Hatee-Fock Example Using Helium Cal W. David Univesity of Connecticut, Cal.David@uconn.edu Follow

More information

This gives rise to the separable equation dr/r = 2 cot θ dθ which may be integrated to yield r(θ) = R sin 2 θ (3)

This gives rise to the separable equation dr/r = 2 cot θ dθ which may be integrated to yield r(θ) = R sin 2 θ (3) Physics 506 Winte 2008 Homewok Assignment #10 Solutions Textbook poblems: Ch. 12: 12.10, 12.13, 12.16, 12.19 12.10 A chaged paticle finds itself instantaneously in the equatoial plane of the eath s magnetic

More information

Physics 505 Homework No. 9 Solutions S9-1

Physics 505 Homework No. 9 Solutions S9-1 Physics 505 Homewok No 9 s S9-1 1 As pomised, hee is the tick fo summing the matix elements fo the Stak effect fo the gound state of the hydogen atom Recall, we need to calculate the coection to the gound

More information

Homework # 3 Solution Key

Homework # 3 Solution Key PHYSICS 631: Geneal Relativity Homewok # 3 Solution Key 1. You e on you hono not to do this one by hand. I ealize you can use a compute o simply look it up. Please don t. In a flat space, the metic in

More information

Chapter 3 Optical Systems with Annular Pupils

Chapter 3 Optical Systems with Annular Pupils Chapte 3 Optical Systems with Annula Pupils 3 INTRODUCTION In this chapte, we discuss the imaging popeties of a system with an annula pupil in a manne simila to those fo a system with a cicula pupil The

More information

1.1 Problems with Waves Classically, EM radiation was well understood as a wave phenomenon, via Maxwell s theory. Problems arose around

1.1 Problems with Waves Classically, EM radiation was well understood as a wave phenomenon, via Maxwell s theory. Problems arose around 0. Intoduction Recommended textbooks: Phillips, A. C. Intoduction to Quantum Mechanics Whiley Fench, A. P., Taylo, E. F, An Intoduction to Quantum Physics Thomas Nelson Othe books: Rae, A.I.M. Quantum

More information

Galilean Transformation vs E&M y. Historical Perspective. Chapter 2 Lecture 2 PHYS Special Relativity. Sep. 1, y K K O.

Galilean Transformation vs E&M y. Historical Perspective. Chapter 2 Lecture 2 PHYS Special Relativity. Sep. 1, y K K O. PHYS-2402 Chapte 2 Lectue 2 Special Relativity 1. Basic Ideas Sep. 1, 2016 Galilean Tansfomation vs E&M y K O z z y K In 1873, Maxwell fomulated Equations of Electomagnetism. v Maxwell s equations descibe

More information

PROBLEM SET #1 SOLUTIONS by Robert A. DiStasio Jr.

PROBLEM SET #1 SOLUTIONS by Robert A. DiStasio Jr. POBLM S # SOLUIONS by obet A. DiStasio J. Q. he Bon-Oppenheime appoximation is the standad way of appoximating the gound state of a molecula system. Wite down the conditions that detemine the tonic and

More information

S7: Classical mechanics problem set 2

S7: Classical mechanics problem set 2 J. Magoian MT 9, boowing fom J. J. Binney s 6 couse S7: Classical mechanics poblem set. Show that if the Hamiltonian is indepdent of a genealized co-odinate q, then the conjugate momentum p is a constant

More information

Nuclear size corrections to the energy levels of single-electron atoms

Nuclear size corrections to the energy levels of single-electron atoms Nuclea size coections to the enegy levels of single-electon atoms Babak Nadii Nii a eseach Institute fo Astonomy and Astophysics of Maagha (IAAM IAN P. O. Box: 554-44. Abstact A study is made of nuclea

More information

Math Notes on Kepler s first law 1. r(t) kp(t)

Math Notes on Kepler s first law 1. r(t) kp(t) Math 7 - Notes on Keple s fist law Planetay motion and Keple s Laws We conside the motion of a single planet about the sun; fo simplicity, we assign coodinates in R 3 so that the position of the sun is

More information

PHYS 301 HOMEWORK #10 (Optional HW)

PHYS 301 HOMEWORK #10 (Optional HW) PHYS 301 HOMEWORK #10 (Optional HW) 1. Conside the Legende diffeential equation : 1 - x 2 y'' - 2xy' + m m + 1 y = 0 Make the substitution x = cos q and show the Legende equation tansfoms into d 2 y 2

More information

arxiv: v1 [physics.pop-ph] 3 Jun 2013

arxiv: v1 [physics.pop-ph] 3 Jun 2013 A note on the electostatic enegy of two point chages axiv:1306.0401v1 [physics.pop-ph] 3 Jun 013 A C Tot Instituto de Física Univesidade Fedeal do io de Janeio Caixa Postal 68.58; CEP 1941-97 io de Janeio,

More information

As is natural, our Aerospace Structures will be described in a Euclidean three-dimensional space R 3.

As is natural, our Aerospace Structures will be described in a Euclidean three-dimensional space R 3. Appendix A Vecto Algeba As is natual, ou Aeospace Stuctues will be descibed in a Euclidean thee-dimensional space R 3. A.1 Vectos A vecto is used to epesent quantities that have both magnitude and diection.

More information

Physics 111 Lecture 5 (Walker: 3.3-6) Vectors & Vector Math Motion Vectors Sept. 11, 2009

Physics 111 Lecture 5 (Walker: 3.3-6) Vectors & Vector Math Motion Vectors Sept. 11, 2009 Physics 111 Lectue 5 (Walke: 3.3-6) Vectos & Vecto Math Motion Vectos Sept. 11, 2009 Quiz Monday - Chap. 2 1 Resolving a vecto into x-component & y- component: Pola Coodinates Catesian Coodinates x y =

More information

The Schrödinger Equation in Three Dimensions

The Schrödinger Equation in Three Dimensions The Schödinge Equation in Thee Dimensions Paticle in a Rigid Thee-Dimensional Box (Catesian Coodinates) To illustate the solution of the time-independent Schödinge equation (TISE) in thee dimensions, we

More information

20th Century Atomic Theory - Hydrogen Atom

20th Century Atomic Theory - Hydrogen Atom 0th Centuy Atomic Theoy - Hydogen Atom Ruthefod s scatteing expeiments (Section.5, pp. 53-55) in 1910 led to a nuclea model of the atom whee all the positive chage and most of the mass wee concentated

More information

Chapter 6: Rotational and Rovibrational Spectra. A) General discussion of two- body problem with central potential

Chapter 6: Rotational and Rovibrational Spectra. A) General discussion of two- body problem with central potential Fall 4 Chapte 6: Rotational and Rovibational Specta... 75 Diffeent Appoximations... 8 Spectum fo Hamonic Oscillato + Rigid Rotato... 8 Polyatomic Molecules... 84 Hamonic Oscillato + Rigid Roto Model to

More information

20-9 ELECTRIC FIELD LINES 20-9 ELECTRIC POTENTIAL. Answers to the Conceptual Questions. Chapter 20 Electricity 241

20-9 ELECTRIC FIELD LINES 20-9 ELECTRIC POTENTIAL. Answers to the Conceptual Questions. Chapter 20 Electricity 241 Chapte 0 Electicity 41 0-9 ELECTRIC IELD LINES Goals Illustate the concept of electic field lines. Content The electic field can be symbolized by lines of foce thoughout space. The electic field is stonge

More information

3D-Central Force Problems II

3D-Central Force Problems II 5.73 ectue # - 1 3D-Cental Foce Poblems II ast time: [x,p] vecto commutation ules: genealize fom 1-D to 3-D conugate position and momentum components in Catesian coodinates Coespondence Pinciple Recipe

More information

Part V: Closed-form solutions to Loop Closure Equations

Part V: Closed-form solutions to Loop Closure Equations Pat V: Closed-fom solutions to Loop Closue Equations This section will eview the closed-fom solutions techniques fo loop closue equations. The following thee cases will be consideed. ) Two unknown angles

More information

3.012 Fund of Mat Sci: Bonding Lecture 5/6. Comic strip removed for copyright reasons.

3.012 Fund of Mat Sci: Bonding Lecture 5/6. Comic strip removed for copyright reasons. 3.12 Fund of Mat Sci: Bonding Lectue 5/6 THE HYDROGEN ATOM Comic stip emoved fo copyight easons. Last Time Metal sufaces and STM Diac notation Opeatos, commutatos, some postulates Homewok fo Mon Oct 3

More information

EFFECTS OF FRINGING FIELDS ON SINGLE PARTICLE DYNAMICS. M. Bassetti and C. Biscari INFN-LNF, CP 13, Frascati (RM), Italy

EFFECTS OF FRINGING FIELDS ON SINGLE PARTICLE DYNAMICS. M. Bassetti and C. Biscari INFN-LNF, CP 13, Frascati (RM), Italy Fascati Physics Seies Vol. X (998), pp. 47-54 4 th Advanced ICFA Beam Dynamics Wokshop, Fascati, Oct. -5, 997 EFFECTS OF FRININ FIELDS ON SINLE PARTICLE DYNAMICS M. Bassetti and C. Biscai INFN-LNF, CP

More information

Lecture 3.7 ELECTRICITY. Electric charge Coulomb s law Electric field

Lecture 3.7 ELECTRICITY. Electric charge Coulomb s law Electric field Lectue 3.7 ELECTRICITY Electic chage Coulomb s law Electic field ELECTRICITY Inteaction between electically chages objects Many impotant uses Light Heat Rail tavel Computes Cental nevous system Human body

More information

Channel matrix, measurement matrix and collapsed matrix. in teleportation

Channel matrix, measurement matrix and collapsed matrix. in teleportation Channel matix, measuement matix and collapsed matix in telepotation XIN-WEI ZHA, JIAN-XIA QI and HAI-YANG SONG School of Science, Xi an Univesity of Posts and Telecommunications, Xi an, 71011, P R China

More information

4. Electrodynamic fields

4. Electrodynamic fields 4. Electodynamic fields D. Rakhesh Singh Kshetimayum 1 4.1 Intoduction Electodynamics Faaday s law Maxwell s equations Wave equations Lenz s law Integal fom Diffeential fom Phaso fom Bounday conditions

More information

Many Electron Theory: Particles and holes. Unitary transformations.

Many Electron Theory: Particles and holes. Unitary transformations. Many Electon Theoy: Paticles and holes. Unitay tansfomations. Continued notes fo a wokgoup Septembe-Octobe 00. Notes pepaed by Jan Lindebeg, Septembe 00 Heny Eying Cente fo Theoetical Chemisty Equivalencies

More information

Electromagnetic Theory 1

Electromagnetic Theory 1 / lectomagnetic Theoy uestion : lectostatic Potential negy A sphee of adius caies a positive chage density ρ constant Obviously the spheical coodinates system is appopiate hee Take - C m - and cm τ a)

More information

is the instantaneous position vector of any grid point or fluid

is the instantaneous position vector of any grid point or fluid Absolute inetial, elative inetial and non-inetial coodinates fo a moving but non-defoming contol volume Tao Xing, Pablo Caica, and Fed Sten bjective Deive and coelate the govening equations of motion in

More information

3.23 Electrical, Optical, and Magnetic Properties of Materials

3.23 Electrical, Optical, and Magnetic Properties of Materials MIT OpenCouseWae http://ocw.mit.edu 3.23 Electical, Optical, and Magnetic Popeties of Mateials Fall 27 Fo infomation about citing these mateials o ou Tems of Use, visit: http://ocw.mit.edu/tems. 3.23 Fall

More information

Spherical Solutions due to the Exterior Geometry of a Charged Weyl Black Hole

Spherical Solutions due to the Exterior Geometry of a Charged Weyl Black Hole Spheical Solutions due to the Exteio Geomety of a Chaged Weyl Black Hole Fain Payandeh 1, Mohsen Fathi Novembe 7, 018 axiv:10.415v [g-qc] 10 Oct 01 1 Depatment of Physics, Payame Noo Univesity, PO BOX

More information

Energy Levels Of Hydrogen Atom Using Ladder Operators. Ava Khamseh Supervisor: Dr. Brian Pendleton The University of Edinburgh August 2011

Energy Levels Of Hydrogen Atom Using Ladder Operators. Ava Khamseh Supervisor: Dr. Brian Pendleton The University of Edinburgh August 2011 Enegy Levels Of Hydogen Atom Using Ladde Opeatos Ava Khamseh Supeviso: D. Bian Pendleton The Univesity of Edinbugh August 11 1 Abstact The aim of this pape is to fist use the Schödinge wavefunction methods

More information

Physics 2212 GH Quiz #2 Solutions Spring 2016

Physics 2212 GH Quiz #2 Solutions Spring 2016 Physics 2212 GH Quiz #2 Solutions Sping 216 I. 17 points) Thee point chages, each caying a chage Q = +6. nc, ae placed on an equilateal tiangle of side length = 3. mm. An additional point chage, caying

More information

II. Electric Field. II. Electric Field. A. Faraday Lines of Force. B. Electric Field. C. Gauss Law. 1. Sir Isaac Newton ( ) A.

II. Electric Field. II. Electric Field. A. Faraday Lines of Force. B. Electric Field. C. Gauss Law. 1. Sir Isaac Newton ( ) A. II. Electic Field D. Bill Pezzaglia II. Electic Field. Faaday Lines of Foce B. Electic Field C. Gauss Law Updated 08Feb010. Lines of Foce 1) ction at a Distance ) Faaday s Lines of Foce ) Pinciple of Locality

More information

Problem Set 10 Solutions

Problem Set 10 Solutions Chemisty 6 D. Jean M. Standad Poblem Set 0 Solutions. Give the explicit fom of the Hamiltonian opeato (in atomic units) fo the lithium atom. You expession should not include any summations (expand them

More information

UNIT 13: ANGULAR MOMENTUM AND TORQUE AS VECTORS Approximate Classroom Time: Two 100 minute sessions

UNIT 13: ANGULAR MOMENTUM AND TORQUE AS VECTORS Approximate Classroom Time: Two 100 minute sessions Name SFU e-mail @sfu.ca Date(YY/MM/DD) / / Section Goup UNIT 13: ANGULAR MOMENTUM AND TORQUE AS VECTORS Appoximate Classoom Time: Two 100 minute sessions Help! Pue logical thinking cannot yield us any

More information

Conventional Current B = In some materials current moving charges are positive: Ionic solution Holes in some materials (same charge as electron but +)

Conventional Current B = In some materials current moving charges are positive: Ionic solution Holes in some materials (same charge as electron but +) Conventional Cuent In some mateials cuent moving chages ae positive: Ionic solution Holes in some mateials (same chage as electon but +) Obseving magnetic field aound coppe wie: Can we tell whethe the

More information

Chapter 20 Electrostatics and Coulomb s Law 20.1 Introduction electrostatics Separation of Electric Charge by Rubbing

Chapter 20 Electrostatics and Coulomb s Law 20.1 Introduction electrostatics Separation of Electric Charge by Rubbing I wish to give an account of some investigations which have led to the conclusion that the caies of negative electicity ae bodies, which I have called copuscles, having a mass vey much smalle than that

More information

AH Mechanics Checklist (Unit 2) AH Mechanics Checklist (Unit 2) Circular Motion

AH Mechanics Checklist (Unit 2) AH Mechanics Checklist (Unit 2) Circular Motion AH Mechanics Checklist (Unit ) AH Mechanics Checklist (Unit ) Cicula Motion No. kill Done 1 Know that cicula motion efes to motion in a cicle of constant adius Know that cicula motion is conveniently descibed

More information

Lecture 7: Angular Momentum, Hydrogen Atom

Lecture 7: Angular Momentum, Hydrogen Atom Lectue 7: Angula Momentum, Hydogen Atom Vecto Quantization of Angula Momentum and Nomalization of 3D Rigid Roto wavefunctions Conside l, so L 2 2 2. Thus, we have L 2. Thee ae thee possibilities fo L z

More information

Analytic Evaluation of two-electron Atomic Integrals involving Extended Hylleraas-CI functions with STO basis

Analytic Evaluation of two-electron Atomic Integrals involving Extended Hylleraas-CI functions with STO basis Analytic Evaluation of two-electon Atomic Integals involving Extended Hylleaas-CI functions with STO basis B PADHY (Retd.) Faculty Membe Depatment of Physics, Khalikote (Autonomous) College, Behampu-760001,

More information