Easy. r p 2 f : r p 2i. r p 1i. r p 1 f. m blood g kg. P8.2 (a) The momentum is p = mv, so v = p/m and the kinetic energy is

Size: px
Start display at page:

Download "Easy. r p 2 f : r p 2i. r p 1i. r p 1 f. m blood g kg. P8.2 (a) The momentum is p = mv, so v = p/m and the kinetic energy is"

Transcription

1 Chapte 8 Homewok Solutions Easy P8. Assume the velocity of the blood is constant ove the 0.60 s. Then the patient s body and pallet will have a constant velocity of m m/ s 0.60 s in the opposite diection. Momentum consevation gives p i p 2i p f p 2 f : 0 m blood m s 54.0 kg m/ s m blood kg 40.5 g P8.2 (a) The momentum is p = mv, so v = p/m and the kinetic enegy is K 2 mv 2 2 m p m 2 p2 2m K 2 mv 2 implies v 2K m so p mv m 2K m 2mK. v 3.00î P8.3 We ae given m = 3.00 kg, 4.00ĵ m/ s (a) p mv 9.00î 2.0ĵ kg m/ s Thus, p x 9.00 kg m/ s and p y 2.0 kg m/ s. p p 2 x p 2 y 9.00 kg m/ s kg m/ s kg m/ s tan p y p x tan

2 P8.8 (a) I F avg t, whee I is the impulse the man must delive to the child: o I F avg t p child m child v f v i F avg m child v f v i t F avg m child v f v i t N 2.0 kg0 60 mi/ h 0.0 s m/ s mi/ h F avg N lb N 720 lb (c) The man s claim is nonsense. He would not be able to exet a foce of this magnitude on the child. In eality, the violent foces duing the collision would tea the child fom his ams. These devices ae essential fo the safety of small childen. P8.5 (a) We wite the law of consevation of momentum as mv i 3mv 2i 4mv f o 4.00 m/ s m/ s v f 4 K f K i 2 4mv 2 f 2 mv i 2 2 3m 2.50 m/ s v 2 2i kg[4(2.50 m/ s) 2 (4.00 m/ s) 2 3(2.00 m/ s) 2 ] J P8.6 (a) The intenal foces exeted by the acto do change the total momentum of the system the fou cas and the movie acto. Consevation of momentum ANS. FIG. P8.6 gives not of

3 (c) 4mv i 3m 2.00 m s m 4.00 m s v i W acto K f K i 6.00 m s 4.00 m s 4 2 3m2.00 m s2 m 4.00 m s W acto kg m s 2 4m2.50 m s m s kj The event consideed hee is the time evesal of the pefectly inelastic collision in the pevious poblem. The same momentum consevation equation descibes both pocesses. P8.2 (a) Fom the text s analysis of a one-dimensional elastic collision with an oiginally stationay taget, the x component of the neuton s velocity changes fom v i to v f = ( 2)v i /3 = v i /3. The x component of the taget nucleus velocity is v 2f = 2v i /3. The neuton stated with kinetic enegy (½)m v i 2. The taget nucleus ends up with kinetic enegy (½) (2 m )( 2v i /3) 2 Then the faction tansfeed is 2m (2v / 2 i 3)2 m v i Because the collision is elastic, the othe 7.6% of the oiginal enegy stays with the neuton. The cabon is functioning as a modeato in the eacto, slowing down neutons to make them moe likely to poduce eactions in the fuel. K n (0.76)( J) J and K C (0.284)( J) J

4 P8.32 (a) The vecto expession fo consevation of momentum, p i p f :, gives p xi p xf and p yi p yf mv i mv cos mv cos [] 0 mv sin mv sin [2] Fom [2], sin sin so ANS. FIG. P8.32 Futhemoe, enegy consevation fo the system of two potons equies so 2 mv 2 i 2 mv 2 2 mv 2 v v i 2 Hence, [] gives v i 2v i cos 2 with 45.0 and 45.0 P8.39 (a) m v CM iv i M m v m 2v 2 M 5.00 kg [(2.00 kg)(2.00î m s 3.00ĵ m s) (3.00 kg)(.00î m s 6.00ĵ m s)] v CM.40î 2.40ĵ m s p Mv CM (5.00 kg)(.40î 2.40ĵ) m s (7.00î 2.0ĵ) kg m s

5 Medium P8.6 (a) The gil-plank system is isolated, so hoizontal momentum is conseved. We measue momentum elative to the ice: p gi p pi p gf p pf. The motion is in one dimension, so we can wite v gi î v gp î v pi î v gi v gp v pi whee v gi denotes the velocity of the gil elative to the ice, v gp the velocity of the gil elative to the plank, and v pi the velocity of the plank elative to the ice. The momentum equation becomes 0 m g v gi î m p v pi î 0 m g v gi m p v pi 0 m g v gp v pi m p v pi 0 m g v gp m g m p m g v pi v gp m g m p v pi Using ou esult above, we find that v gi v gp v pi v gp v gi m g m p v gp m g v gp m g m p m g m p m g m p m g m g m p v gp v gi m v m v m v g gp p gp g gp m g m p m p v gi v gp m g m p

6 P8.9 p Ft p y mv yf v yi m(v cos 60.0) mv cos p x m(v sin 60.0 v sin 60.0) 2mv sin (3.00 kg)(0.0 m/ s)(0.866) 52.0 kg m/ s F avg p x t 52.0 kg m/ s s 260 N The foce is 260 N, nomal to the wall. P8. (a) The impulse deliveed to the ball is equal to the aea unde the F-t gaph. have a tiangle and so to get its aea we multiply half its height times its width: We I Fdt = aea unde cuve I s F 3.5 N s 9.00 kn s N 3.5 N s ANS. FIG. P8. P8.7 The collision between the clay and the wooden block is completely inelastic. Momentum is conseved by the collision. Find the elation between the speed of the clay (C) just befoe impact and the speed of the clay+block (CB) just afte impact: p Bi p Ci p Bf p Cf m B v Bi m C v Ci m B v Bf m C v Cf M 0 mv C mv CB Mv CB m M v C m M m v CB v CB Now use consevation of enegy in the pesence of fiction foces to find the elation between the speed v CB just afte impact and the distance the block slides befoe stopping:

7 K E int 0: 0 2 (m M )v 2 CB fd 0 and fd nd (m M )gd 2 (m M )v 2 CB (m M )gd v CB 2gd Combining ou esults, we have v C (m M ) 2gd m (2.0 g 00 g) 2.0 g v C 9.2 m/ s 2(0.650) 9.80 m/ s 2 (7.50 m) P8.9 The mechanical enegy of the isolated block-eath system is conseved as the block of mass m slides down the tack. we find v, the speed of m at B befoe collision: K i + U i = K f + U f 2 m v m gh v 2(9.80 m/ s 2 )(5.00 m) 9.90 m/ s ANS. FIG. P8.9 Fist Now we use the text s analysis of one-dimensional elastic collisions to find v f, the speed of m at B just afte collision. v f m m 2 v m m m/ s 3.30 m/ s Now the 5-kg block bounces back up to its highest point afte collision accoding to m gh max 2 m 3.30 m/ s 3.30 m/ s 2 h max m/ s m

8 P8.24 We assume equal fiing speeds v and equal foces F equied fo the two bullets to push wood fibes apat. These equal foces act backwad on the two bullets. Fo the fist, K i E mech K f gives kgv 2 F m 0 [] Fo the second, p i p f gives kg v f kgv.04 kg Again, K i E mech K f gives Substituting fo v f, v.04 kgv f kgv 2 Fd.04 kg 2 v 2 f kgv 2 Fd.04 kg kgv.04 kg Fd kgv kg 2 v 2.04 kg 2 Substituting fo v fom [] gives Fd F m d 7.94 cm kg.04 kg P8.29 By consevation of momentum fo the system of the two billiad balls (with all masses equal), in the x and y diections sepaately,

9 5.00 m/ s 0 (4.33 m/ s)cos 30.0 v 2 fx v 2 fx.25 m s 0 (4.33 m/ s)sin 30.0 v 2 fy v 2 fy 2.6 m/ s v 2 f 2.50 m/ s at 60.0 Note that we did not need to explicitly use the fact that the collision is pefectly elastic. ANS. FIG. P We could analyze the object as nine squaes, each epesented by an equal-mass paticle at its cente. But we will have less witing to do if we think of the sheet as composed of thee sections, and conside the mass of each section to be at the geometic cente of that section. Define the mass pe unit aea to be σ, and numbe the ectangles as ANS. FIG. P8.34 shown. We can then calculate the mass and identify the cente of mass of each section. m I = (30.0 cm)(0.0 cm) with CM I = (5.0 cm, 5.00 cm) m II = (0.0 cm)(20.0 cm) with CM II = (5.00 cm, 20.0 cm) m III = (0.0 cm)(0.0 cm) with CM III = (5.0 cm, 25.0 cm) The oveall cente of mass is at a point defined by the vecto equation: CM m ii m i Substituting the appopiate values, CM is calculated to be: CM Calculating, 300 cm cm 2 00 cm 2 {[(300)(5.0î 5.00ĵ) (200)(5.00î 20.0ĵ) (00)(5.0î 25.0ĵ)] cm 3 } 4 500î 500ĵ 000î 4 000ĵ 500î 2 500ĵ CM 600 and evaluating, CM (.7î 3.3ĵ) cm cm

10 P8.52 Using consevation of momentum fom just befoe to just afte the impact of the bullet with the block: mv i = (M+ m)v f o v i M m m v f [] The speed of the block and embedded bullet just afte impact may found using kinematic equations: d = v f t and h 2 gt 2 ANS. FIG. P8.52 be Thus, t 2h g and v f d t d g 2h gd2 2h Substituting into [] fom above gives v i M m m gd 2 2h. Had P8.55 (a) The initial momentum of the system is zeo, which emains constant thoughout the motion. Theefoe, when m leaves the wedge, we must have o m 2 v wedge + m v block = 0 (3.00 kg)v wedge + (0.500 kg)(+4.00 m/s) = 0 ANS. FIG. P8.55 so v wedge = m/ s Using consevation of enegy fo the block-wedge-eath system as the block slides down the smooth (fictionless) wedge, we have

11 K block U system K i wedge K i block U system K f wedge f o 0 m gh 0 2 m 4.00 m/ s m m/ s 2 which gives h m P8.60 (a) Use consevation of the hoizontal component of momentum fo the system of the shell, the cannon, and the caiage, fom just befoe to just afte the cannon fiing: o p xf p xi m shell v shell cos 45.0 m cannon v ecoil kg 25 m/ scos kgv ecoil 0 v ecoil 3.54 m/ s ANS. FIG. P8.60 Use consevation of enegy fo the system of the cannon, the caiage, and the sping fom ight afte the cannon is fied to the instant when the cannon comes to est. K f U gf U sf K i U gi U si kx 2 max 2 mv 2 ecoil 0 0 x max mv 2 ecoil k kg3.54 m/ s N/ m.77 m (c) F s, max kx max F s, max N m.77 m N (d) No. The ail exets a vetical extenal foce (the nomal foce) on the cannon and pevents it fom ecoiling vetically. Momentum is not conseved in the vetical diection. The sping does not have time to stetch duing the cannon fiing. Thus, no extenal hoizontal foce is exeted on the system (cannon, caiage, and shell) fom just befoe to

12 just afte fiing. Momentum of this system is conseved in the hoizontal diection duing this inteval.

Momentum and Collisions

Momentum and Collisions SOLUTIONS TO PROBLES Section 8. P8. m 3.00 kg, (a) omentum and Collisions Linea omentum and Its Consevation v ( 3.00î 4.00ĵ ) m s p mv ( 9.00î.0ĵ ) kg m s Thus, p x 9.00 kg m s and p y.0 kg m s. p p x

More information

Momentum is conserved if no external force

Momentum is conserved if no external force Goals: Lectue 13 Chapte 9 v Employ consevation of momentum in 1 D & 2D v Examine foces ove time (aka Impulse) Chapte 10 v Undestand the elationship between motion and enegy Assignments: l HW5, due tomoow

More information

Motion in Two Dimensions

Motion in Two Dimensions SOLUTIONS TO PROBLEMS Motion in Two Dimensions Section 3.1 The Position, Velocity, and Acceleation Vectos P3.1 x( m) 0!3 000!1 70!4 70 m y( m)!3 600 0 1 70! 330 m (a) Net displacement x + y 4.87 km at

More information

Department of Physics, Korea University Page 1 of 5

Department of Physics, Korea University Page 1 of 5 Name: Depatment: Student ID #: Notice ˆ + ( 1) points pe coect (incoect) answe. ˆ No penalty fo an unansweed question. ˆ Fill the blank ( ) with ( ) if the statement is coect (incoect). ˆ : coections to

More information

Easy. P4.2 Since the car is moving with constant speed and in a straight line, the. resultant force on it must be regardless of whether it is moving

Easy. P4.2 Since the car is moving with constant speed and in a straight line, the. resultant force on it must be regardless of whether it is moving Chapte 4 Homewok Solutions Easy P4. Since the ca is moving with constant speed and in a staight line, the zeo esultant foce on it must be egadless of whethe it is moving (a) towad the ight o the left.

More information

06 - ROTATIONAL MOTION Page 1 ( Answers at the end of all questions )

06 - ROTATIONAL MOTION Page 1 ( Answers at the end of all questions ) 06 - ROTATIONAL MOTION Page ) A body A of mass M while falling vetically downwads unde gavity beaks into two pats, a body B of mass ( / ) M and a body C of mass ( / ) M. The cente of mass of bodies B and

More information

Physics 107 TUTORIAL ASSIGNMENT #8

Physics 107 TUTORIAL ASSIGNMENT #8 Physics 07 TUTORIAL ASSIGNMENT #8 Cutnell & Johnson, 7 th edition Chapte 8: Poblems 5,, 3, 39, 76 Chapte 9: Poblems 9, 0, 4, 5, 6 Chapte 8 5 Inteactive Solution 8.5 povides a model fo solving this type

More information

Phys 201A. Homework 6 Solutions. F A and F r. B. According to Newton s second law, ( ) ( )2. j = ( 6.0 m / s 2 )ˆ i ( 10.4m / s 2 )ˆ j.

Phys 201A. Homework 6 Solutions. F A and F r. B. According to Newton s second law, ( ) ( )2. j = ( 6.0 m / s 2 )ˆ i ( 10.4m / s 2 )ˆ j. 7. We denote the two foces F A + F B = ma,sof B = ma F A. (a) In unit vecto notation F A = ( 20.0 N)ˆ i and Theefoe, Phys 201A Homewok 6 Solutions F A and F B. Accoding to Newton s second law, a = [ (

More information

Movie Review Part One due Tuesday (in class) please print

Movie Review Part One due Tuesday (in class) please print Movie Review Pat One due Tuesday (in class) please pint Test in class on Fiday. You may stat at 8:30 if you want. (The topic of powe is not on test.) Chaptes 4-6 Main Ideas in Class Today Afte class, you

More information

FZX: Personal Lecture Notes from Daniel W. Koon St. Lawrence University Physics Department CHAPTER 7

FZX: Personal Lecture Notes from Daniel W. Koon St. Lawrence University Physics Department CHAPTER 7 FZX: Pesonal Lectue Notes fom Daniel W. Koon St. Lawence Univesity Physics Depatment CHAPTER 7 Please epot any glitches, bugs o eos to the autho: dkoon at stlawu.edu. 7. Momentum and Impulse Impulse page

More information

The Laws of Motion ( ) N SOLUTIONS TO PROBLEMS ! F = ( 6.00) 2 + ( 15.0) 2 N = 16.2 N. Section 4.4. Newton s Second Law The Particle Under a Net Force

The Laws of Motion ( ) N SOLUTIONS TO PROBLEMS ! F = ( 6.00) 2 + ( 15.0) 2 N = 16.2 N. Section 4.4. Newton s Second Law The Particle Under a Net Force SOLUTIONS TO PROBLEMS The Laws of Motion Section 4.3 Mass P4. Since the ca is moving with constant speed and in a staight line, the esultant foce on it must be zeo egadless of whethe it is moving (a) towad

More information

SAMPLE QUIZ 3 - PHYSICS For a right triangle: sin θ = a c, cos θ = b c, tan θ = a b,

SAMPLE QUIZ 3 - PHYSICS For a right triangle: sin θ = a c, cos θ = b c, tan θ = a b, SAMPLE QUIZ 3 - PHYSICS 1301.1 his is a closed book, closed notes quiz. Calculatos ae pemitted. he ONLY fomulas that may be used ae those given below. Define all symbols and justify all mathematical expessions

More information

Physics 2212 GH Quiz #2 Solutions Spring 2016

Physics 2212 GH Quiz #2 Solutions Spring 2016 Physics 2212 GH Quiz #2 Solutions Sping 216 I. 17 points) Thee point chages, each caying a chage Q = +6. nc, ae placed on an equilateal tiangle of side length = 3. mm. An additional point chage, caying

More information

PHYS Summer Professor Caillault Homework Solutions. Chapter 9

PHYS Summer Professor Caillault Homework Solutions. Chapter 9 PHYS - Summe 007 - Pofesso Caillault Homewok Solutions Chapte 9 3. Pictue the Poblem The owne walks slowly towad the notheast while the cat uns eastwad and the dog uns nothwad. Stategy Sum the momenta

More information

PHYSICS 1210 Exam 2 University of Wyoming 14 March ( Day!) points

PHYSICS 1210 Exam 2 University of Wyoming 14 March ( Day!) points PHYSICS 1210 Exam 2 Univesity of Wyoming 14 Mach ( Day!) 2013 150 points This test is open-note and closed-book. Calculatos ae pemitted but computes ae not. No collaboation, consultation, o communication

More information

Physics 120 Homework Solutions April 25 through April 30, 2007

Physics 120 Homework Solutions April 25 through April 30, 2007 Physics Homewok Solutions Apil 5 though Apil 3, 7 Questions: 6. The oce is pependicula to evey incement o displacement. Theeoe, F =. 6.4 Wok is only done in acceleating the ball om est. The wok is done

More information

Potential Energy and Conservation of Energy

Potential Energy and Conservation of Energy Potential Enegy and Consevation of Enegy Consevative Foces Definition: Consevative Foce If the wok done by a foce in moving an object fom an initial point to a final point is independent of the path (A

More information

Physics Fall Mechanics, Thermodynamics, Waves, Fluids. Lecture 18: System of Particles II. Slide 18-1

Physics Fall Mechanics, Thermodynamics, Waves, Fluids. Lecture 18: System of Particles II. Slide 18-1 Physics 1501 Fall 2008 Mechanics, Themodynamics, Waves, Fluids Lectue 18: System of Paticles II Slide 18-1 Recap: cente of mass The cente of mass of a composite object o system of paticles is the point

More information

PHYS 1114, Lecture 21, March 6 Contents:

PHYS 1114, Lecture 21, March 6 Contents: PHYS 1114, Lectue 21, Mach 6 Contents: 1 This class is o cially cancelled, being eplaced by the common exam Tuesday, Mach 7, 5:30 PM. A eview and Q&A session is scheduled instead duing class time. 2 Exam

More information

Δt The textbook chooses to say that the average velocity is

Δt The textbook chooses to say that the average velocity is 1-D Motion Basic I Definitions: One dimensional motion (staight line) is a special case of motion whee all but one vecto component is zeo We will aange ou coodinate axis so that the x-axis lies along the

More information

PHYS Summer Professor Caillault Homework Solutions. Chapter 5

PHYS Summer Professor Caillault Homework Solutions. Chapter 5 PHYS 1111 - Summe 2007 - Pofesso Caillault Homewok Solutions Chapte 5 7. Pictue the Poblem: The ball is acceleated hoizontally fom est to 98 mi/h ove a distance of 1.7 m. Stategy: Use equation 2-12 to

More information

AP-C WEP. h. Students should be able to recognize and solve problems that call for application both of conservation of energy and Newton s Laws.

AP-C WEP. h. Students should be able to recognize and solve problems that call for application both of conservation of energy and Newton s Laws. AP-C WEP 1. Wok a. Calculate the wok done by a specified constant foce on an object that undegoes a specified displacement. b. Relate the wok done by a foce to the aea unde a gaph of foce as a function

More information

c) (6) Assuming the tires do not skid, what coefficient of static friction between tires and pavement is needed?

c) (6) Assuming the tires do not skid, what coefficient of static friction between tires and pavement is needed? Geneal Physics I Exam 2 - Chs. 4,5,6 - Foces, Cicula Motion, Enegy Oct. 10, 2012 Name Rec. Inst. Rec. Time Fo full cedit, make you wok clea to the gade. Show fomulas used, essential steps, and esults with

More information

Physics C Rotational Motion Name: ANSWER KEY_ AP Review Packet

Physics C Rotational Motion Name: ANSWER KEY_ AP Review Packet Linea and angula analogs Linea Rotation x position x displacement v velocity a T tangential acceleation Vectos in otational motion Use the ight hand ule to detemine diection of the vecto! Don t foget centipetal

More information

Phys 201A. Homework 5 Solutions

Phys 201A. Homework 5 Solutions Phys 201A Homewok 5 Solutions 3. In each of the thee cases, you can find the changes in the velocity vectos by adding the second vecto to the additive invese of the fist and dawing the esultant, and by

More information

21 MAGNETIC FORCES AND MAGNETIC FIELDS

21 MAGNETIC FORCES AND MAGNETIC FIELDS CHAPTER 1 MAGNETIC ORCES AND MAGNETIC IELDS ANSWERS TO OCUS ON CONCEPTS QUESTIONS 1. (d) Right-Hand Rule No. 1 gives the diection of the magnetic foce as x fo both dawings A and. In dawing C, the velocity

More information

PHYS 172: Modern Mechanics. Summer Lecture 4 The Momentum Principle & Predicting Motion Read

PHYS 172: Modern Mechanics. Summer Lecture 4 The Momentum Principle & Predicting Motion Read PHYS 172: Moden Mechanics Summe 2010 Δp sys = F net Δt ΔE = W + Q sys su su ΔL sys = τ net Δt Lectue 4 The Momentum Pinciple & Pedicting Motion Read 2.6-2.9 READING QUESTION #1 Reading Question Which of

More information

To Feel a Force Chapter 7 Static equilibrium - torque and friction

To Feel a Force Chapter 7 Static equilibrium - torque and friction To eel a oce Chapte 7 Chapte 7: Static fiction, toque and static equilibium A. Review of foce vectos Between the eath and a small mass, gavitational foces of equal magnitude and opposite diection act on

More information

LINEAR MOMENTUM Physical quantities that we have been using to characterize the motion of a particle

LINEAR MOMENTUM Physical quantities that we have been using to characterize the motion of a particle LINEAR MOMENTUM Physical quantities that we have been using to chaacteize the otion of a paticle v Mass Velocity v Kinetic enegy v F Mechanical enegy + U Linea oentu of a paticle (1) is a vecto! Siple

More information

OSCILLATIONS AND GRAVITATION

OSCILLATIONS AND GRAVITATION 1. SIMPLE HARMONIC MOTION Simple hamonic motion is any motion that is equivalent to a single component of unifom cicula motion. In this situation the velocity is always geatest in the middle of the motion,

More information

Physics 121 Hour Exam #5 Solution

Physics 121 Hour Exam #5 Solution Physics 2 Hou xam # Solution This exam consists of a five poblems on five pages. Point values ae given with each poblem. They add up to 99 points; you will get fee point to make a total of. In any given

More information

EN40: Dynamics and Vibrations. Midterm Examination Thursday March

EN40: Dynamics and Vibrations. Midterm Examination Thursday March EN40: Dynamics and Vibations Midtem Examination Thusday Mach 9 2017 School of Engineeing Bown Univesity NAME: Geneal Instuctions No collaboation of any kind is pemitted on this examination. You may bing

More information

Chapter 5 Force and Motion

Chapter 5 Force and Motion Chapte 5 Foce and Motion In Chaptes 2 and 4 we have studied kinematics, i.e., we descibed the motion of objects using paametes such as the position vecto, velocity, and acceleation without any insights

More information

Chapter 5 Force and Motion

Chapter 5 Force and Motion Chapte 5 Foce and Motion In chaptes 2 and 4 we have studied kinematics i.e. descibed the motion of objects using paametes such as the position vecto, velocity and acceleation without any insights as to

More information

When a mass moves because of a force, we can define several types of problem.

When a mass moves because of a force, we can define several types of problem. Mechanics Lectue 4 3D Foces, gadient opeato, momentum 3D Foces When a mass moves because of a foce, we can define seveal types of poblem. ) When we know the foce F as a function of time t, F=F(t). ) When

More information

Chapter 12. Kinetics of Particles: Newton s Second Law

Chapter 12. Kinetics of Particles: Newton s Second Law Chapte 1. Kinetics of Paticles: Newton s Second Law Intoduction Newton s Second Law of Motion Linea Momentum of a Paticle Systems of Units Equations of Motion Dynamic Equilibium Angula Momentum of a Paticle

More information

PS113 Chapter 5 Dynamics of Uniform Circular Motion

PS113 Chapter 5 Dynamics of Uniform Circular Motion PS113 Chapte 5 Dynamics of Unifom Cicula Motion 1 Unifom cicula motion Unifom cicula motion is the motion of an object taveling at a constant (unifom) speed on a cicula path. The peiod T is the time equied

More information

Physics 4A Chapter 8: Dynamics II Motion in a Plane

Physics 4A Chapter 8: Dynamics II Motion in a Plane Physics 4A Chapte 8: Dynamics II Motion in a Plane Conceptual Questions and Example Poblems fom Chapte 8 Conceptual Question 8.5 The figue below shows two balls of equal mass moving in vetical cicles.

More information

CHAPTER 25 ELECTRIC POTENTIAL

CHAPTER 25 ELECTRIC POTENTIAL CHPTE 5 ELECTIC POTENTIL Potential Diffeence and Electic Potential Conside a chaged paticle of chage in a egion of an electic field E. This filed exets an electic foce on the paticle given by F=E. When

More information

MAGNETIC FIELD INTRODUCTION

MAGNETIC FIELD INTRODUCTION MAGNETIC FIELD INTRODUCTION It was found when a magnet suspended fom its cente, it tends to line itself up in a noth-south diection (the compass needle). The noth end is called the Noth Pole (N-pole),

More information

Chapter 5. really hard to start the object moving and then, once it starts moving, you don t have to push as hard to keep it moving.

Chapter 5. really hard to start the object moving and then, once it starts moving, you don t have to push as hard to keep it moving. Chapte 5 Fiction When an object is in motion it is usually in contact with a viscous mateial (wate o ai) o some othe suface. So fa, we have assumed that moving objects don t inteact with thei suoundings

More information

Multiple choice questions [100 points] As shown in the figure, a mass M is hanging by three massless strings from the ceiling of a room.

Multiple choice questions [100 points] As shown in the figure, a mass M is hanging by three massless strings from the ceiling of a room. Multiple choice questions [00 points] Answe all of the following questions. Read each question caefully. Fill the coect ule on you scanton sheet. Each coect answe is woth 4 points. Each question has exactly

More information

r dt dt Momentum (specifically Linear Momentum) defined r r so r r note: momentum is a vector p x , p y = mv x = mv y , p z = mv z

r dt dt Momentum (specifically Linear Momentum) defined r r so r r note: momentum is a vector p x , p y = mv x = mv y , p z = mv z Moentu, Ipulse and Collisions Moentu eeyday connotations? physical eaning the tue easue of otion (what changes in esponse to applied foces) d d ΣF ( ) dt dt Moentu (specifically Linea Moentu) defined p

More information

Chapter 7-8 Rotational Motion

Chapter 7-8 Rotational Motion Chapte 7-8 Rotational Motion What is a Rigid Body? Rotational Kinematics Angula Velocity ω and Acceleation α Unifom Rotational Motion: Kinematics Unifom Cicula Motion: Kinematics and Dynamics The Toque,

More information

PHYS Summer Professor Caillault Homework Solutions

PHYS Summer Professor Caillault Homework Solutions PHYS 1111 - Summe 007 - Pofesso Caillault Homewok Solutions Chapte 4 3. Pictue the Poblem: The ca moves up the 5.5 incline with constant acceleation, changing both its hoizontal and vetical displacement

More information

to point uphill and to be equal to its maximum value, in which case f s, max = μsfn

to point uphill and to be equal to its maximum value, in which case f s, max = μsfn Chapte 6 16. (a) In this situation, we take f s to point uphill and to be equal to its maximum value, in which case f s, max = μsf applies, whee μ s = 0.5. pplying ewton s second law to the block of mass

More information

Chapter 4: The laws of motion. Newton s first law

Chapter 4: The laws of motion. Newton s first law Chapte 4: The laws of motion gavitational Electic magnetic Newton s fist law If the net foce exeted on an object is zeo, the object continues in its oiginal state of motion: - an object at est, emains

More information

- 5 - TEST 1R. This is the repeat version of TEST 1, which was held during Session.

- 5 - TEST 1R. This is the repeat version of TEST 1, which was held during Session. - 5 - TEST 1R This is the epeat vesion of TEST 1, which was held duing Session. This epeat test should be attempted by those students who missed Test 1, o who wish to impove thei mak in Test 1. IF YOU

More information

Centripetal Force. Lecture 11. Chapter 8. Course website:

Centripetal Force. Lecture 11. Chapter 8. Course website: Lectue 11 Chapte 8 Centipetal Foce Couse website: http://faculty.uml.edu/andiy_danylov/teaching/physicsi PHYS.1410 Lectue 11 Danylov Depatment of Physics and Applied Physics Today we ae going to discuss:

More information

Circular Motion. Mr. Velazquez AP/Honors Physics

Circular Motion. Mr. Velazquez AP/Honors Physics Cicula Motion M. Velazquez AP/Honos Physics Objects in Cicula Motion Accoding to Newton s Laws, if no foce acts on an object, it will move with constant speed in a constant diection. Theefoe, if an object

More information

Physics 111 Lecture 5 Circular Motion

Physics 111 Lecture 5 Circular Motion Physics 111 Lectue 5 Cicula Motion D. Ali ÖVGÜN EMU Physics Depatment www.aovgun.com Multiple Objects q A block of mass m1 on a ough, hoizontal suface is connected to a ball of mass m by a lightweight

More information

Dynamics of Rotational Motion

Dynamics of Rotational Motion Dynamics of Rotational Motion Toque: the otational analogue of foce Toque = foce x moment am τ = l moment am = pependicula distance though which the foce acts a.k.a. leve am l l l l τ = l = sin φ = tan

More information

b) (5) What is the magnitude of the force on the 6.0-kg block due to the contact with the 12.0-kg block?

b) (5) What is the magnitude of the force on the 6.0-kg block due to the contact with the 12.0-kg block? Geneal Physics I Exam 2 - Chs. 4,5,6 - Foces, Cicula Motion, Enegy Oct. 13, 2010 Name Rec. Inst. Rec. Time Fo full cedit, make you wok clea to the gade. Show fomulas used, essential steps, and esults with

More information

Physics 11 Chapter 4: Forces and Newton s Laws of Motion. Problem Solving

Physics 11 Chapter 4: Forces and Newton s Laws of Motion. Problem Solving Physics 11 Chapte 4: Foces and Newton s Laws of Motion Thee is nothing eithe good o bad, but thinking makes it so. William Shakespeae It s not what happens to you that detemines how fa you will go in life;

More information

PHYSICS NOTES GRAVITATION

PHYSICS NOTES GRAVITATION GRAVITATION Newton s law of gavitation The law states that evey paticle of matte in the univese attacts evey othe paticle with a foce which is diectly popotional to the poduct of thei masses and invesely

More information

Chapter 2: Basic Physics and Math Supplements

Chapter 2: Basic Physics and Math Supplements Chapte 2: Basic Physics and Math Supplements Decembe 1, 215 1 Supplement 2.1: Centipetal Acceleation This supplement expands on a topic addessed on page 19 of the textbook. Ou task hee is to calculate

More information

Describing Circular motion

Describing Circular motion Unifom Cicula Motion Descibing Cicula motion In ode to undestand cicula motion, we fist need to discuss how to subtact vectos. The easiest way to explain subtacting vectos is to descibe it as adding a

More information

VECTOR MECHANICS FOR ENGINEERS: STATICS

VECTOR MECHANICS FOR ENGINEERS: STATICS 4 Equilibium CHAPTER VECTOR MECHANICS FOR ENGINEERS: STATICS Fedinand P. Bee E. Russell Johnston, J. of Rigid Bodies Lectue Notes: J. Walt Ole Texas Tech Univesity Contents Intoduction Fee-Body Diagam

More information

Uniform Circular Motion

Uniform Circular Motion Unifom Cicula Motion Intoduction Ealie we defined acceleation as being the change in velocity with time: a = v t Until now we have only talked about changes in the magnitude of the acceleation: the speeding

More information

F g. = G mm. m 1. = 7.0 kg m 2. = 5.5 kg r = 0.60 m G = N m 2 kg 2 = = N

F g. = G mm. m 1. = 7.0 kg m 2. = 5.5 kg r = 0.60 m G = N m 2 kg 2 = = N Chapte answes Heinemann Physics 4e Section. Woked example: Ty youself.. GRAVITATIONAL ATTRACTION BETWEEN SMALL OBJECTS Two bowling balls ae sitting next to each othe on a shelf so that the centes of the

More information

b) (5) What average force magnitude was applied by the students working together?

b) (5) What average force magnitude was applied by the students working together? Geneal Physics I Exam 3 - Chs. 7,8,9 - Momentum, Rotation, Equilibium Nov. 3, 2010 Name Rec. Inst. Rec. Time Fo full cedit, make you wok clea to the gade. Show fomulas used, essential steps, and esults

More information

Principles of Physics I

Principles of Physics I Pinciples of Physics I J. M. Veal, Ph. D. vesion 8.05.24 Contents Linea Motion 3. Two scala equations........................ 3.2 Anothe scala equation...................... 3.3 Constant acceleation.......................

More information

Objects usually are charged up through the transfer of electrons from one object to the other.

Objects usually are charged up through the transfer of electrons from one object to the other. 1 Pat 1: Electic Foce 1.1: Review of Vectos Review you vectos! You should know how to convet fom pola fom to component fom and vice vesa add and subtact vectos multiply vectos by scalas Find the esultant

More information

INTRODUCTION. 2. Vectors in Physics 1

INTRODUCTION. 2. Vectors in Physics 1 INTRODUCTION Vectos ae used in physics to extend the study of motion fom one dimension to two dimensions Vectos ae indispensable when a physical quantity has a diection associated with it As an example,

More information

Force can be exerted by direct contact between bodies: Contact Force.

Force can be exerted by direct contact between bodies: Contact Force. Chapte 4, Newton s Laws of Motion Chapte IV NEWTON S LAWS OF MOTION Study of Dynamics: cause of motion (foces) and the esistance of objects to motion (mass), also called inetia. The fundamental Pinciples

More information

Physics Tutorial V1 2D Vectors

Physics Tutorial V1 2D Vectors Physics Tutoial V1 2D Vectos 1 Resolving Vectos & Addition of Vectos A vecto quantity has both magnitude and diection. Thee ae two ways commonly used to mathematically descibe a vecto. y (a) The pola fom:,

More information

Chapter 4. Newton s Laws of Motion

Chapter 4. Newton s Laws of Motion Chapte 4 Newton s Laws of Motion 4.1 Foces and Inteactions A foce is a push o a pull. It is that which causes an object to acceleate. The unit of foce in the metic system is the Newton. Foce is a vecto

More information

anubhavclasses.wordpress.com CBSE Solved Test Papers PHYSICS Class XII Chapter : Electrostatics

anubhavclasses.wordpress.com CBSE Solved Test Papers PHYSICS Class XII Chapter : Electrostatics CBS Solved Test Papes PHYSICS Class XII Chapte : lectostatics CBS TST PAPR-01 CLASS - XII PHYSICS (Unit lectostatics) 1. Show does the foce between two point chages change if the dielectic constant of

More information

HW Solutions # MIT - Prof. Please study example 12.5 "from the earth to the moon". 2GmA v esc

HW Solutions # MIT - Prof. Please study example 12.5 from the earth to the moon. 2GmA v esc HW Solutions # 11-8.01 MIT - Pof. Kowalski Univesal Gavity. 1) 12.23 Escaping Fom Asteoid Please study example 12.5 "fom the eath to the moon". a) The escape velocity deived in the example (fom enegy consevation)

More information

1121 T Question 1

1121 T Question 1 1121 T1 2008 Question 1 ( aks) You ae cycling, on a long staight path, at a constant speed of 6.0.s 1. Anothe cyclist passes you, tavelling on the sae path in the sae diection as you, at a constant speed

More information

AH Mechanics Checklist (Unit 2) AH Mechanics Checklist (Unit 2) Circular Motion

AH Mechanics Checklist (Unit 2) AH Mechanics Checklist (Unit 2) Circular Motion AH Mechanics Checklist (Unit ) AH Mechanics Checklist (Unit ) Cicula Motion No. kill Done 1 Know that cicula motion efes to motion in a cicle of constant adius Know that cicula motion is conveniently descibed

More information

Solutions to Problems : Chapter 19 Problems appeared on the end of chapter 19 of the Textbook

Solutions to Problems : Chapter 19 Problems appeared on the end of chapter 19 of the Textbook Solutions to Poblems Chapte 9 Poblems appeae on the en of chapte 9 of the Textbook 8. Pictue the Poblem Two point chages exet an electostatic foce on each othe. Stategy Solve Coulomb s law (equation 9-5)

More information

7.2. Coulomb s Law. The Electric Force

7.2. Coulomb s Law. The Electric Force Coulomb s aw Recall that chaged objects attact some objects and epel othes at a distance, without making any contact with those objects Electic foce,, o the foce acting between two chaged objects, is somewhat

More information

SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question.

SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question. Chapte 7-8 Review Math 1316 Name SHORT ANSWER. Wite the wod o phase that best completes each statement o answes the question. Solve the tiangle. 1) B = 34.4 C = 114.2 b = 29.0 1) Solve the poblem. 2) Two

More information

Chapter 8. Accelerated Circular Motion

Chapter 8. Accelerated Circular Motion Chapte 8 Acceleated Cicula Motion 8.1 Rotational Motion and Angula Displacement A new unit, adians, is eally useful fo angles. Radian measue θ(adians) = s = θ s (ac length) (adius) (s in same units as

More information

Electrostatics (Electric Charges and Field) #2 2010

Electrostatics (Electric Charges and Field) #2 2010 Electic Field: The concept of electic field explains the action at a distance foce between two chaged paticles. Evey chage poduces a field aound it so that any othe chaged paticle expeiences a foce when

More information

Physics 11 Chapter 20: Electric Fields and Forces

Physics 11 Chapter 20: Electric Fields and Forces Physics Chapte 0: Electic Fields and Foces Yesteday is not ous to ecove, but tomoow is ous to win o lose. Lyndon B. Johnson When I am anxious it is because I am living in the futue. When I am depessed

More information

Chapter 1: Mathematical Concepts and Vectors

Chapter 1: Mathematical Concepts and Vectors Chapte : Mathematical Concepts and Vectos giga G 9 mega M 6 kilo k 3 centi c - milli m -3 mico μ -6 nano n -9 in =.54 cm m = cm = 3.8 t mi = 58 t = 69 m h = 36 s da = 86,4 s ea = 365.5 das You must know

More information

Uniform Circular Motion

Uniform Circular Motion Unifom Cicula Motion Have you eve idden on the amusement pak ide shown below? As it spins you feel as though you ae being pessed tightly against the wall. The ide then begins to tilt but you emain glued

More information

Spring 2001 Physics 2048 Test 3 solutions

Spring 2001 Physics 2048 Test 3 solutions Sping 001 Physics 048 Test 3 solutions Poblem 1. (Shot Answe: 15 points) a. 1 b. 3 c. 4* d. 9 e. 8 f. 9 *emembe that since KE = ½ mv, KE must be positive Poblem (Estimation Poblem: 15 points) Use momentum-impulse

More information

Version 1.0. General Certificate of Education (A-level) June Mathematics MM04. (Specification 6360) Mechanics 4. Final.

Version 1.0. General Certificate of Education (A-level) June Mathematics MM04. (Specification 6360) Mechanics 4. Final. Vesion 1.0 Geneal Cetificate of Education (A-level) June 011 Mathematics MM04 (Specification 660) Mechanics 4 Final Mak Scheme Mak schemes ae pepaed by the Pincipal Examine and consideed, togethe with

More information

Conflict Exam Issue. Sorry, Can t do it. Please see Kevin Pitts if you have any additional questions or concerns about this. Office is 231 Loomis

Conflict Exam Issue. Sorry, Can t do it. Please see Kevin Pitts if you have any additional questions or concerns about this. Office is 231 Loomis Conflict Exam Issue. Soy, Can t do it I was told that: Students can only be excused fom the scheduled final fo illness, death in the family o eligious holiday. No exceptions. Please see Kevin Pitts if

More information

Physics 181. Assignment 4

Physics 181. Assignment 4 Physics 181 Assignment 4 Solutions 1. A sphee has within it a gavitational field given by g = g, whee g is constant and is the position vecto of the field point elative to the cente of the sphee. This

More information

= 4 3 π( m) 3 (5480 kg m 3 ) = kg.

= 4 3 π( m) 3 (5480 kg m 3 ) = kg. CHAPTER 11 THE GRAVITATIONAL FIELD Newton s Law of Gavitation m 1 m A foce of attaction occus between two masses given by Newton s Law of Gavitation Inetial mass and gavitational mass Gavitational potential

More information

Section 8.2 Polar Coordinates

Section 8.2 Polar Coordinates Section 8. Pola Coodinates 467 Section 8. Pola Coodinates The coodinate system we ae most familia with is called the Catesian coodinate system, a ectangula plane divided into fou quadants by the hoizontal

More information

4. Two and Three Dimensional Motion

4. Two and Three Dimensional Motion 4. Two and Thee Dimensional Motion 1 Descibe motion using position, displacement, elocity, and acceleation ectos Position ecto: ecto fom oigin to location of the object. = x i ˆ + y ˆ j + z k ˆ Displacement:

More information

Flux. Area Vector. Flux of Electric Field. Gauss s Law

Flux. Area Vector. Flux of Electric Field. Gauss s Law Gauss s Law Flux Flux in Physics is used to two distinct ways. The fist meaning is the ate of flow, such as the amount of wate flowing in a ive, i.e. volume pe unit aea pe unit time. O, fo light, it is

More information

Explain to each other your movie project and the variable you are calculating. Discuss how will you know if it could occur in real life.

Explain to each other your movie project and the variable you are calculating. Discuss how will you know if it could occur in real life. Movie Review Pat One due today! (tun in now please) Pick a peson that you did NOT do the movie poposal with. Explain to each othe you movie poject and the vaiable you ae calculating. Discuss how will you

More information

Physics 11 Chapter 3: Vectors and Motion in Two Dimensions. Problem Solving

Physics 11 Chapter 3: Vectors and Motion in Two Dimensions. Problem Solving Physics 11 Chapte 3: Vectos and Motion in Two Dimensions The only thing in life that is achieved without effot is failue. Souce unknown "We ae what we epeatedly do. Excellence, theefoe, is not an act,

More information

Physics 101 Lecture 6 Circular Motion

Physics 101 Lecture 6 Circular Motion Physics 101 Lectue 6 Cicula Motion Assist. Pof. D. Ali ÖVGÜN EMU Physics Depatment www.aovgun.com Equilibium, Example 1 q What is the smallest value of the foce F such that the.0-kg block will not slide

More information

Unit 6 Practice Test. Which vector diagram correctly shows the change in velocity Δv of the mass during this time? (1) (1) A. Energy KE.

Unit 6 Practice Test. Which vector diagram correctly shows the change in velocity Δv of the mass during this time? (1) (1) A. Energy KE. Unit 6 actice Test 1. Which one of the following gaphs best epesents the aiation of the kinetic enegy, KE, and of the gaitational potential enegy, GE, of an obiting satellite with its distance fom the

More information

Rigid Body Dynamics 2. CSE169: Computer Animation Instructor: Steve Rotenberg UCSD, Winter 2018

Rigid Body Dynamics 2. CSE169: Computer Animation Instructor: Steve Rotenberg UCSD, Winter 2018 Rigid Body Dynamics 2 CSE169: Compute Animation nstucto: Steve Rotenbeg UCSD, Winte 2018 Coss Poduct & Hat Opeato Deivative of a Rotating Vecto Let s say that vecto is otating aound the oigin, maintaining

More information

Circular Orbits. and g =

Circular Orbits. and g = using analyse planetay and satellite motion modelled as unifom cicula motion in a univesal gavitation field, a = v = 4π and g = T GM1 GM and F = 1M SATELLITES IN OBIT A satellite is any object that is

More information

( ) ( ) Review of Force. Review of Force. r = =... Example 1. What is the dot product for F r. Solution: Example 2 ( )

( ) ( ) Review of Force. Review of Force. r = =... Example 1. What is the dot product for F r. Solution: Example 2 ( ) : PHYS 55 (Pat, Topic ) Eample Solutions p. Review of Foce Eample ( ) ( ) What is the dot poduct fo F =,,3 and G = 4,5,6? F G = F G + F G + F G = 4 +... = 3 z z Phs55 -: Foce Fields Review of Foce Eample

More information

Physics 107 HOMEWORK ASSIGNMENT #15

Physics 107 HOMEWORK ASSIGNMENT #15 Physics 7 HOMEWORK SSIGNMENT #5 Cutnell & Johnson, 7 th eition Chapte 8: Poblem 4 Chapte 9: Poblems,, 5, 54 **4 small plastic with a mass of 6.5 x - kg an with a chage of.5 µc is suspene fom an insulating

More information

Physics 1114: Unit 5 Hand-out Homework (Answers)

Physics 1114: Unit 5 Hand-out Homework (Answers) Physics 1114: Unit 5 Hand-out Homewok (Answes) Poblem set 1 1. The flywheel on an expeimental bus is otating at 420 RPM (evolutions pe minute). To find (a) the angula velocity in ad/s (adians/second),

More information

PHYS 1410, 11 Nov 2015, 12:30pm.

PHYS 1410, 11 Nov 2015, 12:30pm. PHYS 40, Nov 205, 2:30pm. A B = AB cos φ x = x 0 + v x0 t + a 2 xt 2 a ad = v2 2 m(v2 2 v) 2 θ = θ 0 + ω 0 t + 2 αt2 L = p fs µ s n 0 + αt K = 2 Iω2 cm = m +m 2 2 +... m +m 2 +... p = m v and L = I ω ω

More information

FREE Download Study Package from website: &

FREE Download Study Package from website:  & .. Linea Combinations: (a) (b) (c) (d) Given a finite set of vectos a b c,,,... then the vecto xa + yb + zc +... is called a linea combination of a, b, c,... fo any x, y, z... R. We have the following

More information

ev dm e evd 2 m e 1 2 ev2 B) e 2 0 dm e D) m e

ev dm e evd 2 m e 1 2 ev2 B) e 2 0 dm e D) m e . A paallel-plate capacito has sepaation d. The potential diffeence between the plates is V. If an electon with chage e and mass m e is eleased fom est fom the negative plate, its speed when it eaches

More information

Chapter. s r. check whether your calculator is in all other parts of the body. When a rigid body rotates through a given angle, all

Chapter. s r. check whether your calculator is in all other parts of the body. When a rigid body rotates through a given angle, all conveted to adians. Also, be sue to vanced to a new position (Fig. 7.2b). In this inteval, the line OP has moved check whethe you calculato is in all othe pats of the body. When a igid body otates though

More information